Microsatellite marker diversity in common bean (Phaseolus vulgaris L.)

M.W. Blair, H.F. Buendía, L. Díaz, J.M. Díaz, M.C. Giraldo, E. Tovar, M.C. Duque, S.E. Beebe, D. Debouck

Bean Project and Genetic Resource Unit, CIAT - International Center for Tropical Agriculture, Apartado Aéreo 6713, Cali, Colombia

Introduction

Common bean is the third most important grain legume in the world produced over an area of 18 million hectares with large amounts of production in developing countries of Latin America and Eastern and Southern Africa (Broughton et al., 2003). Cultivated common bean germplasm is especially diverse due to the existence of two genepools in the Mesoamerican and Andean centers of diversity and these genepools can be distinguished into various races (Singh et al., 1991). In this poster, we describe the evaluation of a mini core collection of useful parental genotypes with 129 microsatellite markers. Allelic diversity and heterozygosity of these microsatellite markers is also described. Two types of microsatellites were evaluated, based respectively on gene coding and genomic Genetic diversity was evaluated by sequences. estimating the polymorphism information content (PIC), as well as the distribution and range of alleles sizes.

Materials and Methods

Genotypes: A total of 43 common bean (P. vulgaris) and one tepary bean (P. acutifolius) genotypes were used in this study (Table 1; Blair et al., 2006). The genotypes represented parents of genetic mapping populations being studied at CIAT for biotic or abiotic stress resistance and nutritional quality. The genotypes were grouped in three parental surveys with common controls run in each gel, namely the Mesoamerican DOR364 and the Andean G19833. Among the 43 common bean genotypes were a total of 12 Andean (10 cultivated and 2 wild) and 31 Mesoamerican (30 cultivated and 1 wild) genotypes. The growth habit of each genotype was classified from I (determinate bush) to IV (indeterminate climber) according to Singh et al. (1991). DNA extraction were from 10 seedlings selected at random from each accession with the method of Afanador et al. (1993). DNA was diluted to 10 ng/ml for further experiments.

Microsatellite Analysis: Markers included the 150 SSRs analyzed by Blair et al. (2003). PCR reactions were carried out in 12 µl reaction volumes containing 20 ng of genomic DNA, 0.15µM each of forward and reverse primers, 200 µM of total dNTP and 1 unit of Tag polymerase in 1X PCR buffer (10 mM of Tris-HCI (pH 7.2), 50 mM of KCI). Amplification products were evaluated on 4% denaturating polyacrylamide gels which were run in Sequi-Gen GT electrophoresis units (Bio-Rad, Hercules CA) at 100 constant Watts for approximately 1.5 hours and silver stained. Allele sizes were estimated based on comparison of microsatellite bands to a 10-pb molecular-weight ladder (Invitrogen, Carlsbad, CA) that was placed every twentieth lane in one hundred lane gels.

Data Analysis: Polymorphism information content (PIC) of each microsatellite was calculated using the formula: PIC = 1 -åpij 2, where pij is the frequency of the patterns (j) for each marker (i). The microsatellite dataset was also used for a multiple correspondence analysis (MCA) of the genotypes and for UPGMA clustering in SAS v. 9.1.3 (SAS Institute, Cary NC).

Tables and Figures

Table 1. Common bean genotypes used for assessment of microsatellite diversity and their accession number, phaseolin status, race and gene pool identity, origin and growth habit.

Genotype	Ph	Genepool	Race	Status	Origin	GH	Genetype	Ph.	Genepoel	Race	Status	Origin	G
G 11360	\$	Messamerican	1	Caltiv	Mexico	IV	KA Bias		Messamerican	м	Cally	Colombia	
G 11350	\$	Messamerican	м	Calify	Mexico	10	G-80000		Tenery Buss		Calify	Mexico	
G 21657	с	Andrea	P	Califix	Relptia	10	VAX 6	5	Menamerican	м	Cally	CLAT	
G 21078	т	Andrea	P	Calify	Argentina	IV	MARI	5	Messamerican	м	Calify	CLAT	
G 21242	с	Andrea	-	Califix	Colombia	IV	J 117	s	Monamerican	1	Calify	Mexico	11
G 14519	8	Messamerican	м	Callix	USA	IV	JAMAPA	5	Messamerican	м	Calify	Mexico	
G 4825	B	Messamerican	м	Califix	Read	10	G 2333	s	Momamerican	G	Calify	Mexico	r.
G 19833	С	Andrea	P	Callix	Pora	10	G 19839	T	Andrea	P	Calify	Pro	
DOR 364	8	Messamerican	м	Callix	CIAT	11	G 855	50	Monamerican	1	Callin	Mexico	P
BAT 477	8	Messamerican	м	Califix	CIAT		BRR 191	Ŧ	Andrea	NG	Calify	CLAT	
G 3513	8	Messamerican	м	Callix	Mexico	11	MAM-19	5	Messamerican	D	Calify	CLAT	
BAT 881	8	Messamerican	м	Califix	CIAT		G 5273	τ.	Andrea	NG	Calify	Mexico	
G 21212	R	Messamerican	м	Callix	Colombia	11	MAM 28	5	Monamerican	D	Calify	CLAT	
G 24404	C	Andrea	-	Wild	Colombia	IV	SEO 1027	T	Andrea	NG	Calify	CLAT	
Radical Contara	т	Andrea	P	Califix	Colombia	1	G-4090	54	Momamerican	м	Calify	El Salvador	
G 24290	м	Messamerican	-	Wild	Mexico	IV	Tio Canda	5	Messamerican	м	Calify	EAP	
DOR 290	8	Messamerican	м	Calify	CIAT		DOR 714	s	Monamerican	м	Calify	CLAT	
G19992	т	Andrea	60	Witd	Argentina	IV	SEAS	s	Monamerican	D	Calify	CLAT	
DOR 476	8	Messamerican	м	Callix	CIAT	11	MD 23-26	5	Messamerican	м	Calify	EAP	
SEL 1309	8	Messamerican	м	Califix	CIAT		SEA 15	s	Monamerican	D	Calify	CLAT	
BAT93	8	Messamerican	м	Califix	CIAT		G 685	55	Monamerican	G	Calify	Gunemala	
Jain FEP558	т	Andrea	NG	Callin	Read		SEA 21	s	Mosnamerican	м	Calliv	CLAT	1

Table 2. Number of alleles and polymorphism information content (PIC) of 129 common bean microsatellite markers.

(57 gene-based and 72 genomic)

~							·
Aster	No. of	PIC	Expected	Marker	No. 64	PIC	Expected
	allelex		Allele		alleles		Allele
U Gen	-based			Gene-based (c)	eez a)		
12447		0.542	105	224.444		0.114	170
		0.027	100	0.0024.7		0.410	1.07
EM613		0.625	223	835245	- 1	0.319	158
83454		0.129	140	835347		0.573	150
EM615		0.129	122	0.55248		0.000	131
8.5655	-	0.05.7	122	835549	-	0.201	95
83437		0.730	100	836150	- 2	0.334	1.24
1.5623		0.724	170	0.06251		0.407	116
BM29	6	0.257	138	BM453	5	0.574	105
BMd10		0.761	139	BM455	3	0.088	188
IMd13	3	0.168	194	PV-CTT001	14	0.822	152
BMd14	3	0.206	186	PV-AG201		0.546	157
BMd15		0.722	166	PV-AG003	7	0.721	164
BMd16	6	0.526	136	PV-GAAT002	5	0.448	156
BMd17	7	0.666	116	PV-TTTC001	7	0.448	161
BMd18	5	0.757	156	PV-AT007	20	0.941	192
BMd19	- 4	0.209	154	PV-AT001	24	0.943	170
BM420	10	0.793	123	PV-CT7002	2	0.305	218
BMd21	5	0.3\$7	190	PV-AG004	. 9	0.546	201
BMd22	6	0.5%6	121	PV-AGO04b	12	0.829	202
BMd23	2	0.057	127	PV-AAAT001		0.000	205
BMd25	3	0.400	118	PV-ATCC001		0.000	172
BMd26	- 4	0.458	141	PV-ATCOM2	2	0.044	192
BMd27	2	0.236	109	PV-ATCOM3	3	0.501	178
BM428	13	0.874	151	PV-ATCT001	3	0.206	196
BM430	4	0.170	134	PV-CCCT001	3	0.501	150
BM431	2	0.044	161	PV-CCT001	7	0.684	137
BM432	3	0.206	150	PV-TTTC001	6	0.638	143

Table 3 Observed intra	Category	N	Observed Heterogeneity			Value
(Hs) and inter population			cDNA based (57)	Genomic (72)	Total	
(Hsi) divorsity for	Total	44	0.444	0.593	0.527	H
(I ISI) UIVEISILY IOI	Species/Status ¹	44	0.429	0.575	0.511	Hs
genotypes belonging to wild	Cultivated P. valgaris	40	0.432	0.583	0.516	Ha
and cultivated common	Wild P. valgaris Tenary Bean P. acatifolius	3	0.388	0.477	0.437	H _i H _i
beans to Andean and	Gene pools	40	0.343	0.486	0.422	H,
Mosoamorican gono pools	Mescamerican	30	0.319	0.481	0.410	Ha
iviesoamerican gene pools	Pacar	40	0.952	0.300	0.401	n.,
and to races within each	Nurva Granada	40	0.215	0.352	0.292	H.
gene pool.	Peru	5	0.397	0.436	0.419	Hai
	Introgressed	1	0.000	0.000	0.000	Hai
	Durango	4	0.154	0.325	0.249	Hai
	Guatemala	2	0.246	0.292	0.271	Hai
	Jalisco	3	0.257	0.367	0.319	Hai

Figure 1. Multiple correspondence analysis using UPGMA clustering for 44 common bean genotypes based on 129 microsatellite markers where A) includes wild common bean (*Phaseolus vulgaris* L) and tepary bean (*P. acutifolius* Gray) outgroups and B) includes only cultivated common bean classified according to races within Andean and Mesoamerican genepools.

References

- Afanador L, Hadley S, Kelly JD (1993) Adoption of a mini-prep DNA extraction method for RAPD marker analysis in common bean (*Phaseolus vulgaris* L). Bean Improv Coop 36:10-11
- Blair MW, Pedraza F, Buendia H, Gaitan-Solis E, Beebe S, Gepts P,Tohme J (2003) Development of a genome-wide anchored microstaellitte map for common bean (*Phaseolus vulgaris* L). Theor ApJ Genet 107:1362-1374.
- Blair MW, Giraldo MC, Buendia HF, Tovar E, Duque MC, Beebe SE (2006) Microsatellite marker diversity in common bean (*Phaseolus vulgaris* L.) Theor Appl Genet 113: 100–109.
- Broughton WJ, Hernandez G, Blair MW, Beebe SE, Gepts P, Vanderleyden J (2003) Beans (*Phaseolus* spp.); Model Food Legumes. Plant & Soil 252: 55-128
- Diaz LM, Blair MW (2006) Race structure within the Mesoamerican gene pool of common bear (*Phaseolus vulgaris* L.) as determined by microsatellite markers. Theor Appl Genet 114: 143-54.
- Singh. S., Gepts. P. & Debouk. D (1991) Races of common bean (*Phaseolus vulgaris*, Fabaceae). Econ. Bot. 45(3): 379-396.

Results and Discussion

Comparable allele sizes could be ascertained across the three parental surveys for a total of 129 SSRs (57 gene based and 72 genomic) and these were used for PIC calculations (Table 2) and diversity evaluation. Notably, gene-based microsatellites proved to be less polymorphic than genomic microsatellites for number of alleles (6.0 vs. 9.2) and PIC values (0.446 vs. 0.594).

The microsatellites were useful for identifying Andean and Mesoamerican genotypes, for uncovering the races within each genepool and for separating wild accessions from cultivars in the multiple correspondence analyses (Figure 1).

Principal inertia adjustments according to Benzecri were used to calculate the variance explained by each dimension in the MCA. In figure 1A, the tepary bean accession was differentiated from all common bean accessions in a first dimension which explained 24.3% of the variance. The wild accessions from Colombia and Mexico (G24404 and G24390) were distinguished from the domesticated common bean genotypes of each gene pool in a second dimension which explained 19.3% of the variance.

➢ Within the cultivated genotypes of common beans there were two principal clusters in the multiple correspondence analysis corresponding to the Andean and Mesoamerican gene pools. In Figure 1A, these were predominantly separated by the third dimension which explained 7.0% of the variance.

Separation of races is shown in Figure 1B. Within the Andean group there was evidence for two subgroups; the first of which corresponded to the Peru race (G21078, G19833, G19839, G21657 and Radical Cerinza) and the second to the Nueva Granada race (BRB191, G5273, Jalo EEP558 and SEQ1027). Meanwhile, one of the cultivated Andean genotypes, G21242, showed signs of introgression from the Mesoamerican gene pool and was found half way between these two gene pools. Within the Mesoamerican group there was less distinction or race structure although the Guatemala race genotypes (G685 and G2333) were associated and were separate from both Jalisco and Mesoamerica race genotypes.

> Values for total diversity (Ht), intra population diversity (Hs) and inter population diversity (Hsi) as well as population differentiation (Gst) coefficients were also calculated for the races and genepools (Table 3). Within the Andean gene pool, race Peru had higher diversity compared to race Nueva Granada, while within the Mesoamerican gene pool, the races Durango, Guatemala and Jalisco had comparable levels of diversity which were below that of race Mesoamerica.

Conclusions

Microsatellites are a priority tool for genetic diversity assessment in common beans and are leading to a better understanding of race structure and crop genetic diversity for common beans, especially for the races or genepool where previous marker systems were less polymorphic (Blair et al., 2006; Díaz and Blair, 2006).