1	Potential geographic distribution of two invasive cassava green mites
2	
3	Soroush Parsa ¹ , Aymer Andrés Vásquez-Ordóñez ¹ , Qing Chen ² , Fuping Lu ² , Beatriz
4	Vanessa Herrera Campo ¹ , John Stephen Yaninek ³
5	
6	¹ Centro Internacional de Agricultura Tropical (CIAT), Apartado Aéreo 6713, Cali,
7	Colombia
8	
9	² Environment and Plant Protection Institute, China Academy of Tropical Agriculture
10	Sciences (CATAS), Haikou, China
11	
12	³ Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN
13	47907, United States
14	
15	Address correspondence to:
16	•
17	Soroush Parsa
18	CIAT (Centro Internacional de Agricultura Tropical)
19	A.A. 6713, Cali, Colombia, S.A.
20	Phone: +57 (2) 4450000
21	Fax: +57 (2) 4450073
22	Email: s.parsa@cgiar.org
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	

- 47 Abstract
- 48

49 The cassava green mites *Mononychellus tanajoa* and *M. mcgregori* are highly invasive 50 species that rank among the most serious pests of cassava globally. To guide the 51 development of appropriate risk mitigation measures preventing their introduction and 52 spread, this article estimates their potential geographic distribution using the maximum 53 approach to distribution modeling. We compiled 1,232 occurrence records for *M. tanajoa* 54 and 99 for *M. mcgregori*, and relied on the CliMond climate database as a source of 55 environmental predictors. In addition to the distribution models, we conducted statistical 56 analyses comparing the climates where they occur. The models predicted different 57 potential distribution patterns for the two. Outside their native range in the Americas, M. 58 *mcgregori* seems better adapted to survive in Southeast Asia and *M. tanajoa* to Africa. 59 The statistical analyses suggested that unlike *M. tanajoa*, *M. mcgregori* can survive 60 locations without a pronounced dry season, potentially explaining its predicted 61 distribution across equatorial climates. Our results should help decision-makers assess the 62 site-specific risk of cassava green mite establishment, and develop proportional risk 63 mitigation measures to prevent their introduction and spread. These results should be 64 particularly timely to help address the recent detection of *M. mcgregori* in Southeast 65 Asia. 66 67 **Keywords:** cassava green mite, *Manihot esculenta*, *Mononychellus tanajoa*,

68 Mononychellus mcgregori, pest risk map, species distribution modeling

70 Introduction

72	About 800 million people in the tropics depend on cassava (Manihot esculenta) as a
73	source of food and income (Lebot 2009). Its production, however, can be severely limited
74	by a complex of arthropod pests (Bellotti and van Schoonhoven 1978; Bellotti et al.
75	1999). Top among these pests are a few Neotropical mite species of the genus
76	Mononychellus, commonly known as the "cassava green mites" (Bellotti et al. 2012). The
77	most notorious species is <i>M. tanajoa</i> , whose accidental introduction into Africa in the
78	1970s reduced cassava yields by up to 80% (Yaninek 1988; Yaninek and Herren 1988).
79	Although largely understudied, M. mcgregori follows in importance. This species was
80	first detected in China in 2008 (Lu et al. 2014a), and shortly thereafter begun causing
81	yield losses reaching up to 60% (Chen et al. 2010: cited in Lu et al., 2014). A year later,
82	M. mcgregori was reported in Vietnam and Cambodia (Bellotti et al. 2012; Vásquez-
83	Ordóñez and Parsa 2014), raising concerns over its potential spread throughout the
84	region.
85	Cassava green mites feed only on cassava (Bellotti et al. 2012). They are most
86	abundant at the top of the canopy, from the shoot tip to the youngest unfolded leaves
87	(Bellotti and van Schoonhoven 1978). Their feeding kills leaf cells and reduces
88	photosynthesis, interfering with normal leaf development (Yaninek and Herren 1988).
89	Under field conditions in the tropics, cassava green mites have overlapping generations,
90	each completed in less than one month, and are most abundant during dry seasons and at
91	the beginning of the rain season (Bellotti and van Schoonhoven 1978). Early rains cause
92	a flush of new leaf growth that promotes their rapid population growth (Yaninek et al.

1989). Continued rains eventually help suppress them to sub-economic levels through a
combination of plant compensation and rainfall mortality (Yaninek et al. 1989). Green
mites can also be suppressed to sub-economic levels by phytoseiid mites (Bellotti et al.
2012), which have been successfully deployed in classical biological control against *M*. *tanajoa* in Africa (Yaninek and Hanna 2003). A similar effort has been advocated to
control *M. mcgregori* in Asia (Bellotti et al. 2012), but its potential remains to be
investigated.

100 Pest risk maps, based on models estimating climatic suitability for a species, are 101 important decision-support tools for the management of invasive pests (Venette et al. 102 2010). They can be based on two complementary approaches: (1) the mechanistic or 103 deductive approach, which relies on the species' physiological data (Kearney and Porter 104 2009); and (2) the correlative or inductive approach, which relies on the species' 105 occurrence data (Elith and Leathwick 2009). When a pest's biology is still poorly known, 106 correlative models provide the most rapid and effective means to develop risk maps 107 (Venette et al. 2010).

108This article responds to the need to better assess and address the risk of invasive109cassava green mites, emphasizing the invasion of *M. mcgregori* in Asia. Our principal110objective was to develop correlative models predicting their potential geographic111distribution, therefore guiding site-specific risk mitigation strategies. The resulting risk112maps could also be used to identify exploration sites for natural enemies with a high113probability of establishment in the affected locations.

114

115 Materials and methods

117 Occurrence data

119	We compiled occurrence data (i.e. presence-only) from three sources. Native distribution
120	records for both species originated from a database submitted by the International Center
121	for Tropical Agriculture (CIAT, its Spanish acronym) to the Global Biodiversity
122	Information Facility (GBIF; Vásquez-Ordóñez and Parsa 2014). Because this source
123	covers areas where the species co-occur, and may be confounded without proper
124	mounting, we only extracted specimen-based records from it. Exotic distribution records
125	of <i>M. tanajoa</i> in Africa originated from a database compiled by the International Institute
126	of Tropical Agriculture (IITA), as part of the monitoring efforts of their Africa-wide
127	Biological Control Programme (ABCP; Yaninek 1988; Yaninek and Herren 1988).
128	Exotic distribution records of M. mcgregori in Asia originated partly from specimen-
129	based records submitted to GBIF (Vásquez-Ordóñez and Parsa 2014) and partly from
130	published records reporting its invasion in Hainan, China (Lu et al. 2012). This last
131	source originally misreported the species as M. tanajoa, subsequently correcting its
132	identification after submitting samples for verification to CIAT's Arthropod Reference
133	Collection. Subsequent publications by the authors report the species as M. mcgregori
134	(e.g., Lu et al. 2014a).
135	
136	Environmental data

138	Our source of environmental data for species distribution modeling was the CliMond
139	database (Kriticos et al. 2012), from which we derived 19 global bioclimatic variables
140	summarizing annual trends, seasonality and extreme conditions during 1961-1990 at a
141	10' spatial resolution. We favored CliMond as a source of environmental data because it
142	is thought to combine the best features of the WorldClim CRU climatic databases
143	(Kriticos et al. 2012).
144	
145	Distribution modeling
146	
147	Our species distribution modeling relied on the maximum entropy approach implemented
148	in Maxent (version 3.3.3k; Elith et al. 2011; Phillips et al. 2006; Phillips et al. 2004), one
149	of the best performing methods to model presence-only occurrence data (Elith et al.
150	2006). The bioclimatic variables were used as environmental layers to predict the
151	occurrences. The models for both species were run selecting the auto features, logistic
152	output and random seed, with the regularization multiplier maintained at 1 and the
153	maximum number of background points maintained at 10,000. To ensure model
154	convergence, we increased the maximum iterations to 5,000, maintaining the
155	convergence threshold at 0.00001. The test values were obtained by running 15
156	subsampled replicates of the model with 25% of observations held out for validation. We
157	used the Area Under the Curve (AUC) to assess model performance and the jackknife
158	functionality to assess variable importance. Following the guidelines of Thuiller et al.
159	(2005), we considered models with 0.8 <auc<0.9 "fair,"="" "good,"="" 0.9<auc<0.95:="" and<="" td=""></auc<0.9>

0.95<AUC<1: "very good." 160

138

162 Statistical analys	ses
------------------------	-----

164	To test for differences between <i>M. tanajoa</i> and <i>M. mcgregori</i> climatic niches, we used
165	the statistical software JMP (v 8.0.2.) to implement one-way analyses of variance
166	(ANOVA) of each bioclimatic variable against a categorical variable for the two species.
167	
168	Results
169	
170	A total of 1,232 occurrence records for <i>M. tanajoa</i> and 99 for <i>M. mcgregori</i> were
171	compiled. Their distribution shows some level of geographic overlap within their native
172	range in South America (Fig. 1). Outside this range, M. tanajoa occurrence is restricted to
173	Africa and M. mcgregori to Southeast Asia (Fig. 1).
174	Maxent-based predicted distributions are presented in Figure 2. The average test
175	AUC for the 15 replicate runs was 0.961 for <i>M. tanajoa</i> and 0.979 for <i>M. mcgregori</i> ,
176	indicating "very good" model performance. As would be expected for tropical species,
177	their global distribution was best explained by (low) Temperature seasonality (> 40%
178	contribution), followed by Annual precipitation for <i>M. tanajoa</i> and Isothermality for <i>M</i> .
179	mcgregori (Table 1). The environmental variables that produced the highest gain when
180	used in isolation were Temperature seasonality for <i>M. tanajoa</i> and Temperature annual
181	range for <i>M. mcgregori</i> . On the other hand, the environmental variables that decreased
182	the gain the most when omitted were Precipitation of the coldest quarter for M. tanajoa
183	and again Temperature annual range for <i>M. mcgregori</i> .

184	On average, <i>M. tanajoa</i> and <i>M. mcgregori</i> were found in locations with relatively
185	similar temperatures (Table 1). The locations differed, however, with respect to several
186	precipitation variables, with M. mcgregori found in locations with greater and more
187	continuous rainfall than M. tanajoa (Table 1). Interestingly, M. mcgregori was found in
188	locations with no pronounced dry season, with up to 186 mm of rainfall in their driest
189	month (Bio14; e.g., 6°03'23.4"N 75°11'06.4"W). Where it was reported as an invasive
190	pest, however, rainfall in the driest month averaged 20 mm. By contrast, and despite a
191	much larger number of observations, M. tanajoa was not found in any location with more
192	than 85 mm of rainfall in its driest month. This difference is also reflected in the
193	predicted distribution map (Fig. 2). For example, the Congo Basin, an area where high
194	rainfall limits the establishment of the cassava mealybug Phenacoccus manihoti (Parsa et
195	al. 2012), was rendered suitable for <i>M. mcgregori</i> but not for <i>M. tanajoa</i> (Fig. 2). The
196	same is true for areas around the equator in Southeast Asia.
197	
198	Discussion
199	
200	Our main objective was to predict the potential distribution of <i>M. tanajoa</i> and <i>M</i> .
201	mcgregori in order to guide the development of appropriate risk mitigation measures.
202	These measures could include the passage of phytosanitary regulations, the establishment
203	of pest-surveillance networks, and the development of emergency response plans to
204	address their potential incursion (Venette et al. 2010). Our predictions should therefore be
205	most valuable for high-risk locations where the species are still absent. In Southeast Asia,

for example, these locations include the south of Vietnam for *M. tanajoa* and Indonesiafor *M. mcgregori*.

208 Given the magnitude and spatial coverage of our database, we suspect the risk 209 maps presented here represent the best approximation to *M. tanajoa* and *M. mcgregori's* 210 fundamental niche available to date. A previous effort to model *M. tanajoa* relied on only 211 215 occurrence records (Herrera Campo et al. 2011), and generated broadly similar 212 predictions to ours, albeit rendering high-rainfall locations more suitable for the species 213 than our model. Our predictions, based on 1,232 records, rendered the same locations 214 relatively unsuitable, but are more consistent with previous research demonstrating 215 rainfall is a primary mortality factor limiting *M. tanajoa* populations (Gutierrez et al. 216 1988; Yaninek et al. 1989). Previous models of *M. mcgregori* may be less reliable, as 217 they utilized *M. tanajoa* and *M. mcgregori* occurrence records jointly as data inputs (Lu 218 et al. 2014b; Lu et al. 2012), potentially confounding their predicted distributions. 219 Our results suggest that unlike *M. tanajoa*, *M. mcgregori* typically occurs in 220 locations with no pronounced dry season. Its ability to survive in those locations, 221 however, does not necessarily imply an ability to reach economic status. It is generally 222 believed that cassava green mites need a dry season lasting 2-6 months with rainfall 223 below 60 mm/month to become economic pests (Bellotti et al. 2012; Bellotti et al. 1987). 224 This condition is met across the locations where *M. mcgregori* was reported as an 225 invasive pest in Asia. However, the extent to which *M. mcgregori* may impact cassava 226 during the wet season, or in locations without a dry season, merits empirical attention. 227 For locations where cassava green mites are already established as invasive pests, 228 classical biological control by phytoseiid predators should be considered. Based on their

229	climatic homology to potential target areas, our predictions suggest Colombia's inter-
230	Andean valleys rank among the best sites to import them from. Explorations conducted in
231	Colombia during the mid 1980s identified 46 phytoseiid species associated with cassava
232	mites (Bellotti et al. 1987). The list includes Typhlodromalus aripo, a predator introduced
233	into Africa to target <i>M. tanajoa</i> , resulting in a highly successful case of classical
234	biological control (Yaninek and Hanna 2003). Efforts to test the potential of T. aripo or
235	an alternative phytoseiid predator against <i>M. mcgregori</i> in Asia are therefore warranted.
236	
237	Acknowledgements
238	
239	We thank Rodrigo Zuñiga for his curatorial work at CIAT's Arthropod Reference
240	Collection (CIATARC). We also thank the International Institute of Tropical Agriculture
241	(IITA) for generously sharing their <i>M. tanajoa</i> distribution database with us. Emmanuel
242	Zapata and Julian Ramirez (CIAT) kindly helped with GIS methods. This research was
243	supported by the Research Program on Roots, Tubers, and Bananas (RTB) of the
244	Consultative Group on International Agriculture Research (CGIAR).
245	
246	
247	
248	
249	
250	
251	

254	Bellotti AC, Herrera Campo BV, Hyman G (2012) Cassava production and pest
255	management: Present and potential threats in a changing environment. Trop Plant
256	Biol 5: 39-72
257	Bellotti AC, Mesa N, Serrano M, Guerrero J, Herrera C (1987) Taxonomic inventory and
258	survey activity for natural enemies of cassava green mites in the Americas. Int J
259	Trop Insect Sci 8: 845-849
260	Bellotti AC, van Schoonhoven A (1978) Mite and insect pests of cassava. Annu Rev
261	Entomol 23: 39-67
262	Bellotti AC, Smith L, Lapointe SL (1999) Recent advances in cassava pest management.
263	Annu Rev Entomol 44: 343-370
264	Chen Q, Lu F, Huang G, Li K, Ye J, Zhang Z (2010) General survey and safety
265	assessment of cassava pests. Chin J Trop Crops 31: 819-827
266	Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ,
267	Huettmann F, Leathwick JR, Lehmann A (2006) Novel methods improve
268	prediction of species distributions from occurrence data. Ecography 29: 129-151
269	Elith J, Leathwick JR (2009) Species distribution models: Ecological explanation and
270	prediction across space and time. Annu Rev Ecol Evol Syst 40: 677-697
271	Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical
272	explanation of maxent for ecologists. Divers Distrib 17: 43-57

273	Gutierrez A, Yaninek JS, Wermelinger B, Herren H, Ellis C (1988) Analysis of
274	biological control of cassava pests in Africa. III. Cassava green mite
275	Mononychellus tanajoa. J Appl Ecol 25: 941-950
276	Herrera Campo BV, Hyman G, Bellotti AC (2011) Threats to cassava production: Known
277	and potential geographic distribution of four key biotic constraints. Food Sec 3:
278	329-345
279	Kearney M, Porter W (2009) Mechanistic niche modelling: Combining physiological and
280	spatial data to predict species' ranges. Ecol Lett 12: 334-350
281	Kriticos DJ, Webber BL, Leriche A, Ota N, Macadam I, Bathols J, Scott JK (2012)
282	Climond: Global high resolution historical and future scenario climate surfaces
283	for bioclimatic modelling. Methods Ecol Evol 3: 53-64
284	Lebot V (2009) Tropical root and tuber crops: Cassava, sweet potato, yams and aroids.
285	CABI, Wallingford
286	Lu F, Chen Q, Chen Z, Lu H, Xu X, Jing F (2014a) Effects of heat stress on
287	development, reproduction and activities of protective enzymes in Mononychellus
288	mcgregori. Exp Appl Acarol 63: 267–284
289	Lu H, Lu F, Xu XL, Chen Q (2014b) Potential geographic distribution areas of
290	Mononychellus mcgregori in Guangxi province. Appl Mech Mater 522: 1051-
291	1054
292	Lu H, Ma Q, Chen Q, Lu F, Xu X (2012) Potential geographic distribution of the cassava
293	green mite Mononychellus tanajoa in Hainan, China. Afr J Agric Res 7: 1206-
294	1213

295	Parsa S, Kondo T, Winotai A (2012) The cassava mealybug (Phenacoccus manihoti) in
296	asia: First records, potential distribution, and an identification key. PloS One 7:
297	e47675

- Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species
 geographic distributions. Ecol Modell 190: 231-259
- 300 Phillips SJ, Dudík M, Schapire RE (2004) A maximum entropy approach to species
- 301 distribution modeling. In: Proceedings of the 21st International Conference on
 302 Machine Learning. ACM Press, New York, pp 655–662
- 303 Thuiller W, Richardson DM, Pyšek P, Midgley GF, Hughes GO, Rouget M (2005)
- Niche-based modelling as a tool for predicting the risk of alien plant invasions at
 a global scale. Glob Change Bio 11: 2234-2250
- 306 Vásquez-Ordóñez AA, Parsa S (2014) A geographic distribution database of
- 307 *Mononychellus* mites (Acari, Tetranychidae) on cassava (*Manihot Esculenta*).
 308 ZooKeys 407: 1-8
- 309 Venette RC, Kriticos DJ, Magarey RD, Koch FH, Baker RH, Worner SP, Raboteaux
- 310 NNG, McKenney DW, Dobesberger EJ, Yemshanov D (2010) Pest risk maps for
- 311 invasive alien species: A roadmap for improvement. Biosci 60: 349-362
- 312 Yaninek JS (1988) Continental dispersal of the cassava green mite, an exotic pest in
- 313 Africa, and implications for biological control. Exp Appl Acarol 4: 211-224
- 314 Yaninek JS, Herren H (1988) Introduction and spread of the cassava green mite,
- 315 *Mononychellus tanajoa* (Bondar)(Acari: Tetranychidae), an exotic pest in Africa
- and the search for appropriate control methods: A review. Bull Entomol Res 78:

317 1-13

318	Yaninek JS, Herren H, Gutierrez AP (1989) Dynamics of Mononychellus tanajoa (Acari:							
319	Tetranychidae) in Africa: Seasonal factors affecting phenology and abundance.							
320	Environ Entomol 18: 625-632							
321	Yaninek JS, Hanna R (2003) Cassava green mite in africa: A unique example of							
322	successful classical biological control of a mite pest on a continental scale. In:							
323	Neuenschwander P (ed) Biological control in IPM systems in Africa. CABI,							
324	Wallingford, pp 61-75							
325								
326								
327								
328								
329								
330								
331								
332								
333								
334								
335								
336								
337								
338								
339								
340								
341								
342								
343								
344 245								
343 346								
340								
348								
349								
350								
351								
352								
353								
354								
355								

356	Figure 1. Global occurrence records for Mononychellus tanajoa and M. mcgregori.
357	
358	Figure 2. Predicted distribution maps for <i>Mononychellus tanajoa</i> (A, C) and <i>M</i> .
359	mcgregori (B, D).
360	
361	
362	
363	
364	
365	
366	
367	
368	
369	
370	
371	
372	
373	
3/4	
3/5	
3/0	
3//	
3/8	
200	
201	
201	
202 202	
384	
385	
386	
387	
388	
389	
390	
391	
392	
393	
394	
395	
396	
397	
398	
399	
400	
401	

		Mean		ANOVA ²		Maxent % contribution	
Variable	Description ¹	M. mcgregori	M. tanajoa	F	р	M. mcgregori	M. tanajoa
Bio01	Annual Mean Temperature	24.2	25.0	7.7	0.0056	0	0.5
Bio02	Mean Diurnal Range (Mean of monthly (max temp - min temp))	10.1	10.2	0.7	0.3975	2.5	2.3
Bio03	Isothermality (BIO2/BIO7) (* 100)	79.0	71.7	49.3	0.0000	25	4.8
Bio04	Temperature Seasonality (standard deviation *100)	88.8	114.0	14.1	0.0002	43.1	55.2
Bio05	Max Temperature of Warmest Month	30.7	32.4	24.1	0.0000	0	0.6
Bio06	Min Temperature of Coldest Month	17.7	18.1	0.9	0.3343	4.1	0.7
Bio07	Temperature Annual Range (BIO5-BIO6)	13.0	14.3	13.7	0.0002	4.1	4.1
Bio08	Mean Temperature of Wettest Quarter	24.5	24.8	1.0	0.3170	0.1	1.9
Bio09	Mean Temperature of Driest Quarter	23.4	24.8	14.7	0.0001	0.6	0.9
Bio10	Mean Temperature of Warmest Quarter	25.1	26.4	15.4	0.0000	0.3	0.9
Bio11	Mean Temperature of Coldest Quarter	22.9	23.4	2.3	0.1255	2.5	6.3
Bio12	Annual Precipitation	1,758.7	1,388.9	40.9	0.0000	5	10.3
Bio13	Precipitation of Wettest Month	265.1	247.7	3.5	0.0619	0.7	0
Bio14	Precipitation of Driest Month	58.4	16.4	351.2	0.0000	6.8	2.6
Bio15	Precipitation Seasonality (Coefficient of Variation)	49.8	69.0	85.2	0.0000	2.1	0.3
Bio16	Precipitation of Wettest Quarter	701.6	638.6	6.4	0.0114	0.6	0.3
Bio17	Precipitation of Driest Quarter	210.3	73.7	260.0	0.0000	0.1	0.2
Bio18	Precipitation of Warmest Quarter	479.5	274.5	174.1	0.0000	1.1	4.9
Bio19	Precipitation of Coldest Quarter	429.5	413.5	0.2	0.6379	1.1	3

Table 1. Environmental predictor variables used to model Mononychellus tanajoa and M. mcgregori geographic distributions.

¹Temperatures are in °C and precipitation in mm. ²df=1329

