Detection of SRR Markers Associated with Resistance to Cassava (Manihot esculenta Crantz) Bacterial Blight (CBB) in Colombia.

(1) International Center for Tropical Agriculture (CIAT) A.A. 6713, Cali, Colombia; (2) Universidad de Los Andes, Bogotá, Colombia.

INTRODUCTION

Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Xam), is a major disease of cassava (Manihot esculenta Crantz) in Africa and South America causing losses between 12 and 90%. Planting resistant varieties is the preferred method of disease control. Previous studies on the genetics and number of disease loci involved in host plant resistance to CBB revealed many QTLs that control disease resistance (Jorge et al. 2000; Jorge et al. 2001). In the present work, the evaluation of more than 400 simple sequence repeats (SSR) detected one SSR marker associated with CBB resistance in a segregating backcross family in which disease symptoms were evaluated under field conditions. The association between SSRY 65 and CBB resistance in field was obtained with a significance level $\mathrm{P}<0.05$.

MATERIALS AND METHODS

Characterizing F1 progeny of four backeross families. The progeny of four cassava BC 1 families was characterized for their reaction to CBB under natural disease pressure in Villavicencio, Colombia.

All four families have a common recurrent male parent, which is resistant to many strains of Xam (Table 1).
The families' reactions to CBB were analyzed, using a frequency distribution graph for each family, based on an average of 6 plants per plot, and a disease severity scale of 1.0 to 5.0 , where 1.0 indicates plants with no symptoms and 5.0 death plants. Resistant plants scored between 1.0 and 2.0 on the scale, intermediate between 2.5 and 3.0, and susceptible more than 3.5 .
Evaluating simple sequence repeat markers linked to bacterial blight resistance in cassava. One of the four BC 1 families was selected based on its high standard deviation of disease response within the family for Bulk Segregant Analysis (BSA) towards the of disease response within the family for Bulk Segregant Analysis (BSA) towards the
identification of SSR markers linked to CBB resistance. Bulks were constituted from 11 identification of SSR markers linked to CBB resistance. Bulks were constituted from 11
resistant genotypes (a score of 1.0 to 2.0) and 11 susceptible genotypes (a score of 4.0 to resistant genotypes (a score of 1.0 to 2.0) and 11 susceptible genotypes (a score of 4.0 to
5.0). Bulked Segregant Analysis (BSA) provides a method of focusing on regions of interest with molecular markers as against analyzing the entire genome (Michelmore, 1991).

M Nga 19 and contrasting bulks (11 individuals in each one) were evaluated, using 486 microsatellite primers, the SSR markers have been described elsewhere (Mba et al 2001; CIAT 2001).
Opening of the Bulks. Individuals from resistant and susceptible bulks were evaluated with candidate primers which showed polymorphism between bulks.
Candidate primers that showed polymorphisms between resistant and susceptible individuals were considered potential SRR marker associated with resistance. They were evaluated in the whole population to confirm association between SSR marker and CBB resistance in the field.
Association between molecular marker and plant response to CBB. Association between SSR molecular marker and CBB resistance in the field was determinated by a
Chi-square Independence test (SAS procedure, SAS Institute, 1999-2001). An Chi-square Independence test (SAS procedure, SAS Institute, 1999-2001). An
association was considered significant if the probability of the null hypothesis (no association) was less than $\mathrm{P}<0.05$

RESULTS

Fig. 1. Frequency distribution of disease response to Xanthomonas axonopodis pv.manihotis in the $\mathrm{BC1}$ family GM 315 . $\mathrm{SD}=$ standard deviation inside plot.

According to the frequency distribution graphs for CBB resistance, the GM 315 family (Fig. 1) showed the widest segregation for resistance/susceptibility and had the highest standard deviation (0.697) for individuals in each class: 46% of individuals of this family had a score between 2.1 and 2.5 , thus showing intermediate resistance, whereas 6% scored less than 1.5 (i.e., resistant); and 2% scored more than 4.5 (i.e., susceptible). Bulk Segregant Analysis. Bulk segregant analysis of the family GM 315 revealed polymorphism between the parents and bulks with SSR markers (Figs. 2 and 3). A summary of BSA are presented in Table 2.

Polymorphic
between resistant
and bulks

Polymorphic in bulks

Molecular Marker Candidates as SSR marker

Fig. 3. Different types of polymorphism obser

Fig. 4. Primer SSRY65 evaluated in each individual that forms the resistant and susceptible Fig. 4. Primer SSRY65 evaluated in each individual that forms the resistant and sus
bulks in family GM 315. RP: M Nga 19. RB: Resistant Bulk. SB: Susceptible Bulk

Primer SRRY65 showed differences between resistant and susceptible individuals of each bulk (Fig. 4) and it was evaluated in the whole family (GM315) (Fig. 5)

The presence of SSRY65 marker in resistant individuals of GM315 family suggests association with CBB resistance from field evaluations. A probability of $\mathrm{P}=0.007$ association was obtained for association between marker SSRY 65 and field phenotypic data.

CONCLUSION

SSRY65 is a microsatellite marker associated with CBB resistance genes that can be used to differentiate between resistant and susceptible individuals of GM315 family to CBB in field

ACKNOWLEDGEMENTS

\checkmark Cassava Genetics Unit (CIAT)
$\sqrt{ }$ Cassava pathology team (CIAT)
$\sqrt{ }$ Cassava breeding project (CIAT)
\checkmark Myriam Cristina Duque. (Statistician, CIAT)

REFERENCES

CIAT(Centro Internacional de Agricultura Tropical), 2001. Annual Report. Cali, Colombia. Dellaporta, S.L., Wood, J., Hicks, J.R. 1983 . A plant DNA minipreparation: vesion II. Plant Mol Biol Rep 1:19. - Jorge, V., Fregene, M, VElez C.M. Duque, M.C., Tohme, J., Verdier V. V. 2001. . OTL analysis of field resistance to

 Identification of markers Sinked to disease-resistance genes by bulked segregant analysis. A rapid method to detect markers in
specific genomic regions by using secregegnt populations. Proc. Nall Acad. Sci. USA. Vol 88 : 8828 -9832. Genatice $\underset{\substack{\text { Hahn S. K.. Trrey E.R., Leuschner E. K., Akobundu I O., Okali C, Lal R. 1979. Cassava improvement in Africa. Field Crop } \\ \text { Res 2: } 193 \text {-226. }}}{\text {. }}$ SAS Institute. (1999-2001). Soffware release 8.2 (TSMO). Sun OS 5.8 Platform.

