

USE OF ALTERNATIVE FERTILIZER SOURCES IN MARGINAL LANDS OF TROPICAL AMERICA

JOSE G. SALINAS
SOIL PLANT-NUTRITION
TROPICAL PASTURES PROGRAM
C I A T

021514 14 HOV 1995

OBJECTIVES

- TO EVALUATE IN ACID SOILS (pH<5.5) THE RELATIVE MERIT
 OF LOW SOLUBILITY. LESS COSTLY SOURCES OF K, Mg AND S
 SUCH AS K-FELDSPARS, Mg-SERPENTINE OR CARBONATES AND
 GYPSUM OR ELEMENTAL SULFUR.
- 2. TO DETERMINE THE MOST APPROPRIATE COMBINATIONS OF
 RATES AND PLACEMENT METHODS IN TERMS OF INITIAL AND
 RESIDUAL EFFECTS ON TROPICAL PASTURES (FOOD CROPS).

ACTUAL FERTILIZER TECHNOLOGY VS. AGRICULTURAL TECHNOLOGY FOR MARGINAL LANDS

FERTILIZER PRODUCTION AND CONSUMPTION IN SEVERAL COUNTRIES OF TROPICAL AMERICA DURING 1980/81. (THOUSAND METRIC TON: N-P-K)

Country	N		P		K	
	Production	Consumption	Production	Consumption	Production	Consumption
BRAZIL	384	906	708	867	0	1089
COLOMBIA	42	152	20	33	0	63
ECUADOR	2	41	3	6	0	15
PERU	, . 74	82	0,5	7	0	9
VENEZUELA	145	113	10	34	0	42

SOURCE: FAO, Fertilizer Yearbook, 1982.

TYPICAL MINERAL COMPOSITION OF K-FELDSPAR ROCKS FROM HUILA, COLOMBIA

MINERAL COMPOUND	CONTENT	(%)
SiO ₂	72.63	
A1 ₂ 0 ₃	15.69	
Fe ₂ 0 ₃	0.21	
TiO ₂	0.14	
P ₂ O ₅	0.26	
CaO -	. 0.78	
MgO	0.42	
MnO	0.01	
Na ₂ 0	1.78	
K ₂ 0	7.61	
SO ₃	0.47	
K-FELDSPAR (K20.A1203. 6 SIO2)	45.01%	
Na-FELDSPAR (Na ₂ 0. Al ₂ 0 ₃ . 6 SiO ₂)	15.05%	

BY THE YIELD OF Brachiaria decumbers GROWN IN A CARIMAGUA OXISOL AT THE GREENHOUSE

Potassium Source	Ро	(Kg K/ha eq.))	
	10	20	40	80
	(7.6)	(7.8)	(7.7)	(8.6)
KC1*	100a	100a	100a	100a
Algeciras 1	64c	91a	91a	97a
Rio Blanco	95a	87ь	95a	107a
Algeciras 2	90a	90a	96a	77b
Ospina	101a	85ь	95a	87ь
Hobo	86ь	87ь	80ь	94a

^{*} Yields of the KCl treatments are assumed 100% at each K rate; numbers in parentheses are yields in g/pot.

Control: (4.0)

ALTERNATIVE SOURCES OF NUTRIENTS FOR ACID, INFERTILE OXISOLS AND ULTISOLS IN MARGINAL LANDS OF TROPICAL AMERICA

- DO NOT NECESSARILY INVOLVE REDUCED QUANTITIES OF FERTILIZERS, BUT DO INVOLVE FERTILIZER WITH REDUCED COST.
- DO INVOLVE USE OF INDIGENOUS RATHER THAN IMPORTED INPUTS.
- DO INVOLVE UTILIZATION OF RESIDUALLY AVAILABLE NUTRIENTS FOR LONG TERM MAINTENANCE OF PASTURES AND/OR CROPS.

RESEARCH PRIORITIES

MINERALOGICAL STUDIES:

- DESCRIPTION AND DETERMINATION OF MINERAL COMPOSITION OF THE ROCKS
- NUTRIENT RELEASE RATES
- MINERAL DIGESTIBILITY
- THERMAL TRANSFORMATIONS
- NUTRIENT CONCENTRATION PROCESSES
- ETC.

RESEARCH PRIORITIES

AGRONOMIC STUDIES:

- AGRONOMIC POTENTIAL OF INDIGENOUS K, Mg AND S RESOURCES IN TROPICAL AMERICA
- AGRONOMIC EFFECTIVENESS OF K, Mg AND S SOURCES AS INFLUENCED BY CROP/SOIL PROPERTIES
- EFFECTS OF PHYSICAL (GRANULAR SIZES) AND CHEMICAL MODIFICATIONS
 TO THE INDIGENOUS FERTILIZER SOURCES ON THEIR AGRONOMIC
 POTENTIAL
- COMBINATIONS OF RATES AND PLACEMENT METHODS IN TERMS OF
 INITIAL AND RESIDUAL EFFECTS AS INFLUENCED BY CROP/SOIL PROPERTIES