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Breadmaking ability
Amylose content
RVA parameters (12 variables)

Mid-infrared spectra (3351 variables)

Raman spectra (4562 variables)

How to explain the breadmaking ability from our data using a statistical
regression method while selecting variables of different types:
individual and intervals?

Explanatory variables are organized in a multitable in which intervals and
individual variables are selected in order to predict one variable of
interest: the breadmaking capacity.

A Genetic Algorithm (GA) was developed in a context of discrimination,
jointly with the PLS1 method : this method is called selGAmPLS.

The Results
Fig 2: Final GA populations 

characteristics: selected variables 
are indicated by black points

Table 1: Comparison with other methods results 
(number of selected variables, number of retained 

PLS components, R² and cross-validation R²).

The 10 final populations are quite close 
indicating a global convergence of the GA

Individual populations seem to have converged

Method # var # comp R² R²CV

PLS 7926 7 0.7836 0.6605

PLS + VIP 4 3 0.7210 0.6650

selAGmPLS 311 12 0.9936 0.8273

Physicochemical parameters
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Spectroscopic variables

4 spectral regions

Crystalline order of starch

Selected variables

Conclusion

 Genetic Algorithms provide a very adaptable and efficient solution when dealing with both several kinds of variables selections (individual vs
intervals) and multiway tables.

 The results obtained are very interesting for a predictive use. In terms of interpretation the method allowed to highlight the importance of
some physico-chemical variables and to select a small number of short intervals in spectroscopic data.

 The data selected are related to the water absorptivity and the crystalline state of starch and play a key role in breadmaking ability

7926 variables

The Problematic

Fig 1: Selection of relevant intervals and variables in multitables  with a GA 
for modelling Y thanks to PLS


