INTRODUCTION

Whiteflies are considered one of the world’s major agricultural pest groups, attacking a wide range of plant hosts and causing considerable crop loss. There are nearly 1200 whitefly species with a wide host range. As direct feeding pests and virus vectors, whiteflies cause major damage in agroecosystems based on cassava in the Americas, Africa and to a lesser extent, Asia. The most damaging species on cassava in northern South America is Aleurotrachelus socialis. Typical damage symptoms include curling of apical leaves, yellowing and necrosis of basal leaves and plant retardation. The “honeydew” excreted is a substrate for a sooty-mold fungus that interferes with photosynthesis (Fig. 1). The rate reduces root yield by 1 to 75%, depending on duration of attack (Bellotti, 2002). More than 5,000 cassava genotypes have been evaluated at CIAT and CORPOICA for whitefly resistance. At present, the major source of host resistance in cassava is the genotype MEcu-72 (Bellotti and Arias, 2001) (Fig. 1). When feeding on MEcu-72, A. socialis had less oviposition, longer feeding periods, reduced size and higher mortality than when feeding on the susceptible genotype, (Fig. 2)

RESULTS AND DISCUSSION

FIELD EVALUATION

Field evaluations carried out at Nataima (Tolima) demonstrate that there was considerable whitefly pressure as plant damage and pest populations were high (from 4 to 6 on the damage and population scales). However, some genotypes, in spite of the high pressure, had low damage levels. It can therefore be concluded that these genotypes have resistance levels similar to those of the resistant parent.

MOLECULAR ANALYSIS

Both parents, MEcu-72 and MCol-2244, were evaluated with 343 cassava SSR markers (Mba et al, 2001), including 156 cDNA SSRs developed by Mba et al (submitted).

ASSOCIATION BETWEEN MOLECULAR MARKERS AND RESISTANCE

Using SSR markers, we found 425 polymorphic bands between the resistant and susceptible (Fig. 5).

CONCLUSIONS

- Field evaluations in the family CM 8996 and their parents confirm resistance of the genotype MEcu-72 and susceptibility of the parental MCol-2244; this allows us to do preliminary selection of F1 genotypes.
- Using SSR markers, putative association with the parental lines were found.
- A linkage map is being constructed using the SSR data, a RGA and the field phenotypic characterization.

ON GOING WORK

- Saturation of Linkage map of Ecu-72, using AFLPs.
- Isolation, cloning, sequencing and mapping of AFLP polymorphic bands between resistant and susceptible genotypes and design of SCARs for marker assisted selection.
- OBL analysis for resistance to whitefly.
- The whitefly resistance will be the target for map-based cloning using the BAC libraries as tools.
- Isolation of expressed sequences during the defense response of MEcu-72 to whitefly attack.
- In order to identify differentially expressed sequences, a new technology known as DNA chips or microarray is available to scan a significant number of clones. Microarray expression profiling detailed experiments will be used to identify putative early-response regulatory and/or signaling genes and to test the function of selected candidate genes using reverse genetics.

REFERENCES


MATERIALS AND METHODS

PLANT MATERIAL

For the present work we have used the cross MEcu-72 (as the resistant parent) x MCol-2244 (as the susceptible parent). A total F1 offspring of 286 genotypes (family CM8996) was produced from this cross. These materials were sowed and evaluated in the field during 2002 and 2003 at two different locations in Colombia: Espinal-Tolima, (CORPOICA-NATAIMA) at 350 m.a.s.l. and Santander de Quilichao, Cauca, at 990 m.a.s.l. With this evaluation we will identify gene segregation in the offspring and we will be able to select the resistant and susceptible materials. The evaluation was performed in the field using population and damage scales.

MOLECULAR ANALYSIS

We used Simple Sequences Repeat (SSR) and AFLPs to find markers associated with resistance for mapping the resistant gene(s). We are using RGA sequences (isolated from cassava previously).

AFLPs Analysis

An analysis was done of 128 combinations of primers with both parents, MEcu-72 and MCol-2244, and both bulks of 10 whitefly resistant and 10 susceptible DNA. We obtained 53 polymorphic combinations, in which we found 425 polymorphic bands between the resistant and the susceptible (Fig. 5).

ASSOCIATION BETWEEN MOLECULAR MARKERS AND RESISTANCE

The molecular data are being analyzed using QTL packages (QTL cartographer Qgene) to determine linkages between the markers and the phenotypic characterization. As preliminary analysis X2 at the 5% level was done using SAS. Putative associations were found between 43 SSRs markers and the resistance.