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Chapter 33
Digital Soil Mapping of Soil Properties In
Honduras Using Readily Available Biophysical
Datasets and Gaussian Processes

Juan Pablo Gonzalez, Andy Jarvis, Simon E. Cook, Thomas Oberthür,
Mauricio Rincon-Romero, J. Andrew Bagnell and M. Bernardine Dias

Abstract Creating detailed soil maps is an expensive and time consuming task that
most developing nations cannot afford. In recent years, there has been a significant
shift towards digital representation of soil maps and environmental variables and
the associated activity of predictive soil mapping, where statistical analysis is used
to create predictive models of soil properties. Predictive soil mapping requires less
human intervention than traditional soil mapping techniques, and relies more on
computers to create models that can predict variation of soil properties. This paper
reports on a multi-disciplinary collaborative project applying advanced data-mining
techniques to predictive soil modelling for Honduras. Gaussian process models are
applied to map continous soil variables of texture and pH in Honduras at a spatial
resolution of 1 km, using 2472 sites with soil sample data and 32 terrain, climate,
vegetation and geology related variables. Using split sample validation, 45% of vari-
ability in soil pH was explained, 17% in clay content and 24% in sand content. The
principle variables that the models selected were climate related. Gaussian process
models are shown to be powerful approaches to digital soil mapping, especially
when multiple explanatory variables are available. The reported work leverages the
knowledge of the soil science and computer science communities, and creates a
model that contributes to the state of the art for predictive soil mapping.

33.1 Introduction

Statistical Soil Modeling is the development of statistical soil models for large ar-
eas based on soil samples and digital maps of environmental variables. It is also
known in the literature as predictive soil mapping. Recent scientific advances in
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368 J.P. Gonzalez et al.

soil-landscape modeling have demonstrated the power of predictive modeling of
soil characteristics (including texture, moisture, pH, and some nutrients) at high
resolution. These advances are built on statistically defined relationships between
observable features of the landscape as well as improved understanding of processes
that control soil formation. At the same time, significant advances have been made
in the availability of high resolution data on many of the driving mechanisms of soil
variability, especially terrain, climate and land-cover.

There is a significant amount of research in predictive soil mapping. For a
thorough review of existing approaches to predictive soil mapping see references
within this book as well as Nachtergaele (1996), Scull et al. (2003) and Heuvelink
and Webster (2001). However, most of the work in predictive soil mapping has
been done for temperate zones, corresponding to North America, Europe and
Australia. This is due in part to limited spatial data infrastructures, as well as
a scarcity of funding for basic generation of data and information. Very little
research has been done in developing appropriate predictive soil
mapping techniques for the tropics. The tropics have different climate patterns than
temperate zones, and different processes behind soil formation rendering some pre-
dictive soil mapping models developed for North America, Europe or Australia less
applicable.

The world is currently witnessing a growing demand for technological inno-
vation to empower developing communities (Sachs, 2002). Inspired by the cur-
rent demand for advanced technology relevant to developing communities, this
paper focuses on the topic of applying Machine Learning techniques to the prob-
lem of soil mapping in the tropics. In recent years, there has been a signifi-
cant shift towards digital representation of soil maps and environmental variables
that has created the field of predictive soil mapping (Scull et al., 2003). In pre-
dictive soil mapping, statistical analysis is used to create predictive models of
soil properties, thus requiring less human intervention than traditional soil map-
ping techniques, and relying more on computers to create models and predict soil
properties. This technique is highly relevant for improving soil information in the
tropics to respond to the demands for soil data to improve natural resource man-
agement and aid communities to better manage their resources and respond to
global changes.

The goal of this project is to develop statistical soil models for Honduras, and
create a model that matches or advances the state of the art for predictive soil map-
ping, with relevance to tropical countries. Specifically, the objective was to model
and predict variations in topsoil pH content, clay content and sand content for the
whole country at the highest spatial resolution possible. This research is developed
within the context of limited data infrastructures that many tropical countries expe-
rience, and focuses on using widely available spatial data in the development of the
models. Honduras was selected as a case study site representative of many tropical
countries. Honduras is a small tropical country (112 000 km2), but in spite of its
small size, Honduras has coastal and mountainous areas, elevations from 0 to 2870
meters, and temperatures from 10 to 30◦C.
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33 Digital Soil Mapping of Soil Properties in Honduras 369

33.1.1 Traditional Soil Maps

Currently, 68% of the countries of the world have soil maps at 1:1 000 000 or finer.
However, these countries only represent 31% of the world’s land surface. Most of
the remaining 69% corresponds to developing countries (Nachtergaele, 1996). Since
1981 the world has a global soil map at a scale of 1:5 million. The maps, published
by FAO and UNESCO, were based on soil surveys conducted in the 1930s to 1970s.
This map provides worldwide coverage at 1:5 000 000 and has been converted into
Soil Taxonomy (Soil Survey Staff, 1975), which classifies the soils in 12 main cat-
egories (soil orders) with subcategories. For many developing countries this is the
only current source of soil information.

In Honduras, there is a partial map of soils at 1:250 000 scale produced in 1962
with vast areas of the country (> 80%) not classified (Selvaradjou et al., 2005) and
two region specific agro-ecological soil maps with very basic soil information (see
http://eusoils.jrc.it/esdb archive/EuDASM/latinamerica/lists/chn.htm). The only al-
ternative is the FAO world map, shown in Fig. 33.1. The FAO soil map of the world
is a valuable tool because of its coverage, but it has significant drawbacks: it was
made with information and technology of the 1960s; since which time there have
been significant changes in spatial information technologies such as GPS, remote
sensing and geographic information systems (GIS). Another limitation, which is
shared with traditional soil survey techniques, is the classification of soils as distinct
categories. As noted almost 40 years ago by Webster (1968), this makes substantial
assumptions about the conformity of soil variation to categorical classification, that
can lead to errors of interpretation. Such errors may not be evident to users of the
information (see Chapter 3).

A further problem of soil classifications is that although they capture some of
the general characteristics of the soil at some scales, attempts to interpret the soil
map in terms of a specific property will tend to fail since soil attributes do not
cluster perfectly: a cut on the basis of one attribute may split the variance of another

Fig. 33.1 FAO soil map for Honduras (see Color Plate Section following page 436)
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370 J.P. Gonzalez et al.

attribute near its peak. The failure of traditional soil survey techniques to produce
accurate results at smaller scales significantly limits the soil information available
to programs that attempt to implement community-based management of resources.

Furthermore, traditional soil maps depend on subjective expert opinion which
varies significantly depending on the person creating the maps and the soil classifi-
cation used (Hudson, 1992). The maps are therefore predominantly qualitative, and
depend on poorly specified predictive models – based on tacit knowledge – that are
not updatable.

33.1.2 Existing Approaches to Predictive Soil Mapping

There have been a number of approaches to predictive soil mapping, differing both
in terms of statistical technique and auxillary data used in the mapping. Many exist-
ing approaches to predictive soil mapping use a derivative of Kriging (Krige, 1951;
Matheron, 1962). Ordinary Kriging is a form of weighted local spatial interpolation
that uses a Gaussian model for the data. Its main drawbacks are the fact that it
does not use knowledge of soil materials or processes, and that it requires a large
number of closely-spaced samples in order to produce satisfactory results. There are
extensions to this method that allow the use of ancillary data, but they are difficult
to extend to more than one ancillary variable although methods for this do exist.

Some of the most promising approaches to predictive soil mapping are expert
systems and regression trees (Corner et al., 2002). Expert systems use expert knowl-
edge to establish rule-based relationships between environment and soil properties.
Often they do not use soil data to determine soil-landscape relationships, but some
approaches do. Regression Trees are decision trees with linear models in the leaves.
They create a piecewise linear representation of the predicted variable. Using this
method Henderson et al. (2005) obtained the very good results, which are able to
explain more than 50% of the variance of several soil properties such as pH, clay
content and sand content.

33.2 Methods

33.2.1 Input Datasets

The input soil data was collated by CIAT and consists of 2670 soil profiles taken dur-
ing the 1990s distributed throughout the country. Each soil sample site contains data
on texture, pH, organic carbon, organic matter, nitrogen, exchangeable aluminium,
and electric conductivity for 4 different horizons, although data was incomplete for a
number of sites and for a number of variables. Of the 2670 sites, 2472 had complete
information for texture of the topsoil (taken at a depth up to 20–30 cm), and 2451
had data in pH of topsoil. Other variables were missing considerable amounts of
data, and hence were not analysed here.
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33 Digital Soil Mapping of Soil Properties in Honduras 371

Available for training and prediction were 32 terrain, climate, vegetation and
geology related variables. The emphasis was made to select variables potentially
available for any tropical country, rather than to rely on data generated specifically
for this purpose that. Terrain variables were generated from two different DEMs;
SRTM 3 arc second (approx. 90 m resolution) available for the globe from the
CSI-CGIAR (Jarvis et al., 2006), and a 50 m Honduras DEM derived from 1:100
000 cartographic sheets hereon referred to as TOPO. Both DEMs were used due to
concerns that 90 m spatial resolution was too coarse to capture local soil variation
present in the input soil data, although SRTM data presents a significant opportunity
for predictive soil mapping given its global coverage. Vegetation data was derived
from the SPOT Vegetation products, available globally at 1 km spatial resolution,
and the climate variables were generated from the WorldClim climate database (Hi-
jmans et al., 2005), also available for the globe at 1 km spatial resolution. MODIS
vegetation data (EVI and NDVI) could considerably improve the vegetation vari-
ables, but the data was not available for this study. The geology variable was derived
from digitizing a 1:500 000 map sheet, and geological classes were ordered into ages
through expert consultation to ensure that the variable was continuous rather than
categorical (Gaussian Process models can only use continuous variables). The full
list of variables and their respective spatial resolutions is shown in Table 33.1.

33.2.2 Gaussian Processes for Predictive Soil Mapping

We chose the approach of Gaussian Processes, a powerful, non-parametric regres-
sion technique with solid probabilistic foundations. The main advantages of Gaus-
sian Processes over other approaches is that they provide well defined confidence
intervals, which are very important for soil scientists to assess the quality of the
model; and that they allow the use of spatial interpolation and numerous ancillary
features to create the model. Kriging can be considered a special case of Gaussian
Processes in which only spatial interpolation is used and no ancillary features are
included in the model.

Gaussian Processes can be seen as a generalization of Gaussian distributions to
function space, which is of infinite dimension. Even though they are not new, they
have regained relevance as a replacement for supervised neural networks (Gibbs,
1997; MacKay, 1997). Gaussian Processes are equivalent to several other mathe-
matical approaches including neural networks with infinite number of hidden units,
radial basis functions with infinite number of basis functions, least squares support
vector machines and kernel ridge regression.

33.2.2.1 Covariance Function

The idea with Gaussian processes is to put a prior in the probability of the inter-
polating function given the data. Since this prior is Gaussian, a Gaussian Process
is defined by its covariance function. The covariance function and its hyperparam-
eters define the family of functions that can be chosen by the Gaussian Process for
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interpolating the data. The covariance function selected was the squared covariance
with a linear term as shown below:

C(xi , x j ) = θ1 exp

[
−1

2

L∑
l=1

(x (l)
i − x (l)

j )2

r2
l

]
+ θ2 + θ3δi j +

L∑
l=1

σ 2
wx (l)

i x (l)
j

where

L number of inputs
l l th input
θ1 vertical scale
rl length scale
θ2 bias
θ3 output noise
σw linear term

33.2.2.2 Learning the Hyperparameters and Selecting Variables

The covariance function depends on a set of hyperparameters that need to be de-
termined. The best way to determine the hyperparameters of a Gaussian Process is
to learn them from the data by maximizing the likelihood of a prediction given the
training data and the parameters. This approach has a regularizing effect as well,
therefore reducing the likelihood of having a model that overfits the data.

However, because Gaussian Processes can use a large number of ancillary vari-
ables, a regularization step is also required to limit the number of variables used in
the model. In order to keep training time low and to further prevent overfitting we
use the following variable selection approach: an training set of 20% of available
soil samples is used to create an initial model, and its performance is evaluated on
60% of the available samples (validation set). When several variables had similar R2

values, expert opinion selected the variable considered most important to include in
the model. We continued adding variables until the R2 score of the model stopped
improving. Once the most important variables were determined, a new model was
trained with the combined 80% of the samples. In order to obtain an independent
estimate of the performance of the model, the model is tested against the remaining
20% of the samples (independent test set). With this approach it takes approximately
27 h to select variables and create each model. This process only takes place once,
unless new variables become available and they need to be added to the model.

33.2.2.3 Prediction

Once a model is chosen, the next step is to use that model to generate soil maps
for an area of interest. In order to do this, features from digital maps of the area
are used as the inputs to the model, therefore creating a predicted map for a soil
component. We generated maps for pH, sand content, and clay content in the topsoil
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of Honduras. Even though the prediction stage of Gaussian Processes is much faster
than the training stage, prediction is required for all points, therefore the process is
very computationally intensive. With the current implementation, using a Pentium
4 @1.8 GHz, it takes 21 ms to generate the prediction for one location. The time
required to generate a map depends on the size of the map and its resolution. For
Honduras (112, 000 km2), it takes 40 minutes to generate a map with 1 km grid size,
3.4 days with 90 m grid size and 30 days with 30 m grid size. If we were to generate
a map of Africa it would take 7.2 days, 2.4 years and 22 years respectively. However,
this assumes that all the calculations take place on a single computer, which is not
likely to be the case. If multiple computers are available, each one could process a
much smaller area therefore reducing the total time required proportionally to the
number of computers available.

33.3 Results

33.3.1 Accuracy of Current Techniques

In order to understand the significance of the results achieved, it is important to
be aware of the accuracy of current techniques for soil mapping. Measurements
of soil characteristics can have a variability of 20% or more between laboratories
(Nachtergaele, 1996) and many quantitative prediction methods explain less than
10% of variation. Henderson et al. (2005) explained up to 50% of the variance of
pH in soil in Australia and are the motivating force behind the current effort for
predictive soil mapping at CIAT.

33.3.2 Topsoil pH

The pH in the topsoil produced the best results the statistical validation. Two differ-
ent models were created: one that includes the x and y location of the samples as
variables (i.e.: uses spatial interpolation), and one that does not. The model that uses
spatial interpolation performed better, but the one that does not gives better insight
into the driving factors for pH determination.

The variables found to be relevant for the model with spatial interpolation were
x and y (spatial location of the sample) and P5 (maximum temperature of warmest
month). The R2 for this model is 0.454 (for the test data), that is, the model explains
approximately 45% of the variance in the data. From a computer science or engi-
neering perspective, this number seems very low. However, for soil prediction and
from a soil science perspective, it is acceptable. The performance of the model for
the training set (80%) and the test set (20%) are shown (Fig. 33.2). The resultant map
of pH for Honduras with 1 km spatial resolution (Fig. 33.3) demonstrates the het-
erogeneity of pH across the country, with only some areas of relatively homogenous
pH coinciding with specific classes of the FAO soil map (Fig. 33.1). The prediction
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Fig. 33.2 Model performance for pH in topsoil. The figure on the left shows the comparative
performance of the model vs. a mean predictor. The x coordinate is the bound, in pH units, and the
y coordinate is the percentage of the predictions that fit within the predicted value +/− the bound.
For example, 95% of the predictions will fall within 1 pH unit of the predictions for the training
set. This number is slightly lower for the independent test set (92%) and much lower for a mean
predictor (80%). The figure on the right shows actual values versus predicted values. In an ideal
case, both would be the same (solid, green line), but in practice there will always be dispersion
around the y axis. The more dispersion, the worse the model is (see Color Plate Section following
page 436)

Fig. 33.3 Predicted map of pH in topsoil and 67% confidence interval (see Color Plate Section
following page 437)
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has a 67% confidence interval of about 0.5 pH units, although this is greater in the
eastern part of the country where less soil samples were present.

When no spatial interpolation is used the variables selected by the model are P5
(Maximum temperature of warmest month), P2 (Mean diurnal temperature range),
P16 (Precipitation of wettest quarter), and geology class of parent material. The R2

for this model is 0.3652 (for the test data) (Fig. 33.4), which is significantly lower
than for the model using spatial interpolation, but can still be considered useful
especially under circumstances where irregular or lower densities of soil profile
data is available. The resultant map of pH using this model (Fig. 33.5) is similar
to the map when spatial interpolation was used, but the 67% confidence interval
increases to approximately 0.6. This is still satisfactory given the inherent errors in
laboratories, and based on alternative sources of information.

33.3.3 Sand and Clay Content in Topsoil

The models for sand and clay content performed poorly compared to the topsoil pH.
While the results using spatial interpolation were acceptable and still comparable
to some existing approaches, these results had more limited predictive value. The
R2 for sand was 0.235 (with spatial interpolation) and 0.1032 (without spatial in-
terpolation). For clay, R2 was 0.167 (with spatial interpolation) and 0.140 (without
spatial interpolation).

Fig. 33.4 Model performance for pH in topsoil without spatial interpolation (see Color Plate Sec-
tion following page 437)
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Fig. 33.5 Predicted map of pH in topsoil and 67% confidence interval, without using spatial inter-
polation (see Color Plate Section following page 438)

There are several possible causes for the reduced performance of the sand and
clay models. One of the most plausible explanations is that the clay and sand content
are not as spatially correlated as pH, therefore requiring higher resolution input
variables to accurately predict variation.

33.4 Conclusions and Future Work

Gaussian processes have proven to be a powerful technique for predictive soil map-
ping, successfully predicting 17–45% of variability in pH, sand and clay content
in Honduras. They produce quantitative predictions with solid confidence intervals,
combine pedogenic factors with spatial interpolation, allow for complete coverage
of an area and enable continued improvement.

The map of pH variation for Honduras (Fig. 33.1) indicates the dominance of
climate as a predictive variable at national scale. The weaker influence of terrain and,
to a lesser extent geology, seems surprising, given the plentiful evidence of the ca-
pacity of terrain variables to predict soil variation (e.g. Gessler et al., 2000). It seems
reasonable to explain this as a result of the scale-dependent power of terrain, relative
to that of climate (Burrough, 1983). This can be explained as follows: Over a small
area that typifies such studies of terrain-influence, climate variation is very small,
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and unable to influence soil variation. As the area expands, climate influences soil
formation more discernibly, and tends to dominate the power of terrain and available
geological information. The weaker influence of geology is difficult to explain, and
may reflect a confounding effect of map unit interpretation. The surprisingly weak
influence of terrain may reflect the inability to provide variables at sufficient reso-
lution (90 m.) to reflect soil formation processes, or more powerful terrain indices
are required. Further work should compare directly Gaussian Process models with
more established techniques for soil mapping such as kriging or regression trees.

Nevertheless, the digital soil map of pH and clay and sand content created using
Gaussian Processes provides a step forward in terms of information resources on soil
variation for Honduras. The map is now being used to generate models of species
distributions for important crop wild relative species (see Jarvis et al., 2005 for AQ1
background), and for assessing suitability of crops. It could also be used in a range
of applications which require high resolution soil property data, including weather
insurance and studies of the impacts of global climate change (see Chapter 3).
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