INTRODUCTION

The study of "wild-weedy-crop" complexes along common bean range of distribution in the Americas has shown no preferential gene flow direction in Colombia, Ecuador and Peru (Chacón et al., 2006). We conducted a pilot study in the wild-weedy-crop complex G50879 from Colombia (19, wild; 32 weedy and 34 cultivated), previously evaluated with biochemical markers and SSRs, to test the potential of nuclear SNP markers as an alternate tool for the identification of gene flow events and inference about their direction.

RESULTS AND DISCUSSION

SNP genotyping:
Simultaneous genotyping up to 15 alleles in one single base extension reaction was achieved using a Luminex® flow cytometer equipped with a Luminex XY Platform plate reader (Quintero et al., 2005).

Haplotype inference:
Block partition and haplotype prediction within each block were done using HAP software (Halperin and Eskin, 2004). Both linkage groups were divided in three blocks of limited diversity. 43 SNP haplotypes were observed in the wild-weedy-crop complex: 84% in weedy forms, 77% in cultivated forms and 70% wild forms.

Initial admixture analysis
The admixture coefficient \(M_c \) (Bertorelle & Excoffier, 1998) was calculated, based on haplotype frequencies and the molecular distances between them.

\[M_c = \frac{S.D.}{S.D. + 0.58} \]

\[S.D. = \frac{1}{2} \sum_{i=1}^{n} \left(x_i - \bar{x} \right)^2 \]

\(\bar{x} \) is the average of the \(n \) haplotype frequencies, and 0.58 is the standard deviation calculated based on 1000 resampling events.

\[M_c \] relative contribution from the truly wild parental population
\[S.D. \] standard deviation

SNP haplotypes frequency in the complex
Differences between haplotype frequencies allowed the identification of those haplotypes that described better each of the parental biological forms. In most cases, haplotypes were classified as wild types when their frequency was at least twice the observed in cultivated forms, and vice versa.

Admixture model
Parental truly-wild and truly-cultivated populations were selected based on the coincidence of their phenotype with their genotype (SNP haplotypes). After admixture events, they could give rise to three hybrid subpopulations in this wild-weedy-crop complex.

A more accurate estimation of admixture coefficients (S.D. values close to zero) in the hybrid subpopulations was calculated.

<table>
<thead>
<tr>
<th>Cultivated (hybrid)</th>
<th>Mw</th>
<th>SD</th>
<th>Mc</th>
<th>SD</th>
<th>Mc/Mw</th>
<th>Gene flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.3237</td>
<td>0.0501</td>
<td>0.6766</td>
<td>0.0495</td>
<td>2.1</td>
<td>C→W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weedy (hybrid)</th>
<th>Mw</th>
<th>SD</th>
<th>Mc</th>
<th>SD</th>
<th>Mc/Mw</th>
<th>Gene flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4458</td>
<td>0.0436</td>
<td>0.5518</td>
<td>0.043</td>
<td>1.2</td>
<td>C+W</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wild (hybrid)</th>
<th>Mw</th>
<th>SD</th>
<th>Mc</th>
<th>SD</th>
<th>Mc/Mw</th>
<th>Gene flow</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.4669</td>
<td>0.055</td>
<td>0.5281</td>
<td>0.0588</td>
<td>1.1</td>
<td>C+W</td>
</tr>
</tbody>
</table>

In the weedy and wild-hybrid subpopulations, the contribution of truly-cultivated was slightly higher than that of truly-wild meaning that both gene flow directions are possible and almost symmetric. For the cultivated-hybrid, the contribution of truly-cultivated was twice that of the truly-wild, suggesting more pollen flow from the cultivated types. Although we have looked only at one wild-weedy-crop complex from Colombia our results show that SNP haplotypes are informative enough to provide evidence about gene flow dynamics in P. vulgaris.

REFERENCES

ACKNOWLEDGEMENTS
Special thanks go to Drs Perry Cregan and Charles Quigley (Soybean Genomics Lab-USDA) who kindly shared with us the information and primers of the soybean SNPs they discovered.

To the “Ginés-Mera memorial fellowship fund” for postgraduate studies in biodiversity” for partial funding of this research and to Myriam C. Duque for helpful comments.