Literature cited

223

Conservation Technology Information Center (CTIC) Partners. 2000. *Conservation Technology Information Center. Purdue University, Indiana, USA.*

Gordon, A. 2000. Improving smallholder access to purchased inputs in sub-Saharan Africa. *Policy Series No 7*. Natural Resources Institute, Chatham, UK.

Hazell, P. 2005. From Food Security to Market-Driven Growth in Indian Agriculture: Implications for Agricultural Policy. Paper prepared for a special publication to celebrate the centenary year of the Agricultural College Research Institute, Coimbatore, Tamil Nadu, India.

Laudelout, H. 1990. La jachère forestière sous les tropiques humides, unité des eaux et forest, centre de Recherches Forestières de Chimay, Université Catholique de Louvan. Louvan-la-Neuve, Belgique.

Principles, Practices and Developmental Processes

Integrated Soil Fertility Management in Africa

Northern Guinea Savanna Zone of Nigeria: Response by Mucuna pruriens, Lablab purpureus, and maize. Soil Biology and Biochemistry 32:2063-2077.

About this book, editors and contributors

About this book

The Bill and Melinda Gates Foundation is investing in soil health as an important component of the African Green Revolution, a thrust that is intended to bring food security and improve the living standards of millions of poor, small-scale farmers in sub-Saharan Africa. During 2007, the Foundation commissioned the Tropical Soil Biology and Fertility Institute of CIAT to develop a series of concept papers and technical reports on Integrated Soil Fertility Management for its internal use in designing an African Soil Health Initiative. In response to that challenge, a team of fifteen experts was drawn from Africa and elsewhere to prepare these reports that later served as the structure for the development of this book, an effort that was further assisted by a grant from the Foundation. This grant permitted 4000 copies of this book to be printed by the United Nations of Nairobi Printing Unit and distributed free-of-charge to development specialists, educators, extension specialists and agricultural scientists throughout Africa. Those requiring a copy of this book are invited to contact TSBF-CIAT in Nairobi.

About the editors

Nteranya Sanginga is the Director of the Tropical Soil Biology Fertility Institute of the International Centre for Tropical Agriculture. Prior to TSBF-CIAT, he served Leader of the Savanna Program at the International Institute of Tropical Agriculture. From 1987 to 1989 he was a research officer at the International Atomic Energy Agency, Seibersdorf Laboratory in Vienna. A Congolese citizen, he obtained his Ph.D. in 1985 specializing in Agronomy and Soil Microbiology jointly from the Katholieke Universiteit, Leuven, Belgium, and the Institut Facultaire des Sciences Agronomiques de Yangambi in The Democratic Republic of Congo. Dr. Sanginga has more than nineteen years of agricultural research and development experience in Africa, published over 120 articles in peer-reviewed journals and has received the International Foundation Sven Brohult Award for his contribution to agricultural and agroforestry research. Email: n.sanginga@cgiar.org

Paul L. Woomer holds a Ph.D. in Agronomy and Soil Science awarded by the University of Hawaii in 1990. Since then he has lived in Kenya and worked within various capacities as a TSBF Program Scientist in UNESCO’s Man and the Biosphere Programme, Carbon Sequestration Team Leader in the CGIAR Alternatives to Slash and Burn Consortium, Visiting Lecturer in national public universities in Kenya, Uganda and Malawi, Visiting Scientist with the Sustainable Centre for Research, Extension and Development in Africa and presently serves as a Technical Advisor to the Forum for Organic Resource Management and Agricultural Technology in Nairobi, Kenya. Dr. Woomer has published five books and over 100 articles in scientific and agricultural trade journals. Email: plwoomer@gmail.com

About the contributors (in alphabetical order)

Andre Bationo is the Director of the West Africa Programme of the Alliance for a Green Revolution in Africa. Prior to that he served as Leader of the Pan African Network of Soil Biology and Fertility (ArNet) of the Tropical Soil Biology and Fertility Institute of CIAT. He has received many awards including the 2009 IFA International Crop Nutrition Award, an Honorary Doctorate from Uppsala University for contribution towards soil fertility research and capacity building in Africa and the Principal Staff Achievement Award for 2004 from CIAT. He has supervised over 100 students and delivered numerous lectures at the University of Niamey, Niger, the University of Ouagadougou, Burkina Faso and the National University of Rwanda. He has
organized many short-term training courses on participatory research, nutrient monitoring, decision support systems and use of isotope techniques in agriculture. He has edited four books and authored or over 300 journal articles. Email: ABationo@agra-alliance.org

Jonas Chianu received a Ph.D. in Agricultural Economics in 2000 from the University of Ibadan, Nigeria and Christian-Albrechts-Universitaet, Germany. His is presently a Senior Researcher at TSBF-CIAT in Nairobi, taking the lead in financial and economic analysis of ISFM technologies and farmers’ decision-making on reinvestment. Prior to joining CIAT-TSBF, Chianu worked as Deputy Coordinator of Rural Sector Enhancement Program a Research Associate and a Research Assistant at the International Institute of Tropical Agriculture in Nigeria between 1987 and 2001 and at the Japan Society for the Promotion of Science at Kyoto University between 2001 and 2003. Dr. Chianu has over 90 publications with about 45 in scientific journals and received several awards from the Global Forum for Agricultural Research (2006), Project Concern International (2006), and the African Network for Soil Biology and Fertility (2007). Email: j.chianu@cgiar.org

Ken Giller is a Professor of Plant Production Systems at Wageningen University, Department of Plant Sciences. He leads a group of scientists with wide experience in systems analysis and simulation modelling. Currently he is leader of the interdisciplinary project "Competing Claims on Natural Resources: Overcoming Mismatches in Resource Use from a Multi-Scale Perspective", and he led the EU-funded project on "Exploring tradeoffs around farming livelihoods and the environment: the Africa NUANCES framework" from 2004-2008. Ken was formerly Professor of Soil Science at the University of Zimbabwe (1998-2001). Prior to that he held a professorship at the University of London (Wye College). He has worked extensively in tropical regions of Asia and Latin America, but his focus for the past 15 years has been on smallholder farming systems in sub-Saharan Africa. Ken has supervised more than 40 Ph.D. students, including 20 from Africa. He has written five books and over 170 papers in peer-reviewed, international journals. Email: ken.giller@gmail.com

Rao Idupulapati is a Plant Nutritionist and Physiologist at the International Center for Tropical Agriculture, Cali, Colombia. He worked from 1979 to 1981 as a Plant Physiologist at the International Crops Research Institute for the Semi-Arid Tropics in India. He received his Post-doctoral training from 1981 to 1989 at the University of Illinois and the University of California. He joined CIAT in 1989 and during the 19 years he has dedicated his research efforts towards the adaptation of tropical crops and forages, development of screening methods for stress resistant germplasm, and the integration of crops with livestock production systems. He is the author of over 90 refereed journal articles and 35 book chapters. Email: i.rao@cgiar.org

Didier Lesueur received a Ph.D. in Plant-Soil-Microorganism Interactions from the University of Paris VI (Pierre et Marie Curie) in 1992. He then moved to CIRAD in France (1992-1996) and Senegal (1996-2004). In September 2004, CIRAD seconded him to TSBF-CIAT to lead soil microbiology activities. His main interests are biological nitrogen fixation, inoculation of tree legumes in agroforestry and functional microbial diversity in relation to N and C cycling. He has co-authored over 25 referred journal articles or book chapters and has trained five Ph.D. students and 15 M.Sc. students from Europe and Africa. Email: d.lesueur@cgiar.org

Roel Merckx is Professor in Soil Fertility and Plant Nutrition and Department Head in Earth and Environmental Sciences of Katholieke Universiteit, Leuven, Belgium. The main mission of this department is to conduct state-of-the-art research on ecosystems at different spatial and temporal scales, including the interaction between humans and the environment. For the past 20 years, his research has concentrated on soil-plant relationships in weathered soils of the tropics.
In addition to long-standing association with the IITA and TSBF-CIAT, collaboration has been established with a large number of universities and research institutes in Sub-Sahara Africa and Southeast Asia. Before joining the Katholieke Universiteit, Leuven, he was a research scientist for the Directorate for Agricultural Research at Wageningen, The Netherlands. Roel has supervised more than 30 Ph.D. students, and has authored or co-authored over 200 papers in peer-reviewed, international journals. Email: roel.merckx@agr.kuleuven.ac.be

Uzo Mokwunye, Prior to retirement, Professor Mokwunye served as the Director of the United Nations University Institute for Natural Resources in Africa (UNU-INRA). He received professional training in Agronomy, Biochemistry and Analytical Chemistry from the Ohio State University, Columbus, Ohio and the University of Illinois at Champaign/Urbana, receiving a Ph.D. from the latter in 1972. He specializes in human and agricultural resource management with particular interest in the use of phosphorus in the soils of tropical Africa. During 1981-87, he was the leader of the phosphorus program at IFDC and led the team that worked on the management of nitrogen and phosphorus fertilizers in sub-Saharan Africa. In 1987, he helped establish the Africa Division of the International Fertilizer Development Center located in Lome, Togo. He served as the Chairman of the Governing Board of the International Crops Research Institute for the Semi-Arid Tropics for three years. During 2003-2005, he chaired the Committee of Center Board Chairs of the CGIAR. He is also a member of the Advisory Board of the Africa Bureau of the United Nations Development Programme (UNDP). Professor Mokwunye is a Fellow of the World Academy of Arts and Sciences and currently chairs the Management Committee of the Kano Pilot Learning Site of the sub-Saharan African Challenge Program. He has edited four books and has authored over 100 journal articles. Email: mokwunye@inra.unu.edu.gh

Omo Ohiokpehai holds a Ph.D. in Food Science and joined CIAT-TSBF in 2005 to support its soybean promotion. Prior to this, she worked in the public and private sectors designing economical, nutritionally complete meals intended for vulnerable groups. Over the past three years, Omo has focused upon innovative processing of soybean by small-scale women farmers and the marketing of these value-added products. Omo had consulted extensively in the area of nutrition and food processing for the past 20 years in Africa. She has over 50 papers in peer-reviewed international journals. Email: o.omo@cgiar.org

Frank Place received a Ph.D. in Economics from the University of Wisconsin in 1988. He worked at the World Bank between 1988-1991 and for the Land Tenure Center at the University of Wisconsin between 1992-1994, focusing on agricultural development in Africa. He then joined the World Agroforestry Centre where he has been an economist, theme leader, and head of impact assessment at various times through 2009. His main areas of research are rural poverty, property rights, adoption of agroforestry, soil fertility and sustainable land management. His field experiences are mainly in Africa, spanning east, south, central and west sub-regions. He has co-authored five books, has over 50 referred journal articles or book chapters and is an Associate Editor of Agricultural Systems. Email: f.place@cgiar.com

Pieter Pypers is a soil scientist that joined TSBF-CIAT in 2006 to backstop the institute’s work in Central and East-Africa. He focuses on crop nutrition and understanding soil conditions affecting technology adaptation. Before joining TSBF-CIAT, he conducted research in IITA where he examined phosphorus use efficiency of grain legumes. He obtained a Ph.D. in Bioengineering Sciences at Katholieke Universiteit, Leuven, Belgium. Email: p.pypers@cgiar.org

Tabo Ramadjita is the Assistant Director of ICRISAT West and Central Africa and a cropping systems agronomist based in Niamey, Niger. He obtained a Ph.D. in Agronomy and Plant
Genetics from the University of Arizona in 1985. Dr. Tabo is a member of Pan-African START Committee and Intergovernmental Panel on Climate Change. Tabo contributed to the award of the 2007 Nobel Peace Prize as a member of the IPCC. He coordinates the Desert Margins Program on arresting land degradation and conserving biodiversity in sub-Saharan Africa and a Challenge Program project on enhancing rainwater and nutrient use efficiency in the Volta Basin. His research activities include improvement of cereal-based cropping systems, promotion of fertilizer micro-dosing and the inventory credit system, integrated crop-livestock systems in the dry savannas of West Africa, adaptation to climate variability and mitigation of land degradation. Tabo has published over 70 papers in scientific journals and co-supervised more than 20 M.Sc. and Ph.D. students. Email: r.tabo@cgiar.org

Pascal Sanginga is a Senior Programme Specialist for Rural Poverty and Environment at the International Development Research Centre. He has accumulated progressive experience in agricultural and natural resource management in sub-Saharan Africa over the last 15 years. Before joining IDRC, he was a social scientist working with CIAT on participatory natural resources management and rural innovation systems in Eastern, Central And Southern Africa. Prior to that, he also worked as a postgraduate fellow with the CGIAR programme on participatory research and gender analysis and the African Highlands Initiative. He was a graduate research fellow at the IITA where he obtained a Ph.D. in Rural Sociology from the University of Ibadan, Nigeria. Dr. Sanginga has published over 20 scientific papers and recently co-edited a book on “Innovation Africa: Enriching Farmers' Livelihoods”. Email: psanginga@idrc.or.ke

Canon N. Savala received an M.Sc. degree from the University of Nairobi Department of Soil Science in 2000 for his studies on earthworm composts. He presently serves as a Farm Liaison Specialist with the Forum for Organic Resource Management and Agricultural Technologies at its headquarters in Nairobi, Kenya. Some of Mr. Savala’s accomplishments include the production of several short documentaries on crop management aired over Kenyan television, the development and distribution of training and extension booklets on striga management and editing the book “Organic Resource Management in Kenya” (2003). Email: savalacn@gmail.com

Keith Shepherd is Principal Soil Scientist at the World Agroforestry Centre in Nairobi, Kenya. He has 30 years of experience on soil management in developing countries, including at the International Centre for Research in the Dry Areas in Syria and the International Rice Research Institute in the Philippines. He has also conducted adaptive research in Swaziland and Darfur, Sudan. In Swaziland he established a research program on agronomy for semi-arid areas and introduced soil conservation tillage practices. In Syria he developed a quantitative understanding of crop growth and yield responses to fertilizers in different Mediterranean agro-ecological zones which resulted in new fertilizer extension programmes for the dry zones. In the Philippines, Dr. Shepherd developed improved strategies for water and nitrogen management in rice-based systems. In the Sudan, he worked in integrated rural development, contributing to a millet and sorghum breeding program for western Sudan. At ICRAF, he has developed improved methods for on-farm agroforestry research, improved understanding of constraints to improved soil fertility management on smallholder farms, and developed new methods for land degradation assessment. Dr. Shepherd is presently leading research on low-cost methods for rapid soil and plant analysis using infrared spectroscopy. Dr. Shepherd holds a Ph.D. in Agricultural Botany from the University of Reading in the UK. Email: k.shepherd@cgiar.org

Eric Smaling studied Soil Science at Wageningen University in The Netherlands, obtaining his Ph.D. in 1993 that described soil nutrient balances and land management in Africa. Before that, he spent five years as a researcher in development projects in Indonesia, Kenya and West Africa. He was a Professor of Soil Inventory and Land Evaluation at Wageningen University, and
currently is a Professor of Sustainable Agriculture at the International Institute for Geo-Information Science and Earth Observation (ITC). He regularly serves as a consultant for FAO, the World Bank, and the centres of the Consultative Group on International Agricultural Research. He also writes children’s books on topics relating to food and agriculture. Since 2007, he has served as a member of the Senate of The Netherlands. Email: eric.smaling@bodlan.beng.wau.nl.

Bernard Vanlauwe is the Leader of the ISFM Outcomes Programme at TSBF-CIAT. He joined TSBF-CIAT 2001 and is currently studying the development, adaptation, and dissemination of ISFM options in various agro-ecological zones of sub-Saharan Africa. Prior to this, he worked at IITA in Nigeria (1991-2000) and Katholieke Universiteit, Leuven, Belgium (1989-1991), focusing on the mechanisms underlying nutrient and soil organic matter dynamics in tropical agro-ecosystems. He has published over 70 papers in scientific journals and co-supervised over 30 M.Sc. and 10 Ph.D. students. Email: b.valauwe@cgiar.org

Dorothy Wambui served as a Publication Production Assistant with FORMAT, preparing many of the graphics and compiling the references appearing in this book. She holds a B.Sc. from Kenyatta University’s Department of Health Sciences in Nairobi, Kenya. Email: dohwambui@yahoo.com
Index

acacia 62, 250
acidity 2, 20, 23, 35, 36, 51, 59, 66, 153, 154, 165
Acrisol 6, 98, 105
Actinomycetes 58, 64
African Fertilizer Summit 1, 15, 23, 68
agricultural production 53, 139
agricultural value chain 11, 210
agro-dealers 140, 186, 204
agroforestry options 75
agro-industrial by-products 43, 44, 254
agro-mineral 31-39
mining 38
processing 38
sources 31-36
agronomic efficiency (AE) 18-21, 49-51
alley farming 6, 7, 40
aluminum 153
anectic feeding 55, 59
Arbuscular Mycorrhizal Fungi (AMF) 54, 62
banana 62, 109-111
Benin 10, 32, 44, 48, 61, 93, 104
best bet technologies 68, 92, 136, 162, 163
best management 38, 81, 158, 210
biological nitrogen fixation (BNF) 52-54
boron (B) 122, 123, 125, 127
Bradyrhizobium 53, 61, 153
bunds 83
Burkina Faso 8, 32, 79-85, 87, 89, 159, 193
burning 42, 76, 83, 98, 114, 116, 119, 125, 154
bush fallow 98, 99, 100, 111
calcium (Ca) 22, 24, 34, 35, 104, 122, 123, 124, 125, 152, 180, 213
calcium ammonium nitrate (CAN) 24, 30, 35, 136, 156, 159
Cameroon 32, 79, 98, 100, 111, 206
capacity building 5, 141, 184-189, 191, 192, 194, 196, 197, 200, 216
farmer 143, 189-191
institutional 141-143, 185-189
primary school 184
research system 143
scientific 187-189
secondary school 184
university 188
carbon (C) 13, 16, 47, 49, 52, 53, 83, 98, 113, 117, 122, 129, 131, 132, 153, 157-161, 175, 188, 198, 211
cash crop 4, 11, 24, 26, 27, 89, 90, 94, 105, 109, 134, 136, 142, 159, 167, 168, 173, 206, 207
Casuarina 53, 54
cassava 100-105
management 100-102
nutrient requirement 102-104
production 101-102
cation exchange capacity (CEC) 80, 83, 104, 125
Center of Excellence 143, 215, 216
Central Africa 88, 97, 100, 111
clay 80, 83, 97, 110, 124, 153
cobalt (Co) 122, 123, 127
climate 29, 31, 40, 68, 73, 74, 76, 78, 81, 82, 88, 89, 100, 104, 107, 117, 131, 133, 157, 160, 198, 211
cocoa 97, 159
coffee 4, 26, 43, 45, 56, 65, 88, 97, 136, 159, 189, 196
cambisol 79, 97
common bean 53, 102, 103, 115, 154, 179
compost 8, 20, 30, 37, 46-49, 65, 66, 74, 77, 84, 82, 90, 91, 95, 109, 110, 136, 155, 169
fortified 20, 37, 47, 48
principles 47
compound fertilizer 65, 66, 134
Conservation Agriculture (CA) 112-120
advantages 117
practices 113-116
principles 113-116
shortcomings 118-120
transition to 117, 118
conservation tillage 113, 212
contour structures 82, 152, 155
copper (Cu) 122, 123, 126, 130, 136, 137
Cote D’Ivoire 32, 58, 105, 110, 111
cover crops 69, 71, 72, 77, 100, 114
cowpea 43, 53, 68, 81, 89, 91-94, 102-104, 110, 115, 153, 178, 179, 206, 208
crop
diversification 11
livestock interactions 71, 90, 94
productivity 7, 13-15, 37, 66, 81, 83, 85, 102, 111, 123, 156, 161, 179, 206
residues 44, 45, 49-51
rotation 58, 74, 77, 106, 112, 114, 118, 119
sequencing 114, 115
decision-making 133, 167, 168, 169, 180, 190, 214
decomposition 47-49, 52
development agendas 27, 105, 175, 186, 196, 197, 211, 215
diagnosis 27, 110, 122, 123, 128, 131, 132, 154, 164, 188, 190
approaches 127
field test strips 127-128
laboratory analysis 129-131
models 131-132
non-test factors 131
soil analysis 128-131
surveillance 164, 165
test kits 128-129
diammonium phosphate (DAP) 24, 30, 35, 47, 48, 136, 137, 159, 170, 187
dolomite 30, 31, 34, 35, 147, 159, 213
drought 17, 28, 29, 54, 63, 72, 79-81, 83, 85, 106, 109, 127, 134, 136, 143, 154, 156, 212
drylands 29, 81, 82, 86, 117, 158, 178
earthworms 48, 59, 62, 63
East Africa 26, 33-35, 67, 88-90, 95, 109, 206
economic incentives 195
egusi melon 99
endogeic feeding 55
environmental
 benefits 51, 112, 117, 119
degradation 80
impacts 36, 39
epigeic feeding 48, 55, 59, 63, 170
extension agents 131, 172
farm
 associations 184, 185
ergonomics 172-174
households 25, 74, 86, 96, 138, 143-145, 156, 174, 177, 182, 192, 195, 206
input supply 13, 14, 16, 23, 24, 33, 65, 67, 69-71, 84, 142, 144, 146, 186, 187, 195, 201, 208, 217
labor 83, 167, 168, 172
occupational safety 174-175
farmer organizations 25, 37, 107, 128, 134, 140, 144-146, 151, 171, 184, 200, 208
farming systems 16, 20, 44, 45, 53, 59, 70, 76, 78, 81, 95, 99, 111, 112, 134, 139, 146, 155, 157, 160-162, 174, 179, 197, 199, 211, 214
feeding behavior 55
feldspar 35
Ferralsol 97, 98, 103
fertilizer
 adaption 25, 26
deliberation 22
advice 17, 130, 137
application 13, 26, 29, 46, 50, 51, 71, 72, 84-86, 115, 154, 160, 162, 180, 187, 206, 213
blends 84, 137, 146, 182, 187
broadcast 84
cost 136
consumption 22, 23, 81, 89, 134, 150
forms 65
guidelines 131
imports 31, 133
inputs 20, 21, 25, 29, 38, 136, 151
management 22, 25, 70, 108, 127, 181, 205
marketing 25, 137, 170, 205
prices 24, 67, 68, 122, 150, 151, 160
quality 27, 28
recommendation 22-30
repackaging 143, 206
response 128, 133, 137, 157, 162
flooding 109, 117, 161
forest margin 76-78, 80, 104
fungi 54, 56, 59, 62, 65, 103, 111, 124, 154
gender equity 174-176
geographic information systems (GIS) 164, 188, 189, 214-216
Ghana 32, 89, 98, 101, 102, 104, 111, 118, 136, 159, 168, 186
grain legume 44, 53, 68, 70, 73, 93, 110, 193, 196
grassland 22, 44, 79, 88, 158
grazing 40, 44, 71, 72, 77, 90, 94, 95, 119, 194
green manure 24, 44, 46, 48, 49, 53, 72, 73, 100, 106, 109, 114, 125
Green Revolution 17, 133, 139, 167, 199
groundnut 20, 35, 43, 53, 68, 81, 89-92, 99, 102, 104, 110, 115, 142, 146, 169, 179, 180, 208, 212
guano 32, 34, 36, 39, 65, 66
Guinea savanna 50, 58, 88, 93, 94, 159
Guineo-Congolian forest 88, 97
gypsum 31, 34, 35, 126, 137, 147, 213
half moon 29, 82
hand
 shelling 42, 148, 173, 204
tools 75
weeding 106, 120, 147, 173
household
 food security 203, 211, 227
 nutrition 44, 68, 69, 102, 172, 177, 178
highlands 61, 88, 208
hired labor 61, 88, 208
human disease 67
human resource development 38
humid forest zone 78, 97-100, 105-109, 111
improved fallow 15, 29, 44, 77, 90, 95, 99, 109, 111, 112, 115, 120
India 32, 62, 63, 93, 117, 172, 178
indigenous nutrient supply 108, 212
igneous deposits 33, 212
inoculant 37, 54, 57, 58, 60-62, 65-67, 71, 72, 94, 96, 146, 173, 210-212, 217
Integrated Pest Management (IPM) 102, 111
Integrated Soil Fertility Management (ISFM)
 adaption 144, 145, 149-152, 197, 211
 packages 74, 144, 146, 147, 151, 205
 paradigm 15, 16, 217
 products 65-78, 96, 151, 216
 promotion 146, 151, 178, 197, 201
 principles 50, 76, 79, 105, 135, 214, 216
 policies 194, 196
 strategy 106, 211-217
investment 6, 10, 11, 104, 105, 196
iron (Fe) 34, 57, 107, 126, 129, 130, 181
irrigation 81, 106-108, 133, 195
Lablab 43, 68, 69, 72, 146, 179, 182
land
 conservation 13, 150
 reclamation 107
laboratory
 analysis 129-132
 rehabilitation 189
leaching 46, 49, 75, 106, 124-126, 146, 155, 156, 158, 160, 165
legume
 intercrop 20, 72, 73, 77, 90, 91, 95, 186, 203, 204, 212
 production 52, 70, 73, 88, 95, 211
 varieties 53, 93, 95, 96, 193
lignin 40-43, 45-47
limestone 30-32, 34, 38, 63, 96, 73, 117, 134, 137, 147
liming 34, 35, 85, 104-127, 169
litter 43, 45, 78, 85, 110, 120, 134, 145, 181, 194, 208
livestock manure 40, 45, 78, 85, 110, 120, 134, 145, 181, 194, 208
livestock-crop interactions 71, 72
lowland rice 106-109
Luvisol 79, 97, 98, 104
magnesium (Mg) 22, 26, 30, 34, 36, 43, 47, 80, 98, 104, 111, 125, 137-138, 181
Malawi 32, 35, 44, 84, 88, 89, 93, 101, 134, 136, 137, 168, 193, 194, 197, 201, 206
Mali 31-33, 79-81, 84, 87, 92, 105, 159, 162, 206
manganese (Mn) 107, 126, 129, 130, 137
manure
application 29, 49
collection 81
management 46, 74, 81, 154, 155, 173
quality 72, 77, 95
storage 95
market
access 25, 90, 148, 201, 207, 212
bottlenecks 200, 201
compartmentalization 199-201
development 33, 139, 168, 195, 200, 201, 211
information 200, 202, 207-209
input-output 195, 198-201, 207
linkage 86, 140, 167, 194, 195, 201, 205-207, 211, 216
market-led extension 193, 207-208, 215
marketing associations 148, 185
micro-dosing 28, 71, 84, 86, 87, 147, 205, 206, 211, 212
microbial biomass 47, 118, 153
microsymbiont 52, 58, 153
Millenium Development Goals (MDG) 175-176
miller 79-89, 92, 136, 150, 162, 178, 205
millipedes 54, 55, 62, 63
mineralization 18, 40, 52, 54, 76, 110, 113, 117, 119, 188
minimum tillage 75, 175
Mingjingu mine 34
models 108, 122, 151, 132, 134, 165, 185, 213, 214
molybdenum (Mo) 126, 127, 137, 122, 123
Mozambique 32, 87, 89, 93, 101, 134
Mucuna 43, 44, 61, 72, 104, 106, 115
mulch 110, 11, 114, 117, 119, 120
Mycorrhizae 62
Niger 32, 79-87, 92, 107, 139
Nitisol 27, 157
nitrogen (N) 122-124
availability 85, 123, 146
deficiency 105, 124, 125, 126
depletion 53
fertilizer 28, 36, 56, 66, 74, 106, 146, 155, 156
management 108, 146
top-dress 71, 72, 115, 126, 156, 173, 211
nodulation 15, 53, 58, 59, 60, 61, 65, 68-71, 74, 93, 123, 127, 153, 155
no-till 119, 120
nutrient
acquisition 52, 59, 65, 74
allocation 97-99
availability 16, 26, 49, 57, 75, 119, 124
balance 92, 134, 159, 161, 181, 196, 207
cycling 15, 16, 104, 129, 198
concentration 33, 40, 45, 46, 49, 122, 212
deficiency symptoms 123, 127, 152, 155
depletion 3, 13, 16, 37, 89, 102, 104, 107, 109, 111, 130, 135, 143, 158, 160, 162, 214
disorders 123, 136
elements 122
loss 17, 19, 37, 71, 77, 83, 95, 100, 102, 103, 108, 156, 170, 213
management 13, 17, 29, 30, 82, 83, 105, 108, 111, 175, 185, 186, 213
recycling 5, 42, 55, 71, 72, 76, 77, 90, 94, 95, 95, 104, 110, 111, 119, 120, 153, 154
replenishment 37, 38, 68, 91, 130, 147
retention 18, 30, 50, 75, 79, 83, 115
requirement 18, 19, 27, 38, 49 130
supply 7, 13, 14, 26, 36, 52, 106, 108, 110, 131, 133, 135, 212
use efficiency 7, 9, 10, 13, 14, 50, 71, 74, 105, 108, 118, 129, 131, 157, 160
operations 46, 76, 83, 144
organic
farming 76-78, 117
fertilizer 6, 7, 28, 37, 49, 52, 53, 119, 136, 169, 170, 207
resource allocation 51
resource management 13, 25, 40-51, 78, 83, 85, 105, 133, 134, 137, 154
resource quality 40-42
paradigm 14-16, 211, 217
partnership 67, 94-96, 141, 175, 197
peat 32, 36, 39
pH 30, 35, 54, 57, 65, 66, 75, 80, 104, 107, 124, 125-127, 129, 147, 152, 153, 159, 213
phosphate rock 31, 33, 36, 37, 38, 85, 212
sources 31-34
phosphorus (P)
availability 37, 50, 85, 124
deficiency 33, 103, 104, 214.
fertilizer 9, 26, 31, 50, 59, 92, 103, 162
immobilization 22
pigeon pea 53, 89, 90, 92, 93, 102, 104, 115, 178, 179, 182
plant
deficiency symptoms 127, 152
disease 57, 109
growth promoting bacteria 56, 57
plantain 99, 100, 104, 109, 207
policy
formulation 189, 193, 196, 197
platforms 196
realms 193-195
water
 conservation 28, 29, 36, 82, 84, 87, 212
 harvesting 8, 14, 29, 82, 84, 119, 147, 186, 198
 hyacinth 43, 45
 holding capacity 5, 80, 83, 117, 153
 infiltration 29, 50, 55, 83, 113, 114
 quality 16, 152, 175
 storage 52, 65, 85
water logging 83, 109, 120, 123, 124, 127, 152, 154

West Africa 8, 9, 22, 23, 41, 44, 68, 83, 85, 87, 88, 89, 91-95, 97, 103-105, 107, 157, 206-208
 women farmers 93, 167, 168, 171, 172
 woodlands 88-96, 55, 78, 80, 169
ziwi pits 8, 29, 82, 85-87
 Zambia 31, 32, 34, 58, 85, 89, 98, 118, 134, 136, 181
 zinc (Zn) 5, 107, 126, 130, 137, 181
Integrated Soil Fertility Management In Africa: Principles, Practices and Developmental Process

Edited by
Dr. Nteranya Sanginga (TSBF-CIAT)
and Dr. Paul L. Woomer (FORMAT)

This reference manual prepared by TSBF-CIAT and its international team of experts improves understanding and increases application of Integrated Soil Fertility Management (ISFM) in Africa. It combines current knowledge of soil fertility management by African smallholders with recent breakthroughs in the state-of-the-art and is intended to strengthen ISFM practice among land managers, agriculturalists, and rural development specialists. This book is separated into four major sections addressing the underlying principles, field practices, developmental processes and social dimensions of advancing ISFM in Africa, guiding readers through better land management strategy in a stepwise, comprehensive manner.

(21 Chapters, 263 pp.)