Relationship between the Kinetics of β-Carotene Degradation and Formation of Norisoprenoids in the Storage of Dried Sweet Potato Chips

Running head: β -Carotene Degradation & Norisoprenoid Formation in Dried Sweet Potato

Aurélie Bechoff¹, Claudie Dhuique-Mayer^{2*}, Manuel Dornier², Keith I. Tomlins¹, Renaud Boulanger², Dominique Dufour^{2,3} and Andrew Westby¹

¹ Natural Resources Institute (NRI), University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, United Kingdom.

² UMR Qualisud, Centre International de Recherche Agronomique pour le Développement (CIRAD), Montpellier SupAgro, TA B-95/16, 73 av. J.F. Breton 34398, Montpellier Cedex 5, France.

³ International Center for Tropical Agriculture (CIAT), Recta Cali-Palmira, km 17 A.A. 6713, Cali, Colombia

*To whom correspondence should be addressed. Tel.: +33/467614482. Fax: +33/467614433. E-mail: claudie.dhuique-mayer@cirad.fr

1 Abstract:

2 The effects of storage temperature (10; 20; 30; 40 °C), water activity (0.13; 0.30; 0.51; 3 0.76) and oxygen level (0%; 2.5%; 10%; 21%) on the degradation of carotenoids and 4 formation of volatile compounds during storage of dried sweet potato chips were 5 evaluated. A kinetic model was developed for degradation of trans-β-carotene and it 6 showed that breakdown followed first order kinetics with an activation energy of 64.2 7 kJ.mol⁻¹. The difference between experimental data under laboratory or field conditions 8 fitted and data predicted by the model was less than 10% for trans-β-carotene, or for 9 total carotenoids. The formation of the volatile compounds, β -ionone; 5,6-epoxy- β -10 ionone; dihydroactinidiolide; β-cyclocitral, was measured by SPME-GC-MS and was 11 clearly related to the degradation of trans- β -carotene. It is also suggested that carotenoid 12 degradation in dried sweet potato was by autoxidation because of the trend in β-13 carotene degradation rate in relation to water activity or oxygen level.

14

15 **KEYWORDS**: carotenoids; dried sweet potato; *Ipomoea batatas* L; kinetics;

16 norisoprenoids; oxygen; storage; temperature; volatile compounds; water activity

18 Introduction

19 Carotenoids are organic pigments found in plants that play an important role as vitamin 20 A precursors in the human diet. In contrast to most plant foods, about 90% of the 21 carotenoid content of orange-fleshed sweet potato (OFSP) is trans- β -carotene (Bechoff 22 et al., 2009a; Bengsston, Namutebi, Larsson Alminger & Svanberg, 2008). Hence 23 OFSP provides a straightforward "model system" for understanding the degradation of 24 β -carotene. The Ejumula variety, for example, cultivated in Uganda, has been reported to contain up to $325\mu g.g^{-1}\beta$ -carotene on a dry basis (Bengsston et al., 2008), making it a 25 26 very good source of provitamin A. Such varieties could contribute to tackling vitamin 27 A deficiency, a main public health issue in the developing world (Bechoff et al., 2009a; 28 Bengsston et al., 2008). Degradation of pro-vitamin A during the storage of dried sweet 29 potato chips at ambient temperature has been demonstrated to be a significant problem 30 (Emenhiser et al., 1999; Bechoff et al. 2009b).

31 The degradation of carotenoids has been widely studied in food products. The major 32 factors influencing carotenoid oxidation, leading to their degradation, are temperature, 33 light, oxygen and acidity (Gayathri, Platel, Prakash, & Srinivasan, 2004). In addition, 34 water activity is a very important parameter to evaluate the quality of dried foods 35 (Lavelli, Zanoni, & Zaniboni, 2007). Previous research on freeze-dried sweet potato 36 cubes has shown higher levels of β carotene degradation at lower water activities 37 (Haralampu & Karel, 1983). High oxygen concentrations have been associated with 38 high levels of carotenoid degradation in dried sweet potato flakes (Emenhiser et al., 39 1999; Walter, Purcell & Cobb 1970; Walter & Purcell 1974). Storage temperature (4 40 °C; 25 °C; 40 °C) has also been showed to influence the stability of carotenoid pigments 41 of freeze-dried sweet potatoes with greater losses at high temperatures (Cinar, 2004). In 42 general degradation of carotenoids in a dried food system, under the influence of one or 43 more factors has been demonstrated to be a first order kinetics reaction (Haralampu &

Karel, 1983; Hidalgo & Brandolini, 2008; Koca et al, 2007; Lavelli et al., 2007; Walter
& Purcell 1974).

46

47 The production of aroma compounds from carotenoids has also been widely studied 48 because of the application in the flavour industry. Authors have described volatile 49 products resulting from degradation of pure β -carotene; (Handelman, van Kujk, 50 Chatterjee, & Krinsky; Mordi et al., 1993; Waché, Bosser-Deratuld, Lhuguenot & Belin 51 2003) or naturally present in, for instance, oak wood (Nonier, Vivas, De Gaulejac, & 52 Vitry, 2004); black tea (Ravichandran, 2002); wine (Mendes-Pinto, 2009) and paprika 53 powder (Cremer & Eicher 2000). The highly unsaturated chain of the β-carotene 54 molecule makes it react easily with any radical species present (Krinsky & Kyung-Jin, 55 2003); carotenoid fragmentation can be caused by autoxidation (air) (Mordi et al., 56 1993); heating (Cremer & Eicher 2000) and enzymatic activity (Audridge, McCarty & 57 Klee, 2006). The chain reaction is typical of a free-radical reaction where a product is 58 oxidised into secondary products that are themselves oxidised into other products 59 (Goldman, Horev & Saguy, 1983; Krinsky & Kyung-Jin, 2003; Mordi et al., 1993). In 60 all cases β -carotene submitted to oxidation is degraded into epoxides, apocarotenals and 61 apocarotenones. In the latter stages of oxidation these are themselves oxidised into 62 lighter carbonyl compounds which are volatile; these include norisoprenoids. Two types 63 of asymmetric cleavage of trans- β -carotene, 7'-8' and 9'-10', lead to the formation of 64 β -cyclocitral and β -apo-8'carotenal; β -ionone and β -apo-10'carotenal respectively. 65 These asymmetric cleavages were achieved using xanthin oxidase (Waché et al., 2003). However the same cleavages can arise from autoxidation (Mordi et al., 1993). 66 67 Norisoprenoids from β -carotene degradation from either type of cleavage include β -68 ionone, 5,6-epoxy- β -ionone, dihydroactinidiolide (DHA) and β -cyclocitral.

70 The first objective of this study was to measure the degradation of β -carotene in sweet 71 potato chips during storage influenced by temperature taking into account oxygen and 72 water activity and be able to predict by modelling thermal degradation in a temperature 73 range (10-40 °C) close to what is found in many developing countries. The second 74 objective of the study was to relate the degradation of β -carotene to the formation of 75 volatile compounds at constant temperature of 40 °C. Degradation of pure β-carotene 76 has already been studied using both High Performance Liquid Chromatography (HPLC) 77 and Gas Chromatography/Mass Spectrometry (GC/MS) for the determination of loss of 78 β-carotene and formation of volatiles (Mordi et al., 1993). However, to our knowledge, 79 a kinetic study including the comparison of β -carotene degradation together with the 80 formation of volatile degradation products has not been reported in a dried food product 81 matrix.

83 Materials & Methods

84

85 **Raw materials and storage conditions**

86 Sweet potato chips from Ejumula variety were harvested in Luwero, Uganda in March 87 2008 after a growing season of 5-6 months. Roots were chipped and dried using open 88 air sun dryer at the National Agricultural Research Laboratories (NARL), Kawanda, 89 Uganda with an average drying temperature±standard deviation of 28.8±2.8 °C and 90 $53.3 \pm 13.6\%$ relative humidity. Dried chips were stored at -20 °C, where the carotenoid 91 content did not vary significantly during storage in freeze samples over a six month 92 period. A storage study was undertaken at Natural Resources Institute, UK. In order to 93 control relative humidity during storage, dried sweet potato chips (90g) in a sewed 94 cotton bag were placed into a 1.5L-clip top jar containing a salt (150g) saturated with 95 deionised water at 40 °C to give different water activities in accordance with Lavelli et 96 al. (2007): $a_w = 0.126$ for LiCl, 0.304 for MgCl₂, 0.507 for NaBr and 0.765 for NaCl. 97 Equilibrium between chips and air was achieved after 9 days of storage. Jars in triplicate 98 were placed in incubators (LMS Cooled Incubator, Sevenoak, UK) set at 10±0.5 °C; 99 20±1 °C; 30±0.5 °C and 40±1 °C. Such temperatures are similar to those encountered in 100 tropical countries where sweet potato is grown. Samples tested at different temperatures 101 were equilibrated with NaBr ($a_w = 0.579 \pm 0.060$) because it was the closest to the water 102 activity of dried sweet potato chips stored under ambient conditions (Bechoff et al. 103 2009a). Samples were stored at 10 °C and 20 °C for 105 days; at 30 °C for 95 days and 40 °C for 54 days. Samples at different water activities were stored at 40 °C for 54 104 105 days. Samples stored at 40 °C for 21 days at different oxygen levels were flushed with a 106 continuous flow of oxygen:nitrogen mix (containing 0%; 2.5%; 10% or 21% oxygen).

107

The Brunauer-Emmett-Teller (BET) equation (Bimbenet, Duquenoy & Trystram, 2002)
that uses the theory for molecular multilayer adsorption was applied to predict data for

110 water activity (a_w) in relation with moisture content in dry basis (M). The BET equation 111 was used on the experimental points to calculate water activity from the moisture 112 content. The linearised equation [1] is expressed as follows:

113
$$\frac{a_w}{(1-a_w)M} = \frac{1}{M_0C} + \frac{(C-1)}{M_0C}a_w$$
 [Eq. 1]

114 *C* is the BET constant and M_0 is the monolayer adsorbed gas quantity (in volume units). 115 *C* and M_0 are constant parameters of the model at a given temperature.

116

At least four samples (about 15g of chips per jar) were collected during storage using
riffle divider. Samples were milled using a laboratory mill (Model 3600 Perten
Instruments, Segeltorp, Sweden).

120

121 Carotenoid analyses

122 The samples were extracted using a slightly modified HarvestPlus method (Rodriguez-123 Amaya & Kimura, 2004). A portion of the homogeneous representative sample (0.5-2.0 124 g of flour) was homogenised with 50mL methanol:tetrahydrofuran (THF) (1:1) using an 125 Ultra-turax homogeniser (IKA Janke and Kunkel Labortechnik, Staufen, Germany) at 126 8000 rpm/min for one min. Before homogenising the flour, it was re-hydrated for 20 127 min in 10 ml deionised water. The homogenised extract was filtered through a porosity 128 2-sintered glass funnel by vacuum and rinsed with methanol:THF (1:1) until there was 129 no yellow colour left in the filtrate. The extracts were combined and poured into a 500 130 ml separating funnel filled with 40 ml of petroleum ether (PE). After washing once with 131 50ml 10% NaCl and thrice with 200 ml deionised water, the upper-PE phase containing 132 the carotenoid extract was collected in a 100 ml flask. The PE phase was dried by 133 addition of anhydrous sodium sulphate until some crystals remained loose. This was 134 then filtered into a 50 ml volumetric flask through glass wool and made up to volume 135 with PE. Absorbance at 450nm was read on a diode array Hewlett Packard 8452A

136 spectrophotometer for determination of total carotenoid content. The carotenoid extracts 137 in PE were dried by flushing with nitrogen in a dry block system at 35°C. The dried 138 extracts were transported to CIRAD, Montpellier, France in an insulated bag containing 139 a freezing gel and stored in the freezer immediately at arrival. The extracts were 140 dissolved in 1ml dichloromethane:MTBE (methyl tert-butyl ether):methanol 50:40:10. 141 Reverse-phase high performance liquid chromatography using an Agilent 1100 system 142 (Massy, France) was used following the method of Dhuique-Mayer et al. (2007). The 143 mobile phases were H₂O as eluent A, methanol as eluent B, and MTBE as eluent C. A 144 solvent gradient was programmed in order to enhance compound separation: Omin: 145 40% A/60% B; 0-5min: 20% A/80% B; 5-10min: 4% A/81% B/15% C; 10-60min: 146 4%A/11%B/85%C; 60-71min: 100%B; 71-72 min back to the initial condition for re-147 equilibration. Carotenoids were separated through a C_{30} reverse phase column (250 x 148 4.6 mm i.d.) packed with 5µm YMC (EUROP GmbH, Germany) with a flow rate of 149 1ml.min⁻¹, a column temperature at 25°C and an injection volume of 20 µl. Absorbance 150 was measured with Agilent Chemstation Plus software at 450 nm (Diode array 290-151 470nm). Concentrations were determined by comparison to a standard curve using pure 152 β - carotene (Extrasynthese, Genay, France) (Bechoff et al., 2009a).

153

154 Norisoprenoid analysis

155 SPME–GC-MS (solid phase microextraction coupled to gas chromatographic-mass 156 spectra) was used to analyse semi-quantitatively volatile compounds generated during 157 the storage of sweet potato flour. The SPME fibres used were 1 cm long of 158 DVB/Car/PDMS (divinylbenzene/carboxen/polydimethylsiloxane) from Supelco 159 (Bellefonte, PA). Fibres were conditioned at 270°C under a helium flux for 1 h before 160 use. Prior to each extraction, the fibre was cleaned for 10 min at 250°C to remove 161 contaminants. Sweet potato flour samples (3.00g) were weighed into a 10ml glass vial 162 and were capped with an air-tight 20mm PTFE/silicon septum (Interchim, France). The 163 sample was heated at 50 °C for 15 min to liberate volatile compounds from the flour 164 matrix. All analyses were carried out on Agilent 6980 Gas Chromatographic System 165 (Agilent Technologies, Palo Alto, USA) equipped with an autosampler Combi PAL 166 (CTC Analytics, Zwingen, Switzerland) coupled with an Agilent 5973N mass 167 spectrometer. Chromatographic separation was achieved with a DB-Wax (J&W 168 Scientific, Folson, CA) fused silica capillary column (60m x 0.32mm i.d.; film 169 thickness= 0.25 µm). Operating conditions were as follows: splitless injection (4 min); 170 injection temperature, 250°C; initial oven temperature 60°C (held for 5 min), increased by 4°C.min⁻¹ to 240°C and held at this temperature for 10 min. Helium was used as 171 172 carrier gas in constant flow mode 1.5 mL.min⁻¹. The MS source temperature and 173 transfer line temperatures were 150 and 250°C, respectively. The mass range scanned 174 was m/z 40 to 300. Ionisation was performed under electronic impact (EI) at 70 eV. A 175 standard curve using β -ionone (purity $\geq 97\%$; predominantly trans, Sigma-Aldrich, 176 France) as internal standard for unstored sweet potato flour was performed in triplicate for five concentration levels 0.19; 0.29; 0.39; 0.58 μ g.g⁻¹ on a fresh weight basis. 177 178 Coefficient of variation for the triplicate injections was less than 11% and coefficient of correlation (R^2) was 0.9993. The standards for the other norisoprenoids were not 179 180 available and the selectivities for these compounds by the SPME fibre will vary from 181 that for β -ionone. Therefore the real concentrations of these compounds could not be 182 determined. The peak area response of the detector, however, indicates a relative 183 concentration with storage time and this was sufficient for the follow up of these 184 compounds. For 5,6-epoxy- β -ionone, β -cyclocitral and DHA, identified based on their 185 mass spectra, the ratios (peak area at time t divided by peak area at initial time), also 186 called relative contents, were calculated.

188 Statistical analysis and kinetics modelling

189 Carotenoid contents and norisoprenoid contents were determined on a fresh weight 190 basis. Data were processed on SPSS 15.00 software by one or two way-ANOVA 191 (Analysis of variance; p<0.05) using HSD Tukey test to determine which samples were 192 significantly different from others. The kinetics of carotenoid degradation were 193 modelled using Arrhenius and Eyring models (Cisse, Vaillant, Acosta, Dhuique-Mayer 194 & Dornier 2009). The Arrhenius model is an empirical collision model that describes 195 the relationship between reaction rate constants and temperature using activation energy 196 (E_a) and a pre-exponential factor (k_{∞}) . The Eyring model is based on the transition state 197 theory in which enthalpy of activation (ΔH^*) and entropy of activation (ΔS^*) are the 198 model's parameters. The model's parameters were identified from experimental data 199 measured in triplicate, using linear regressions.

200

For the validation of the Arrhenius model at room temperature, the predicted data were calculated using the equation [2]:

203
$$C = C_0 e^{-k_{\infty} \int_0^t e^{\frac{-Ea}{RT}} dt}$$
 [Eq. 2]

204 C is the carotenoid concentration at t = 88 or 125 days of storage and C₀ is the initial 205 concentration. In order to validate the Arrhenius carotenoid degradation model in 206 laboratory conditions, dried samples (Ejumula variety) were stored for 88 days at 207 ambient room temperature (anisothermal or dynamic) conditions in the dark. 208 Temperature and humidity were recorded every h (mean: 21.4 °C/46.8%; min: 13.8 209 °C/39.3%; max: 25.2 °C/47.6% respectively). The Arrhenius model was also tested 210 with dried samples (Ejumula variety) stored for 125 days at ambient room temperature 211 in Uganda (Bechoff et al., 2009b).

213 **Results & Discussion**

214

215 Carotenoid degradation kinetics

216 The effect of temperature (10; 20; 30; 40 °C) on β -carotene degradation is described in Table 1A. Coefficients of correlation (R^2) suggest that a first-order equation fitted well 217 218 the carotenoid degradation. An exception nonetheless was at 10 °C where correlations observed were lower ($R^2 \sim 0.8$). Lower correlations at low temperatures where there is 219 220 minimum carotenoid degradation could be explained by experimental errors (Hidalgo & 221 Brandolini, 2008). Degradation rates of *trans-\beta*-carotene were significantly different at 222 the four tested temperatures (10; 20; 30; 40 °C). (ANOVA one way p<0.05; Tukey test 223 SPSS 15.00). Ninety percent of the initial β -carotene was lost after 54 days of storage at 224 40 °C. On the other hand only 35% was lost after 62 days at a lower temperature of 10 225 °C. Hence temperature had a significant influence on the degradation of carotenoids. 226 This result is important when storing sweet potatoes under field conditions. 227 Temperature influence on the carotenoid degradation was then modelled using the 228 Arrhenius and Eyring models (Table 2). For both of the models provided, description of trans- β -carotene fitted degradation ($R^2 > 0.990$ and 0.989 respectively). 5.6 epoxy- β -229 230 carotene, another carotenoid present in fresh sweet potato (Kosambo, Carey, Misra, 231 Wilkes, & Hagenimana 1998), also followed a first order rate reaction that could also be fitted to the same models ($R^2 > 0.997$ and 0.996 respectively). Using the models, the 232 233 activation energy (Ea) for β -carotene and for 5,6-epoxy- β -carotene was calculated as 64.2 and 78.8 kJ.mol⁻¹ respectively and the enthalpy was 61.7 and 76.3 kJ.mol⁻¹ 234 235 respectively (Table 2). The energy of activation and enthalpy were both 23% higher on 236 5,6 epoxy- β -carotene compared to trans- β -carotene. This means that the degradation rate of 5.6 epoxy-\beta-carotene was more sensitive to the variation of temperature than 237 238 trans β -carotene.

239

240 Description of total carotenoids by spectrophotometer for Arrhenius and Eyring models 241 fitted well the degradation ($\mathbb{R}^2 > 0.997$ and 0.997 respectively). Activation energy for 242 total carotenoids content (by spectrophotometric reading) being 46.3 kJ.mol⁻¹ was 243 similar to the value of 44.3 kJ.mol⁻¹ for freeze-dried sweet potato at 60-80 °C 244 (Stephanovitch and Karel, 1982). Similar activation energies of 45.3 and 48.7 kJ.mol⁻¹ 245 were measured for total carotenoids on Serio and Monlins wholemeal wheat flour 246 respectively, stored between -20 °C and 38 °C (Hidalgo & Brandolini, 2008).

247

248 To test the robustness of the model, it was used to predict the carotenoid content of 249 dried sweet potato sample that had been stored at ambient temperature in a jar and in the 250 dark for 88 days in a laboratory in the UK. For the total carotenoids and trans 251 β -carotene under anisothermic conditions, the difference between the experimental 252 value and value predicted by the model was 4.3% and 3.5% respectively (Table 3). The 253 robustness of the model was further tested by using it to predict the carotenoid content 254 of a dried sweet potato sample (Ejumula) that had been stored in Uganda at ambient 255 temperature in LPDE bags (permeable to oxygen) for 125 days in Uganda (Bechoff et 256 al., 2009b). Similarly, the model was also accurate in its predictions where for total 257 carotenoids under anisothermic conditions with a difference between the experimental 258 value and model of 9.3% (Table 3). Therefore it can be concluded that the model 259 developed with samples stored under controlled laboratory conditions was robust 260 enough to apply to samples stored under field conditions in Uganda and elsewhere.

261

262 Predictions of carotenoid losses in dried sweet potato chips using the kinetic models 263 developed are represented in Fig. 1. These can be used for practical applications, such 264 as the determination of product shelf life. For instance, for a 20% loss in β -carotene

265 (Fig. 1A), the predicted storage duration in tropical conditions (average 30 °C) is about 266 10 days. On the other hand if the dried sweet potato is stored at ambient temperature 267 (average 20 °C) the predicted storage time is one month. If it is stored in fridge 268 conditions (average 10 °C) the predicted storage time increases up to 70 days. Predicted 269 storage time based on total carotenoids (Fig. 1B) is slightly shorter and when based on 270 5,6 epoxy- β -carotene, longer (Fig. 1C) because the barrier energy to overcome (Ea) is 271 lower for total carotenoids and higher for 5,6 epoxy- β -carotene. For instance, for a 272 sample stored at 10 °C, the storage duration shall be 160, 200 and 110 days for a 40% 273 loss in β -carotene, 5,6-epoxy- β -carotene or total carotenoids respectively.

274 Influence of water activity and oxygen on carotenoid degradation275

276 The water sorption properties of dried sweet potato chips stored at 40 °C in different 277 saturation salt solutions are described in Fig. 2. The experimental data was fitted with the BET equation ($R^2 = 0.999$) for an a_w interval of 0.13-0.76. At high water activity for 278 279 a dried flour ($a_w = 0.76$), the BET model slightly lost some precision, but this 280 corresponded to a moisture content of 20.8% on a dry weight basis, which is outside 281 usual storage conditions. The sweet potato variety Ejumula stored in Uganda under 282 ambient conditions for four months had a maximum moisture content of 13.6% on a dry 283 weight basis (12% on a wet weight basis) (Bechoff et al., 2009b).

284

Under different water activities, trans-β-carotene degradation fitted a first order kinetic model with R^2 ranging between 0.949 and 0.984 as shown in Table 1B. Under isothermal conditions (40 °C) and in samples stored under air, the lower the water activity the faster the β-carotene degradation. Samples stored at $a_w = 0.13$ showed greater losses of β-carotene, followed by those stored at $a_w = 0.30$, 0.51 and 0.76. The degradation rate constant for β-carotene at $a_w = 0.13$ did not differ significantly from a_w 291 = 0.30, but differed at $a_w = 0.51$ with means and standard deviations of 0.0493 (0.0029), $0.0460 \quad (0.0032)$ and $0.0413 \quad (0.0005) \quad day^{-1}$ respectively. On the other hand the 292 degradation rate constant at $a_w = 0.76$ was 0.0341 (0.0010) day⁻¹, which was 293 294 significantly lower than with the other salts (ANOVA one way p < 0.05). Although 295 storing the dried sweet potato at high water activity (0.76) improved the retention of β -296 carotene, it would not be recommended because of the high probability of microbial 297 spoilage. Overall, these results have showed that in the storage of dried sweet potato 298 chips , water activity ($a_w = 0.13-0.76$) had a significant impact on carotenoid degradation with rate constants between 0.0341 and 0.0493 day⁻¹ respectively. However 299 the effect of water activity in β -carotene breakdown was a lot less than the effect of 300 temperature (10-40°C) with rate constants of 0.0029 to 0.0405 day⁻¹. Therefore at 301 302 typical product moisture content of 7-14% on a dry basis (Bechoff et al., 2009b), which 303 corresponds to water activities of 0.2-0.6 at 40 °C, water activity would have a limited 304 impact compared to temperature.

305

306 There was a linear relationship between the β -carotene degradation rate and water activity for the four levels analysed in triplicate (R^2 =0.953). (Table 1B). Working with a 307 308 model system made of microcrystalline cellulose containing 0.5% of β-carotene, 309 Goldman et al. (1983) and Chou & Breene (1972) proved that β -carotene degradation 310 followed first order kinetics and was accelerated at lower water activities. In particular, 311 when comparing extreme water activities (dry $a_w 0.33$ and wet $a_w 0.84$), it was 312 demonstrated that the higher the water activity the lower the β -carotene degradation 313 (Goldman et al., 1983). It has been confirmed in an earlier study on dehydrated sweet 314 potato cubes (Haralampu & Karel, 1983) that lower degradation rates occurred at higher 315 water activities in sweet potato (and *vice versa*). Peroxidase is the main type of enzyme encountered in sweet potatoes (Castillo Leon et al., 2002). At low water activities it has 316

been demonstrated that peroxidase activity dramatically decreased (Kamiya & Nagamune, 2002). Dioxygenases known for their ability to degrade carotenoids into aroma compounds (Auldridge et al., 2006) also lose activity in non-aqueous environments (Sanakis, Mamma, Christakopoulos, & Stamatis, 2003). For these different reasons, in this study, the possibility of carotenoid degradation due to enzymatic activity seemed unlikely.

323

Under different levels of oxygen, carotenoid degradation fitted first order with R² values 324 325 of 0.944; 0.968 and 0.961 at various levels of oxygen (Table 1C). An exception was 326 under nitrogen where correlation (\mathbb{R}^2) observed was 0.675. Explication for this poor 327 correlation was a minimum β -carotene breakdown under these conditions as of low 328 temperature (Hidalgo & Brandolini 2008). On samples stored at 40 °C, the degradation 329 rate of β -carotene was highly related to the oxygen level flushed through the sample. 330 Degradation rate constants significantly differed between samples (One way-ANOVA 331 p<0.05). Samples flushed with nitrogen had a rate constant of 0.0107 (0.0021) day⁻¹, 332 whilst those flushed with 2.5%, 10% and 21% oxygen had respective rate constants of 0.0303 (0.0053), 0.0514 (0.0022) and $0.0853 (0.0038) day^{-1}$. 333

334

335 It was interesting to observe that flushing with air at 40° C dramatically increased the 336 degradation rate (0.0853 day⁻¹) compared to samples stored under air but at the same 337 temperature (0.0341 to 0.0493 day⁻¹) (Table 1C). The significant effect of oxygen level 338 on the degradation rate confirmed that oxidative mechanisms are involved in the 339 reaction scheme. Furthermore the increased degradation rate of β -carotene flushed with 340 oxygen are in accordance with studies (Texeira Neto, Karel, Saguy, & Mizrahi, 1981) 341 that showed that oxygen uptake in a microcrystalline cellulose food model was closely 342 linked to β -carotene degradation and agreed with other study on sweet potato flakes

showing a direct relationship between oxygen uptake and carotenoid degradation (Walter & Purcell, 1974). The linear relationship for the four levels of oxygen analysed in triplicate (R^2 =0.975) between oxygen level and degradation rate signifies that oxygen could be considered as a co-substrate (in excess) of oxidative degradation during storage (Table 1C). A study on sweet potato dried flakes similarly described a linear relationship between the oxygen uptake and carotene destroyed in the first 110 days of storage at 31 °C (Walter & Purcell 1974).

350

351 Over the range studied (0-21% oxygen) oxygen had a more marked effect on β -carotene 352 than water activity (0.13-0.76) and temperature (10-40°C). The mean difference between rate constants was 0.0746 day⁻¹, 0.0152 day⁻¹ and 0.0376 day⁻¹ respectively. 353 354 Studies on other foodstuffs similarly concluded that oxygen was a major factor of 355 degradation during storage. Working on the effect of packaging (polypropylene: high 356 oxygen permeability; nylon laminate film (low oxygen permeability) with air space; 357 under vacuum or using a Ageless oxygen absorber sachet) on sweet potato flakes it was 358 demonstrated that oxygen had a major impact on carotenoid degradation (3): sweet 359 potato flakes stored for 210 days in nylon film and with oxygen absorber did not lose 360 significant amounts of β -carotene whilst those stored in polypropylene lost 66% of their 361 initial content at ambient temperature (about 23 °C). In this present study, the β -carotene 362 loss on sweet potato chips stored under nitrogen (16% loss after 21 days) (Fig. 6) might 363 result of incomplete oxygen exclusion of samples. Alternatively it could also result of 364 the effect of the relatively high temperature used for the storage (40 °C).

365

366 Studies on a model system made of microcrystalline cellulose and β -carotene similarly 367 demonstrated that the effect of oxygen was important for the degradation of β -carotene 368 compared to the effect of water activity (Goldman et al., 1983). 370 Both trends of the degradation rate related to water activity and oxygen and dried media 371 agreed with studies on microcrystalline food model food systems (Chou & Breene, 372 1972; Goldman et al., 1983; Texeira Neto et al., 1981) where enzymatic activity is 373 excluded and with previous studies on dehydrated sweet potato (Haralampu & Karel, 374 1983; Walter et al., 1970; 1974). Though autoxidation was mentioned in earlier studies 375 as the cause of β -carotene degradation in dried sweet potato (Haralampu & Karel, 1983; 376 Walter et al., 1970; 1974), a more recent study (Auldridge et al., 2006) emphasized that 377 it had not been proved. This study therefore fills the gap by showing that dehydrated 378 sweet potato and the microcrystalline cellulose food model behaved the same way 379 toward water activity and oxygen which strongly suggests that autoxidation was the 380 mechanism responsible for β -carotene degradation.

381 Description of carotenoid degradation in relation with norisoprenoid 382 formation 383

384 Whereas trans- β -carotene degraded during storage, norisoprenoids namely β -cyclocitral, 385 β -ionone, 5,6-epoxy- β -ionone, and dihydroactinidiolide (DHA) mostly formed during 386 storage. These compounds are the main aroma degradation products of β -carotene 387 according to several previous publications (Handelman et al., 1991; Mordi et al., 1993; 388 Waché et al., 2003). The greatest formation of norisoprenoids occurred at lower water 389 activities (Fig. 3) and this is consistent with the earlier findings that carotenoid 390 degradation is also greater at lower water activities (Table 1B). On average, samples stored at $a_w = 0.13$ had a β -ionone content of $0.47 \mu g.g^{-1}$, followed by those stored at $a_w =$ 391 0.30 with 0.38µg.g⁻¹; at $a_w = 0.51$ had a β -ionone content of 0.30µg.g⁻¹ and at $a_w = 0.76$ 392 of $0.31\mu g.g^{-1}$ (Fig. 3). There was no difference between samples stored at $a_w = 0.13$ and 393 394 0.30 for β -ionone while the other samples stored at $a_w = 0.51$ and 0.76 differed (two 395 way-ANOVA; p<0.05). No difference in β -cyclocitral ratio was found between samples stored at $a_w = 0.13$ and 0.30; and at 0.51 and 0.76. On the other hand, there was a significant difference in the DHA and 5,6-epoxy-β-ionone ratios for the four water activities (two way-ANOVA; p<0.05). This description of differences between volatile relative concentrations agreed with the above description of β-carotene degradation at various water activities.

401

402 Relative contents of β -cyclocitral, β -ionone and 5,6-epoxy- β -ionone were the highest at 403 19 days and subsequently decreased whilst DHA levels reached a plateau after 27 days 404 of storage at 40 °C (Fig. 3). Epoxidation of β-ionone into 5,6-epoxy-β-ionone and 405 thermal rearrangement of 5.6-epoxy- β -ionone into DHA has been described by several 406 authors (Bosser, Paplorey & Belin, 1995; Mordi et al., 1993; Waché et al., 2003). The 407 similar profile of β -ionone and 5,6-epoxy- β -ionone throughout storage suggested that 408 the two compounds were formed at similar times via the same process whereas the later 409 formation of DHA suggested that the rearrangement into DHA was a slower step.

410

411 Fragmentation of β -carotene in dehydrated sweet potato flakes under oxygen has been 412 reported previously (Walter et al., 1970). Flushing radioactive sweet potato flakes with 413 oxygen in the dark at 22 °C and storing them for up to 89 days resulted in different 414 radioactive fractions including gaseous products. The degradation was described as an 415 autoxidation reaction (Walter et al., 1970) in accordance with the conclusions in this 416 study. The higher formation of norisoprenoids occurred at the higher oxygen level when 417 the corresponding degradation of β-carotene was also highest. At 40 °C samples stored flushed with compressed air (21% oxygen) had a β -ionone content of 0.44µg.g⁻¹, 418 followed by those flushed with 10% $(0.36\mu g.g^{-1})$; 2.5% $(0.22\mu g.g^{-1})$ oxygen or nitrogen 419 $(0.10\mu g.g^{-1})$, respectively (Fig. 4). Similarly there was a significant increase in the β -420

421 cyclocitral, 5,6-epoxy-β-ionone and DHA ratios at the four increasing oxygen levels
422 (two ways-ANOVA; p<0.05).

423

424 With no oxygen present in the storage conditions, only a small decrease or no difference 425 in volatile compounds contents was observed. These highlighted how oxygen is 426 important in the degradation scheme of β -carotene into volatile compounds (Fig. 4).

427

428 β -cyclocitral, β -ionone and 5,6-epoxy- β -ionone reached their highest levels after 9 days 429 of storage and tended to subsequently decrease whilst DHA remained almost steady 430 from 9 days (Fig. 6). This is a similar pattern to that observed at different water 431 activities.

432

433 The amounts of β -ionone observed in the SPME-GC-MS analyses corresponded to 434 approximately two orders of magnitude less than the amounts of β -carotene measured 435 by HPLC (Figures 3&4). Calibration curves for the other volatile degradation products 436 were not measured so the accurate amounts present cannot be derived from the SPME 437 analyses. However, these compounds have relatively similar molecular weights and 438 polarities to the β -ionone and so the GC-MS response factors and selectivities of the 439 SPME fibres are expected to be reasonably similar. Accepting these assumptions, 440 amounts of the other degradation products are similar to those of β -ionone with 441 maximum amounts per compounds (β -ionone, 5,6-epoxy- β -ionone, β -cyclocitral and 442 DHA) being approximately 0.4-0.9 µg.g⁻¹, will are much lower than the amounts of 443 carotenoids degraded (Figures 3&4). Waché et al. (2003) also found that the highest 444 yield obtained from β -carotene catalysed by enzymes in liquid medium was 8.5% in 445 DHA, 2% in β -ionone and 1% in 5,6-epoxide- β -ionone. These results suggested that 446 though a clear relationship between amounts of norisoprenoids formed and carotenoids lost was proved, free radical reaction mechanisms implied further degradation leading
to disappearance of norisoprenoids or alternative pathways of degradation involving
other reaction intermediates.

450

451 **Conclusion**

452 The Arrhenius and Eyring models correctly described the carotenoid degradation in 453 dried stored sweet potato between 10 and 40 °C; the Arrhenius model was validated 454 using a sample stored at room temperature (non-isotherm conditions). The greater β -455 carotene degradation rate at lower water activity in particular suggested that the reaction 456 was an autoxidation. Norisoprenoid formation (β -ionone; 5,6-epoxy- β -ionone; DHA) 457 during storage of dried OFSP chips was clearly related to the corresponding degradation 458 of β -carotene. The higher, the β -carotene degradation, the higher was the norisoprenoid 459 formation. At higher water activities, β -carotene was better preserved and lower 460 relative concentrations of volatiles were recorded. A similar observation was made at 461 lower oxygen levels. One of the applications of these findings could be the development 462 of a rapid and non-destructive method using SPME-GC-MS to measure threshold 463 production of norisoprenoids that would correspond to a critical level of β -carotene 464 breakdown in dried food products and could help in predicting product shelf life. In 465 order to achieve a full mathematical modelling of the degradation of carotenoids in a 466 food product, such as dried sweet potato, further work should focus on a kinetic model 467 involving temperature, water activity and oxygen together. Moreover further research 468 is required to understand the nature of the intermediate compounds between β -carotene 469 and norisoprenoids formed during storage and the kinetics of their formation and 470 degradation.

471

472 Acknowledgment

- 473 This work was funded by the HarvestPlus Challenge Program "Reaching end users with
- 474 orange-fleshed sweet potatoes in Uganda and Mozambique" project and 2008-DESI
- 475 support from CIRAD, France to Ph.D. students. We thank David R. Hall for the revision
- 476 of the manuscript.

References

- Auldridge, M.E., McCarty, D.R & Klee, H.J. (2006). Plant carotenoid cleavage oxygenases and their apocarotenoid products. *Current Opinion in Plant Biology*, *9*, 315-321.
- Bechoff, A., Dufour, D., Dhuique-Mayer, C., Marouze, C., Reynes, M., & Westby, A. (2009a). Effect of hot air, solar and sun drying treatments on provitamin A retention in orange-fleshed sweet potato. *Journal of Food Engineering*, 92, 164–171.
- Bechoff, A., Westby, A., Owori, C., Menya, G., Dhuique-Mayer, C., Dufour D. & Tomlins K. (2009b). Effect of drying and storage on the degradation of carotenoids in orange-fleshed sweet potato varieties. *Journal of the Science of. Food and Agriculture.*, submitted Manuscript ID: JSFA-09-0658.
- Bengtsson, A., Namutebi, A., Larsson Alminger, M.& Svanberg, U. (2008). Effects of various traditional processing methods on the all-trans-β-carotene content of orange-fleshed sweet potato. *Journal of Food Composition and Analysis*, *21*, 134-143.
- Bimbenet, J.J., Duquenoy, A. & Trystram, G. (2002) Génie des procédés alimentaires: des bases aux applications, edition no. 2, RIA Editions. Lavoisier: Paris, France, 574pp.
- Bosser, A., Paplorey, E. & Belin, J.M. (1995). A simple way to dihydroactinidiolide from β -ionone related to the enzymic co-oxidation of β -carotene in aqueous solution. *Biotechnology Progress*, *11*, 689-692.
- Castillo Leon, J., Alpeeva, I.S., Chubar, T.A., Galaev, I.Y., Csoregi, E. & Sakharov, IY. (2002). Purification and substrate specificity of peroxidases from sweet potato tubers. *Plant Science*, *163*, 1011-1019.
- Chou, H.E. & Breene, W.M. (1972). Oxidative decoloration of β-carotene in low-moisture model systems. *Journal of Food Science*, *37*, 66-68.
- Cinar I. (2004). Carotenoid pigment loss of freeze-dried plant samples under different storage conditions. *Lebensmittel Wissenschaft und Technologie*, *37*, 363–367.
- Cisse, M., Vaillant, F., Acosta, O., Dhuique-Mayer, C. & Dornier, M. (2009). Thermal degradation kinetics of anthocyanins from blood orange, blackberry, and roselle using the Arrhenius, Eyring and Ball models. *Journal of Agricultural and Food Chemistry*, 57, 6285-91.
- Cremer, D.R. & Eicher, K. (2000). Formation of volatile compounds during heating of spice paprika (*Capsicum annuum*) powder. *Journal of Agricultural and Food Chemistry.*, 48, 2454-2460.
- Dhuique-Mayer, C., Tbatou, M., Carail, M., Caris-Veyrat, C., Dornier, M. & Amiot, M.J. (2007). Thermal degradation of antioxidant micronutrient in citrus juice and Newly Formed Compounds. *Journal of Agricultural and Food Chemistry*, 55, 4209–4216.
- Emenhiser, C., Watkins, R.H., Simunovic, N. , Solomons, N., Bulux, J., Barrows, J. & Schwartz, S.J. (1999). Packaging preservation of β -carotene in sweet potato flakes using flexible film and an oxygen absorber. *Journal of Food Quality*, 22, 63-73.
- Gayathri, G.N., Platel, K., Prakash, J. & Srinivasan, K. (2004). Influence of antioxidant spices on the retention of β -carotene in vegetables during domestic cooking processes. *Food Chemistry*, 84, 35-43.
- Goldman, M., Horev, B. & Saguy, I. (1983). Decolorization of β-carotene in model systems simulating dehydrated foods. Mechanism and kinetic principles. *Journal of Food Science*, *48*, 751-754.
- Handelman, G.J., van Kujk, F.J., Chatterjee, A. & Krinsky, N.I. (1991). Characterization of products formed during the autoxidation of β-carotene. *Free Radical Biology and Medicine*, 10, 427-437.
- Haralampu, S.G. & Karel, M. (1983). Kinetic models for moisture dependence of ascorbic acid and β -carotene degradation in dehydrated sweet potato. *Journal of Food Science*, 48, 1872-1873.

- Hidalgo, A.H.& Brandolini, A (2008.) Kinetics of carotenoid degradation during the storage of einkorn (*Triticum monococcum L. ssp. monococcum*) and bread wheat (*Triticum aestivum L. ssp. aestivum*) flours. Journal of Agricultural and Food Chemistry, 56, 11300-11305.
- Kamiya, N. & Nagamune, T. (2002). Effect of water activity control on the catalytic performance of surfactant – Arthromyces ramosus peroxidase complex in toluene. *Biochemical Engineering Journal*, 10, 55-59.
- Koca, N., Burdurlu, H.S. & Karadeniz, F. (2007). Kinetics of color changes in dehydrated carrots. *Journal of Food Engineering*, 78, 449-455.
- Kosambo, L., Carey E.E., Misra, A.K., Wilkes, J. & Hagenimana, V. (1998). Influence of age, farming site, and boiling on pro-vitamin A content in sweet potato (*Ipomoea batatas* (L.) Lam.). *Journal of Food Composition and Analysis*, 11, 305-321.
- Krinsky, N. I., Kyung-Jin, Y. (2003). Carotenoid-radical interactions. *Biochemical and Biophysical Research Communications*, 305, 754-760.
- Lavelli, V., Zanoni, B. & Zaniboni, A. Effect of water activity on carotenoid degradation in dehydrated carrots (2007). *Food Chemistry*, 104, 1705-1711.
- Mendes-Pinto, M.M. (2009). Carotenoid breakdown products the norisoprenoids in wine aroma. Archives of Biochemistry and Biophysics, 483, 236-245.
- Mordi, R.C, Walton, J.C., Burton, G.W., Ingold, K.U., Lindsay, D.A. & Moffatt, D.J. (1993). Oxidative degradation of β-carotene and β-apo-8'-carotenal. *Tetrahedron*, 49, 911-928.
- Nonier, M.F., Vivas, De Gaulejac, N. & Vitry, C. (2004). Characterization of carotenoids and their degradation products in oak wood. Incidence on the flavour of wood. *Comptes Rendus Chimie*, 6, 689-698.
- Ravichandran, R. (2002). Carotenoid composition, distribution and degradation to flavour volatiles during black tea manufacture and the effect of carotenoid supplementation on tea quality and aroma. *Food Chemistry*, 78, 23-28.
- Rodriguez Amaya, D.B. & Kimura, M. (2004) HarvestPlus handbook for carotenoid analysis. HarvestPlus Technical monograph series 2.. HarvestPlus handbook for carotenoid analysis. (pp. 1-58) Washington DC, USA: HarvestPlus c/o International Food Policy Research Institute. [Online] <u>http://www.harvestplus.org/pdfs/tech02.pdf</u>
- Sanakis, Y., Mamma, D., Christakopoulos, P. & Stamatis, H. (2003). Catechol 1,2 dioxygenase from *Pseudomonas putida* in organic media- an electron paramagnetic resonance study. *International Journal of Biological Macromolecules*, 33, 101-106.
- Stephanovitch, A.F. & Karel, M. (1982). Kinetics of β-carotene degradation at temperatures typical of air drying of foods. *Journal of Food Processing & Preservation*, 6, 227-242.
- Texeira Neto, R.O., Karel, M., Saguy, I. & Mizrahi, S. (1981). Oxygen uptake and β-carotene decoloration in a dehydrated food model. *Journal of Food Science*, *46*, 665-676.
- Waché, Y., Bosser-Deratuld, A., Lhuguenot, J.C & Belin, J.M. (2003). Effect of cis/trans isomerism of β-carotene on the ratios of volatile compounds produced during oxidative degradation. *Journal of Agricultural and Food Chemistry*, *51*, 1984-1987.
- Walter, W.M., Purcell, A.E & Cobb, W.Y. (1970). Fragmentation of β-carotene in autoxidizing dehydrated sweet potato flakes. *Journal of Agricultural and Food Chemistry*, 18, 881-885.
- Walter, W.M. & Purcell, A.E. (1974). Lipid autoxidation in precooked dehydrated sweet potato flakes stored in air. *Journal of Agricultural and Food Chemistry*, 22, 298-302.

Fig. 1. Prediction curves of carotenoid (β -carotene; 5,6-epoxy- β -carotene; total-carotenoids) loss (%) with temperature and with storage time in dried sweet potato chips stored between 10-40 °C in air; $a_w 0.52$ -0.65.

Fig. 2. Water sorption curves of dried sweet potato chips stored at 40 °C for 54 days under air. Experimental data and BET model (C = -68.88, $M_0 = 0.0564$).

Fig. 3. Degradation of trans- β -carotene and production of identified norisoprenoids during storage of dried sweet potato chips at 40 °C under air at different water activities (β -carotene and β -ionone expressed as $\mu g.g^{-1}$ fresh weight; volatile degradation products, as ratio: peak area at time t divided by peak area at initial time); Error bars refer to standard deviation (n=3).

.

Fig. 4. Degradation of trans- β -carotene and production of identified norisoprenoids during storage of dried sweet potato chips at 40 °C at different oxygen levels (β -carotene and β -ionone expressed as $\mu g.g^{-1}$ fresh weight; volatile degradation products as ratios: peak area at time t divided by peak area at initial time); Error bars refer to standard deviation (n=3).

Table 1. Rate of degradation of carotenoids (k) expressed in day⁻¹ in dried sweet potato chips on a fresh weight basis at various temperatures.in air; $a_w 0.52-0.65$ (A); at various water activities at 40°C in air (B); at various oxygen (flushed) levels at 40°C (C). Mean of triplicate thermal treatment (standard deviation).

(A)						
Temperature (°C)		10	20	30	40	
β-carotene	β -carotene $\frac{\mathbf{k}}{\mathbf{R}^2}$		0.0093 (0.0005) 0.922 (0.031)	0.0193 (0.0002) 0.985 (0.005)	0.0405 (0.0005) 0.963 (0.007)	
$\begin{array}{ccc} 5,6 \ epoxy-\beta- & \mathbf{k} \\ \mathbf{carotene} & \mathbf{R}^2 \end{array}$		0.0025 (0.0004) 0.0084 (0.0003) 0.748 (0.167) 0.902 (0.045)		0.0248 (0.0009) 0.869 (0.020)	0.0597 (0.0010) 0.987 (0.009)	
Total carotenoids $\frac{\mathbf{k}}{\mathbf{R}^2}$		0.0047 (0.0002) 0.864 (0.091)	0.0088 (0.0003) 0.982 (0.014)	0.0179 (0.0005) 0.987 (0.005)	0.0298 (0.0009) 0.986 (0.006)	
(B)						
Water activity						
Water activity	7	0.76*	0.51*	0.30*	0.13*	
Water activity β-carotene	$\frac{\mathbf{k}}{\mathbf{R}^2}$	0.76* 0.0341 (0.0010) 0.984 (0.003)	0.51* 0.0413 (0.0005) 0.977 (0.001)	0.30* 0.0460 (0.0032) 0.974 (0.003)	0.13* 0.0493 (0.0029) 0.949 (0.048)	
Water activity β-carotene *Coefficient of correla	$\frac{\mathbf{k}}{\mathbf{R}^2}$ tion betw	0.76* 0.0341 (0.0010) 0.984 (0.003) veen four k levels relation	0.51* 0.0413 (0.0005) 0.977 (0.001) ted to water activity:	0.30* 0.0460 (0.0032) 0.974 (0.003) 0.953 (0.013)	0.13* 0.0493 (0.0029) 0.949 (0.048)	
Water activity β-carotene *Coefficient of correla (C)	$\frac{\mathbf{k}}{\mathbf{R}^2}$ tion betw	0.76* 0.0341 (0.0010) 0.984 (0.003) veen four k levels relat	0.51* 0.0413 (0.0005) 0.977 (0.001) ted to water activity:	0.30* 0.0460 (0.0032) 0.974 (0.003) 0.953 (0.013)	0.13* 0.0493 (0.0029) 0.949 (0.048)	
Water activity β-carotene *Coefficient of correla (C) Flushed** oxygen	7 k R ² tion betw level	0.76* 0.0341 (0.0010) 0.984 (0.003) veen four k levels relat 0%*	0.51* 0.0413 (0.0005) 0.977 (0.001) ted to water activity: 2.5%*	0.30* 0.0460 (0.0032) 0.974 (0.003) 0.953 (0.013) 10%*	0.13* 0.0493 (0.0029) 0.949 (0.048) 21%*	

*Coefficient of correlation between four k levels related to water activity: 0.975 (0.016)

**90ml.min⁻¹

Table 2. Parameters of the Arrhenius and Eyring models for the carotenoids degradation in dried sweet potato chips on a fresh weight basis between 10-40 °C. Oxygen level 21% (air); $a_w 0.52-0.65$. Mean of triplicate thermal treatment (standard deviation).

Carotenoid	Arrhenius model			Eyring model		
		E_a (kJ.mol ⁻¹)	\mathbf{R}^2	ΔH* (kJ.mol ⁻¹)	ΔS* (J.mol ⁻¹ .K ⁻¹)	\mathbf{R}^2
β-carotene	21.5 (0.6)	64.2 (1.6)	0.990 (0.007)	61.7 (1.6)	-74.3 (5.1)	0.989 (0.008)
5,6 epoxy- β-carotene	27.5 (1.5)	78.8 (3.8)	0.997 (0.003)	76.3 (3.8)	-24.5 (12.5)	0.996 (0.003)
Total carotenoids	14.3 (0.6)	46.3 (1.5)	0.997 (0.002)	43.8 (1.5)	-134.5 (5.0)	0.997 (0.002)
Arrhenius mode	1					

Ea

 $k = k_{\infty} e^{-\frac{Ea}{RT}}$ Where: T : temperature (K); k: degradation rate constant at T (day⁻¹); k_{∞}: value of k at T = ∞ (day⁻¹); Ea: Activation energy (kJ.mol⁻¹); R: gas constant = 8.314 J · K⁻¹ · mol⁻¹ Eyring model

$$k = \frac{k_B}{h}T.e^{-\frac{\Delta H^* - T\Delta S^*}{RT}}$$
 Where: k_B: Boltzmann constant = 1.381 \cdot 10^{-23} \text{ J.K}^{-1}; h: Planck constant =

6.626·10⁻³⁴ J.s; Δ H*: activation enthalpy (kJ.mol⁻¹); Δ S*: activation entropy (J.mol⁻¹.K⁻¹)

Table 3. Validation of Arrhenius model for a sample of dried Ejumula sweet potato chips
stored under ambient anisotherm conditions during 88 days in the UK ^a and during 125 days
in Uganda ^b on a fresh weight basis. Oxygen level 21% (air).

0		0	Initial	Final		
		Storage time (days)	(μg.g ⁻¹) ^c	Experimental ^c (μg.g ⁻¹)	Predicted by Arrhenius model (µg.g ⁻¹)	Difference (%)
Sample stored in	Trans-β- carotene	88	181.2 (5.9)	74.6 (5.1)	72.0	3.5
UK ^a	Total carotenoids		250.3 (1.1)	94.4 (1.1)	90.3	4.3
Sample stored in Uganda ^b	Total carotenoids	125	219.6 (1.6)	51.4 (1.5)	46.6	9.3

^a This present study (Calculated a_w from BET model: 0.460 (0.012) from chips dry matter (90.4 (0.3) g/100g) ^b Bechoff et al. (2009b) (a_w from BET model: a_w : 0.400 (0.255); range: [0.22-0.58] from chips dry matter 90.5

(3.5)g/100g; range ([88-92.9g/100g]) °Mean of triplicate (standard deviation).