FloraMap maps the predicted distribution, or areas of possible adaptation, of natural organisms when little is known of the detailed physiology of the organism. The climate at the collection point of a set of individuals is assumed to be representative of the environmental range of the organisms. For plants, these are usually germplasm accessions or herbarium specimens.

The method
The climate at the collection point is defined from a climate database and used as a calibration to evaluate a climate probability model.

We **reconstruct the climate data to a common time scale**. For a given FloraMap report, the climate data is normalized to a common time scale for each point. The climate at the point is then treated as a probability distribution, which is calculated using the climate probability model.

We **calculate a model of the probability that a map point** belongs to the climate distribution. A grid is defined for each point, and the climate distribution is calculated for each grid point. The probability that a point belongs to the climate distribution is calculated using a climate probability model.

We **then map the probability surface from a set of interpolated climate grids**. The climate probability model is used to calculate the probability that the climate at each point could belong to the climate distribution. The climate probability model is then applied to the climate data, and the probability that a point belongs to the climate distribution is calculated.

The probability surfaces can be output to other GIS applications. For example, the climate probability model can be used to predict the probability that a point belongs to the climate distribution, and the climate probability model can be used to predict the probability that a point belongs to the climate distribution.

The Map Window Tool
The map window is the main tool in FloraMap. It displays the maps and has controls for managing the map layers, including probability distributions and data points used in the maps. The map layers can be zoomed in and out, and the current map layer can be selected from the list of available map layers. The map window can also be used to manage map layers, including adding and removing map layers.

The **Principal Components Window Tool**
The principal components tool is used to view the principal components analysis of the climate data. The principal components tool can be used to view the principal components analysis of the climate data, and the principal components tool can be used to view the principal components analysis of the climate data.

The **Cluster Analysis Tool**
The cluster analysis tool is used to view the cluster analysis of the climate data. The cluster analysis tool can be used to view the cluster analysis of the climate data, and the cluster analysis tool can be used to view the cluster analysis of the climate data.

The **Climate Diagram Tool**
The climate diagram tool is used to view the climate diagram of the climate data. The climate diagram tool can be used to view the climate diagram of the climate data, and the climate diagram tool can be used to view the climate diagram of the climate data.

Bibliography

Mapping the distribution of five species of Passiflora in Andean countries

Distribution study of Stylotis guianensis

Group 1: S. guianensis var. vulgaris

Group 12: S. guianensis var. panamensis

Desmanthemum barbarum

Cross Continent Adaptability Mapping

Desmanthemum hydrocarpus

subsp. ovolifolium

This chapter shows a selection of thirty-five maps from the database of the FloraMap Users Manual. These maps are designed to show the predicted range of the important tropical fruit species in the genus Passiflora. This chapter also presents the Climate Suitability Analysis (CSA) tool, which can be used to predict the climate suitability of plants in the wild. The FloraMap Users Manual includes a comprehensive list of maps, which can be used to predict the climate suitability of plants in the wild. The FloraMap Users Manual also includes a comprehensive list of maps, which can be used to predict the climate suitability of plants in the wild.