MANUEL PRATIQUE : CARTOGRAPHIE NUMÉRIQUE DES SOLS

DIEGO CADENA MAYESSE DA SILVA 2016

MANUEL PRATIQUE DE CARTOGRAPHIE NUMÉRIQUE DES PROPRIÉTÉS DES SOLS

Diego Cadena, Mayesse da Silva

Centre International d'Agriculture Tropicale – CIAT

Ce document aborde les étapes du processus et les outils utilisés dans le cours d'initiation à l'utilisation de la cartographie numérique des sols réalisé par le Centre International d'Agriculture Tropical (CIAT) dans le cadre du projet «Cultures innovantes et technologies agricoles terrestres à Haiti» et financé par le Fond International de Développement Agricole (FIDA – sigle anglais IFAD)

Index

1)	Méthodologie et programmes requis	. 2
2)	Modèle numérique d'élévation (DEM)	. 2
3)	Traitement des variables environnementales	.4
4)	Unités sols-paysajes	12
5)	Élaboration des règles de cartographie utilisées avec SoLIM (Soil Land Inference Model)	13
6)	Création de cartes modèles avec SoLIM	15
7)	Générer des cartes des propriétés des sols	22
8)	Validation	23
9)	Stratégie d'échantillonage	24
10)	Bibliographie	25

1) Méthodologie et programmes requis

Dans ce document sera présenté une méthodologie utilisant la logique diffuse pour la cartographie numérique des sols (Zhu,1997 ; Ashtekar et av 2014) pour déterminer la variabilité spatiale des propriétés du sol selon le modèle SCORPAN développé par McBratney et av 2003).

Logiciel	Source
SAGA-GIS	http://www.saga-gis.org/en/index.html
Q-GIS	http://ggis.org/es/site/
SoLIM	http://SoLIM.geography.wisc.edu/software/downloadpage.htm
Excel/Open office	https://www.openoffice.org/es/descargar/
R	https://cran.r-project.org/bin/windows/base/
R- Studio	https://www.rstudio.com/products/rstudio/download/

Dans le tableau ci-dessous, les programmes utilisés lors de la mise en œuvre :

2) Modèle numérique d'élévation (DEM)

- 1. Correction du DEM
 - Etape 1. Projection

Le système de référence devrait être défini comme WGS84/UTM Zone 18 N, id: 32618. Pour changer de projection on doit ouvrir et sauvegardez les configurations suivantes :

- Sélectionner l'option Save Vector Layer As....
- Sélectionner le type de format shp, le dossier de destination et ouvrez la fenêtre de CRS

💋 Save v	ector layer as		2 X					
Format	Format ESRI Shapefile							
Save as	e as D:/Haiti/Data_GIS_Haiti/Proyectados/Haiti all roads.shp Browse							
CRS	Selected CRS (EPSG:4326, WGS 84)							
Encoding	Encoding System							
Save	e only selected features							
Sele	ect fields to export and their	export options						
🗙 Add	saved file to map							
Symbolo	ogy export	No symbology	-					
Scale		1:50000	× v					
▼ Geo	metry							
Geom	etry type	Automatic	-					
Fo	rce multi-type							
In Inc	Include z-dimension							
			-					
		OK Cancel	Help					

Dans la fenêtre Coordinate Reference System Selector inscrire le code de référence pour Haïti 32618.

Select the coordinate reference system for the vector layer coordinate reference system.	or file. The data points will b	e transformed from the
Filter 32618		6
Recently used coordinate reference systems		
Coordinate Reference System	Authority ID	
WGS 84 / UTM zone 18N	EPSG:32618	
Coordinate reference systems of the world		Hide deprecated CRSs
Coordinate reference systems of the world Coordinate Reference System	Authority ID	Hide deprecated CRS
Coordinate reference systems of the world Coordinate Reference System Universal Transverse Mercator (UTM)	Authority ID	Hide deprecated CRS
Coordinate reference systems of the world Coordinate Reference System Universal Transverse Mercator (UTM) UNKS 84 / UTM zone 18N	Authority ID EPSG:32618	Hide deprecated CRS
Coordinate reference systems of the world Coordinate Reference System <i>Duriversal Transverse Mercator (UTM)</i> WGS 84 / UTM zone 18N	Authority ID EPSG:32618	Hide deprecated CRS
Coordinate reference systems of the world Coordinate Reference System Universal Transverse Mercator (UTM) UNGS 84 / UTM zone 18N Selected CRS: WGS 84	Authority ID EPSG:32618	Hide deprecated CRSs
Coordinate reference systems of the world Coordinate Reference System Universal Transverse Mercator (UTM) UNGS 84 / UTM zone 18N Selected CRS: WGS 84 +proj=longlat +datum=WGS84 +no_defs	Authority ID EPSG:32618	Hide deprecated CRSs

Etape 2. Correction DEM

DEM (Digital Elevation Model en anglais) est un modèle numérique avec de l'information d'élévation, pour sa correction, il est nécessaire de prendre en compte que des dépressions peuvent se présenter et elles doivent être corrigées. Cela peut être fait depuis QCIS ou directement avec SAGA, les deux étant liées depuis QGIS, comme l'extension TAUDEM qui permet une correction en ultime recours.

DEM sans dépressions

D'entrée il est nécessaire d'utiliser le DEM, afin d'obtenir au final un DEM sans dépression ou ondulations.

L'utilisation QGIS nous dirige vers la barre d'outils, puis il faut sélectionner

Processing /Toolbox / SAGA Geoalgorithms / Terrain Analysis - Hidrology / Fill sink

De manière identique cela est possible avec SAGA en utilisant le cheminement suivant.

Saga GIS: Geoprocessing / Terrain Analysis / Processing / Fill sink

Seoprocessing Window ?				
Load Tool Library				
Find and Run Tool		×		
Climate Database File Garden Grid Imagery Projection Shapes Simulation Spatial and Geostatistics TIN	, .274987y			
Table Terrain Analysis	+ Char	nnels >	r.	
Visualization Fill Sinks (Planchon/Darboux, 2001)	Clim Hyd Ligh Mor	rology > ting >		
ares	Prep	processing +	Burn Stream Network into DEM	
System COBC Sol	Prof	iles 🔸	Fill Sinks (Planchon/Darboux, 2001)	
AWD Caracteristicas de los Suelos Soils Care	Slop Terri	e Stability	Fill Sinks (QM of ESP) Fill Sinks (Wang Liu) Fill Sinks XXI (Mang Liu)	
Haiti Data_GIS_Haiti 	Dase	General D Exe	Flat Detection Sink Drainage Route Detection	_

C'est un outil très utile, parce qu'à l'usage il est pratique de travailler avec l'option suppression des dépressions. A travers elles, il n'y aura aucune fuite dans le cas d'une analyse hydrologique à l'aide de cette option qui travaillera de concert avec l'écoulement des eaux de ruissellement. Comme le montre la figure suivante, on constate une augmentation des seuils les plus bas. C'est l'indication de la réaction de l'algorithme de remplissage de dépressions.

Remarque : un autre élément pour la correction des dépressions est l'outil TauDEM (Analyse du terrain à l'aide de modèles numériques d'élévation), lequel s'obtient en complément du « Pic remove » (supprimer); pour supprimer des dépressions et garder la hauteur minimale du modèle numérique d'élévation.

3) Traitement des variables environnementales

Pour le cas d'Haïti il sera utilisé les données climatiques, géologique et topographique disponibles dans le dossier **Terrain Attributes**.

• TOPOGRAPHIE

Représentée par les attributs du terrain (TAs) mis au point et développés dans SAGA-GIS: slope, SAGA weteness index, profile and plan curvature, normalized heigth, valley depth.

Avec SAGA et Q GIS il est possible de calculer les attributs du terrain (Tas) utilisés comme base par le DEM dans les algorithmes. Chacun des paramètres peut se calculer directement avec SAGA ou un par un avec QGIS. Il convient de préciser l'indice d'humidité inférieur d'algorithme sur SAGA Wetness Index. Il doit être calculé à part.

Avec la SAGA, il est possible de calculer à partir de l'outil

Geoprocessing/Terrain Analysis/Basic Terrain Analysis, comme il est indiqué ci dessous.

Après l'ouverture de la fenêtre "Basic Terrain Analysis" il faut renseigner la grille de travail et l'altitude correspondant au DEM déjà corrigé. Il faut cliquer sur OK et il se génère une série d'attributs du terrain où se trouvent ceux qui vont être utilisés : slope (indique l'angle d'inclinaison existant entre le vecteur à la surface d'un point et sa verticale) ; plan curvature (analyse les crêtes et les vallées, les valeurs positives indiquent les contours concave des cellules et les valeurs négatives les contours convexes) ; profile curvature (c'est la courbure de la surface dans le sens de la pente la plus prononcée) et valley depth (permet d'identifier les différentes verticales dans le relief).

🛞 SAG	5A				
File	Geoprocessing Window ?				
i 🖻 🕻					
Manage	er ×	ſ			~
🍬 To	ols 🖻 Data 🕞 Maps		U1. DEM_30m [no sinks] 480000 640000 800000 1 96000		23
🔚 🎞 Tr	ee 📑 Thumbnails				540
D 🔁	ata		N Contraction of the second se		<mark>.2</mark>
	Grids				
Ē	30; 12745x 10766y; 502435.422304x 1923473.274987y		8		8
					080
					3
Data S	Surcos Surcos	ā.,	7	-	
Basic T	errain Analysis		alle alle alle I alle		
	Grid system	3	0; 12745x 10766y; 502435.422304x 1923473.274987y 💌	^	Okay
	>> Elevation	0	1. DEM_30m [no sinks]		
	<< Analytical Hillshading	<	create>		Cancel
	<< Slope	<	create>		
	<< Aspect	<	create>		
	<< Plan Curvature	<	create>		Load
	<< Profile Curvature	<	create>		Save
	<< Convergence Index	<	create>		
	<< Closed Depressions	<	create>		Defaults
	<< Total Catchment Area	<	create>		
	<< Topographic Wetness Index	<	create>	Ξ	
	<< LS-Factor	<	create>		
	<< Channel Network Base Level	<	create>		
	<< Channel Network Distance	<	create>		
	<< Valley Depth	<	create>		
	<< Relative Slope Position	<	create>		
Ξ	Shapes				
	<< Channel Network	<	create>		
	<< Drainage Basins	<	create>		

L'indice d'humidité (Saga Wetness index), peut se calculer depuis la base des géo-algorithmes de SAGA en suivant le cheminement suivant

Tools / Terrain Analysis / Hidrology / SAGA Wetness Index.

La hauteur standard est un autre des indicateurs (Normalized Height) permettant de connaître la hauteur relative du sol et peut être calculée à partir de la base des géo algorithmes de SAGA selon la route suivante

Relative	Heights and Slope Positions				X		
🗉 Dat	= Data Objects						
=	Grids						
Ξ	Grid system		30; 12745x 10766y; 502435.422304x 1923473.274987y		Cancel		
	>> Elevation		02. DEM_30m [no sinks]				
	<< Slope Height		<create></create>				
	<< Valley Depth		<create></create>		Load		
	<< Normalized Height		<create></create>		Save		
	<< Standardized Height		<create></create>				
	<< Mid-Slope Positon		<create></create>		Defaults		
🗉 Opt	tions						
w			0.5				
t			10				
e	e		2				
	Rows	1077					
	Fit nodes						

Tools / Terrain Analysis / Morphometry / Relative Heights and Slope Positions.

De cette manière se consolident les attributs du terrain qui seront utilisés pour connaître le comportement du relief, entre autres éléments. Il est important de tenir compte qu'avec le logiciel SAGA, l'exécution des géo-algorithmes de SAGA wetness index et normalized height prend plus de temps.

Pour l'aider à la visualisation du terrain nous allons générer le hillshade à partir du DEM. Le géo algorithme appliqué dans QGIS pour le calcul de Hillshade est également possible depuis la barre d'outils dans l'option Ráster/Terrain Analysis/Hillshade, comme le montre l'image.

Dans QGIS il est possible de faire des configurations d'éclairage idéal pour un meilleur affichage. Dans ce cas entrer les données suivantes et générer le Hillshade.

Facteur Z = 1

Azimuth = 315

Altitude = 45

💋 Hillshade	
Elevation layer	DEM_30m [no sinks]
Output layer	····
Output format	GeoTIFF 🔻
Z factor	1.0
X Add result to project	
Illumination	
Azimuth (horizontal ang	le) 315.00
Vertical angle	45.00
	OK Cancel

Enfin les attributs du terrain pourront être utilisés à l'étape 4 pour la génération du pôle inférieur des paramètres de la forme du terrain.

• CLIMAT

Pour identifier les variations climatiques comme c'est le cas dans le pays nous allons utiliser l'indice IEP (Indice d'Efficacité des Précipitations) – PEI (Precipitation Effectiveness Index) en anglais.

Création du PEI

Thornthwaite (1931) crée le concept d'indice d'efficacité des précipitations (PEI), indice qui représente l'efficacité de la croissance des plantes selon les estimations de l'humidité ; il se calcule à partir des valeurs mensuelles de précipitations et d'évaporation. L'évaporation est représentée en terme de température.

$$PEI = \frac{P}{E} = 11.5 \left(\frac{P}{T - 10}\right)^{\frac{10}{9}}$$

D'où : P = précipitation mensuelle en pouces (inches) et T = température moyenne en degré ° F

Étapes à suivre pour le calcul du PEI en Studio R

Au départ, nous avons installé et appelé les bibliothèques pour l'analyse de données spatiales (raster, sp) dont nous avions besoin dans ce cas:

Par la suite nous avons consulté les archives raster sous la direction des dossiers de stockage créés précédemment.

Exemple: Est indiqué dans ce cas la variable des précipitations directement dans le dossier de stockage, dans lequel chacun des raster contient le nom **"preci_month_"** rangée de 1 à 12 correspondant au nombre de mois dans l'année, ainsi que l'indicatif du format tif..

preci=ráster(paste("Dir.../preci_month_",i,".tif",sep=""))

Equation IEP.PEI, Thornthwaite (1931) : en reprenant le calcul ont procède à la résolution de l'équation en tenant compte:

- la température doit être en °F (Fahranheit) > 32 + (Tmax or Tmin in °C* 1.8)
- la précipitation en pouces (inches) > Preci (mm) * 0.0394
- on doit prendre en compte la température médiane > (Tmax + Tmin)/2

Poursuivant avec le processus on applique l'équation (tenir compte que 10/9 = 11.1 et que l'on stocke les archives destinées au dossier créé précédemment avec la commande *writeRáster*, comme il est indiqué par la suite :

En exécutant le code on obtient le PEI mensuel, durant l'exécution du code on observe le symbole de charge R <a> qui indique que le processus a été accepté, pour finir on procède à l'addition des PEI accumulés au cours de l'année.

In fine on réalise une moyenne de l'indice PEI pour connaître le comportement annuel de celuici en additionnant la somme les PEI mensuels depuis QGIS avec la mise en œuvre de l'outil *Ráster* > *Ráster Calculator*.

Raster bands			Result la	iyer					
pei_month_10@	D1		Output la	yer [
pei_month_1@1 pei_month_12@1 pei_month_2@1			Output fo	Output format GeoTIFF					
			Current	layer extent					
nei month 4@	1								
pei_month_5@	1		X min	502420.42230		XMax	884920.42	230	
pei_month_6@	1		Y min	min 1923458.27499		Y max	x 2246558.27499		
pei_month_7@	1		1						
pei_month_8@	1		Columns	1275	-	Rows	1077		
per_monur_s@	-		Output C	RS	Selected CRS (EPSG:32618	WGS 84 / 1	лтм 🗕 🚳	
			X Add r	esult to project					
+	•	sqrt	COS	sin	tan	log)10	(
-	/	^	acos	asin	atan		n)	
<	>	=	!=	<=	>=	A	D	OR	
Raster calcula	tor expression								
pei_month_1@1	L" + "pei_month	2@1" + "pei_mont	h_3@1" + "pei_mon	th_4@1" + "pei	month_5@1"	+ "pei_month	n_6@1" +		
pei_month_7@1	L" + "pei_month_	8@1" + "pei_mont	h_9@1" +"pei_mont	h_10@1" + "pe		" + "pei_mor	th_12@1"		

Après avoir obtenu le comportement annuel il est possible de classer la région en fonction de son rang car l'indice correspond à la classification climatique de Thornthwaite (1931).

Tableau : Classement des régions climatiques Thornthwaite (1931).

PE Index	Climate
More than 128	Wet
64 - 127	Humid
32 - 63	Sub-humid
16 - 31	Semi-arid
Less than 16	Arid

Selon la classification des régions climatiques de Thornthwaite (1931), tableau 1 ; nous avons exécuté le processus de classification utilisant QGIS comme décrit par la suite :

- Ouvrez la boîte de dialogue Propriétés, faites un clic droit dans l'arbre et sélectionnez l'option Propriétés.
- Change à l'onglet style.
- Modifier le type de convertisseur à Singleband pseudocolor et utiliser les options présentées par défaut.

💋 Layer Properties - Annu	ial_mean_PEI	Style	P # 2	20100			l	φ S	8
🔀 General 🗸	Band rende	ring							P
🐳 Style	Render type	Singleband	d pseudocolor 💌						
Transparency B	and B	land 1 (Gr	ay)					•	
👜 Pyramids	м	in		8.72956	Max	3	9.9318		
Histogram	Load min/n	nax value	25						
(1) Metadata	nterpolation	inear						•	
Legend C	olor F	Random co	lors	-	Edit	Invert			
L	abel unit								
M	tin / max Es	stimated c	umulative cut of fu	II extent.					
	Value	Color	Label						
	8.73 24.3		8.73 24.3						
	39.9		39.9						
м	lode Equal inte	erval 💌					Classes	3	
	Classify	÷	- 2						
	Clip out of ra	ange value	s						Ð
	Style 👻				ОК	Cancel	Apply	Help	

• Cliquez sur le bouton Classer pour générer un classement par couleur nouvelle et cliquez sur Accepter pour appliquer ce classement PEI.

4) Unités sols-paysages

Les variables topographiques et climatiques générés précédemment plus la carte de la géologie seront combinées pour créer des unités sols-paysages qui seront utilisées dans les étapes suivantes. Le TAs seront regroupés selon la forme du paysage par le biais du clustering. L'analyse du groupement ou le clustering est l'affectation d'une série d'observations en sous-ensembles (appelés grappe ou cluster) de manière à ce que les observations du même groupe soient similaires dans un certain sens. Grâce au logiciel SAGA, sous le cheminement suivant on génèrera le Clustering de regroupement pour les attributs du terrain.

Tools /Imagery / Clasification /K- Means Clustering for Grids

Les attributs du terrain utilisés sont :

- ✓ Slope
- ✓ Plan Curvature
- ✓ Profile Curvature
- ✓ SAGA wetness index
- ✓ Normalized Height
- ✓ Valley Depth

🍬 Tools 🔁 Data 🕼 Maps	K-Means Clustering for Grids	
IM Tool Libraries ⊕ ♥ Climate	Data Objects	
æ ় Garden æ � Grid	Grid system	30; 12745x 10766y; 502435.422304x 1923473.274987y
🕂 🔖 Imagery	>> Grids	7 objects (Slope, Plan Curvature, Profile Curvature, SAGA_Topograph
Classification Confusion Matrix (Polynons / Grid)	<< Clusters	<create></create>
Sconfusion Matrix (Two Grids)	Tables	
	<< Statistics	<create></create>
- * K-Means Clustering for Grids	Options	
Supervised Classification for Grids	Method	Combined Minimum Distance / Hillclimbing
Supervised Classification for Snapes	Clusters	10
	Maximum Iterations	0
🗄 🗇 Maximum Entropy	Normalise	
DenCV	Update Colors from Features	

Finalement on obtient le cluster (grappe) avec l'information des attributs de manière à ce que les formes du terrain convergent entre elles, indiquant les zones de plus grand regroupement en vertu de la similitude et la distance. En terminant le processus on indiquera pour chaque groupe les indicateurs d'écart-type et dans ce cas ont a généré 5 clusters (grappes). A partir de ce point, l'information est classée et organisée sous la zone d'études, la carte est réduite parce que les informations ne s'étendent pas sur l'ensemble du territoire national. Afin d'unifier les facteurs climatiques, les données topographiques et géomorphologiques de la zone d'étude, les informations se trouveront dans le dossier, **Data Les Cayes.**

5) Élaboration des règles de cartographie utilisées avec SoLIM (Soil Land Inference Model)

SoLIM génère des cartes du terrain basé sur les règles et la logique diffuse en adoptant une approche basée sur les connaissances nécessaires pour prédire les valeurs similaires. Les deux entrées fondamentales pour SoLIM sont : les données sur les variables environnementales sélectionnées (covariables) en rapport avec les conditions du sol dans la zone (stockés dans la base de données SIG) et l'expertise (règles) qui permet de différencier les différents sols (unité sols-paysages) selon sa relation avec les variables environnementales.

Les règles peuvent être définies de façon différente selon les informations disponibles et les expertises des relations sols-paysages. Pour ce cours, les règles seront élaborées à l'aide de l'outil de statistiques de zone (zone statistique) d'où seront tirées les valeurs moyennes et le détournement des TaS pour chaque unité sols-paysages. Dans ce processus, on utilisera le logiciel SAGA avec le cheminement suivant :

Geoprocessing / Spatial and Geostatistics / Grids / Zonal Grid Statistics

Remarque : Il est nécessaire de disposer de toutes les variables dans la même résolution et la même extension, ce pourquoi il faut réaliser un ajustement Resampling à l'aide de l'outil SAGA. Le cheminement sera le suivant :

Geoprocesing / Grid / Grid System/Resampling, como se muestra a continuación:

Resampling		X
Data Objects		Okay
Grids		
Grid system	30; 1290x 1122y; 600775.823394x 2003874.504822y	Cancel
>> Grids	1 object (Soils_Units)	
Options		
Preserve Data Type		Load
Downscaling Method	B-Spline Interpolation	Save
Target Grid System	grid or grid system	
Grid System	30; 1298x 1139y; 600535.823394x 2003364.504822y 💌	Defaults

En poursuivant l'analyse statistique on obtient finalement le tableau suivant, lequel contient la description des statistiques pour les TAs correspondant à chaque unité sols-paysages. Il est possible d'enregistrer cela au format txt, csv ou dbf. Pour utiliser SoLIM à l'étape 6 uniquement on prendra en compte la moyenne et les attributs de l'écart-type du terrain.

11. Zona	01. Zonal Statistics														
	Soils_Unit	Count UCU	NormalizeN	NormaliMIN	NormaliMAX	NormalMEAN	NormSTDDEV	NormaliSUM	Plan CurvN	Plan CuMIN	Plan CuMAX	Plan CMEAN	PlanSTDDEV	Plan CuSUM	Profile CI
1	11	68	68	0.01145	0.19419	0.048417	0.038071	3.292374	68	-0.09706	0.012346	-0.012041	0.017621	-0.818804	6
2	12	20238	20238	0.022383	0.964386	0.444287	0.186855	8991.48882	20238	-0.246422	0.370005	0.003761	0.022997	76.11266	2023
3	13	11147	11147	0.019186	0.954186	0.232691	0.185745	2593.807799	11147	-0.138632	0.240065	0.001104	0.017176	12.30557	1114
4	14	11744	11744	0.038116	0.961258	0.283706	0.220605	3331.846316	11744	-0.360428	0.253529	0.002272	0.019236	26.679129	1174
5	15	7803	7803	0.056685	0.971278	0.621285	0.181278	4847.888705	7803	-0.29197	0.305188	0.005951	0.020779	46.432776	780
6	16	22591	22591	0.021962	0.956889	0.329351	0.195406	7440.365117	22591	-0.170283	0.304981	0.001585	0.019902	35.806206	2259
7	17	1924	1924	0.143157	0.970111	0.795023	0.133309	1529.624845	1924	-0.057057	0.427423	0.014759	0.024395	28.396625	192
8	18	15672	15672	0.036979	0.971984	0.466046	0.222401	7303.878336	15672	-0.25271	0.280793	0.00333	0.02154	52.18838	1567
9	19	1242	1242	0.019583	0.71865	0.169799	0.107916	210.89037	1242	-0.192963	0.11024	-0.0031	0.01563	-3.850569	124
10	21	2981	2981	0.010448	0.893584	0.194523	0.19454	579.872146	2981	-0.414451	0.114595	-0.005142	0.017491	-15.327916	298
11	22	14947	14947	0.020879	0.969544	0.464209	0.236173	6938.530277	14947	-0.187985	0.307359	0.000082	0.014057	1.229816	1494
12	23	14121	14121	0.015966	0.944532	0.305909	0.225421	4319.735066	14121	-0.245081	0.180424	-0.00104	0.014283	-14.680709	1412
13	24	13247	13247	0.019802	0.971934	0.367652	0.242842	4870.279603	13247	-0.192343	0.20664	-0.000684	0.013745	-9.066056	1324
14	25	19790	19790	0.025899	0.985944	0.602002	0.227215	11913.616189	19790	-0.12525	0.194145	0.00061	0.014315	12.081555	1979
15	26	12380	12380	0.023845	0.962788	0.41736	0.244804	5166.912339	12380	-0.362892	0.131873	-0.000727	0.014235	-9.004115	1238
16	27	27377	27377	0.065745	0.993412	0.788553	0.170969	21588.22086	27377	-0.413837	0.353813	0.006618	0.019433	181.172901	2737
17	28	15938	15938	0.024138	0.974455	0.536843	0.224215	8556.210665	15938	-0.369899	0.156799	0.000628	0.01468	10.01626	1593
18	29	6085	6085	0.012907	0.954995	0.237682	0.201244	1446.29583	6085	-0.248591	0.303723	-0.002632	0.013137	-16.014678	608
19	31	3055	3055	0.009445	0.859593	0.152207	0.151578	464.992194	3055	-0.306773	0.182104	-0.004326	0.014704	-13.215199	305
20	32	59337	59337	0.014545	0.985716	0.380464	0.212595	22575.571359	59337	-0.353054	0.268565	0.00052	0.019094	30.830972	5933

6) Création de cartes modèles avec SoLIM

Au départ on doit créer un projet, indiquer nom et adresse, par la suite on sélectionne l'option "Rule-based" et on valide OK

Untitled - SoLIM Solutions	allow, reading 1 in	uting 2 Tel	And Address of the	ALC: 1.	Ingland In		
Project Data Preparation	Knowledge Acquisition	Sample Design	Product Derivation	Validation	Visualization	Utilities	Help
🗅 🛎 🖩 🖑 🔍 🖬 🤄	0 9						
Project Types ■ Rule-based Project ■ GIS Database ■ Knowledge Base ■ Sample-based Project B Sample-based Project B SIS Database ■ Field Samples ↓\$ Inference	New Project Project Name: Project Directory: © Rule-	Les Cayes Haiti D:\Haiti\Solim based	C Sample-based	Browse			
	Item Value		Cancel		J		

SoLIM nécessite pour sa lecture de données, la conversion des données "raster" au format 3dr, pour cela on doit aller dans la barre outils, sélectionner Utilities / Data Format Conversion / Other Ráster Formats \rightarrow 3dr et convertir chacun des facteurs topographiques.

Les Cayes Haiti - SoLIM Solutions	
Project Data Preparation Knowledge Acquisition Sample Design Product Derivation Validation Visualization	Utilities Help
D 🖙 🖬 🖑 84, 💷 99 👄 🖇	Data Format Conversion Other Raster Formats -> 3dr
Project Types 4 (Values at Points 3dr -> Grid Ascii
Rule-based Project	Clip Other Raster Formats -> 3dm
ー 場 GL Database 一 国Knowledge Base	Reclass 3dr -> 3dm
⊞ Inference	Stretch Calc Statistics
E-Sample-based Project	Overlay Shapefile -> 3dr (rasterization)
	Filter 3dr -> Saga
+\$ Inference	Frequency
	Color
	FCM Clustering
	3 Bands to Color File

Au final on doit indiquer la localisation des archives Raster de chaque attributs du terrain et indiquer les unités

GDAL-Supporte	d Raster Formats to 3dr	X						
Input File:	input File: laiti\Les Cayes Haiti\Terrain Atributes\Plan Curvature.sdat							
Output File:	D:\Haiti\Solim\Less Cayes 3dr\Plan_curvature.3dr							
Data Unit:	30 Grid Unit: Meters	•						
	OK							

Pour expliquer cet exemple on prend la zone de Les Cayes (Haïti), SoLIM est un logiciel qui présente une limite dans le poids des données. Quand le logiciel est dépassé il apparait le message "Out of memory", C'est pour cela que l'on doit réduire l'aire du Raster.

On doit convertir chacune des données du format Raster au format 3dr puis continuer avec la création de la base de données SIG et les paramètres topographiques, qui seront chacun des covariables dans le logiciel

Ajoutez-les seulement en faisant un clic droit sur la base de données GIS Database / Add Layer.

• Ajouter différents types de sols

Dans le panneau de gauche du projet, cliquer avec le bouton droit de la souris dans le nœud "Knowledge Base" et sélectionner "Add Soil Type" dans le menu émergeant.

Il est important d'établir préventivement la codification des unités des sols. On doit réaliser cette classification pour chaque type géologique, géomorfique ou climatique si besoin, et créer chacune des valeurs entières enchainées entre elles.

Cela permet d'afficher une boîte de dialogue pour spécifier le nom du type de sol. Entrer le numéro correspondant à chaque unités des sols : 11,12,...45 et cliquer "OK".

Name	X
Please input the name of	the soil type:
13	
ОК	Cancel

Chaque unité ou type de sol est ajouté à la base de données. Déployer le nœud du type de sol, on voit que se créent trois sous-nœuds : requêtes, occurrences, exclusions. Ils sont utilisés pour stocker différents types de connaissances.

Les paramètres environnementaux ont des effets dans toute la zone de cartographiée, donc il n'y a besoin que d'une requête pour représenter le contenu des connaissances. (Connaissances globales) dans la base de données. Cliquer avec le bouton droit dans le nœud "Requête" sous le nœud "11" et sélectionner "Ajouter requête" dans le menu émergent.

Cela fera apparaitre un cadre de discussion qui permettra d'introduire le nombre de requête. Entrer "1" et cliquer sur "Accepter". Il se créera une nouvelle requête en blanc.

• Ajouter des règles (Rule Based approach)

Les covariables s'utilisent dans les connaissances sols-paysages pour chaque type de sol. C'est pourquoi, la tâche suivante sera de créer des règles pour chacune d'elles.

Exemple :

Nous pouvons utiliser la règle de la gamme pour exprimer les connaissances dans chaque covariable. Agir avec un clic droit sur le nœud 'Instance1". Dans le menu émergent choisir "ajouter règle" et puis sélectionner " règle de gamme" (range rule).

Project Types		ц.;	
🖙 Rule-based Project			No rule is selected.
📄 😘 GIS Database			
📲 Normalize	d_Heigth		
🖓 Plan_curva	ture		
📲 Profile_cur	vature		
📲 Saga_TWI			
- 🖓 Slope			
📲 Valley_Der	oth		
📄 🗐 Knowledge Ba	ase		
⊨ ∻ 11			
⊡≣Instanc	es		
Occur	Add Rule	+	Range Rule
Exclu:	Delete		Freehand Rule
🖻 🔩 12 🛛 Rename			Word Rule
<u></u> ≣ Instar Paste			Point Rule
Occurre	ences		Enumerated Rule
= Evolusio	one		

Sélectionner "Choose an attached now" (choisir un lien maintenant), ensuite sélectionner "slope" (pente) dans le menu déroulant "Data Layers", ensuite cliquer sur "Next" (suivant). Cela permettra au moteur d'inférence de lier la règle définie avec toutes les données SIG "pente" qui ont été définie précédemment dans cette même base de données.

New Range Rule	X					
Choose an attached layer now						
Data Layer:						
Normalized_Heigth						
 Skip this step 						
Cancel Previous Next	Finish					

Pour la suite on utilise la table des données statistiques et on analyse chaque règle en tenant compte de la distribution normale des données, de manière a ce qu'il soit possible de comprendre le comportement de la courbe qui serait de forme "Bell-shape, S- shape ou Z- shape (les données doivent être analysées à partir des résultats obtenus dans l'analyse des zones statistiques).

Slope: Z – Shape

Maintenant que l'on a codé les connaissances sur les conditions environnementales du sol comme principe. L'on peut répéter le processus pour d'autres types de sol. Ne pas oublier de sauvegarder.

L'étape suivante est d'exécuter une inférence en utilisant la connaissance codée pour produire la carte de similitude pour chaque unité sol-paysage. Cliquer sur "Inférence" pour le déployer. Sous le nœud, cliquer sur "Inférence", la vue va changer à l'interface de l'inférence.

A l'affichage de la fenêtre on observe la liste des unités de sols. Dans ce cas c'est l'unité 11, l'option pour mettre en œuvre n'importe quel masque et enfin l'endroit où l'on a enregistré la carte de l'inférence. Exécuter et l'on obtient le résultat.

Sell Types to Be biferred	
Mask Tuse Mosk Masking File: Masking Value: Create Check File	0 (post v OK
Inference Result	Dr.Salm. Les Cayes/Memberships Mags
Save Format As:	30R (*.38)
Execute	

Saga TWI – Bell Shape

Pour visualiser la carte de similitude crée, l'on peut utiliser l'outil SoLIM Data Viewer jointe au dossier du logiciel, continuer à ajouter la carte d'adhésion, dans le dessin d'après on observe le résultat obtenu précédemment de l'unité de sol 1. L'on peut également utiliser l'outil de conversion au format ASCII pour l'afficher sur d'autres logiciels, on utilise l'adresse suivante :

Utilities / Data Format Conversion / 3dr \rightarrow Grid Ascii

7) Générer des cartes des propriétés des sols

Sélectionner dans la barre d'outils Product Derivation / Property Map, pour créer la carte des propriétés des sols. Pour le développement des cartes des propriétés il est nécessaire d'avoir les points de prélèvement avec des valeurs in situ.

On doit entrer les données de la manière suivante :

"Répertoire des résultats" c'est le répertoire où est stocké les "Fussy" ou "carte d'adhésion" précédemment calculées.

La "Table de recherche" (look table) est l'archive qui contient les valeurs de la propriété du sol que l'on veut cartographier pour chacune des unité sol-paysage. La table de recherche devra être noter ainsi :

Type de sol 1	valeur 1
Type de sol 2	valeur 2

Le nom du type de sol est le nom de la carte de similitude (sans suffixe .3dr) dans le répertoire des résultats et les valeurs correspondantes aux données de terrain pour la propriété que l'on souhaite cartographier à l'intérieur de chaque unité de sol.

Creating Property Map
Directory of Fuzzy Maps:
Lookup Table:
Output File:
Mask
Masking Value: 0 (pixel with this value will NOT be processed)
OK Cancel

8) Validation

Sélectionner Validation / Property Validation, l'on peut créer un rapport de précision pour la carte des propriétés, évaluer avec des points de prélèvement sur le terrain (utiliser un e banque de données différentes de celle utilisée pour créer la carte de propriétés).

L'archive de la liste des points observés contient les informations sur les sites d'échantillonnage. Une archive de point a le format suivant.

PointID	X	Y	Property Value
Index 1	X1	Y1	propriété 1
Index 2	X2	Y2	propriété 2

La première ligne contient les en-têtes de colonnes. La première colonne contient les identificateurs assignés aux sites d'échantillonnage. Xs et Ys sont les coordonnées des points. "Property Values" sont les valeurs des propriétés observées sur les sites d'échantillonnage.

- > Le fichier cartographique des propriétés doit être au format .3dr.
- La taille du voisinage défini une fenêtre sur laquelle on récupère les propriétés médianes en tant que valeur de propriété déduites.

Le résultat est un rapport de précision qui contient 4 parties d'information statistique et la liste des points :

- 1. RMSE (Root Mean Squared Error)
- 2. Agreement Coefficient
- 3. Mean Absolute Error

9) Stratégie d'échantillonnage

Il existe différente manière de définir la stratégie d'échantillonnage pour la cartographie numérique. Dans ce cours l'on va utiliser la stratégie de l'échantillonnage conditionned Latin Hypercube (cLHS) selon Minasny et McBratney (2006). cLHS est une procédure aléatoire stratifiée et efficace à l'époque des variables d'échantillon avec une distribution multivariée. Son approche repose sur des modèles où prime la variation spatiale et sa prédiction. Le cLHS peut être exécuté en R ou utilisé un plugin qui fonctionne sous ArcGIS.

Il est nécessaire de tenir compte avant d'exécuter l'outil :

- Toutes les données raster doivent couvrir la même extension
- Toutes les données raster doivent être de la même projection ou l'outil en fonctionnera pas

Procédure :

1. Pour commencer, sélectionner lea boîte bleue dans la barre d'outils principale TEUI.

2. La boîte de dialogue s'affiche Latin Hyper Cube Generator

			×
Histograms Objective Function			
Latin Hyper Cube Generator			
Select All Unselect All Add Data Laver			
	1	1	
	1	ł	
	1	ł	
	1	ł	
	1	ł	
Number of Points 15 Number of Iterations 1	100		

 Sélectionner le bouton Add Data Layer de données pour ajouter des couches. Si l'on a ouvert un projet TEUI Toolkit en même temps, l'outil ajoute automatiquement ces couches au dialogue de sélection.

Lay	yers —			
	demles_cayes			
	UnitsSoils			
	Select All	Unselect All	Add Data Layer	

4. Apparaitra une fenêtre qui permettra de naviguer jusqu'aux données raster de son choix. L'on peut sélectionner autant de couches que souhaité.

5. Assurer de placer un check list dans la boîte à côté de chaque trame de couche que vous souhaitez utiliser.

6. Entrez le nombre de points d'échantillonnage que vous souhaitez voir revenir (minimum 1).

7. Sélectionnez le nombre d'itérations. Une quantité importante nécessitera plus de temps de procédure, mais théoriquement produire des résultats plus précis.

8. Cliquer sur Generate pour créer les emplacements de l'échantillon. Le résultat produit sera une couche d'archive shapefile attribuée avec les valeurs de chaque raster en chaque point d'échantillonnage.

Si vous voulez connaître le processus de téléchargement et l'installation directe aller sur :

http://www.fs.fed.us/eng/rsac/programs/teui/downloads.html

10) Bibliographie

Ashtekar J.M., Owens P.R., Brown R.A., Winzeler H.E., Dorantes M., Libohova Z., Da Silva. M. & Castro. A. (2014). Digital mapping of soil properties and associated uncertainties in the Llanos Orientales, South America. In A. B. M. Dominique Arrouays, Neil McKenzie, Jon Hempel, Anne Richer de Forges (Ed.), GlobalSoilMap: Basis of the global spatial soil information system (pp. 367–372). <u>https://doi.org/10.1201/b16500-67</u>

McBratney, A. Mendonça Santos, M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52. <u>https://doi.org/10.1016/S0016-7061(03)00223-4</u>

Minasny B. & McBratney A. B. (2006). A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences, 32(9), 1378–1388. https://doi.org/10.1016/j.cageo.2005.12.009

Thornthwaite C. W. (1931). The climates of North America: According to a new classification. Geographical Review, 21(4), 633-655. <u>https://www.jstor.org/stable/209372</u>

Zhu A. X. (1997). A similarity model for representing soil spatial information. Geoderma, 77(2–4), 217–242. <u>https://doi.org/10.1016/S0016-7061(97)00023-2</u>