Introducción

Como resultado de los esfuerzos de investigación en evaluación de pasturas tropicales para suelos ácidos, se han identificado algunas especies clave, varias de las cuales han sido liberadas como cultivares. Entre ellas, *Andropogon gayanus* cv. Carimagua 1, *Brachiaria dicyoneura* cv. Llanero, y *Stylosanthes capitata* cv. Capica, en Colombia; *S. guianensis* cv. Pucallpa, en Perú; y *Desmodium ovalifolium* cv. Itabela, en Brasil.

En las evaluaciones agronómicas realizadas en los diferentes ecosistemas por la RIEPT se determina la producción estacional de las especies forrajeras, pero en pocos casos se mide, en un mismo ensayo, la calidad nutritiva y la aceptabilidad de las gramíneas y las leguminosas por los animales.

Teniendo en cuenta la consideración anterior, entre noviembre de 1980 y febrero de 1981, en la estación CIAT Quilichao se determinaron la calidad nutritiva y la aceptabilidad de varias gramíneas y leguminosas forrajeras con hábitos de crecimiento contrastantes, bajo diferentes frecuencias de corte.

Materiales y métodos

Localización y suelos. La estación CIAT Quilichao está localizada en el departamento del Cauca, Colombia, a 3° 06' de latitud norte y 76° 31' de longitud oeste, a 990 m.s.n.m., dentro del ecosistema bosque semi-sierrano verde estacional. Los suelos son Utisoles con un pH de 4.2, 7% de materia orgánica (MO), 2 ppm de fósforo (P) y 80% de saturación de aluminio.

Establecimiento y manejo del ensayo. Se evaluaron nueve accesiones de gramíneas y 12 de leguminosas, con diferente grado de adaptación a suelos ácidos de baja fertilidad, las cuales se sembraron con semillas, excepto *Brachiaria ruziziensis*, *B. brizantha* y *B. decumbens*, que se plantaron con material vegetativo. Antes de la siembra, las semillas de las leguminosas se escurrificaron e inocularon con la cepa de rizobio correspondiente.

La siembra de las accesiones se realizó en parcelas de 3 m x 6 m dispuestas en bloques completamente al azar con cuatro repeticiones. En el establecimiento se aplicaron 10 kg/ha de P, 50 kg/ha de K, 250 kg/ha de cal dolomítica, 10 kg/ha de sulfato de zinc y 1 kg/ha de bórax. Como fertilización de mantenimiento, a las gramíneas se les aplicaron 50 kg/ha de N después
de cada corte y 30 kg/ha de K cada 6 meses; a las leguminosas se les aplicaron 30 kg/ha de K cada 6 meses. En total se realizaron cinco cortes en 2 m² de cada parcela, en época de máxima precipitación.

Análisis del valor nutritivo. El forraje cosechado en las cuatro repeticiones de cada frecuencia de corte se mezcló y posteriormente se tomó una submuestra de 200 g, la cual se separó en hojas y tallos para realizar los análisis siguientes:

1. Digestibilidad in vitro de la materia seca (DIVMS) de las gramíneas y de las leguminosas, (2) proteína cruda (PC), (3) nitrógeno (N) de las hojas de la leguminosa soluble en buffer (saliva artificial) y pepsina (4) calcio (Ca) y fósforo (P) en las hojas de las gramíneas y las leguminosas y (5) taninos (catequinas equivalentes) en *D. ovalifolium*, *S. scabra* y *Codariocalyx gyroides*.

Acceptabilidad relativa. Se expresó como frecuencia de pastoreo y utilización de cada especie. Al finalizar el ensayo de corte, las parcelas se guardaron de modo uniforme a 2 cm sobre el suelo. Después de 6 semanas de crecimiento, cada una de las repeticiones de las gramíneas y de las leguminosas se pastorearon entre las 08:00 y 16:00 horas con novillos Cebú de 300 kg de peso, en promedio. Para determinar la frecuencia de pastoreo se observó el comportamiento de los animales cada 5 minutos durante los días tercero y cuarto. La utilización del forraje en cada accesión se estimó, antes y después del pastoreo, mediante la cosecha del forraje en varios sitios de cada bloque con marcos de 0.25 m².

Análisis de los resultados. Los resultados de calidad en función de la edad de rebrote se ajustaron con un modelo lineal. Además, se realizó un análisis de correlación entre frecuencia, grado de utilización y disponibilidad inicial de forraje de las especies.

Resultados

Valor nutritivo de las gramíneas. En el Cuadro 1 se presentan las principales características del valor nutritivo de las gramíneas. El promedio de la DIVMS y de la PC fue mayor en el género *Brachiaria* que en las gramíneas de crecimiento erecto. Los niveles de Ca y P en las hojas de las gramíneas fueron 0.53% y 0.15%, respectivamente. *Brachiaria humidicola* y *A. gayanus* presentaron los menores contenidos de Ca. El contenido de P en *B. humidicola* fue inferior al de otras especies de *Brachiaria*, pero similar al de *A. gayanus*, *Paspalum plicatum* e *Hyparrhenia rufa*.

Efecto de la edad de rebrote en la calidad nutritiva de las gramíneas. La DIVMS y la PC de las hojas de las gramíneas, cosechadas cada 3, 6, 9, 12 y 15 semanas, se ajustaron a un modelo de regresión lineal. La tasa de reducción semanal de la DIVMS y de la PC fue, en promedio, de 1.2% y 0.8%, respectivamente (Cuadro 2). Las gramíneas *Paspalum plicatum*, *P. maximum* y *B. humidicola* presentaron la mayor tasa de reducción de la DIVMS debido a la edad de rebrote.

Cuadro 1. **DIVMS, contenido de proteína cruda (PC) y minerales en las hojas de varias gramíneas forrajeras tropicales**. CIAT-Quilichao, Colombia.

<table>
<thead>
<tr>
<th>Gramínea</th>
<th>Ecotipo</th>
<th>DIVMS (%)</th>
<th>PC (%)</th>
<th>Ca (%)</th>
<th>P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. decumbens</td>
<td>606</td>
<td>58.2</td>
<td>14.1</td>
<td>0.49</td>
<td>0.16</td>
</tr>
<tr>
<td>B. decumbens</td>
<td>6131</td>
<td>60.4</td>
<td>14.6</td>
<td>0.60</td>
<td>0.19</td>
</tr>
<tr>
<td>B. nuziizensis</td>
<td>655</td>
<td>60.2</td>
<td>13.6</td>
<td>0.62</td>
<td>0.18</td>
</tr>
<tr>
<td>B. brizantha</td>
<td>665</td>
<td>60.8</td>
<td>13.5</td>
<td>0.53</td>
<td>0.17</td>
</tr>
<tr>
<td>B. humidicola</td>
<td>6013</td>
<td>61.5</td>
<td>11.9</td>
<td>0.34</td>
<td>0.13</td>
</tr>
<tr>
<td>A. gayanus</td>
<td>621</td>
<td>52.0</td>
<td>11.8</td>
<td>0.39</td>
<td>0.14</td>
</tr>
<tr>
<td>P. maximum</td>
<td>604</td>
<td>48.2</td>
<td>13.4</td>
<td>0.66</td>
<td>0.16</td>
</tr>
<tr>
<td>P. plicatum</td>
<td>600</td>
<td>41.0</td>
<td>12.0</td>
<td>0.59</td>
<td>0.12</td>
</tr>
<tr>
<td>H. rufa</td>
<td>601</td>
<td>47.4</td>
<td>10.6</td>
<td>0.54</td>
<td>0.14</td>
</tr>
</tbody>
</table>

Promedio ± D.E. 54 ± 7.0 12 ± 1.2 0.53 ± 0.1 0.15 ± 0.02

* Promedio de cortes cada 3, 6, 9, 12 y 15 semanas en época de máxima precipitación.

Pasturas Tropicales, Vol. 13 No. 2 3
Cuadro 2. Tasa de reducción\(^a\) semanal, según la edad de rebrote, de la DIVMS y de la proteína cruda (PC) de las hojas de varias gramíneas. CIAT-Quilichao, Colombia.

<table>
<thead>
<tr>
<th>Gramínea</th>
<th>Ecotipo CIAT No.</th>
<th>DIVMS (%)</th>
<th>PC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. decumbens</td>
<td>606</td>
<td>-0.5 ns</td>
<td>-0.8**</td>
</tr>
<tr>
<td>B. decumbens</td>
<td>6131</td>
<td>-1.0*</td>
<td>-0.8**</td>
</tr>
<tr>
<td>B. ruziziensis</td>
<td>655</td>
<td>-0.4 ns</td>
<td>-0.9**</td>
</tr>
<tr>
<td>B. humidicola</td>
<td>6013</td>
<td>-1.4**</td>
<td>-0.8**</td>
</tr>
<tr>
<td>B. brizantha</td>
<td>665</td>
<td>-0.9*</td>
<td>-0.7**</td>
</tr>
<tr>
<td>A. gayanus</td>
<td>671</td>
<td>-1.5**</td>
<td>-0.9**</td>
</tr>
<tr>
<td>P. maximum</td>
<td>604</td>
<td>-2.0**</td>
<td>-1.2**</td>
</tr>
<tr>
<td>P. plicatum</td>
<td>600</td>
<td>-2.2**</td>
<td>-0.6*</td>
</tr>
<tr>
<td>H. rufa</td>
<td>601</td>
<td>-0.7 ns</td>
<td>-0.8*</td>
</tr>
</tbody>
</table>

\(^a\) Calculada con el modelo \(Y = a + bX\).
\(^*\), \(^**\) = \(P < 0.05\) y 0.01, respectivamente.

Las especies de Brachiaria presentaron tasas similares de reducción semanal de PC (0.8%). Por otra parte, P. maximum, entre las gramíneas de crecimiento erecto, presentó la mayor tasa semanal de reducción de PC (1.2%) (Cuadro 2).

Aceptabilidad relativa de las gramíneas. En el Cuadro 3 se presenta la aceptabilidad relativa de las gramíneas, medida como utilización y frecuencia de pastoreo. Las gramíneas de crecimiento erecto fueron más utilizadas por los animales (81%) que las especies de Brachiaria (49%), lo cual no se relacionó con la disponibilidad inicial de forraje. Brachiaria ruziziensis, entre las especies de Brachiaria, presentó menor utilización.

La frecuencia de pastoreo fue, en promedio, similar entre las especies de Brachiaria (10.9%) y las especies de crecimiento erecto (11.4%) (Cuadro 3). Sin embargo, entre las primeras, B. ruziziensis presentó menor frecuencia de pastoreo y B. humidicola la mayor. Estas diferencias en frecuencia de pastoreo entre especies de Brachiaria se relacionaron con la disponibilidad inicial de forraje (\(r = 0.98\), \(P < 0.01\)). Por otra parte, A. gayanus, entre las gramíneas de crecimiento erecto, presentó la mayor frecuencia de pastoreo y P. maximum y P. plicatum la menor. Nuevamente, la diferencia en frecuencia de pastoreo de las gramíneas erectas se relacionó con la disponibilidad inicial de forraje (\(r = 0.94\), \(P < 0.01\)).

En general, no se encontró relación entre la utilización y la frecuencia de pastoreo de las gramíneas (\(r = 0.40\)) ni entre la utilización y el forraje inicial en oferta (\(r = 0.46\)). Sin embargo, la frecuencia de pastoreo presentó una alta relación con el forraje inicial (\(r = 0.90\), \(P < 0.05\)).

Valor nutritivo de las leguminosas. La mayor DIVMS (\(> 61\%\)) se encontró en especies de Zornia, Aeschynomene histrix, Galactia striata y las especies de Stylosanthes, excepto S. scabra. Por el contrario, D. ovatifolium y C. gyroides presentaron la menor DIVMS (\(< 36\%)\) (Cuadro 4).

Las especies de Zornia, A. histrix, G. striata, C. pubescens y P. phaseoloides presentaron un contenido de PC superior a 27%; las especies de

Cuadro 3. Disponibilidad inicial de materia seca (MS), aceptabilidad relativa, y frecuencia de pastoreo de varias gramíneas. CIAT-Quilichao, Colombia.

<table>
<thead>
<tr>
<th>Gramínea</th>
<th>Ecotipo CIAT No.</th>
<th>MS (t/ha)</th>
<th>Utilización (%)</th>
<th>Frecuencia de pastoreo (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. decumbens</td>
<td>606</td>
<td>2.7</td>
<td>47.3</td>
<td>10.2</td>
</tr>
<tr>
<td>B. decumbens</td>
<td>6131</td>
<td>2.4</td>
<td>54.7</td>
<td>9.6</td>
</tr>
<tr>
<td>B. ruziziensis</td>
<td>655</td>
<td>1.8</td>
<td>26.7</td>
<td>6.3</td>
</tr>
<tr>
<td>B. humidicola</td>
<td>6013</td>
<td>4.1</td>
<td>58.9</td>
<td>18.2</td>
</tr>
<tr>
<td>B. brizantha</td>
<td>665</td>
<td>2.9</td>
<td>57.7</td>
<td>10.3</td>
</tr>
<tr>
<td>A. gayanus</td>
<td>621</td>
<td>5.6</td>
<td>89.2</td>
<td>18.1</td>
</tr>
<tr>
<td>P. maximum</td>
<td>604</td>
<td>1.4</td>
<td>65.3</td>
<td>8.6</td>
</tr>
<tr>
<td>P. plicatum</td>
<td>600</td>
<td>2.7</td>
<td>86.9</td>
<td>8.6</td>
</tr>
<tr>
<td>H. rufa</td>
<td>601</td>
<td>2.3</td>
<td>84.2</td>
<td>10.2</td>
</tr>
</tbody>
</table>
Cuadro 4. DIVMS, contenido de proteína cruda (PC) y minerales de las hojas de varias leguminosas forrajeras tropicales. CIAT-Quilichao, Colombia.

<table>
<thead>
<tr>
<th>Leguminosa</th>
<th>Ecótipo CIAT No.</th>
<th>DIVMS (%)</th>
<th>PC (%)</th>
<th>Ca (%)</th>
<th>P (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. glabra</td>
<td>9648</td>
<td>72.4</td>
<td>31.3</td>
<td>0.58</td>
<td>0.26</td>
</tr>
<tr>
<td>Z. latifolia</td>
<td>728</td>
<td>68.8</td>
<td>26.3</td>
<td>0.80</td>
<td>0.22</td>
</tr>
<tr>
<td>S. guianensis</td>
<td>184</td>
<td>60.8</td>
<td>24.4</td>
<td>0.90</td>
<td>0.21</td>
</tr>
<tr>
<td>S. hamata</td>
<td>147</td>
<td>66.0</td>
<td>23.1</td>
<td>1.06</td>
<td>0.19</td>
</tr>
<tr>
<td>S. capitata</td>
<td>1315</td>
<td>59.2</td>
<td>21.3</td>
<td>0.88</td>
<td>0.17</td>
</tr>
<tr>
<td>S. scabra</td>
<td>1009</td>
<td>56.4</td>
<td>20.6</td>
<td>0.90</td>
<td>0.17</td>
</tr>
<tr>
<td>D. ovalifolium</td>
<td>350</td>
<td>38.3</td>
<td>16.9</td>
<td>0.56</td>
<td>0.15</td>
</tr>
<tr>
<td>C. gyroides</td>
<td>3001</td>
<td>34.4</td>
<td>21.9</td>
<td>0.38</td>
<td>0.23</td>
</tr>
<tr>
<td>G. striata</td>
<td>964</td>
<td>59.6</td>
<td>28.1</td>
<td>0.56</td>
<td>0.22</td>
</tr>
<tr>
<td>A. histriz</td>
<td>9690</td>
<td>70.4</td>
<td>30.6</td>
<td>0.74</td>
<td>0.25</td>
</tr>
<tr>
<td>P. phaseoloides</td>
<td>9900</td>
<td>54.6</td>
<td>27.5</td>
<td>0.54</td>
<td>0.24</td>
</tr>
<tr>
<td>C. pubescens</td>
<td>438</td>
<td>52.2</td>
<td>30.0</td>
<td>0.62</td>
<td>0.24</td>
</tr>
<tr>
<td>Promedio ± D.E.</td>
<td>54 ± 11</td>
<td>25 ± 4</td>
<td>0.7 ± 0.2</td>
<td>0.2 ± 0.03</td>
<td></td>
</tr>
</tbody>
</table>

* Promedio de cortes cada 3, 6, 9, 12 y 15 semanas en época de máxima precipitación.

Stylosanthes presentaron, en promedio, 22% de PC, y *D. ovalifolium* presentó un bajo contenido de PC (17%).

Las especies de *Stylosanthes* presentaron los mayores niveles de Ca (1.0%), lo cual contrasta con los bajos niveles de Ca (0.4%) encontrados en *C. gyroides*. En el resto de las leguminosas el contenido promedio de Ca fue de 0.60%. El contenido de P fue bajo en las especies de *Stylosanthes* (0.18%) y en *D. ovalifolium* (0.16%), en comparación con las demás leguminosas que presentaron, en promedio, 0.35% de P (Cuadro 4).

Efecto de la edad de rebrote en la calidad nutritiva de las leguminosas. La edad de rebrote no afectó (P > 0.05) la DIVMS de las hojas de *S. scabra*, *D. ovalifolium*, *C. gyroides* y *P. phaseoloides*; por el contrario, en las demás leguminosas la tasa de reducción semanal de la DIVMS fue relativamente alta (-1%) (Cuadro 5) y similar a la de las gramíneas.

La reducción semanal en el contenido de PC en las hojas de la leguminosa fue, en promedio, de 0.5%, siendo inferior a la encontrada en las gramíneas. Esta reducción varió entre 0.3% para *Z. glabra* y *D. ovalifolium* y 0.9% para *S. hamata*.

Solubilidad del nitrógeno de las leguminosas. Para estimar la disponibilidad potencial del N de las hojas de las leguminosas en el rumen y en el tracto posterior de los animales, se midió su solubilidad en solución buffer y pepsina (Cuadro 6). Como se esperaba, la solubilidad en buffer (19.5%) fue menor que en pepsina (74.2%), encontrándose una correlación significativa entre las dos mediciones (r = 0.79, P < 0.05) y entre ellas y el N total (r = 0.79, P < 0.05).

La solubilidad en buffer y pepsina del N de las especies de *Zornia* fue alta en comparación con las especies de *Stylosanthes*, y con *C. gyroides* y *D. ovalifolium*. Por otra parte, la solubilidad en pepsina del N de *S. scabra* fue baja en relación con las demás especies de *Stylosanthes*. La solubilidad de *P. phaseoloides*, *C. pubescens* y las especies de *Zornia* fue similar. La solubilidad relativamente baja del N de *D. ovalifolium*, *C. gyroides* y *S. scabra* se asoció con taninos, los cuales desafortunadamente no se midieron en las demás leguminosas.

Aceptabilidad relativa de las leguminosas. El grado de utilización de las leguminosas por los animales varió entre las especies de *Zornia* y entre las de *Stylosanthes*, siendo baja la utilización.
Cuadro 5. Tasa de reducción* semanal, según la edad de rebrote, de la DIVMS y de la proteína cruda (PC) de las hojas de varias leguminosas forrajeras. CIAT-Quilichao, Colombia.

<table>
<thead>
<tr>
<th>Leguminosa</th>
<th>Ecótipo CIAT No.</th>
<th>DIVMS (%)</th>
<th>PC (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z. glabra</td>
<td>9648</td>
<td>-0.9**</td>
<td>-0.3*</td>
</tr>
<tr>
<td>Z. latifolia</td>
<td>728</td>
<td>-0.9*</td>
<td>-0.4**</td>
</tr>
<tr>
<td>S. guianensis</td>
<td>184</td>
<td>-0.7*</td>
<td>-0.7*</td>
</tr>
<tr>
<td>S. hamata</td>
<td>147</td>
<td>-1.3*</td>
<td>-0.9*</td>
</tr>
<tr>
<td>S. capitata</td>
<td>1315</td>
<td>-0.9*</td>
<td>-0.7*</td>
</tr>
<tr>
<td>S. scabra</td>
<td>1009</td>
<td>-0.4 ns</td>
<td>-0.4*</td>
</tr>
<tr>
<td>D. ovalifolium</td>
<td>350</td>
<td>-0.1 ns</td>
<td>-0.3*</td>
</tr>
<tr>
<td>C. gyroides</td>
<td>3001</td>
<td>-0.2 ns</td>
<td>-0.5**</td>
</tr>
<tr>
<td>G. striata</td>
<td>964</td>
<td>-1.1**</td>
<td>-0.7**</td>
</tr>
<tr>
<td>A. histrix</td>
<td>9690</td>
<td>-0.7*</td>
<td>-0.7*</td>
</tr>
<tr>
<td>P. phaseoloides</td>
<td>9900</td>
<td>-0.1 ns</td>
<td>-0.5*</td>
</tr>
<tr>
<td>C. pubescens</td>
<td>438</td>
<td>-1.3**</td>
<td>-0.8**</td>
</tr>
</tbody>
</table>

*a = Calculada con el modelo \(Y = a + bX \).
* * * = \(P < 0.05 \) y \(P < 0.01 \), respectivamente.

Las especies de Stylosanthes, especialmente S. capitata, presentaron alta frecuencia de pastoreo, excepto S. scabra, que presentó una baja frecuencia (1%). En contraste, las especies de Zornia, G. striata y A. histrix presentaron baja frecuencia de pastoreo, lo cual se relacionó con la baja disponibilidad inicial de forraje.

En general, la utilización y la frecuencia de pastoreo de las leguminosas no se relacionaron \((r = 0.31) \), así como tampoco la utilización y la disponibilidad inicial de forraje \((r = -0.20) \). Por el contrario, la disponibilidad inicial de forraje de las leguminosas y la frecuencia de pastoreo se relacionaron en forma significativa \((r = 0.85, P < 0.05) \), excepto en D. ovalifolium, C. gyroides y S. scabra.

Discusión

Gramíneas. En este estudio la DIVMS promedio de las gramíneas (54%) coincide con los valores encontrados por Minson and McLeod (1970) como...
nominales en gramineas tropicales. Sin embargo, los valores promedio de PC son superiores a los encontrados en estas mismas gramineas (Minson, 1981). Esta diferencia posiblemente se debe a que en el presente estudio sólo se analizaron las hojas verdes, las cuales tienen mayor contenido de PC que los tallos y material muerto (Bohnert et al., 1986). Además, se les aplicó N a las gramineas, el cual aumenta la PC en los tejidos. Por lo tanto, los datos de PC en este ensayo deben interpretarse teniendo en cuenta estos factores.

Las especies de Brachiaria presentaron alta DIVMS, inclusive mayor que la de P. maximum, especie de buena calidad y palatabilidad en suelos de alta fertilidad (Osare, 1975). Por el contrario, la DIVMS de A. gayanus, H. rufo y P. plicatum fue baja.

Como se mencionó antes, el nivel de PC de las gramineas fue alto; sin embargo, B. humidicola, en el género Brachiaria, presentó el menor nivel de PC. Esto coincide con los bajos contenidos de PC que se han encontrado en B. humidicola en condiciones de pastoreo (Hoyos y Lascano, 1985; Lascano et al., 1988), lo cual posiblemente está asociado con la inhibición de la mineralización del N en el suelo (CIAT, 1985).

Los niveles promedio de Ca (0.51%) y P (0.14%) en las hojas de la mayoría de las gramíneas evaluadas están dentro del rango esperado para gramíneas tropicales (McDowell, 1985). Sin embargo, B. humidicola presentó niveles bajos de Ca (0.13%), siendo similares a los encontrados en A. gayanus, pero más bajos que los encontrados en P. maximum.

La aceptabilidad relativa, medida en términos de utilización, fue mayor en el grupo de las gramineas erectas que en las especies de Brachiaria. Específicamente, se encontró que A. gayanus en estado vegetativo fue más palatable que B. decumbens o B. brizantha, lo cual coincide con los hallazgos de Mozer et al. (1973). Por otra parte, B. ruziziensis, en el grupo de Brachiaria, fue la menos aceptada por los animales.

Leguminosas. Las leguminosas presentaron alta variabilidad en valor nutritivo y aceptabilidad relativa, lo cual, en parte, se asoció con la presencia de taninos. Específicamente, la baja DIVMS, la reducida solubilidad del N y la baja utilización por los animales en pastoreo de S. scabra, D. ovalifolium y C. gyroide se relacionó con la presencia de taninos. El efecto negativo de los taninos se ha encontrado en leguminosas tropicales, particularmente del género Desmodium (Hutton y Coote, 1966).

Generalmente se considera que las leguminosas son una fuente importante de PC y,
El contenido de PC en las hojas fue alto en todas las gramíneas evaluadas. Sin embargo, se destaca entre las especies de Brachiaria el menor contenido de PC de B. humidicola; igualmente, esta especie presentó los más bajos niveles de Ca y P en las hojas, siendo similares a los encontrados en A. gayanus.

Las gramíneas de crecimiento erecto, especialmente A. gayanus, fueron más aceptadas por los animales que las especies de Brachiaria.

La DIVMS y la PC de las hojas de las leguminosas varían con la edad de corte. El género más digestible y con mayor contenido de PC fue Zornia, y las especies menos digeribles fueron D. ovalifolium y C. gyroide. Por otra parte, S. scabra, dentro del género Stylosanthes, presentó la menor DIVMS.

La aceptabilidad relativa de D. ovalifolium, C. gyroide y C. pubescens fue baja, lo cual contrastó con la alta palatabilidad de Z. glabra y de las especies del género Stylosanthes, excepto S. scabra.

Summary

Nine accessions of tropical grasses and 12 accessions of tropical legumes were planted in an Ultisol at the CIAT-Quilichao experiment station (3° 06’ N and 76° 31’ W). They were harvested at cutting intervals of 3, 6, 9, 12, and 15 weeks during the rainy season of 1980-1981 to measure their quality. Leaf tissues of the grasses and legumes were analyzed for crude protein (CP), in vitro dry-matter digestibility (IVDMD), calcium (Ca), and phosphorus (P). Legume leaves were also analyzed for sulfur (S) and nitrogen (N) solubility in buffer and in acid-pepsin solutions. The relative acceptability of the grasses and legumes to grazing animals was measured at the end of the trial.

The Brachiaria species showed a higher IVDMD than species with erect growth, such as Panicum maximum and Andropogon gayanus. Crude protein content in the leaves was high in all the grasses evaluated. However, B. humidicola had the lowest CP content among the Brachiaria species. Likewise, this species showed the lowest levels of Ca and P in the leaves, these levels being similar to those found in A. gayanus. Grasses with erect growth habit, such as A. gayanus, were more accepted by the animals than the Brachiaria species.

Conclusiones

De los resultados obtenidos en este ensayo se puede concluir lo siguiente:

Las especies del género Brachiaria presentaron una mayor DIVMS que las especies de crecimiento erecto, *P. maximum* y *A. gayanus.*
The IVDM and CP of the legumes varied with age at cutting. The most digestible legumes and the one with the highest CP content were Z. glabra and Z. latifolia, and the least digestible species were D. ovalifolium and C. gyroides. In addition, S. scabra, within the genus Styllosanthes, showed the lowest IVDM. The relative acceptability of D. ovalifolium, C. gyroides, and C. pubescens was low, which contrasted with the high palatability of Z. glabra and Styllosanthes species, except for S. scabra.

Referencias

Corrección

En el volumen 13 No. 1, en la Figura 6 de la página 7, el eje Y debe leerse: Altura de plantas (cm), y el eje X debe leerse: Leguminosas ________ Gramíneas ________