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Predicting Rice Yield Losses Caused by Multispecies Weed Competition
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ABSTRACT rice cropping, such as red rice (a weedy Oryza sativa
L.) and the difficult-to-control junglerice [EchinochloaMonoculture of irrigated rice (Oryza sativa L.) in Latin America
colona (L.) Link]. The situation is often aggravatedhas led to serious weed problems and intensive herbicide use. Yield
when discontinuous irrigation cannot maintain a perma-loss prediction enables the economic analysis of weed control, provid-

ing a basis for strategic use of herbicides and diversified weed manage- nent and weed-suppressive flood. This allows weeds to
ment, but site differences restrict predictions to the environments for emerge in successive flushes, prompting farmers to use
which the models are calibrated. We developed an algorithm for herbicides two to four times during the growing season.
predicting rice yield losses based on early assessments of multispecies Thus, with rice grown almost all year round, and a large
weed infestations emerging in successive flushes within variable crop number of chemicals available, the herbicide load on
stands. Rice was drill-seeded near Palmira, Colombia, at 75, 150, 200, rice soils and waterways must be large.250, and 300 kg ha21, and grown under nonflood intermittent irrigation

A more recent problem resulting from the repeatedfor two growing seasons. Five common weeds were allowed to emerge
use of herbicides has been the development of herbicideat 15, 24, and 30 days after rice emergence (DAE), when farmers
resistance in populations of relevant weeds of rice. Pro-usually decide about early, intermediate, and late herbicide applica-
panil [N-(39,49-dichlorophenyl) propionamide]-resistanttions. Yield losses were predicted using hyperbolic models with inde-

pendent variables describing the mixed-weed infestations in terms of biotypes of junglerice abound in rice areas of Colombia
density (no. of plants m22), leaf area index, dry matter m22, relative and Costa Rica (Fischer et al., 1993; Valverde, 1996).
density [weed/(weed 1 rice)], relative leaf area (RLA), and a visual Increasingly frequent and complex herbicide use to con-
estimate of relative ground cover (RCv). With early weed emergence trol herbicide-resistant weed biotypes has led to the
(15 DAE), weed density accounted poorly (r 2 5 0.77) for yield loss. development of multiple resistance (Valverde, 1996).
Regression fits improved when RLA (r 2 5 0.86) and RCv (r 2 5 0.90) Herbicides, although a much-needed tool, cost Latinwere used as independent variables to describe weed infestations in

American farmers $218 million (U.S. dollars) yearly.terms of the light apportionment between rice and weed canopies.
Early weed control is almost invariably required to man-Measured in terms of RCv, late-emerging (24 and 30 DAE) weeds had
age the generalized weed infestations resulting from thelower effects on yield loss variability (r 2 5 0.69 and 0.59, respectively).
heavy seed rain in most tropical rice fields. The need forAlthough subjective, RCv is easier to estimate than RLA, and was

the best single variable to describe the competitiveness of a mixed- herbicide applications beyond 30 d after rice emergence
weed infestation. An additional variable was needed only when yield (DAE) must be clearly justified. Thus, objective deci-
losses were predicted from weed density. Predictions based on RLA sions on herbicide use, based on cost–benefit analysis,
were further improved (by 36%) when each species’ RLA was mea- are needed to address high production costs, herbicide
sured separately and the model was extended for additive effects of resistance, and other possible effects of herbicide over-
all species. Yield loss predictions using empirical equations cannot use. Such analysis requires an objective method for pre-be extrapolated widely across different locations; however, these data

dicting yield losses based upon early assessments of thesuggest that meaningful independent variables can strengthen the
weed population (Kropff, 1988).usefulness of hyperbolic equations for predicting rice yield losses over

Advisory systems based on short- and long-term eco-a range of situations, such as mixtures of weed species at various
nomic analysis have been developed for various cropsdensities and times of emergence, and different rice seeding rates.
to assist in the selection of weed control alternatives
(Coble and Mortensen, 1992; Lybecker et al., 1991;
Wilkerson et al., 1991; Kwon et al., 1995). Such advisoryRice in Latin America occupies 6.5 million hectares,
packages must rely on accurate equations to predict cropand 20.5 million tonnes of rice are produced in
losses from weed competition. These simple empiricalirrigated systems (FAO, 1997). In tropical Latin Amer-
functions can be more widely adopted than more com-ica, where two or more rice harvests are obtained each
plex ecophysiological competition models. Such mecha-year, weeds are a serious constraint to rice production.
nistic models are helpful in scientific research, becauseSerious weed problems have resulted from continuous
yield losses can be predicted for different weed and crop
growing scenarios (Kropff, 1993), but their parameters
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220, P2O5 at 60, and K2O at 100 kg ha21 were applied in thebeen widely and successfully used to describe the effects
second season.of weed density (no. plants per unit area) on crop yield

The experimental layout sought to generate data for regres-(Cousens, 1985a, 1985b; Kropff and Lotz, 1993; Coble
sion analysis from a wide range of infestations by various weedand Mortensen, 1992).
species emerging at different times and densities (no. plantsRelationships to predict yield losses from weed com- per unit area) within heterogeneous rice stands. In the first

petition have often considered a single weed species season, an experiment was seeded (21 April) on a flat and
emerging at one time, within a uniform crop stand uniform field (102 by 40 m) divided into 15 plots (34 by 8 m)
(Smith, 1988; Dieleman et al., 1995; Van Devender et al., representing random combinations of five rice seeding rates
1997). In real field situations, weed infestations usually (75, 150, 200, 250, and 300 kg seed ha21) with two weed emer-

gence dates, which resulted from maintaining the crop weed-consist of several species present at various densities,
free during 15 or 30 DAE; a weed-free check was included.and emerging at different times. Due to broadcast seed-
A similar experiment was seeded in the second season (8ing, stands of irrigated rice in Latin America usually
October) with the same rice densities combined with one weedlack uniformity. Therefore, a function to predict yield
emergence date (24 DAE) and a weed-free check. A differentlosses must be driven by an independent variable capa-
weed emergence date was chosen for the second season, toble of expressing the competitiveness of multispecies test the applicability across seasons of the equations derived

weed infestation in nonuniform rice stands. Simple den- with data from the first season. The dates of weed emergence
sity counts assign the same value to plants of different represent the times at which farmers usually make decisions
size or shape, failing to account for differences in their for early, intermediate, and late postemergence herbicide ap-
competitiveness. Coble and Mortensen (1992) sought plications. The crop densities were chosen to provide an envi-

ronment with variable rice stands, and represent the range ofto overcome this limitation by weighting the densities
rice densities usually found among rice farms. Within eachof individual species in mixed-weed infestations by a
plot, nine experimental units (4 by 3 m) were selectively placedfactor expressing their relative competitiveness. This
over uniform patches of weed infestation to represent thefactor was derived from single-weed additive experi-
range of weediness in the plot. Weed-free periods were main-ments. A similar approach was applied to irrigated rice
tained by spraying weeds with quinclorac (3,7-dichloro-8-quin-(Fischer and Ramirez, 1993). Simulation studies con-
olinecarboxylic acid) at 0.38 kg ha21 and/or bentazon (3-(1-ducted with an ecophysiological model showed that the methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-diox-

relative leaf area of weeds (leaf area of weeds as a ide) at 1.2 kg ha21, as needed.
proportion of the total leaf area) is more closely related Weed emergence was monitored within six 0.09 m2 rectan-
to yield loss than is density count (Kropff and Spitters, gles randomly placed in the plots. The number of stems, leaf
1991), and thus is likely to be a better descriptor of area, and aboveground biomass of rice and weeds were re-
weed infestation levels. corded 2 wk after the first weed seedlings appeared within a

0.5-m-wide internal border of each experimental unit. At theThe period between crop and weed emergence
same time, the ground covered by the aggregated weed cano-strongly affects weed competitiveness, and can be more
pies was visually estimated for the whole experimental unit,critical than weed density in determining the need for
and expressed as percent of the total area covered by bothpostemergence weed control (Knezevic et al., 1993;
crop and weed canopies. Rice grain yield (mathematicallyKropff, 1988). Modeling has also shown that differences
corrected to 140 g kg21 moisture) was harvested from a 6-m2

in weed emergence dates can account for much of the area within the experimental units.
seasonal variation in yield losses due to weed competi- Regression analysis was performed to relate rice yield losses
tion (Kropff and Lotz, 1993). Modifications of the basic to the observed levels of weed infestation. Four hyperbolic
density–yield loss hyperbola to account for the addi- models were fitted to the data. The first model was proposed
tional effect of the relative time of crop and weed emer- by Cousens (1985a):
gence allowed to address this issue (Cousens et al., 1987;
and Kropff and Spitters, 1991). YL 5

iD
1 1 (iD/a)

[1]
The objectives of this research were to (i) test existing

empirical models to predict rice yield losses based on where YL is percent yield loss, D is weed density, i is the
the early assessment of weed infestations; (ii) develop percent yield lost to each additional weed when D approaches
accurate estimators of the competitive potential of zero, and a is an asymptote corresponding to the maximum
mixed-species weed infestations in irrigated rice; and relative yield loss when D tends to infinity. This model was
(iii) assess how these empirical models and multi species later modified by Cousens et al. (1987) to account for the time
weed competition descriptors can account for crop stand between crop and weed emergence:
variations, and dates of weed emergence.

YL 5
bD

ect 1 (bD/a)
[2]

MATERIALS AND METHODS
where t is relative time of weed and crop emergence, b is theExperiments were conducted at Palmira, Colombia (38309
value of i (Eq. [1]) when t tends to zero, and c is the rate atN, 768219 W, 1000 m elevation; mean growing temperature of
which i decreases when t increases towards infinity. The third23.58C), on a fine-silty, mixed, isohyperthermic Aquic Haplu-
model was also proposed by Cousens (1985b) to deal withdoll soil during two consecutive seasons (April–September
both crop and weed densities:1993 and October–February 1994). Rice ‘Oryzica 1’ (indica

type, 118 d to maturity) seed was broadcast over dry soil, and
incorporated with a disk harrow. Nitrogen at 170, P2O5 at 60, YL 5

gfD
1 1 dC 1 fD

[3]
and K2O at 36 kg ha21 were applied in the first season; N at
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Table 1. Average dry matter of 15-d-old weeds emerging at differ-where C is crop density, and d, f, and g are empirical nonlinear
ent dates after rice emergence (DAE) in two consecutive grow-parameters. The last model is another hyperbola recently pro-
ing seasons in Palmira, Colombia.posed by Kropff and Lotz (1993):

Weed dry matter

YL 5
qD

1 1 [(q/a) 2 1]D
[4] Season 1 Season 2

Weed species 15 DAE 30 DAE 24 DAE
where the independent variable D (L in the original equation)

g m22
is the weed relative area or weed leaf area as a fraction of the

junglerice [Echinochloa colona (L.) 10.4 (2.8)† 0.5 (0.2) 17.3 (2.3)total (crop 1 weed) leaf area, q is the slope of the hyperbola or Link] (Poaceae)
relative damage coefficient (Kropff and Spitters, 1991), and goosegrass [Eleusine indica (L.) 3.7 (1.0) 15.9 (3.4) 1.3 (0.3)
a is the asymptote for maximum yield loss. The equations Gaertn.] (Poaceae)

purple nut sedge (Cyperus rotundus L.) 3.9 (0.4) 8.3 (2.0) 6.2 (1.5)above, and their parameters, were estimated by nonlinear
(Cyperaceae)regression using the curve-fitting module of the SigmaPlot fingergrass (Chloris dandyana C.D. 0.7 (0.2) 8.7 (2.9) 0.1 (0.0)

software (Jandel Scientific, San Rafael, CA). Adams) (Poaceae)
Different independent variables were used with the above eclipta [Eclipta prostrata (L.) L.] 0.2 (0.1) 0.1 (0.1) 0.6 (0.1)

(Asteraceae)models to describe multispecies weed infestation levels: den-
johnsongrass [Sorghum halepense (L.) 0.2 (0.1) 0.7 (0.3) 0.3 (0.1)sity (D), leaf area index (LAI), biomass m22 (B), relative Pers.] (Poaceae)

density [weed/(crop 1 weed)], relative leaf area (RLA), and
Total 3.2 (0.6) 5.7 (0.9) 4.3 (0.6)a visual estimation of the area covered by the vertical projec-

† Values in parenthesis are standard errors of the means.tion of the weed foliage as a fraction of the total area covered
by both the weed and the crop foliage (RCv).

Goodness of fit of the regressions was assessed from the ments would have encountered both weeds too large to
mean square errors and r 2-values. Differences between regres- be practically controlled and late-emerging ($30 DAE)sions for early and late weed emergence, and for first vs.

seedlings with only minor effect on yields (Fig. 1). Nev-second seasons were analyzed using the F-test proposed by
ertheless, late postemergence herbicide applications areChow (1960). For this test, a regression was fit to the data
often applied in response to similar weed emergencecombined for two emergence dates, thus a residual sum of
patterns.squares (S1) was obtained with n1 1 n2 2 k degrees of freedom,

where n is the number of observations and k is the number
of estimated parameters. Following, sums of squares S2 and Descriptors of Weed Infestation and Crop Stand
S3, (with n1 2 k and n2 2 k df, respectively) were obtained
from two separate regressions calculated for each emergence Of the different independent variables tested, D re-
date. Lastly, S4 5 S2 1 S3, with df 5 n1 1 n2 2 2k, and lated poorly to the effects of weed competition, resulting
S5 5 S1 2 S4 were obtained, and the following F-statistic was in regressions with high mean square errors and low r 2

calculated: (Table 3). Thus, weed counts resolved poorly the strong
yield loss differences observed when weeds emerged at

F 5
S5/k

S4/(n1 1 n2 2 2k)
[5] two different times (Fig. 1). Other studies have also

noted that weed counts fail to reveal differences in com-
with k and n1 1 n2 2 2k degrees of freedom. When the com- petitiveness among plants with different sizes and mor-
puted F exceeded the critical value, the hypothesis that both phologies that emerge at different times (Parker and
sets of data could be described by a single regression line Murdoch, 1996; Kropff and Lotz, 1993). Better predic-
was rejected. tions were obtained with descriptors closely related to

the effects of competition, such as weed LAI and B.
Even better regressions resulted when RLA, and RCvRESULTS AND DISCUSSION
were used as independent variables (Table 3). By ex-Dynamics of Weed Emergence, and Yield Loss pressing the relative apportionment of light between
rice and the weeds, these descriptors adequately re-Weed populations consisted mostly of grasses, sedges,

and one broadleaf species (Table 1). Most weeds solved the differences in yield loss resulting from weeds
that emerged at different times (Table 4). Light wasemerged at 15 and 30 DAE in the first season, and at 24

DAE in the second season (Table 2). Weed infestations thus a key resource regulating rice–weed interactions
in this irrigated system.were assessed 15 d after the peak of emergence; an

earlier assessment would have missed a significant por- RCv expresses essentially the same information as
RLA, and is easier to estimate in the field. Also, bytion of the final infestation (Table 2), while later assess-

Table 2. Weed seedlings emerging at different dates after rice emergence (DAE) when rice was kept weed-free for different periods
after emergence in two consecutive seasons at Palmira, Colombia.

Weed emergence
Weed-free

Season period 15 DAE 24 DAE 30 DAE 37 DAE 44 DAE 51 DAE 59 DAE

d no. m22

1 15 18 (7)† 37 (12) 17 (6) 15 ( 6) 7 ( 2) 7 ( 2) —
30 — — 17 (16) 46 (44) 25 (24) 13 (13) —

2 24 — 340 (40) 574 (68) 353 (43) 226 (32) 49 ( 6) 36 (4)

† Values in parenthesis are standard deviations of the means.
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integrating the whole plot area in the mind of the ob-
YL 5 o inRLAn

1 1 (inRLAn/an)
[6]server, RCv may have contributed to reducing sampling

error. Also, visual ratings of cover involve almost inevi-
where n corresponds to the effect of the nth weed spe-tably a subjective estimation of size or volume, which
cies, and RLAn is its relative leaf area. This approachcorrelates with competitiveness (Bussler et al., 1995).
reduced the mean square errors of the regressions ob-Thus, the best yield loss predictions based on a single
tained with Eq. [1] and RLA or RCv as single indepen-independent variable were obtained by describing
dent variables (Table 3) by 36 and 23%, respectively.mixed-weed infestations in terms of RCv (Table 3).

Broadcast seeding of irrigated rice in the tropics oftenHowever, RCv estimates are subjective, and may limit
results in poor stand uniformity, and farmers use variousthe range of users, but objective cover estimates can be
seeding rates to resist weed competition (Fischer andobtained from photographic analysis (Lutman et al.,
Ramirez, 1993). Therefore, a practical yield loss predic-1996) or, in the near future, with advanced digital im-
tion approach must account for variable stands withinaging technology.
and between farms. One such approach could be theAlthough good predictions were obtained with a sin-
use of a yield loss model incorporating crop density asgle independent variable representing the aggregate ef-
an additional independent variable (Model 3). How-fect of all species, species with contrasting morphologi-
ever, this modification did not improve our predictionscal and physiological traits may be best dealt with
when RLA or RCv were used as independent variablesindividually (Fischer and Ramirez, 1993; Kropff and
(Table 3), suggesting that these descriptors were alreadyLotz, 1993; Parker and Murdoch, 1996). Thus, predic-
accounting satisfactorily for the various rice seedingtions based on the aggregate RLA of weeds were further
rates in our experiment.improved when the RLA of each major species in the

weed mixture was recorded separately, and their effect
Time of Crop and Weed Emergenceon yield loss considered additively:

All models described similarly well the hyperbolic
relationships between yield losses and weed infestation
(Fig. 1 and Table 3), with plots of residuals against
predicted yields indicating homogeneous variances
(data not shown). Each of the three weed emergence
events had a distinct effect on rice yield losses (Table 4)
according to an F-test (Chow, 1960) applied to compare
regressions. In the first season, when weeds emerged at
15 DAE, rice yield losses were much larger than those
resulting from weeds emerging 15 d later (Fig. 1). In
the second season, when weeds emerged at 24 DAE,
yield losses were intermediate with respect to those in
the first season (Fig. 2).

The time between crop and weed emergence has been
widely recognized as a key factor regulating weed–crop
interference (Cousens et al., 1987; Kropff and Lotz,
1993; Knezevic et al., 1993). The need to incorporate
this factor in predicting yield losses is relevant to many
rice fields in Latin America, where weeds often emerge
in successive flushes until late in the growing season.
Thus, a hyperbola (Eq. [3]) with an additional term
accounting for the period between crop and weed emer-
gence, and RCv as independent variable, was fitted to
data from the first season. Competition losses occurring
in two seasons, following three dates of weed emer-
gence, were predicted by making t in Eq. [3] equal to
the number of days between crop and weed emergence
(Fig. 2). This was indeed a simplified use of this model,
which for better accuracy should be fitted to a database
with more weed emergence times, but the potential of
this single relationship to describe effects resulting of
complex weed mixtures and emergence patterns is
clearly illustrated. This exercise also demonstrates the
relevance of the period between crop and weed emer-
gence as a major source of variation between seasons,

Fig. 1. Rice yield losses resulting from weeds emerging at 15 (solid notably in Colombia, where irrigated rice grows in rela-symbols) and 30 (open symbols) DAE as predicted by Model [1]
tively stable environments and where weather parame-with (a) weed dry matter or (b) stem density as independent

variables. ters change only moderately over seasons.
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Table 3. Mean square errors (MSE) of regressions fit to data from different periods of weed emergence (in terms of days after rice
emergence, DAE), using three different yield loss prediction models and various descriptors (D ) of multispecies weed infestation as
independent variables.

Model 1 (Eq.) [1] Model 3 (Eq. [3]) Model 4 (Eq. [4])

Season DAE D MSE r 2 MSE r 2 MSE r 2

1 15 Density 140 0.77 135 0.77 152 0.74
Relative density 179 0.70 179 0.70 220 0.63
Leaf area 98 0.85 185 0.72 92 0.86
Relative leaf area 90 0.86 90 0.86 90 0.86
Biomass 102 0.84 140 0.78 102 0.84
Relative biomass 160 0.75 160 0.75 160 0.75
Relative cover 72 0.90 72 0.90 72 0.90

30 Density 121 0.35 165 0.16 125 0.33
Relative density 115 0.38 117 0.37 124 0.33
Leaf area 118 0.36 103 0.45 118 0.36
Relative leaf area 94 0.46 105 0.43 104 0.44
Biomass 121 0.35 114 0.37 121 0.35
Relative biomass 105 0.43 113 0.39 105 0.43
Relative cover 62 0.59 62 0.59 62 0.59

2 24 Density 227 0.44 204 0.50 210 0.48
Relative density 244 0.40 187 0.54 188 0.54
Leaf area 214 0.46 218 0.42 190 0.52
Relative leaf area 150 0.55 163 0.59 163 0.59
Biomass 197 0.51 199 0.48 197 0.51
Relative biomass 166 0.58 166 0.58 166 0.58
Relative cover 90 0.69 90 0.70 92 0.69

† Model 1: Yield YL 5 iD/[1 1 (iD/a )]. Model 3: YL 5 gfD/(1 1 dC 1 fD ). Model 4: YL 5 qD/[1 1 (q/a 2 1)D]. See text for full presentation of
the equations.

CONCLUSIONS costs, injury to surrounding crops, and possible human
and environmental hazards.Realistic hyperbolic yield loss models, driven by vari-

Due to site-to-site variation, yield loss predictionsables describing the competitiveness of multispecies
using empirical equations cannot be extrapolated widelyweed infestations, allow for the economic analysis of
across different locations. Thus, the equations presentedweed management options. These models can also be
in this study are not intended for extrapolation over theused to define economic thresholds of weed infestation,
entire rice area of Colombia. Rather, they represent abut their usefulness often faces concerns about long-
conceptual approach, which suggests that the range ofterm effects, such as the build-up of weed seed in the
prediction with empirical models could be expanded bysoil (Bauer and Mortensen, 1992), or the propagation
detecting and incorporating into the yield loss algorithmof herbicide resistant weeds when subthreshold infesta-
key sources of variation between sites or seasons. Fur-tions are not controlled. Although the magnitude of the

seed rain on most irrigated rice fields in tropical Latin
America (and likewise the paramount need for reducing
herbicide use) may perhaps outweigh such concerns, the
usefulness of yield loss prediction as a component of
decision-support systems goes beyond the judging of
whether or not to spray. Instead, this approach should
guide the selection of economic alternatives to the ex-
cessive use of herbicides, thus preventing the develop-
ment of herbicide resistance in weeds, high production

Table 4. Comparison† of regressions using Model 2 (Eq. [2] in
text) fitted for different weed emergence times. A significant
F-value suggests that the data set is best described by two
independent regressions, one for each weed emergence time.

Time of weed
emergence Residual sums

Independent variable (DAE)‡ of squares df F(2/df)

Relative cover 15 vs. 30 12 752 79 55.9**
15 vs. 24 13 037 81 39.4**
24 vs. 30 6 877 84 3.2*

Relative leaf area 15 vs. 30 30 207 80 124.5**
15 vs. 24 33 842 85 66.8**
24 vs. 30 15 265 89 5.2**

Fig. 2. Rice yield losses predicted with Model [2] with t 5 15, 24 and*,** Significant at the 0.05 and 0.01 probability levels, respectively.
30 DAE (solid lines) fitted to data from the first season (weeds† Chow, G.C. 1960. Tests of equality between sets of coefficients in two
emerged at 15 and 30 DAE), compared with yield losses predictedlinear regressions. Econometrica 28:591–605.
with Model [1] (broken line) fitted to data from the second season‡ Weed emergence at 15 or 30 d after rice emergence (DAE) in Season

1, and at 24 DAE in Season 2. when weeds emerged at 24 DAE.
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