
The common bean has been part of the Great American 
Biotic Interchange: evidence from the study of cpDNA and 

implications for conservation and breeding*.

The common bean has been part of the Great American 
Biotic Interchange: evidence from the study of cpDNA and 

implications for conservation and breeding*.

What do spectacled bears, deers, tree sloths, opossums, oaks, and common beans share in common? During 
the evolutionary history of their respective species in the Americas they have all crossed the Isthmus of 
Panama. North and South America are two land masses that became united only recently (by the late Pliocene, 
or 3.5 to 2 millions years ago; Coates et al. 2004), and their fauna and flora have had a long evolution in 
isolation before the Great American Biotic Interchange (Webb 1997).

The distribution of wild common bean (Phaseolus vulgaris L.) from northern Mexico to northwestern 
Argentina over 8,000 km is a discontinuous one (Freytag & Debouck 2002; Toro et al. 1990), probably 
resulting from local expansions and extinctions of natural populations, over thousands of years, long before 
humankind came into America through Bering (Crawford 1998). Molecular markers uniquely found in the 
wild as compared to the cultivated materials (Khairallah et al. 1992; Koenig et al. 1990; Tohme et al. 1996) 
allow concluding that the wild forms do not derive from the latter by regressive mutations. Such molecular 
markers, not only revealed the two major genepools in the wild (see also Becerra & Gepts 1994), but indicated 
evidence for considering a Pacific genepool (see also Kami et al. 1995), and a North-Andean one; in addition 
there would be reason for seeing the Guatemalan wild forms as distinct from the Mexican ones. Geological 
barriers for the distribution of wild common bean (the Isthmus of Tehuantepec, Lake Nicaragua, and the 
Darien Gap) – a species of the subhumid seasonal montane forests of the Neotropics (Freytag & Debouck 
2002) – and this genetic heterogeneity naturally raise: how did this range of distribution over 8,000 km come 
into being?
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The chloroplast DNA supposedly invariant within a species (see discussion by Soltis et al. 
1992) and here maternally inherited (Corriveau & Coleman 1988) when investigated on 106 
wild and 20 weedy forms for seven non-coding regions reveals fourteen polymorphisms or 
haplotypes (Chacón et al. 2005, 2007). These haplotypes are not distributed at random, 
displaying some continuous (‘L’ in Mexico, Guatemala to Colombia), or localized (‘E’ in 
the Pacific range, ‘H’ in Costa Rica), or disjunct (‘A’ in Mexico and Bolivia) distribution 
(Fig. 1). The haplotypes can also be studied by means of Nested Clade Analysis (Templeton 
et al. 1995) and Mantel test as implemented in ARLEQUIN 2000 (Schneider et al. 2000). 
The haplotypes form a network (Fig.2) linked to the sister species of Phaseoli (Freytag & 
Debouck 2002), P. costaricensis and P. dumosus, through haplotype ‘A’ that can be 
considered as ancestral. The haplotypes can be grouped into one- and two-step nested clades
along rules established by Templeton and co-workers (1987, 1993), resulting into three 
lineages of increased but differential speciation, and likely migration events. The first 
lineage differentiates little but is present in both subcontinents. The second lineage 
differentiates in the Pacific Andean range and from there into Central America. The third 
lineage differentiates in Mexico and then Central America up to Colombia.

Using ITS sequences retrieved from GenBank and divergence age estimates for legumes set 
by Lavin and co-workers (2005), Chacón et al. (2007) estimate that P. vulgaris separated 
from its sister species about 1.3 million years ago, and that the second lineage diverged by 
0.6 million years ago. Gepts et al. (2000) estimated the separation of P. vulgaris from its 
sister species P. coccineus at 2 millions years ago, and the separation of the Mesoamerican
and Andean genepools at 0.5 million years ago.

These results suggest the following points for discussion. First, P. vulgaris separates from a 
cluster of four sister species (= its secondary genepool), confirming early results (Debouck 
1999; Delgado et al. 1999). Second, because of the current location of such sister species, it 
is likely that the separation took place in southern Mesoamerica, with an early migration 
into the Andes, once the Isthmus of Panama was established (as did Quercus, Alnus and 
Juglans; Gentry 1982). Third, another migration took place later from the Andean region 
into Mesoamerica (as did Gunnera, Podocarpus, and Weinmannia; Rzedowski 1993). Wild 
common bean continues thus its evolution between two continents, now under heavy 
pressure by humans, and breeders may find in its migrations during the early Pleistocene the 
reasons for their mishaps in breeding (e.g. Gepts & Bliss 1985).
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Figure 1. Geographic distribution and frequency of 14 chloroplast haplotypes (graph pies).
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Figure 2. Unrooted network of chloroplast haplotypes using ARLEQUIN 2000. Observed haplotypes with 
capital letter (in a dotted box when interior), with a black dot when missing (extinct?). One- (indicated 1-1 
and 1-8) and two-step (2-1 and 2-3) clades are indicated by boxes, dotted and solid lines, respectively. 
Number of observed haplotypes are indicated by a figure within each box. The sister species link with the 
root of the network at haplotype ‘A’.
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