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a  b  s  t  r  a  c  t

Conservation  agriculture  is widely  promoted  for  soil  conservation  and  crop  productivity  increase,
although  rigorous  empirical  evidence  from  sub-Saharan  Africa  is  still  limited.  This study  aimed  to quantify
the medium-term  impact  of  tillage  (conventional  and  reduced)  and  crop residue  management  (reten-
tion and removal) on soil  and  crop  performance  in  a maize–soybean  rotation.  A replicated  field  trial
was  started  in  sub-humid  Western  Kenya  in  2003,  and  measurements  were  taken  from  2005  to 2008.
Conventional  tillage  negatively  affected  soil aggregate  stability  when  compared  to  reduced  tillage,  as
indicated by  lower  mean  weight  diameter  values  upon  wet  sieving  at  0–15 cm  (PT < 0.001).  This  suggests
increased  susceptibility  to slaking  and  soil  erosion.  Tillage  and  residue  management  alone  did  not  affect
soil C  contents  after  11  cropping  seasons,  but  when  residue  was  incorporated  by tillage,  soil  C  was  higher
at 15–30 cm  (PT*R =  0.037).  Lack  of  treatment  effects  on  the C content  of  different  aggregate  fractions
indicated  that  reduced  tillage  and/or  residue  retention  did  not  increase  physical  C  protection.  The  weak
residue  effect  on  aggregate  stability  and soil C  may  be attributed  to  insufficient  residue  retention.  Soy-
bean  grain  yields  tended  to  be suppressed  under  reduced  tillage  without  residue  retention,  especially
in  wet  seasons  (PT*R = 0.070).  Consequently,  future  research  should  establish,  for  different  climatic  zones
and  soil  types,  the  critical  minimum  residue  retention  levels  for soil  conservation  and  crop  productivity.

© 2012 Published by Elsevier B.V.

1. Introduction25

Agriculture in Sub-Saharan Africa (SSA) is faced with the chal-26

lenge to increase productivity while conserving natural resources.27
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More than 80% of the land has medium to low agricultural potential 28

due to low inherent soil fertility (Eswaran et al., 1997). Moreover, 29

approximately 65% of agricultural land in SSA has been degraded 30

through human activities such as soil tillage and continuous crop- 31

ping with insufficient mineral and organic fertilizer application 32

(Oldeman et al., 1991). Soil fertility depletion and degradation are 33

seen as major biophysical causes of stagnating staple crop yields in 34

SSA (Sanchez et al., 1997). 35

Conservation agriculture (CA) is promoted for its potential con- 36

tribution to smallholder agricultural production and reversal of soil 37

degradation in SSA (Erenstein et al., 2008). CA has three fundamen- 38

tal yet intertwined principles: (i) continuous minimum mechanical 39

soil disturbance; (ii) permanent organic soil cover; and (iii) diver- 40

sification of crops grown in sequence or associations (FAO, 2008). 41

Potential biophysical benefits include improved soil aggregation, 42

leading to lower wind and water erosion, and improved water infil- 43

tration and water retention, increased soil organic matter (SOM) 44

content and C sequestration, and increased and/or more stable 45

crop yields (Mrabet, 2002; Hobbs, 2007). However, full CA adop- 46

tion is extremely low among smallholder farmers in SSA (Lal, 2007; 47
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Derpsch et al., 2010). It has been reported that smallholder farmers48

rarely adopt all three CA principles together, due to resource con-49

straints and trade-offs with other farm activities, especially with50

regard to the availability of crop residues, seeds, land, labor, cash51

or credit (Wall, 2007; Kassam et al., 2009).52

Soil aggregate stability and soil organic matter (SOM) are key53

indicators for soil quality and environmental sustainability in54

agroecosystems. Firstly, stable aggregates can physically protect55

SOM against rapid decomposition (Pulleman and Marinissen, 2004;56

Six et al., 2004; Bossuyt et al., 2005), and reduce soil erosion, surface57

crusting and runoff (Le Bissonnais, 1996; Barthes and Roose, 2002).58

Secondly, SOM binds mineral particles into aggregates (Tisdall and59

Oades, 1982), stimulates the activities of soil biota (Six et al., 2004;60

Ayuke et al., 2011b),  maintains favorable physicochemical con-61

ditions such as cation exchange capacity (CEC) (Vanlauwe et al.,62

2002) and stores soil organic carbon (SOC) crucial to climate change63

mitigation (Lal, 2011). Both tillage and residue management can64

decisively influence aggregate stability and SOM. Tillage has been65

reported to decrease soil aggregation and SOM by accelerating the66

turnover of aggregate-associated SOM (Six et al., 1999). Residue67

retention can increase soil aggregation when compared to no-input68

systems, although the magnitude depends on residues quantity and69

quality (Chivenge et al., 2011). Further, residues contribute to the70

build up of SOM, which can work synergistically with mineral fer-71

tilizers to increase crop biomass and, subsequently, organic matter72

returns to the soil (Vanlauwe et al., 2002; Bationo et al., 2007).73

Despite the considerable interest in CA, rigorous empirical evi-74

dence of the benefits of CA in SSA is limited and inconsistent. Given75

that smallholders in SSA rarely fully adopt all three CA principles,76

it appears imperative to thoroughly assess the effects of, and inter-77

actions between, each of the CA components (Gowing and Palmer,78

2008; Giller et al., 2009, 2011). Therefore, the aim of this study was79

to quantify the effects of CA components on soil quality and crop80

yields. More specifically, the objectives were:81

1. To determine the single and interactive effects of tillage and82

residue management on soil aggregate stability and soil (aggre-83

gate) organic C over time.84

2. To determine the single and interactive effects of tillage and85

residue management on crop yields over time.86

2. Materials and methods87

2.1. Site description88

This study was executed in an existing long-term tillage trial in89

Nyabeda in sub-humid Western Kenya. The field experiment was90

established in March 2003 and has been managed by researchers91

of the African Network for Soil Biology and Fertility (AfNet) of the92

Tropical Soil Biology and Fertility (TSBF) research area of CIAT.93

The site is located at an altitude of 1420 m asl, latitude 0◦06′N94

and longitude 34◦24′E, with 2% field slope. A mean annual rainfall95

of 1800 mm is distributed over two rainy seasons: the long rainy96

season lasts from March until August and the short rainy season97

from September until January. Cumulative seasonal rainfall during98

the experimental period is presented in Fig. 1. Maize is the main99

staple crop in the area, normally grown as a monocrop or in asso-100

ciation with groundnut and beans, sown broadcast. Smallholder101

subsistence farming is most common and average farm sizes vary102

between 0.3 and 3 ha. Soybean has been adopted more recently as103

a cash crop (Kihara, 2009). Prior to the establishment of the trial,104

native grasses and shrubs dominated the experimental area. The105

soil was classified as a Ferrasol (FAO, 1998) with 64% clay, 15%106

sand and 21% silt. Average soil chemical characteristics of the top107

20 cm soil depth included: pH (H2O) 5.1, 13.5 mg  C g−1 soil, 1.5 mg108

total N g−1, 2.99 mg  P kg−1, 0.1 me  extractable K 100 g−1, 4.7 cmolc 109

Ca kg−1, and 1.7 cmolc Mg  kg−1 (Kihara, 2009). 110

2.2. Experimental design and trial management 111

The trial was  set up in a randomized block design with tillage 112

and crop residue retention as main factors. Each factor had two 113

levels: conventional tillage (+T) or reduced tillage (−T) and residue 114

retention (+R) or residue removal (−R). A factorial combination of 115

the factors resulted in four treatments, which were replicated four 116

times in separate blocks. The crop rotation consisted of soybean 117

(Glycine max  L.) during short rains and maize (Zea mays L.) dur- 118

ing long rains. Maize was planted at 75 cm row spacing and 25 cm 119

planting density, and soybean at 75 cm and 5 cm respectively. Indi- 120

vidual plots measured 7 m × 4.5 m,  and all of them were fertilized 121

at 60 kg ha−1 N (urea), 60 kg ha−1 P (Triple Super Phosphate) and 122

60 kg ha−1 K (Muriate of Potash) per growing season. All fertilizers 123

were applied by mixing fertilizer with soil in the planting hole, pla- 124

cing maize or soybean seed on top and covering it lightly with soil. 125

Under conventional tillage (+T), the seedbed was prepared by hand 126

hoeing to 15 cm soil depth. Weeding was  performed three times 127

per season, using the hand hoe. Under reduced tillage (−T), a 3 cm 128

deep seedbed was  prepared with the hand hoe. Weeding was per- 129

formed three times per season by hand pulling. After harvest, maize 130

residues were collected, dried, chopped and stored during the dry 131

season for approximately one month. With the beginning of the 132

short rains, maize residues were reapplied at a rate of 2 Mg  ha−1
133

(+R), and were either incorporated by conventional tillage (+T) 134

or remained at the soil surface as mulch under reduced tillage 135

(−T) just before soybean was planted. Since soybeans drop leaves 136

prior to grain maturity, soybean residues (leaves and stems) always 137

remained in the field after harvest, irrespective of treatment. These 138

soybean residues were then either incorporated (+T) or remained 139

at the soil surface (−T). 140

2.3. Soil analyses: aggregate fractionation and C 141

During the short rainy season of 2005 (n = 4) and the long 142

rainy seasons of 2006 (n = 4), 2007 (n = 3) and 2008 (n = 4), undis- 143

turbed soil samples were taken from all treatments at two soil 144

depths (0–15 cm and 15–30 cm). This corresponded to the 6th, 145

7th, 9th and 11th cropping season after trial establishment. Rep- 146

resentative subsamples of approximately 500 g were gently passed 147

through a 10 mm  sieve by breaking the soil along natural planes 148

of weakness. After air drying, the soil was split up in four fractions 149

by the wet sieving method described by Elliott (1986): (a) large 150

macroaggregates (LM; >2000 �m),  (b) small macroaggregates (SM; 151

250–2000 �m), (c) microaggregates (Mi; 53–250 �m),  (d) silt and 152

clay sized particles (SC; ≤53 �m).  80 g of air-dried soil was evenly 153

spread on a 2 mm sieve, which was placed in a recipient filled with 154

deionized water and left to slake. After 5 min, the sieve was man- 155

ually moved up and down 50 times in 2 min. The procedure was 156

repeated passing the material on to a 250 �m and 53 �m sieve. 157

Soil aggregates retrieved at each sieve were carefully backwashed 158

into beakers, oven-dried at 60 ◦C for 48 h, weighed back and stored 159

for C and N analysis. SC was calculated from the total volume of 160

the suspension and the volume of the subsample. Mean weight 161

diameter (MWD)  was  determined as the sum of the weighted mean 162

diameters of all fraction classes. 163

Total soil C and N were analyzed in whole soil and aggregate 164

fractions. Sub-samples were oven-dried, ground and sent to UC 165

Davis, California, USA. Total C and N values were determined with 166

a Dumas combustion method, using a PDZ Europa ANCA-GSL ele- 167

mental analyzer interfaced to a PDZ Europa 20-20 isotope ratio 168

mass spectrometer (Sercon Ltd., Cheshire, UK). 169

dx.doi.org/10.1016/j.agee.2012.10.003
Original text:
Inserted Text
; 

Original text:
Inserted Text
time;2.

Original text:
Inserted Text
Figure 

Original text:
Inserted Text
0.3-3

Original text:
Inserted Text
C

Original text:
Inserted Text
Conventional 

Original text:
Inserted Text
(-T) 

Original text:
Inserted Text
(-R). 

Original text:
Inserted Text
×

Original text:
Inserted Text
N 

Original text:
Inserted Text
K 

Original text:
Inserted Text
(-T), 

Original text:
Inserted Text
2 Mg ha

Original text:
Inserted Text
(-T) 

Original text:
Inserted Text
(-T).

Original text:
Inserted Text
Aggregate 

Original text:
Inserted Text
(0-15

Original text:
Inserted Text
15-30

Original text:
Inserted Text
Elliot (1986): a) 

Original text:
Inserted Text
b) 

Original text:
Inserted Text
250-2000μm), c) 

Original text:
Inserted Text
53-250μm), d) 



Please cite this article in press as: Paul, B.K., et al., Medium-term impact of tillage and residue management on soil aggregate stability, soil carbon
and  crop productivity. Agric. Ecosyst. Environ. (2012), http://dx.doi.org/10.1016/j.agee.2012.10.003

ARTICLE IN PRESSG Model

AGEE 4278 1–9

B.K. Paul et al. / Agriculture, Ecosystems and Environment xxx (2012) xxx– xxx 3

Fig. 1. Seasonal cumulative rainfall recorded in Nyabeda, Western Kenya during the long rainy seasons (a) and short rainy seasons (b) from 2005 to 2008. Maize is grown in
the  long rainy season (March/April–August) and soybean during the short rainy season (August/September–January/February).

2.4. Crop yield measurements170

Maize was harvested from each plot at maturity, leaving one row171

(75 cm)  at each side of the plot and two plants (50 cm) at the end of172

each row to exclude edge effects. Cobs were separated from stover,173

counted and fresh weight was determined. After air-drying, grains174

were separated from the cobs, oven-dried at 65 ◦C for 48 h and dry175

weight was determined. Maize biomass and grain dry weight was176

reported on an oven-dry basis. Soybean was harvested from each177

plot at 95% maturity, excluding one row (75 cm)  at each side of178

the plot and two plants (50 cm)  at the end of each row to discount179

edge effects. Grains were separated from husks and haulms (stover)180

and fresh weight was determined. After air-drying, grains, husk181

and haulms were oven-dried at 65 ◦C for 48 h and dry weight was182

determined. Soybean biomass and grain dry weight was  reported183

on an oven-dry basis. Daily rainfall was measured with a rainfall184

gauge in the experimental field.185

2.5. Statistical analyses186

Data points farther than their interquartile ranges from the187

nearer edge of the box, as identified by SPSS 19.0.0 (2010) box188

plots, were regarded as extreme outliers and omitted before fur-189

ther analysis. Analysis of variance was carried out with GenStat190

14.1 (2011),  and soil data were analyzed independently for two soil191

depths (0–15 cm and 15–30 cm). A repeated measurements mixed192

model was used to test the influence of year, tillage and residue193

(fixed factors) and their interactions on soil aggregation, soil (aggre-194

gate) C and crop yields. The autocorrelations of year and sampling195

plot (repeated measurement) were entered as random factors. An196

unstructured covariance matrix was used to fit the model. Means197

are presented with standard errors. A P-value of 0.05 or smaller was198

considered significant.199

3. Results200

3.1. Aggregate fractions201

At 0–15 cm soil depth, amounts of LM were consistently202

lower under conventional tillage compared to reduced tillage.203

Mean amounts were 6.8 g 100 g−1 vs. 15.4 g 100 g−1 across years204

and residue treatments (PT < 0.001) (Fig. 2a). Differences in the205

amount of SM were smaller, with 47.2 g 100 g−1 vs. 49.1 g 100 g−1
206

(PT < 0.001), while amounts of Mi  and SC were higher under conven-207

tional tillage with 37.7 g 100 g−1 vs. 28.1 g 100 g−1 and 8.7 g 100 g−1
208

vs. 7.5 g 100 g−1 (both PT < 0.001). These differences in aggregate 209

size distribution were reflected in a consistently lower MWD  under 210

conventional tillage (PT < 0.001), with means of 0.9 mm vs. 1.3 mm 211

for conventional and reduced tillage respectively (Fig. 3a). No 212

residue effect on MWD  was  found, but the T*R interaction was sig- 213

nificant (PT*R = 0.004) (Fig. 3a). The influence of year was significant 214

for MWD  and all fractions (Figs. 2a and 3a). 215

At 15–30 cm soil depth, amounts of SM were consistently lower 216

each year in conventional tillage relative to reduced tillage. Mean 217

values across years and residue treatments were 48.2 g 100 g−1
218

vs. 49.0 g 100 g−1, respectively (PT = 0.005) (Fig. 2b). Mi and SC 219

fractions were relatively more abundant in conventional tillage 220

than in reduced tillage with 19.0 g 100 g−1 vs. 15.2 g 100 g−1 and 221

4.7 g 100 g−1 vs 3.6 g 100 g−1, respectively (both at PT < 0.001). 222

Residue retention under conventional tillage led to a lower aver- 223

age MWD  (1.7 mm)  than under all other treatments (2.1–2.2 mm)  224

(PT = 0.027, PT*R = 0.009) (Fig. 3b). The influence of year was signifi- 225

cant for MWD  and all fractions except SM (Figs. 2b and 3b). 226

These data show that the MWD  was higher at 15–30 cm (2.0 mm 227

on average) than at 0–15 cm (1.1 mm)  (Fig. 3a and b). 228

3.2. Total soil organic C and aggregate fraction C 229

At 0–15 cm,  neither tillage nor residue management had a signif- 230

icant effect on total soil C (PT = 0.087; PR = 0.440) (Table 1). The only 231

effect of tillage or residue on aggregate C content was  a decrease of 232

the C content in the SC fraction due to tillage (PT = 0.045) (Table 1). 233

At 15–30 cm,  neither tillage nor residue affected total soil C, but 234

a significant T*R interaction was found (PT*R = 0.037) (Table 1). Soil 235

C was  higher under residue retention with conventional tillage, but 236

not with reduced tillage. As a consequence, +T+R corresponded to 237

the highest average soil C content (18.8 mg  C g−1 soil) and −T−R 238

showed the lowest average soil C content across four years of mea- 239

surement (16.1 mg  C g−1 soil). C contents of the LM (PT = 0.003), 240

SM (PT = 0.008), and Mi  (PT = 0.049) fractions were higher under 241

conventional tillage than under reduced tillage, and for the LM 242

(PT*R = 0.043) and Mi  (PT*R = 0.056) fractions the interaction effect 243

was (marginally) significant (Table 1). 244

3.3. Crop yields 245

Neither tillage nor residue management significantly affected 246

maize grain yields (Fig. 4a). Average grain yield across four years 247

was lowest for −T−R (3.6 t ha−1), while yields were comparable for 248

the other three treatments (4.3–4.5 t ha−1). The influence of year 249
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Fig. 2. Aggregate fractions from 2005 to 2008 at 0–15 cm (a) and 15–30 cm (b) soil depth. Codes refer to combinations of reduced tillage (−T), conventional tillage (+T),
residue removal (−R) and residue retention (+R). Aggregate fractions include large macroaggregates (a; LM;  >2000 �m),  small macroaggregates (b; SM;  250–2000 �m),
microaggregates (c; Mi;  53–250 �m)  and silt and clay (d; SC; <53 �m).  Levels of significance indicate single and interactive effects of year (Y), tillage (T) and residue (R) on
aggregate fractions over all years. P values refer to the following levels of significance: *<0.05, **<0.01, ***<0.001, and nsnot significant.

was highly significant (PY < 0.001) (Fig. 4a). Total biomass yield fol-250

lowed the same pattern as grain yield; average total maize biomass251

across four years was lowest for −T−R (8.2 t ha−1), while it ranged252

from 8.6 to 9.6 t ha−1 for the other treatments. However, manage-253

ment effects were not significant (data not presented).254

Similarly, no significant tillage or residue effect on soybean grain255

yield was found (Fig. 4b). Average yield across the four years was256

lowest for −T−R (0.45 t ha−1), while yields were comparable for 257

the other three treatments (0.81–0.89 t ha−1). This corresponded 258

on average to 46% less soybean yield from −T−R than from the 259

other treatments. The yield difference was  especially strong in 2006 260

with a relative reduction in soybean yield of 53% under −T−R. This 261

was reflected in marginally significant interaction between tillage 262

and residue (PT*R = 0.070) and year and tillage (PY*T = 0.067). The 263
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Fig. 3. Aggregate mean weight diameter (MWD)  from 2005 to 2008 at 0–15 cm (a) and 15–30 cm (b) soil depth. MWD  is the sum of the weighted mean diameters of all
fraction  classes. Error bars indicate standard errors. Levels of significance indicate single and interactive effects of year (Y), tillage (T) and residue (R) on MWD  over all years.
P  values refer to the following levels of significance: *<0.05, **<0.01, ***<0.001, and ns not significant.

influence of year was highly significant (PY < 0.001) (Fig. 4b). Total264

biomass yields followed the same pattern as grain yields. The aver-265

age total soybean biomass across four years was lowest for −T−R266

(1.6 t ha−1), and ranged from 2.4 to 2.6 t ha−1 for the other treat-267

ments. This was reflected in a significant interaction between tillage268

and residue (PT*R = 0.023) (data not presented).269

4. Discussion270

4.1. Tillage and residue management effects on soil aggregation271

Reduced tillage resulted in a higher soil aggregate stability com-272

pared conventional tillage (Fig. 3a and b). This effect was  mainly273

caused by a breakup of LM into Mi  and SC fractions (Fig. 2a and b).274

These observations are consistent with findings from Eastern and275

Western Kenya (Gicheru et al., 2004; Kihara et al., 2011) and Zam-276

bia (Thierfelder and Wall, 2010), where minimum tillage resulted277

in higher aggregate MWD.  Water stable aggregation has frequently278

been shown to reduce the susceptibility to runoff and soil erosion279

(Le Bissonnais, 1996; Barthes and Roose, 2002).280

The effect of residue management on soil aggregation in this 281

study cannot be explained with certainty (Fig. 3a and b). At 0–15 cm,  282

residue retention decreased MWD  under reduced tillage, while at 283

15–30 cm residue retention decreased MWD  when incorporated 284

by conventional tillage. These findings contradict other studies, 285

which have shown that low quality organic residues combined with 286

fertilizer improved aggregate stability (Blair et al., 2005; Abiven 287

et al., 2009; Chivenge et al., 2011). Possible reasons include bio- 288

logical activity of soil ecosystem engineers that produce smaller 289

aggregates. While the beneficial influence of earthworms on aggre- 290

gate formation is well known, little quantitative information is 291

available on the contribution of subterranean termites to soil 292

aggregation (Kooyman and Onck, 1987; Lavelle et al., 1992; Six 293

et al., 2004). However, it is evident that termites influence the soil 294

microstructure through formation of fecal and oral pellets in the 295

microaggregate size class (Kooyman and Onck, 1987; Fall et al., 296

2001). 297

The annual variation of soil aggregate data points to an influence 298

of weather conditions. A destructive effect of rainfall and wet- 299

ting and drying on soil aggregates was  also found by Guto et al. 300

(2011). If the annual variation is part of a time trend can only be 301
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Table 1
Total soil organic C (mg  C g−1 soil) and aggregate fraction C (mg  C g−1 fraction) from 2005 to 2008 at 0–15 cm and 15–30 cm soil depth. Aggregate fractions include large macroaggregates (LM; >2000 �m), small macroaggregates
(SM;  250–2000 �m),  micro aggregates (Mi; 53–250 �m) and silt and clay (SC; <53 �m).  Values are means followed by standard errors between parentheses. P values refer to the following levels of significance: *<0.05, **<0.01,
***<0.001,  and nsnot significant.

Depth 0–15 cm Depth 15–30 cm

Total (mg  C g−1 soil) Aggregate fraction C (mg  C g−1 fraction) Total (mg  C g−1 soil) Aggregate fraction C (mg  C g−1 fraction)

LM SM Mi SC LM SM Mi SC

2005
−T−R 20.1 (±0.5) – – – – 14.6 (±1.3) – – – –
−T+R  21.3 (±0.7) – – – – 16.9 (±0.2) – – – –
+T−R 21.1  (±0.4) – – – – 18.0 (±0.5) – – – –
+T+R 20.3  (±0.3) – – – – 18.1 (±1.0) – – – –
2006
−T−R  20.1 (±0.4) 20.1 (±0.7) 19.8 (±0.5) 21.2 (±0.3) 24.5 (±1.1) 16.1 (±0.7) 16.1 (±0.9) 15.9 (±0.9) 17.3 (±1.0) 26.0 (±1.5)
−T+R  21.3 (±0.6) 21.2 (±0.5) 20.1 (±0.7) 21.6 (±0.4) 23.2 (±0.5) 18.4 (±0.4) 17.7 (±0.3) 18.1 (±0.8) 19.6 (±0.7) 25.3 (±1.2)
+T−R  20.1 (±0.5) 21.1 (±1.4) 19.6 (±1.1) 20.4 (±0.7) 24.2 (±0.6) 18.4 (±0.9) 18.3 (±0.6) 18.5 (±1.1) 19.1 (±1.2) 24.0 (±0.7)
+T+R  19.9 (±0.2) 19.5 (±1.1) 19.2 (±0.5) 20.8 (±0.1) 22.5 (±0.6) 18.1 (±0.5) 18.0 (±0.6) 17.9 (±0.1) 19.3 (±0.3) 23.2 (±0.5)
2007
−T−R 19.8  (±0.3) 21.1 (±0.3) 19.6 (±0.6) 21.1 (±0.5) 25.2 (±1.5) 17.6 (±0.9) 16.9 ±(0.6) 17.5 (±0.5) 18.5 (±0.9) 22.3 (±1.6)
−T+R  20.6 (±1.8) 22.7 (±2.2) 21.2 (±1.1) 21.5 (±0.6) 23.4 (±0.5) 17.8 (±0.7) 17.8 (±0.4) 17.8 (±0.5) 19.1 (±0.3) 23.1 (±1.0)
+T−R  20.0 (±0.7) 21.5 (±1.0) 19.4 (±0.4) 21.1 (±0.8) 21.6 (±0.8) 18.4 (±0.4) 17.8 (±0.4) 18.1 (±0.5) 19.3 (±0.2) 25.0 (±2.2)
+T+R  20.3 (±0.6) 22.1 (±1.5) 19.8 (±0.6) 21.0 (±0.4) 22.7 (±0.7) 18.9 (±0.9) 16.3 (±1.1) 16.8 (±0.5) 18.2 (±0.4) 22.7 (±0.6)
2008
−T−R  20.4 (±0.6) 21.5 (±0.7) 20.7 (±0.6) 21.1 (±1.4) 22.5 (±1.2) 16.0 (±1.0) 15.2 (±0.4) 15.5 (±1.4) 17.5 (±0.7) 23.0 (±2.0)
−T+R  21.6 (±1.1) 22.1 (±2.2) 21.6 (±1.6) 20.7 (±1.0) 25.7 (±0.8) 18.3 (±1.2) 17.7 (±1.1) 17.5 (±1.1) 18.8 (±0.6) 24.2 (±0.9)
+T−R  20.4 (±0.6) 20.1 (±0.8) 20.4 (±0.9) 20.1 (±0.7) 23.2 (±0.8) 18.5 (±0.9) 18.5 (±1.1) 18.7 (±1.1) 20.0 (±1.2) 23.8 (±0.7)
+T+R  21.8 (±0.3) 23.1 ±(1.4) 21.1 (±0.4) 20.4 (±0.2) 22.9 (±0.2) 20.2 (±0.4) 19.7 (±0.4) 20.4 (±1.0) 19.8 (±0.5) 22.9 (±0.6)

Year  0.039* 0.257ns 0.071ns 0.460ns 0.841ns 0.058ns 0.611ns 0.727ns 0.856ns 0.202ns

Tillage 0.087ns 0.759ns 0.230ns 0.144ns 0.045* 0.191ns 0.003** 0.008** 0.049* 0.524ns

Residue 0.440ns 0.243ns 0.285ns 0.668ns 0.670ns 0.104ns 0.059ns 0.155ns 0.201ns 0.591ns

Year * Tillage 0.059ns 0.990ns 0.944ns 0.850ns 0.425ns 0.187ns 0.031* 0.071ns 0.259ns 0.227ns

Year * Residue 0.340ns 0.491ns 0.625ns 0.901ns 0.085ns 0.493ns 0.139ns 0.248ns 0.398ns 0.838ns

Tillage * Residue 0.097ns 0.835ns 0.494ns 0.951ns 0.724ns 0.037* 0.043* 0.195ns 0.056ns 0.261ns
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Fig. 4. Maize grain yields (a) and soybean grain yields (b) from 2005 to 2008. Codes refer to combinations of reduced tillage (−T), conventional tillage (+T), residue removal
(−R)  and residue retention (+R). Error bars indicate standard errors. Levels of significance indicate single and interactive effects of year (Y), tillage (T) and residue (R) on yield
over  all years. P values refer to the following levels of significance: *<0.05, **<0.01, ***<0.001, and nsnot significant.

verified after a longer period. Our results indicate that multi-year302

data are more representative than single-year data when looking303

at soil aggregation.304

4.2. Tillage and residue management effects on soil (aggregate) C305

No significant management effects on total soil C content in the306

upper soil layer were found, even after 11 cropping seasons since307

trial establishment. It is peculiar that residue retention combined308

with mineral fertilizer did not have a beneficial impact on upper309

soil C as found in numerous other studies (Vanlauwe et al., 2001;310

Bationo et al., 2007; Chivenge et al., 2007, 2011; Anyanzwa et al.,311

2010). A possible explanation could be the low residue cover in the312

present study. The rate of 2 t ha−1 is however a realistic maximum313

rate attainable under smallholder farm conditions in sub-Saharan314

Africa, given the low biomass production and high competition for315

residue use (e.g. fodder) (Erenstein et al., 2008). A residue retention316

of 2 t ha−1 might not be sufficient to unfold potentially beneficial317

effects on soil C. Critical minimum amounts of residue retention318

required to improve soil C content and related soil properties has319

not yet been established and may  depend on soil type and cli-320

matic conditions (Giller et al., 2011). Moreover, it is likely that the321

residue cover in the current study was  further depleted by removal 322

of crop residues by termites. At the same study site, Kihara (2009) 323

observed that 85% of the residues retained at the soil surface dis- 324

appeared within 3.5 months of application and that 70–95% of this 325

was removed by macrofauna. 326

At 15–30 cm depth, conventional tillage combined with residue 327

retention increased the soil C content in comparison to reduced 328

tillage. As a consequence, we  did not find an increase in soil C due 329

to reduced tillage when considering the upper 30 cm of the soil, 330

irrespective of residue management (Table 1). Recent literature 331

shows that overall soil C stocks are often not enhanced under CA 332

when considering the 0–30 cm soil layer or deeper, despite higher 333

C contents in the upper centimeters of the soil (Gal et al., 2007; 334

Govaerts et al., 2009; Luo et al., 2010). 335

Our results do not indicate that CA increases C protection in 336

aggregate fractions. Although tillage increased C concentrations 337

at 15–30 cm due to organic matter incorporation, this equally 338

happened across LM,  SM and Mi  fractions without C accumula- 339

tion in any specific aggregate fraction. The C contents of different 340

aggregate fractions were also comparable. Moreover, despite the 341

higher soil organic C content at 0–15 cm than at 15–30 cm soil 342

depth (Table 1), aggregate stability was  lower at 0–15 cm than at 343
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15–30 cm (Fig. 3a and b). Other findings from Kenyan Ferrasols344

support this observation (Ayuke et al., 2011a).  These results indi-345

cate that an aggregate hierarchy is not expressed. The aggregate346

hierarchy theory has been established for 2:1 clay dominated soils347

where SOM is the main binding agent. In these soils, C concentra-348

tion increases with aggregate size, and aggregate stability is higher349

in surface soils with higher C contents. In 1:1 clay-dominated soils350

rich in Fe and Al oxides, electrostatic interactions decrease the cor-351

relation between SOM and aggregate stability (Oades and Waters,352

1991; Denef and Six, 2005). This lack of correlation renders the353

expression of aggregate hierarchy less pronounced, and weakens354

the relationship between loss of soil structure and SOM (Elliott,355

1986; Six et al., 2000). If CA is to be promoted among smallholder356

farmers in SSA for its C sequestration potential, we  need to gain357

a better scientific understanding of C stabilization across different358

tropical 1:1 soils.359

4.3. Tillage and residue management effects on maize and360

soybean yields361

Tillage and residue management alone did not have a signif-362

icant effect on maize or soybean yields over a time period of 8363

cropping seasons (Fig. 4a and b). The high annual variation in crop364

yields due to variation in rainfall weakened the significance of main365

treatment effects. Numerous field studies reported increased yields366

from crop residue application in addition to mineral fertilizer (Palm367

et al., 2001; Vanlauwe et al., 2001; Anyanzwa et al., 2010), especially368

under reduced tillage (Govaerts et al., 2005). In our study, the total369

average soybean grain yield under reduced tillage without residue370

retention (−T−R) was 45% lower than under the other treatments.371

Other research from the sub-humid highlands of Kenya (Guto et al.,372

2011) and the semi-arid highlands of Mexico (Govaerts et al., 2005)373

also concluded that reduced tillage without soil cover cannot sus-374

tain high yields. In our study, the relative reduction in soybean yield375

was especially strong in 2006 (−53%), which was relatively wet sea-376

son (846 mm rainfall) when compared to the other years studied377

(625–713 mm)  (Fig. 1). Therefore high runoff resulting from soil378

crusting in −T−R treatments might have contributed to the lower379

soybean grain yield. This hypothesis is supported by Kihara (2009)380

who measured lower crop water productivity in −T−R than in −T+R381

in the same study site. Moreover, similar to Baudron et al. (2012),382

yields were not increased under reduced tillage with residue reten-383

tion (−T+R). Such yield increases were found by other researchers in384

Southern and Eastern Africa (Rockström et al., 2009; Thierfelder and385

Wall, 2010). A possible explanation for the less distinctive positive386

effects of residue mulching on crop yields could be the semi-humid387

climate of our study area, where drought stress is restricted to cer-388

tain years only and mostly in the short rainy season when soybean389

was grown.390

5. Conclusions391

Based on multi-year, quantitative data on the effects of tillage392

and residue management on soil aggregate stability, soil organic C393

and crop yields, we conclude that: (a) conventional tillage nega-394

tively affected soil aggregate stability when compared to reduced395

tillage, thus suggesting increased susceptibility to slaking and soil396

erosion. (b) Tillage and residue management alone did not affect397

soil C contents, but when residue was incorporated by tillage, soil398

C was higher at 15–30 cm.  (c) Lack of treatment effects on the399

C content of different aggregate fractions indicated that reduced400

tillage and/or residue retention did not increase physical C pro-401

tection. (d) The weak residue effect on aggregate stability and soil402

C may  be attributed to insufficient residue retention. (e) Soybean403

grain yields tended to be suppressed under reduced tillage without404

residue retention, especially in wet  seasons. Consequently, future 405

research should establish, for different climatic zones and soil types, 406

the critical minimum residue retention levels for soil conservation 407

and crop productivity. 408
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