BEAN ENTOMOLOGY

Activity 1. Developing germplasm with resistance to pests: *Thrips palmi*, leafhopper, pod weevil, and bruchids.

Screening for sources of resistance to major insect pests

Introduction

Identification of sources of resistance to major insect pests of beans is a continuous activity. Additional work is conducted trying to identify and characterize the mechanisms of resistance to specific major pests.

Materials and Methods: *T. palmi*, leafhopper and pod weevil nurseries are planted in the field under high levels of natural infestation, usually with 3-4 replicates per genotype in randomized complete block designs. Evaluations for resistance include damage and bean production ratings, insect counts, damage counts, and in some cases, yield components and yields. Bruchid nurseries are tested in the laboratory simulating normal storage conditions (20° C, 80% R.H., and 14% seed humidity). Genotypes are tested using 3-5 replications of 50 seeds per genotype. Evaluation units (replicates) are infested with 7 pairs of *Z. subfasciatus* per 50 seeds or two eggs per seed in the case of *A. obtectus*.

Results and Discussion: In 2002 we finished studies on the mechanisms of resistance to *T. palmi*. Main results of this work can be summarized as follows. Antixenosis and antibiosis were studied under laboratory and field conditions. Comparisons were made between a susceptible genotype (APN 18) and four moderately resistant genotypes ('Brunca', BH-130, EMP 486, FEB 115). In multiple-choice tests, antixenosis was identified in FEB 115. The antixenotic nature of FEB 115 was confirmed in dual-choice tests under field and laboratory conditions. Life table studies (**Table 1**) showed significant differences in egg duration, survivorship of adults and immature stages, female longevity, daily oviposition rates, and total fecundity among bean genotypes, meaning that antibiosis does play a role in the resistance of beans to *T. palmi*. Based on the most important demographic parameter, the intrinsic rate of natural increase, the five bean genotypes were divided into two groups: BH-130 and 'Brunca' were less favorable for the population growth of the thrips than EMP 486 and FEB 115. FEB 115 was not antibiotic. Population growth on this genotype did not differ from that on APN 18, the susceptible check.

We also finished studies on tolerance as a mechanism of resistance to *T. palmi*. As shown in **Table 2**, resistant genotypes suffered significantly lower pod and yield losses than susceptible ones. Consistent results from both field and greenhouse tests allowed us to conclude that tolerance is indeed a mechanism of resistance to *T. palmi*. In the particular case of FEB 115, tolerance is combined with antixenosis whereas antibiosis and tolerance seem to be the mechanisms responsible for resistance in Brunca, EMP 486, and BH-130.

				Intrinsic Rate of	
		Net Reproductive	Generation Time	Natural Increase	Doubling Time
Genotype	Ν	Rate (R ₀)	(Days)	$(\mathbf{r}_{\mathbf{m}})$	(Days)
EMP 486	74	$32.6 \pm 1.9c$	$37.8 \pm 0.1c$	$0.092 \pm 0.001a$	$7.5 \pm 0.12b$
BH-130	70	$46.1 \pm 2.0a$	$44.8 \pm 0.7a$	$0.085 \pm 0.002b$	$8.1 \pm 0.23a$
APN 18	60	$46.0 \pm 1.3a$	$41.2 \pm 1.1b$	$0.093 \pm 0.002a$	$7.5 \pm 0.19b$
Brunca	72	$29.9 \pm 2.7c$	$40.2 \pm 1.6 bc$	$0.084 \pm 0.003b$	$8.2 \pm 0.12a$
FEB 115	48	$39.1 \pm 0.8b$	$39.9 \pm 0.7 bc$	$0.092 \pm 0.002a$	$7.5 \pm 0.16b$

Table 1. Demographic parameters for <i>Thrips palmi</i> reared on five beau	bean genotypes.
---	-----------------

^a For each parameter, differences among bean genotypes were determined by SNK sequential tests, based on jackknife estimates of variance for each parameter. Means (\pm SEM) within a column followed by the same letter are not significantly different at the 5% level.

Genotype	Percentage Empty Pods	Percentage Pod Losses	Percentage Yield Reduction
Brunca (R)	13.7b	21.8ab	38.5bcd
EMP 486 (R)	7.3b	5.0b	33.9bcd
FEB 115 (R)	17.0b	16.9ab	18.8d
BH-5 (I)	14.8b	20.0ab	27.9cd
BH-60 (R)	15.7b	19.9ab	34.0bcd
EMP 514 (S)	10.7b	23.1a	50.0ab
BAT 477 (S)	17.6b	23.8a	46.4abc
APN 18 (S)	50.0a	23.8a	65.9a

Table 2. Percentage losses caused by *Thrips palmi* on eight bean genotypes.

^a R, resistant; I, intermediate; S, susceptible. Means within a column followed by the same letter are not significantly different (P = 0.05, Fisher's PLSD).

Work on the identification of molecular markers for thrips resistance was also terminated. For details, please see the SB-2 report.

Contributors: A. Frei, J. M. Bueno, C. Cardona, M. Blair (CIAT), H. Gu, S. Dorn (ETH University, Zurich).

Bruchids:

Acanthoscelides obtectus

As indicated in our 2002 Annual Report, there is need to develop fertile *P. vulgaris* x *P. acutifolius* (common x tepary) bean hybrids using the tepary genotype NI576 (a genotype competent to *Agrobacterium*-mediated genetic transformation). Using a novel Double Congruity Backcross technique developed at CIAT, the Biotechnology Unit has been able to produce fertile interspecific hybrids involving NI576. Some of these crosses involve the tepary accession G 40199, an excellent source of resistance to the bean weevil, *Acanthoscelides obtectus*. In 2002 we identified several progenies containing both *P. vulgaris* and *P. acutifolius* cytoplasm with very high levels of antibiosis resistance to *A. obtectus*. Individual pre-selected seeds were reconfirmed in 2003 with excellent results (**Table 3**). Six of the progenies tested showed an absolute level of antibiosis (zero adult emergence), comparable to that in G 25042, a *P. lunatus* accession known to be one of the most resistant genotypes ever tested for resistance to the bean weevil. Resistance in these progenies compared favorably with resistance in the *P. acutifolius*

resistant parent, G 40199. After multiplication of seeds in the greenhouse, further testing for resistance is in progress.

Table 3.Reconfirmation of resistance to Acanthoscelides obtectus in pre-selected
segregating progenies derived from interspecific Phaseolus vulgaris x Phaseolus
acutifolius crosses.

	c.	No. of Seeds	Mean Percentage	Days to Adult
Code and Generation	Cross	Tested ^a	Emergence	Emergence
Inter	specific P. vulgaris x P. acutifolius hybrids with	n P. vulgari	is cytoplasm	
T7 K2 F ₃	V-DCBC5 x V-DCBC4	3	0.0	-
Inters	pecific P. vulgaris x P. acutifolius hybrids with	P. acutifoli	us cytoplasm	
GNVAV-2 F ₄	{[(G40022 x N1576) x V5] x A3}x VS42-7	10	0.0	-
GVV-1 F ₃	{[(G40022 x N1576) x V5] x A3}x VS42-7	14	0.0	-
GKX-6 F ₂	A-DCBC8-2	3	0.0	-
GKA-12 F ₂	A-DCBC7-2 x A6	14	0.0	-
ZXX-5 F_2	A-DCBC8-3	2	0.0	-
	Checks			
G 40199	Resistant P. acutifolius accession	26	11.2	54.0
G 40168	Susceptible P. acutifolius accession	22	90.1	45.7
G 25042	Resistant P. lunatus accession	21	0.0	-
G 25410	Susceptible P. lunatus accession	20	95.0	43.0
ICA Pijao	Susceptible P. vulgaris cultivar	30	95.5	32.8

^a Pre-selected seeds were tested individually using the vial technique.

We also tested 68 F_2 and F_3 progenies derived from several different interspecifc crosses as well as intraspecific *P. acutifolius* and *P. lunatus* crosses. Seeds were tested in bulk with three repetitions per entry at a level of infestation of 2-3 larvae per seed depending on seed size. Most were susceptible. However, as shown in **Table 4**, five were selected for showing acceptable levels of resistance. Selected individual seeds were multiplied and the resulting seed will be evaluated in bulk in replicated nurseries.

		Percentage Adult	Days to Adult
Code and Generation	Type of Cross	Emergence	Emergence
GNVA21 F ₃	Intraspecific <i>P. acutifolius</i> x intraspecific hybrid <i>P. lunatus</i> x intraspecific hybrid <i>P. lunatus</i>	45.5	40.7
GKA11 F ₂	Double congruent hybrid with P. acutifolius cytoplasm	34.3	53.5
Z99ZX6 F ₂	Double congruent hybrid with P. acutifolius cytoplasm	34.6	58.5
V5 F ₂	Intraspecific P. lunatus hybrid	0.0	-
VS42-7 F ₂	Intraspecific P. lunatus hybrid	34.5	67.3
	Checks		
G 40199	Resistant P. acutifolius accession	18.6	55.7
G 40168	Susceptible P. acutifolius accession	86.4	41.5
G 25042	Resistant P. lunatus accession	6.7	69.0
G 25410	Susceptible P. lunatus accession	97.8	42.0
ICA Pijao	Susceptible P. vulgaris cultivar	91.1	31.4

 Table 4. Resistance to Acanthoscelides obtectus in selected F_{2,3} progenies derived from inter and intraspecific crosses evaluated in 2003.

Another set of 55 $F_{2.4}$ progenies received from the Biotechnology Unit was tested in replicated tests for resistance to *A. obtectus* in 2003. Six double congruent hybrids with *P. acutifolius* cytoplasm and two progenies derived from intraspecific *P. lunatus* crosses showed resistance ranging from high (< 20% adult emergence) to intermediate (20-50% adult emergence) (Table 5). Resistance was also expressed in terms of prolonged life cycles (up to 84 days after infestation). Reconfirmation using the individual seed testing technique is in progress.

Code and Generation	Type of Cross	Percentage Adult Emergence	Days to Adult Emergence
Z99ZX-1A F ₃	Double congruent hybrid with P. acutifolius cytoplasm	18.7	74.2
Z99ZX-11A F ₃	Double congruent hybrid with P. acutifolius cytoplasm	34.9	55.7
Z99ZX-15-2 F ₃	Double congruent hybrid with P. acutifolius cytoplasm	36.6	59.9
ZXTG31-4-10 F ₄	Double congruent hybrid with P. acutifolius cytoplasm	8.3	65.0
ZXTG33-3 F ₃	Double congruent hybrid with P. acutifolius cytoplasm	42.1	58.2
GKVGAG-1A F ₃	Double congruent hybrid with P. acutifolius cytoplasm	0.8	44.0
A6 F ₂	Intraspecific P. lunatus hybrid	26.8	64.7
VS42-14 F ₂	Intraspecific P. lunatus hybrid	5.6	84.0
	Checks		
G 40199	Resistant P. acutifolius accession	7.2	68.8
G 40168	Susceptible P. acutifolius accession	83.2	43.4
G 25042	Resistant P. lunatus accession	0.6	78.0
G 25410	Susceptible P. lunatus accession	90.0	43.8
ICA Pijao	Susceptible P. vulgaris cultivar	91.1	31.4

Table 5.Resistance to Acanthoscelides obtectus in selected segregating progenies derived
from interspecific Phaseolus vulgaris x Phaseolus acutifolius hybrids and
intraspecific Phaseolus lunatus crosses evaluated in 2003.

Contributors: J. F. Valor, C. Cardona, A. Mejía, S. Beebe, and J. Tohme.

Zabrotes subfasciatus

The work on the development of a molecular marker for arcelin presence and resistance to the Mexican bean weevil was terminated in 2003. In 2002, single and multiple crosses using RAZ 44 and RAZ 105 as arcelin-donor parents were made. Resulting F_5 and F_6 were used to develop microsatellites (details in SB-2 Report). The resulting 854 progenies from 29 different crosses were tested for resistance to *Z. subfasciatus* (results in the 2002 Bean Entomology Report). In 2003, we reconfirmed levels of resistance of the best progenies in replicated nurseries in the laboratory. Results (**Table 6**) confirmed previous results, with 55 of the highly resistant lines showing very high levels of resistance to the Mexican bean weevil. There was absolute correspondence between the presence of arcelin and resistance to the insect.

As part of the on-going collaborative project with the University of Ghent, we tested 11 arc-5 and six arc-1 homozygous transgenic *P. acutifolius* lines. All were very susceptible to *Z. subfasciatus* in replicated tests (Table 7), possibly because the arcelin gene is not expressing itself.

d	develop a DNA-based molecular marker for the presence of arcelin.						
Previous Rating	No. of Lines Tested	Arcelin presence	Percentage of adult emergence	Days to adult emergence	Percentage seeds damaged		
Highly resistant	55	Arc +	7.4 ± 0.18 d	$49.9\pm0.19b$	$27.1 \pm 0.8c$		
Resistant	5	Arc +	$15.5 \pm 0.9c$	$47.2 \pm 0.36c$	$64.1 \pm 3.9b$		
Susceptible	2	Arc –	$94.2 \pm 0.7b$	$36.8 \pm 0.15 d$	$100 \pm 0.0a$		
RAZ 44 ^a		Arc +	$4.6 \pm 0.9e$	$52.1 \pm 0.81a$	15.9 ± 2.1 d		
ICA Pijao ^b		Arc –	97.9 ± 0.16a	$37.2 \pm 0.09 d$	$100 \pm 0.0a$		

Table 6.Levels of resistance to Zabrotes subfasciatus in selected bean lines used to
develop a DNA-based molecular marker for the presence of arcelin.

^a Standard improved resistant check; ^b Standard susceptible check.

Means (\pm SEM) of 4 replications per genotype. Means within a column followed by the same letter are not significantly different at the 5% level by LSD.

Table 7.	Effect of selected bean genotypes on the biology of Zabrotes subfasciatus.	
	Enter of several seam genery pes on the storegy of Enter store should be	

	Days to Adult	Percentage of	Percentage Seeds
Genotype	Emergence ^a	Emergence ^b	Damaged ^c
5a ⁺ 01-01	33.7 ± 0.11 hi	92.9 ± 1.4a	$100.0 \pm 0.0a$
5a ⁺ 01-04	34.3 ± 0.51 hi	$72.9 \pm 3.9c$	$78.1 \pm 5.7c$
5a ⁻ negative control	32.4 ± 0.18 I	$97.9 \pm 0.7a$	$100.0\pm0.0a$
5bc ⁺ 176-10	$37.3 \pm 0.19e$	96.4 ± 0.5a	$100.0 \pm 0.0a$
5bc ⁻ 176-10	33.7 ± 0.41 hi	95.9 ± 2.1a	$100.0 \pm 0.0a$
5bc ⁺ 176-15	35.1 ± 0.19 fg	96.6 ± 1.4a	$100.0 \pm 0.0a$
5bc ⁻ 176-15	$34.4 \pm 0.37 hi$	97.3 ± 1.5a	$100.0 \pm 0.0a$
5bc ⁺ 186-PI-2R	$39.7 \pm 0.23 d$	95.9 ± 1.4a	$100.0 \pm 0.0a$
5bc ⁻ 186-PI-2R	34.0 ± 0.17 hi	97.9 ± 1.1a	$100.0 \pm 0.0a$
5bc ⁺ 188-PI-2R	38.8 ± 0.23 de	95.8 ± 1.6a	$100.0 \pm 0.0a$
5bc ⁻ 188-PI-2R	$34.7 \pm 0.19 h$	95.2 ± 1.3a	$100.0 \pm 0.0a$
Arc1 ⁺ 182-11	34.1 ± 0.19 hi	95.1 ± 1.5a	$100.0 \pm 0.0a$
Arc1 ⁻ 182-11	$32.4 \pm 0.09i$	$94.8 \pm 0.8a$	$100.0 \pm 0.0a$
Arc1 ⁺ 182-6	$37.1 \pm 0.28 \text{ef}$	82.5 ± 1.6b	$100.0 \pm 0.0a$
Arc1 ⁻ 182-6	33.8 ± 0.21 hi	95.4 ± 1.6a	$100.0 \pm 0.0a$
Arc1 ⁺ 186-TR	40.4 ± 0.26 d	$66.0 \pm 4.5 d$	$100.0 \pm 0.0a$
Arc1 ⁻ 186-TR	38.4 ± 0.44 de	$82.5 \pm 6.8b$	$91.8 \pm 1.6b$
TB1 wild type	33.2 ± 0.19 hi	$97.5 \pm 0.3a$	$100.0 \pm 0.0a$
PI440795	34.2 ± 0.18 hi	$96.9 \pm 0.4a$	$100.0 \pm 0.0a$
EMP 175	33.0 ± 0.22 hi	$97.0 \pm 1.2a$	$100.0 \pm 0.0a$
RAZ 2	$51.7 \pm 1.35c$	$9.8 \pm 3.2e$	$30.5 \pm 7.6e$
Ica Pijao 'Ghent'	33.5 ± 0.15 hi	97.1 ± 0.7a	$100.0 \pm 0.0a$
RAZ 44	$50.8 \pm 1.48c$	$6.4 \pm 0.8 \mathrm{ef}$	$32.1 \pm 5.1e$
G 12882 Arc 1	$51.1 \pm 0.94c$	$7.5 \pm 1.4e$	$26.2 \pm 5.7e$
G 02771 Arc 5	$56.4 \pm 3.79b$	$1.1 \pm 0.3 f$	$4.2 \pm 1.3 f$
G 12952 Arc 4	59.5 ± 0.55a	$10.8 \pm 1.5 e$	$32.1 \pm 4.6e$
RAZ 136	$50.3 \pm 0.66c$	$5.4 \pm 0.7 ef$	$29.7 \pm 3.3e$
ICA Pijao 'CIAT'	33.3 ± 0.08 hi	$97.6 \pm 0.3a$	$100.0 \pm 0.0a$

^a Means \pm SEM of 5 replications per genotype. Means within a column followed by the same letter are not significantly different by LSD. ANOVA testing for differences among genotypes: F = 113.2; df = 27, 107; P < 0.001.

Means ± SEM of 5 replications per genotype. Means within a column followed by the same letter are not significantly different by LSD. ANOVA testing for differences among genotypes: F = 121.3; df = 27, 108; P < 0.001 on data transformed to arcsine square root of proportion.

^c Means \pm SEM of 5 replications per genotype. Means within a column followed by the same letter are not significantly different by LSD. ANOVA testing for differences among genotypes: F = 193.7; df = 27, 108; P < 0.001 on data transformed to arcsine square root of proportion.

Contributors: S. Prieto, J. Valor, C. Cardona, M. Blair.

Leafhopper (Empoasca kraemeri)

In 2003 we screened a total of 867 bean germplasm accessions for resistance to the leafhopper. Those selected in 2002 (42) were reconfirmed in replicated nurseries. Of these, 21 were selected for further testing in 2004. We also gave support to the mainstream breeding activities of the Bean Project by screening a series of nurseries. These included 111 individual plant selections in Andean crosses performed with EMP 250 as a parent. Eighteen were selected for yield testing in 2004. Other tests included progeny row testing of 147 F_3 selections made among 19 populations developed for resistance to leafhopper and BGMV. Selections in Andean types also included 33 F_6 , which were tested in 2003. Of these, 16 lines are being yield-tested at present.

We will highlight the work on evaluation of interspecific *P. vulgaris* x *P. acutifolius* hybrids. Similar to the work with bruchids these progenies were obtained by means of the Double Congruity Backcross technique developed at CIAT. We received and tested 21 progenies (F_2 and F_3) of crosses made with the tepary sources of resistance to leafhopper G 40019 and G 40036. Selected progenies and their reaction to leafhopper are shown in **Table 8**. Seven were rated as intermediate, one as resistant. None was as resistant as the resistant parents. Further testing is in progress.

	interespectite 1 nuscolus vulgaris x 1 nuscolus acuijolius erosses.					
Code	Pedigree ^a	Mean Damage Score	Rating			
A19Y-103 F ₃	V-DCBC x (G40019 x A-DCBC)	6.7	Intermediate			
A36Y-42 F ₃	V-DCBC x (G40036 x A-DCBC)	6.0	Resistant			
A99Y-86 F ₂	V-DCBC x (G40199 x A-DCBC)	7.0	Intermediate			
G36NGP-3 F ₂	G 40036 x A-DCBC	7.0	Intermediate			
KKQ-11 F ₃	V-DCBC x V-DCBC	7.0	Intermediate			
A99Y-15 F ₂	V-DCBC x (G40199 X A-DCBC)	6.5	Intermediate			
G19NGP-3 F ₂	G40019 x A-DCBC	7.0	Intermediate			
G36NGP-9 F ₂	G40036 x A-DCBC	7.0	Intermediate			
	Che	ecks				
G 40019	Resistant P. acutifolius accession	5.0	Resistant			
G 40036	Resistant P. acutifolius accession	4.5	Resistant			
G 40119	Resistant P. acutifolius accession	5	Resistant			
G 40016	Susceptible P. acutifolius accession	9	Susceptible			
G 40056	Susceptible P. acutifolius accession	9	Susceptible			
EMP 250	Resistant EMP line	5.5	Resistant			
BAT 41	Standard susceptible P. vulgaris check	9	Susceptible			
ICA Pijao	Standard resistant P. vulgaris check	6.5	Resistant			

Table 8.Resistance to Empoasca kraemeri in selected F2 and F3 progenies derived from
interespecific Phaseolus vulgaris x Phaseolus acutifolius crosses.

^a V-DCBC, double congruent hybrid with P. vulgaris cytoplasm; A-DCBC, double congruent hybrid with P. acutifolius cytoplasm.

Contributors: J. M. Bueno, C. Cardona, A. Mejía, J. Tohme.

Developing germplasm resistant to insects

For details of breeding activities, please refer to section 2.2.1. We will highlight results of the work trying to develop Andean type beans (crosses with PVA 773 and CAL 143) with improved tolerance to the leafhopper, *Empoasca kraemeri*. Lines selected for lower damage scores and higher reproductive adaptation scores in previous years performed relatively well under heavy (up to 7 nymphs per leaf, seasonal average) leafhopper infestation (**Table 9**). Another set of lines derived from crosses between EMP 250 and PVA 773 or CAL 143 also performed well, certainly better than the very susceptible preferred Andean parents (Figure 1). Given that susceptibility to leafhopper is usually very high in large-seeded Andean beans, these results indicate that substantial progress has been made in incorporating resistance to leafhopper in these types of beans.

	Damage scores	Nymphs per	Yield (k	(g/ha	Percentage	Susceptibility
Line	50 DAP ^a	leaf 50 DAP	Unprotected	Protected	loss	index
]	Lines derived fr	om the EMP 25	0 x PVA 773	cross	
4-1-11	5.2	3.7	1260	2102	39.9	0.81
4-11-8	5.3	2.4	522	1715	69.0	1.21
4-11-5	5.4	4.9	973	2327	58.1	0.97
4-11-14	5.3	3.0	854	2980	71.3	1.02
4-12-9	5.7	6.8	733	2168	65.9	1.10
4-12-10	5.7	4.7	708	1378	48.5	1.12
4-17-18	5.6	2.9	909	2039	55.3	0.99
4-18-1	5.3	2.8	989	2089	52.8	0.95
4-18-5	5.1	3.3	947	1668	43.2	0.96
]	Lines derived fr	om the EMP 25	0 x CAL 143	cross	
5-9-1	5.2	2.8	750	1930	60.9	1.10
5-14-4	5.4	5.0	645	2167	70.2	1.12
5-25-3	5.0	3.5	894	2356	61.9	1.00
5-25-6	5.4	4.7	927	2194	57.9	0.99
5-26-9	5.4	3.8	889	2041	56.3	1.00
			Checks ^b			
CAL143 (S)	6.0	1.0	370	2215	83.3	1.24
PVA773 (S)	5.9	1.4	379	2028	81.1	1.26
EMP250 (R)	5.1	3.0	1486	2847	47.6	0.79
EMP228 (R)	5.6	3.7	1123	1889	40.3	0.86
PIJAO (T)	5.0	5.6	1483	2473	40.0	0.76
LSD 5%	0.25	0.52	290.6	491.8		

Table 9. Leafhopper resistance in selected Andean bean lines.

^a DAP, days after planting; ^b S, susceptible, T, tolerant, R, resistant.

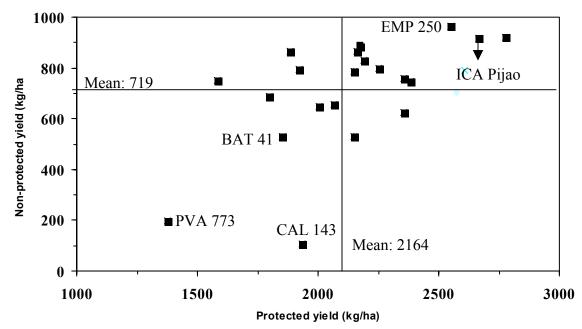
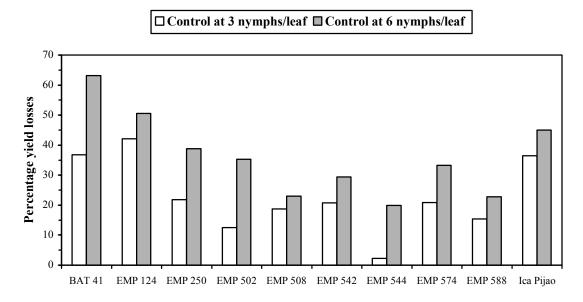



Figure 1. The relationship between protected and non-protected yield in selected Andean bean lines bred for tolerance to leafhopper. PVA 773 and CAL 143 are susceptible parents. EMP 250 is the tolerant parent. BAT 41 and Pijao (both Mesoamerican) are susceptible, and tolerant checks, respectively.

Contributors: J. M. Bueno, C. Cardona, M. Blair.

Tolerance to leafhopper studies

Studies aimed at measuring progress in incorporating tolerance to leafhopper continued in 2003. On this occasion we measured the response of selected EMP lines (bred for leafhopper resistance) to two levels of infestation (3 and 6 nymphs per leaf) obtained by exercising chemical control at pre-established action levels. In terms of percentage yield losses, new bred lines (the EMP 500 series) performed better at all levels of infestation than the improved checks EMP 124 and EMP 250, and better than the standard tolerant check, ICA Piajo (Figure 2). At very high levels of infestation (6 nymphs per leaf) average yield losses in EMP lines was above the 30% level, meaning that even tolerant materials would benefit from integration with chemical control exercised at pre-established action levels.

Figure 2. Yield losses in selected EMP lines and checks (BAT 41, ICA Pijao) at two levels of infestation with the leafhopper *Empoasca kraemeri*.

Contributors: J.M. Bueno, C. Cardona.

BSc, MSc or PhD candidates supervised in 2003

Juan Miguel Bueno (National University), M.Sc. Thesis on Sampling methods for whiteflies.
Maria Fernanda Montenegro (National University), B. Sc. Thesis on Management of whiteflies.
Sergio Prieto (National University), B. Sc. Thesis on resistance to Mexican bean weevil.
Andrea Frei (ETH University, Switzerland), Ph.D. Thesis on resistance to *Thrips palmi* (terminated).

Progress toward achieving output milestones

- Identification of sources of resistance, understanding of mechanisms of resistance to insects, and development of insect resistant bean lines contribute to the mainstream breeding objectives of the Bean Project.
- > Insect resistant beans may be basic components for management of insect pests in beans
- > The development of molecular markers for pod weevil, thrips, and bruchids should facilitate breeding for resistance.

Publications

Manzano, M. R., J. C. van Lenteren, and C. Cardona. 2002. Searching and oviposition behavior of *Amitus fuscipennis*, a parasitoid of the greenhouse whitefly. J. Appl. Ent. 126: 528-533.

Manzano, M. R., J. C. van Lenteren, and C. Cardona. 2003. Influence of pesticide treatments on the dynamics of whiteflies (Homoptera: Aleyrodidae) and associated parasitoids in snap bean fields. Biocontrol 48: 1-9.

- Frei, A., H. Gu, J. M. Bueno, C. Cardona, and S. Dorn. 2003. Antixenosis and antibiosis of common beans to *Thrips palmi* Karny (Thysanoptera: Thripidae). J. Econ. Entomol. (accepted for publication July, 2003).
- Frei, A., J. M. Bueno, J. Díaz, H. Gu, C. Cardona, and S. Dorn. 2003. Tolerance as a mechanism of resistance to *Thrips palmi* in common beans. Ent. Exp. et Appl. (submitted July, 2003)
- Frei, A., M. W. Blair, C. Cardona, S. E. Beebe, H. Gu, and S. Dorn. 2003. Identification of quantitative trait loci for resistance to *Thrips palmi* Karny in common beans (*Phaseolus vulgaris* L.). Crop Science (submitted September 2003).
- Schmale, I., F. L. Wackers, C. Cardona, and S. Dorn. 2003. Combining parasitoids and plant resistance for the control of the bruchid *Acanthoscelides obtectus* in stored beans. J. Stored Products Res. 39: 401-411.
- Rodríguez, I.; Morales, H.; Cardona, C.2003. Líneas base, dosis diagnóstico y medición periódica de resistencia a insecticidas en poblaciones de adultos e inmaduros de *Trialeurodes vaporariorum* (Homoptera: Aleyrodidae) en el Valle del Cauca. Rev. Col. Entomol. 29(1): 21-27.
- Rodríguez, I.; Durán, I.; Morales, H.; Cardona, C. 2003. "Líneas base, dosis diagnóstico y medición periódica de resistencia a spinosad y carbosulfan en poblaciones de adultos de *Thrips palmi* (Thysanoptera: Thripidae) en el Valle del Cauca. Rev. Col. Entomol. 29(1): 29-34.
- Díaz, J.; Cardona, C.; Bueno, J. 2003. Caracterización de genotipos de fríjol (*Phaseolus vulgaris*) por su resistencia a *Thrips palmi* (Thysanoptera: Thripidae). Rev. Col. Entomol. 29(1): 35-42.
- Osorio, J.; Cardona, C. 2003. Fenología, fluctuación de poblaciones y métodos de muestreo para *Thrips palmi* (Thysanoptera: Thripidae) en habichuela y fríjol. En: Rev. Col. Ent. 29 (1) : 43-50.
- Bueno, J.; Cardona, C. 2003. Umbral de acción para *Thrips palmi* (Thysanoptera: Thripidae) en habichuela en el Valle del Cauca, Colombia. En: Rev. Col. Ent. 29 (1) : 51-56.

Workshops and Conferences

- Rodríguez, I.; Morales, H.; Bueno, J.; Cardona, C. 2003. El biotipo B de *Bemisia tabaci* (Gennadius) (Homoptera: Aleyrodidae) adquiere mayor importancia en el Valle del Cauca.
 En: Resúmenes XXX Congreso SOCOLEN Cali, 17-19 Julio de 2003. Universidad Autónoma de Occidente, Cali Colombia. p.82.
- Tapia, X.; Proaño, M.; Cardona, C.; Rodríguez, I.; Poats, S. 2003. Alternativas para el manejo de la mosca blanca *Trialeurodes vaporariorum* (Westwood) (Homoptera: Aleyrodidae) en fríjol en las comunidades del Valle del Chota, Ecuador. En: Resúmenes XXX Congreso SOCOLEN Cali, 17-19 Julio de 2003. Universidad Autónoma de Occidente, Cali Colombia. p.83.
- Bueno, J.; Rodríguez, I.; Cardona, C. 2003. Alternativas para el manejo de la mosca blanca *Trialeurodes vaporariorum* (Westwood) (Homoptera: Aleyrodidae) en habichuela en el Valle del Cauca. En: Resúmenes XXX Congreso SOCOLEN Cali, 17-19 Julio de 2003. Universidad Autónoma de Occidente, Cali Colombia. p.82.
- Prieto, S.; Cardona, C.; Blair, M.; Muñoz, J. 2003. Marcadores moleculares para selección por resistencia al gorgojo pintado del fríjol, *Zabrotes subfasciatus* (Boheman) (Coleoptera: Bruchidae). En: Resúmenes XXX Congreso SOCOLEN Cali, 17-19 Julio de 2003. Universidad Autónoma de Occidente, Cali Colombia. p.13.

BEAN ENT	FOMOLOGY	71
Activity 1.	Developing germplasm with resistance to pests: Thrips palmi, leafhopper, pod weevil, and bruchids	71