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CHAPTER 4

Spatial Dimension of Scaling Up and
Out
Simon E. Cook* and Sam Fujisaka**

Introduction: The Concept of Space and Scale

The conceptualization of space has preoccupied philosophers and
scientists since Aristotle’s Physics (Couclelis, 1998), which expressed
concepts to help understand inert entities that exist in space, and human
interactions with them. A succession of ideas has enlarged this
understanding, from the positivist absolute space of Newton to
constructivist positions proposed by Werlen (1993).

Scale is a concept used to manage information about the real world
and to summarize observations about complex phenomena that vary
within space, time, or other dimensions. The ordering of phenomena
according to scale enables human beings to store, recall, and analyze
information about features that would otherwise be impossible to evaluate.
The concept is essential to researchers of agricultural development
processes because scale organizes our understanding of complex
socioeconomic and biophysical processes that interact in space (valley,
region, continent), time (daily, annual), and institutions (household,
community, nation). Scale is especially useful where variation is
essentially “lumpy”.

Scale is perceived differently by the respective disciplines that attempt
to deal with it (Marceau, 1999). Social or economic systems and
biophysical systems tend to be referenced internally. That is, social
networks are described without reference to biophysical characteristics,
and biophysical with weak reference to socioeconomic. Since both overlap
in space and time, the distinction between social and biophysical systems
is to some extent arbitrary. Such systems can be modeled explicitly in
space by expressing interactions formally in a way that can be observed.
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Most studies that use geographic information systems (GIS) to
represent specific scale-dependent entities do so to represent biophysical
processes. The concept of scale in space and time has been a major
preoccupation with biophysical sciences for some time because of the
obvious connotations scale has on process, on research domains, and on
the validity of extrapolation and interpolation. Scale is essential to
understand fundamental biophysical phenomena that are too big, too
small, too fast, or too slow to be observed directly. Notwithstanding the
search for scale invariance, predominantly in the natural and information
sciences (e.g., see Burrough, 1981; Barabasi and Albert, 1999; Gisiger,
2001), processes are generally assumed to be scale dependent and to
operate within predominant domains. Moving up or down scale from the
domain at which the concept was developed introduces additional
uncertainties because of phenomena referred to as ecological or atomistic
fallacies.

Gimblett (2002) points out that biophysical studies of scale
dependence tend to neglect the human dimensions of such systems,
specifically through the use of social science data and modern intelligent
simulation techniques. Increasing attention has been directed in recent
years to spatial and temporal dimensions of social interactions. Giddens
(1984) sees space as both a medium of social relations and a material
product that influences interactions. Raedeke and Rikoon (1997) identify
time and space as fundamental categories of human experience.

Social scientists use scaling concepts to describe variations of purely
human phenomena such as institutions and policy (Gibson et al., 2000).
Indeed, the concepts of scaling up and scaling out, as described in
companion chapters to this, are applied equally to institutional dimensions
and the biophysical environment in which they exist. Institutions,
however, exist in real space and are inevitably influenced to some degree
by variation in spatial dimensions. It is essential to describe spatial
characteristics where spatial variation is significant to the processes being
examined.

Variation in the spatial dimensions of scale should be described if
such variation significantly influences the validity of representation; that
is, if representation of the location, size, or spatial proximity between
entities helps identify the process. However, broadening the concept of
scaling to include spatial dimensions increases the complexity of analysis,
and few would willingly embark on this process if it cannot be shown to be
necessary. Therefore, our first objective is to clarify when the spatial
dimension is significant to scaling up and scaling out in the socioeconomic
sense (as is used predominantly by other chapters in this book).

Acknowledging that variation within real space may be significant, the
second objective of the chapter is to identify the various modeling
approaches that can be used to describe spatial variation.
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When Is the Spatial Dimension Significant to Scaling
Up and Out?

Basic concepts

Scaling out means extending scope by repeating a process at one scale to
other individuals of about the same scale. This process is influenced by
the variation among individuals.

Scaling up occurs when the dimension of a process is increased, for
example, when a social interaction process increases from village to
municipality; or a hydrologic process from first- to third-order catchments.
For reasons discussed below, changing the dimensions of a process from
that at which it has been observed almost always introduces new sources
of uncertainty.

Scaling up tries to represent a process of interaction among
individuals that becomes bigger or more distant. The process can be
social, such as cooperation between two people within a community, or
economic, such as trade between two countries. It can be biophysical, for
example gas exchange between trees and the atmosphere, or water flow
between an irrigation plot and a river. The essential feature is that
exchange or flow occurs between two or more individuals. The objective of
the study is to understand the nature of the interaction. Having
understood the interaction process better, the objective of intervention is
to improve the overall result.

Modeling the scaling process

Since a major purpose of this chapter is to examine the effects of space on
processes of scaling out (dissemination), we need to define the concept of
interactions as they occur in physical space. We do this by describing a
basic model of interaction between two individuals that accounts for
spatial characteristics such as size, location, distance, or direction.

Intuitively, these spatial characteristics seem important to the scaling
processes. Few would doubt that interaction between neighbors is more
likely than between individuals in different continents, or that groups of
similar size interact more easily, or that germplasm is more likely to flow
between sites with similar environments. But the question is whether the
effects can be described in a form that can be analyzed. To do this, the
scaling process is rephrased in a more analyzable form by considering it
as a quantifiable process of attraction between pairs of individuals. Space
influences two broad types of characteristics significant to the interaction
process. First, the strength of attraction is determined by the suitability of
individuals for interaction to occur, for which information about their
location and size is useful. Second, the interaction may be influenced by
resistance or loss of signal that might result from distance, friction of the
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surface over which interaction is attempted, or interruption from
intervening processes. We illustrate below a selection of spatial modeling
processes that attempt to quantify these effects.

Assessing the significance of the spatial dimension

Failure to acknowledge the influence of spatial processes reduces the
accuracy of statements that can be made about the process of interaction.
The question is, “How significant is the variation, and how can it be
predicted?” The significance of the spatial dimension to the scaling process
can be assessed from the following questions:

Does the process of interaction change significantly if:

(1) It is larger or smaller, that is, if the process applies to more or fewer
individuals?

(2) Individuals are in particular locations?
(3) It occurs over different distances?
(4) It occurs in different directions?
(5) If individuals are formed in different configurations?

Question 1: Does size matter? More individuals are involved as
processes are scaled up or scaled out (i.e., extended to reach individuals
further away). Larger processes encounter more cumulative variation
among individuals simply because individuals differ, and according to the
standard tenets of probability theory (albeit that individual variation is not
distributed randomly). Processes that are highly adapted to a particular
group of individuals become less and less suitable as individuals become
more dissimilar over space. Conversely, processes that are described for
large-scale phenomena encounter a reverse problem when applied to
subpopulations. Aggregate solutions that exist for a whole population
become increasingly at variance with individuals as the process is scaled
down.

Scientists tend to adopt a pragmatic approach to scale by predefining
the object of study—for example, global climate change, a study of
catchment process, or development of community preferences. Experienced
practitioners make reasonable assumptions about the limitations of scaling
up or down from the definition. Few hydrologists would contemplate
applying models developed from measurements at field plot level to large
regions, even fewer would attempt to predict field conditions from global-
scale models: Social scientists have developed methods of analysis that are
specific to individuals, families, communities, persons affiliated via
different kinship systems, and to aggregates of people tied together through
political units such as municipalities, states, or countries.

Methods of numerical spatial analysis to describe the deviations of
individuals from purely random patterns include measures of spatial
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autocorrelation, clustering, or geographically weighted regressions (see
Cliff and Ord, 1981; Diggle, 2003).

Question 2: Is location significant? Information about the non-
random spatial variation of individuals can be used to assess the likely
degree of interaction between them. A site that has a suitable condition
increases the likelihood of adoption during scaling up or out. For example,
a crop that is bred at a dryland research station is more likely to succeed
in other dryland sites than in humid ones, even if such areas are closer. A
technological innovation to ease cultivation that is suited for men is
unlikely to be successful in locations where most farmers are women.

In these cases, information about location is used to carry knowledge
about site conditions that determine whether interaction takes place.
Classifying sites quantitatively according to similarity improves definition.
An example is the exchange process provided by the assessment of site
suitability for germplasm transfer in models such as FloraMap (Jones and
Gladkov, 1999). FloraMap is premised on the assumption that climate at a
site strongly influences the regional distribution of germplasm.

Question 3: Is process influenced by distance? In addition to the
effect of increasing variance that occurs as populations expand
(documented well by geostatistical theory [see Isaaks and Srivanasta,
1989]), distance will decrease the strength of interactions among
individuals. As distance increases, the chances that an intervening
process will occur that influences individuals in a different way also
increases. Sociologists have for some time referred to path length between
two individuals as a key factor in determining networking (Newman et al.,
2002).

The effect of distance formed the basis of classic spatially sensitive
theories of geo-economic development from von Thunen and Christaller in
the last century. Recent additions to economic theory include Vickerman
et al. (1999). Inadequate infrastructure hinders people’s access of people
to markets, services, and one another, leading to the so-called “spatial
poverty trap” (Ravallion, 1997). Because accessibility and its inverse,
isolation, are considered significant factors in development (Deichmann,
2001), tools have been developed to model explicitly these factors over
space (e.g., Farrow and Nelson, 2001). In this model, accessibility is
defined by the shortest travel cost distance, accounting for the cumulative
distance over which exchange occurs and the friction of the surface.
Factors not explicitly modeled by Farrow and Nelson (2001) include the
cost of transport (roughly equivalent to surface friction) and the
opportunity costs to individuals.

Question 4: Is direction significant? This question concerns spatial
anisotropy of process, that is, variation that is introduced solely by a
change in direction of process, such as dispersion across- or down-stream.



Scaling Up and Out: Achieving Widespread Impact

58

This is in addition to effects that are caused by variation of site
characteristics such as landscape obstacles.

Anisotropy can be represented quantitatively using geostatistical
models of anisotropic spatial dependence (see Isaaks and Srivastava,
1989). The vector-dependent processes have been modeled successfully to
reveal spread along transport networks (Deichman, 2001) and spread of
diseases over two-dimensional grids using a process of Eulerization
(Colville and Briggs, 2000).

Question 5: Is the configuration of multiple individuals
significant? The sections above describe how size, location, distance, or
direction influences a single process of interaction between two individuals
or nodes. In reality, of course, interactions are not restricted to two
individuals or one process, but occur simultaneously among many nodes
with multiple processes. Therefore we now move on to outline some
concepts that are used to analyze the more complex spatial characteristics
of multiple interacting nodes. We describe three approaches to illustrate
the development of analytical models: Network analysis, analysis of
cellular automata (CA), and the multi-agent system (MAS).

Network analysis has a long history in the social and economic
sciences to describe interactions among multiple individuals through
descriptors such as connectivity, accessibility, or path length analysis.
This use is almost exclusively aspatial, that is, analysis is concerned
primarily with network topology rather than the spatial characteristics
that influence the state of individuals or the interactions among them.

Recent additions to the social science literature provide examples of
explicit modeling of social networks. Newman et al. (2002) describe
network activity quantitatively within different groups of social actors and
test the model by comparing predicted with actual measures of network
function. Burt (2002) evaluates network function within a commercial
organization and identifies clear relationships between an individual’s
position within a network and his/her apparent activity. Several other
examples exist of models that attempt to quantify social or economic
behavior, while assuming biophysical variation to be insignificant.

In the late 1980s and early 1990s, spatial scientists realized that
complex socioeconomic processes of land use change could not be
predicted exactly by rigid mathematical models, regardless of how
elaborate they might be. In parallel, the expansion of insights into
ecological processes revealed that existing models based on simple
deterministic functions could not describe behaviors such as complexity,
self-organization, chaos, and multi-scale functionality (Heylighen, 1999).
Janowski and Richard (1994) note the shortcomings of trying to
oversimplify social processes in space: “Current GIS analysis is based on
simple spatial geometric processing operations such as overlay
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comparison, proximity measures, and buffering. It does not provide
optimization, iterative equation solving, and simulation capabilities
necessary in planning”.

Anthropologists and archeologists have more recently examined fractal
patterns of human settlements, linking the emergence of higher fractal
dimensions (a measure of how quickly self-similarity patterns scale up) to
higher efficiency and, possibly, eventually to social collapse (e.g., the
prehistoric lowland Maya). Analysis of both systems efficiency and
eventual collapse is based on spatial analysis of the simultaneous scaling
out and “scaling in” (a sort of urban intensification) of such self-organizing
complex systems (Ravilious, 2004).

Out of such thinking arose a new breed of models that treated complex
socioeconomic systems as self-organizing, partially predictable systems,
but for which models became tools with which to visualize complex
dynamics rather than the basis on which to make definitive statements.

A different model emerged, based on the concepts of CA developed by
von Neuman over 60 years ago, in which complex dynamic behavior is
described as the result of relatively simple transition “rules”, which govern
the rate and direction of change amongst individual “cells”. While Wu and
Marceau (2002) observe that the concepts of self-organization, emergence,
and order date back to even earlier ideas of ecologists such as Clements
(1916), the realization of such theories has been strengthened
considerably through the ability to model such hypotheses in GIS.

The basic principle includes concepts of site suitability and access. As
explained by Engelen et al. (1997), however, CA models also include a
neighborhood function, to account for intrinsically spatial features such as
agglomeration, dispersion, or other pattern-creating processes. Cells are
allowed to take a number of states (z), and are expected to allocate
themselves into whichever state seems most probable, according to the
general expressions:

)()( zzz NASvzP =

Where P(z) is the potential for transition into state z; S signifies
suitability of the cell for state z; A accessibility to acquire state z; and N
the neighborhood effect on z. Parameter v is simply a stochastic
disturbance term, which can be adjusted to accommodate random effects.
Cells are shown to change to the state that acquires the highest transition
potential (P

Z
).

Rules in CA models can be quantitative or qualitative, and
deterministic or stochastic. Some CA models attempt to condense complex
behavior into two or three rules. The number of rules can be increased to
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represent the richness of dynamic processes that are believed to operate
within a region.

While CA theory has successfully demonstrated a few patterns of
behavior, some modelers regard the technique as inadequate to describe
complex human systems because of its dependence on rigid spatial
structure and synchronicity between processes. In response, increasing
attention is being directed towards methods of agent-based modeling
(ABM), which can represent dynamic patterns of individual behavior within
complex biophysical and social systems. Whereas behavior in CA models is
generalized, processes in ABMs are object oriented and can perform
asynchronously to one another. This distinctly “bottom-up” approach of
individual models has the advantage of recognizing individual complexity
(Judson, 1994). As perceived by Wu and Marceau (2002), complex systems
are so because they are not completely reducible to components. The
challenge remains to determine rigorous theories of behavior that are also
comprehensive enough to be realistic. Many examples exist of the use of
ABMs in ecological and land use studies that purport to represent
dynamic processes of diffusion and change (Parker et al., 2002).

Discussion

This chapter reviews methods that enable social and biological scientists
to represent processes of interactions between individuals with explicit
definition of spatial attributes such as size, distance, and direction.
Through these methods it is possible to show how space influences the
diffusion processes as they involve more individuals (scaling out) or
individuals at higher levels of organization (scaling up). The advantage of
developing explicit models is that predictions of interactions can be tested
against observation and used to reveal obstacles to beneficial diffusion.

The steady improvement in the ease of use of GIS, coupled with the
availability of better coverage of spatial data, has enabled scientists to
analyze social behavior within a biophysical setting more realistically, and
to create models to reflect their understanding of complex processes.
Indeed, the understanding that a priori oversimplification can actually
obstruct accurate modeling of complex processes stimulated the
development of ABMs. The question is, “What is the gain of more complex
models, and in what circumstances are such models essential for
reasonable representation of complex processes of human interaction?”

The third major feature of relevance to scaling up and out is the
dramatic increase in availability of spatial data, against which such
complex models can be tested. These data describe both the “y”s
(population, income, adoption, etc.) and “x”s (environmental attributes that
modify the influences). Whilst data are more available for remotely sensed
biophysical attributes, this also influences the resolution of insight for
social phenomena (Geores, 2000).
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Conclusions

Processes of scaling up or scaling down involve a change in multiple
interactions between pairs of individuals. The change due to scaling up or
out occurs through extension or diffusion to actors that are more distant
or closer, or as repetition within new pairs of actors. The spatial dimension
is significant to these processes when the likelihood of interactions is
influenced by spatial attributes of size, location, distance, and direction.
This influence is exerted in a number of ways—through the size-related
variation of actors, their location-determined suitability for interaction,
and the distance- or direction- determined cost of interaction.

The effects of space on scaling processes can be modeled in GIS in a
number of ways. The effect of changes in size and location on likely
interactions is modeled through its known effect on variation of
individuals; for example, a community-scale institute will prove incapable
of handling the uncertainty of national-scale problems; germplasm
spreads more easily to locations with similar characteristics. Distance and
direction effects are more effectively modeled as repetitive transfers over a
variable surface. More complex processes of self-organization of
individuals can also be represented through rule-based or agent-based
models that use these spatial attributes to modify individual transactions
within the overall system.

These techniques exist to describe spatial effects on scaling processes,
but they require significant effort and data to achieve a useful accuracy.
So, are the benefits adequate? The first major advantage of formally
modeling spatial influence on scaling processes is that the processes can
be understood more completely through visualization of effects over “real”
areas, as represented by maps. Patterns and associations with cultural or
biophysical variables may become evident only after the process is
represented spatially. A second advantage is that spatial analysis of
processes of diffusion can identify and quantify constraints to scaling
processes that may not be evident before the information is assembled
within a spatial context. Spatial epidemiology provides the most obvious
example where vectors have been identified only after spatial
representation, but many other examples exist in social science or
economic literature where diffusion processes could be explained most
easily in relation to spatial features such as roads or geographic clusters.
Finally, through spatial modeling it is becoming increasing possible to
predict complex diffusion processes realistically to identify the likely
influence of changes in policy, markets, or biophysical change. Through
rule-based and agent-based models it is possible to represent increasingly
complex social and biophysical effects on individual-to-interactions as they
scale up and out within an uncertain world.
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