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Empirical and small-scale v’ Standardize and scale-up the process

brocessing Good breadmaking ability

v Improve product quality

v'Industrial development of new gluten-free
bread products

The Data

. . Breadmaking ability Mid-infrared spectra (3351 variables)
Physicochemical parameters | Amylose content Spectral data - |
RVA parameters (12 variables) Raman spectra (4562 variables)
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» 7926 variables
The Problematic
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How to explain the breadmaking ability from our data using a statistical
regression method while selecting variables of different types:
individual and intervals?
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Explanatory variables are organized in a multitable in which intervals and
individual variables are selected in order to predict one variable of
intferest: the breadmaking capacity.
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A Genetic Algorithm (GA) was developed in a context of discrimination,
jointly with the PLS1 method : this method is called selGAmMPLS.
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Fig 1: Selection of relevant intervals and variables in multitables with a GA
for modelling Y thanks to PLS

The Results

Fig 2: Final GA populations S———
characteristics: selected variables ——— Selected variables .-
are /ha’/'ca fea’ b y b/ack points
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| " Individual populations seem to have converged

The 10 final populations are quite close

2 | - R i SRR e ‘indicating a global convergence of the GA |
L R o 2 } Table 1: Comparison with other methods results 4 RVA'aineters wspectral regions
g 5 E %t TR LT (number of selected variables, nhumber of retained ‘ ‘
i e R U t PLS components, R 2 and cross-validation R ?),
SRS SRR o o R R otina oy = PG orcer of starch
l 5 4 PR BRI 7926 0.7836 0.6605 Br'egakdowrlg
ok i F =) iRt N Ca: T PLS + VIP 4 3 0.7210 0.6650 Relative Breakdown
0 40100 GOIOO 8000 selAGmPLS 311 12 0.9936 0.8273
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Conclusion

1 Genetic Algorithms provide a very adaptable and efficient solution when dealing with both several kinds of variables selections (individual vs
intervals) and multiway tables.

1 The results obtained are very interesting for a predictive use. In terms of interpretation the method allowed to highlight the importance of
some physico-chemical variables and to select a small number of short intervals in spectroscopic data.

1 The data selected are related to the water absorptivity and the crystalline state of starch and play a key role in breadmaking ability
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