

International Center for Tropical Agriculture Since 1967 Science to cultivate change

# Improved Forages and Milk Production in East Africa

A case study in the series: Economic foresight for understanding the role of investments in agriculture for the global food system



RESEARCH PROGRAM ON Policies, Institutions, and Markets





**research program on** Livestock and Fish The International Center for Tropical Agriculture (CIAT) – a CGIAR Research Center – develops technologies, innovative methods, and new knowledge that better enable farmers, especially smallholders, to make agriculture eco-efficient – that is, competitive and profitable as well as sustainable and resilient. Headquartered near Cali, Colombia, CIAT conducts research for development in tropical regions of Latin America, Africa, and Asia. www.ciat.cgiar.org

CGIAR is a global research partnership for a food-secure future. Its science is carried out by 15 Research Centers in collaboration with hundreds of partners across the globe. www.cgiar.org

# Improved Forages and Milk Production in East Africa

# A case study in the series:

Economic foresight for understanding the role of investments in agriculture for the global food system

> Carlos González Ben Schiek Solomon Mwendia Steven Dean Prager









**research** program on Livestock and Fish Centro Internacional de Agricultura Tropical International Center for Tropical Agriculture Km 17 Recta Cali–Palmira CP 763537 P. O. Box 6713 Cali, Colombia Phone: +57 2 4450000 Fax: +57 2 4450073 Website: www.ciat.cgiar.org E-mail: s.prager@cgiar.org

CIAT Publication No. 422 October 2016

- González C; Schiek B; Mwendia S; Prager SD. 2016. Improved forages and milk production in East Africa. A case study in the series: Economic foresight for understanding the role of investments in agriculture for the global food system. Cali, CO: Centro Internacional de Agricultura Tropical (CIAT). 48 p.
- *Carlos González* is a research assistant in CIAT's Decision and Policy Analysis (DAPA) Research Area at headquarters in Cali, Colombia. Economist specializing in regional economics and spatial analysis of economic activity.
- *Ben Schiek* is a research associate in CIAT's DAPA Research Area at HQ in Colombia. Applied economist specializing in ex ante impact assessment and the evaluation of tradeoffs in agricultural systems.
- *Solomon Mwendia* is a post-doctoral scientist with CIAT's Tropical Forages team at the Regional Office in Nairobi, Kenya. Agronomist specializing in the development and distribution of forage technology.
- Steven D. Prager is a senior scientist in CIAT's DAPA Research Area at HQ in Colombia. Integrated modeler specializing in the application of strategic foresight and decision support for agricultural systems.

This project is a joint effort of the CGIAR Research Programs on Policy, Institutions and Markets (PIM) and on Livestock and Fish; the IFPRI-led Global Futures & Strategic Foresight initiative; and the International Center for Tropical Agriculture (CIAT). Special thanks to the CIAT Tropical Forages teams in both Colombia and Kenya for providing helpful information and useful resources.

Keywords: Tropical forages, forage technologies, ex ante impact assessment, economic surplus model.

Cover photo: Climate-smart brachiaria (Georgina Smith/CIAT).

Copyright © CIAT 2016.

CIAT encourages wide dissemination of its printed and electronic publications for maximum public benefit. Thus, in most cases, colleagues working in research and development should feel free to use CIAT materials for noncommercial purposes. However, the Center prohibits modification of these materials, and we expect to receive due credit. Though CIAT prepares its publications with considerable care, the Center does not guarantee their accuracy and completeness.

| Exe | Executive Summary3 |                                                                                     |  |  |  |  |  |  |
|-----|--------------------|-------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1.  | Introduction       |                                                                                     |  |  |  |  |  |  |
| 1   | 1                  | Study area and scope4                                                               |  |  |  |  |  |  |
| 2.  | Brad               | chiaria technology and milk production8                                             |  |  |  |  |  |  |
| 3.  | Mat                | erials and methods10                                                                |  |  |  |  |  |  |
| 3   | 8.1                | Research period and diffusion costs10                                               |  |  |  |  |  |  |
| 3   | .2                 | Producer prices                                                                     |  |  |  |  |  |  |
| 3   | .3                 | Change in productivity and variable cost                                            |  |  |  |  |  |  |
| 3   | 8.4                | Quantity of production affected12                                                   |  |  |  |  |  |  |
| 3   | 8.5                | Adoption rate and uptake period15                                                   |  |  |  |  |  |  |
| 3   | 8.6                | Supply/demand elasticities, depreciation, probability of success                    |  |  |  |  |  |  |
| 4.  | Res                | ults19                                                                              |  |  |  |  |  |  |
| 4   | .1                 | NPV outcomes heatmap19                                                              |  |  |  |  |  |  |
| 4   | .2                 | NPV outcomes isoquant map23                                                         |  |  |  |  |  |  |
| 4   | .3                 | The NPV scenario envelope                                                           |  |  |  |  |  |  |
| 4   | .4                 | Sensitivity analysis                                                                |  |  |  |  |  |  |
|     | Sen                | sitivity to supply and demand elasticities26                                        |  |  |  |  |  |  |
|     | Sen                | sitivity to the % change in variable cost26                                         |  |  |  |  |  |  |
|     | Sen                | sitivity to the % increase in productivity, producer price, and quantity affected26 |  |  |  |  |  |  |
| 5.  | Disc               | sussion                                                                             |  |  |  |  |  |  |
| 6.  | Con                | clusion                                                                             |  |  |  |  |  |  |
| Ref | erenc              | zes                                                                                 |  |  |  |  |  |  |
| Арр | pendix             | x                                                                                   |  |  |  |  |  |  |
| A   | A.1                | The economic surplus model                                                          |  |  |  |  |  |  |
| A   | A.2                | NPV derivatives w.r.t. key parameters                                               |  |  |  |  |  |  |
| A   | A.3                | Diffusion cost                                                                      |  |  |  |  |  |  |
| A   | A.4                | Imputation of system-level milk cow population size                                 |  |  |  |  |  |  |
| A   | A.5                | Scenario heat maps by country                                                       |  |  |  |  |  |  |

# **Table of Contents**

### **Executive Summary**

Production of livestock and dairy products in Sub-Saharan Africa has not kept pace with growing demand. The potential exists to close this gap in a climate-friendly way through the introduction of improved forage varieties of the *Brachiaria* genus. We assess the potential economic impact of the development and release of such varieties in six East African countries using an economic surplus model. Results are presented across a range of potential scenarios involving different adoption rates and percentage increases in productivity. For all but the lowest levels of adoption and productivity increases, improved forages have the potential for positive return on investment. Using these results, we present formulae that help readers calculate the adoption rate or percentage increase in productivity necessary to achieve specific desired levels of net benefit. Overall, the model output suggests that investment in a forages research program related to both the qualities of the forage itself as well as programs to enhance dissemination and adoption of new materials would be low risk and with high likelihood for positive outcome, generating discounted net benefits on the order of potentially tens of millions of dollars.

# **1. Introduction**

Demand for livestock products in Sub-Saharan Africa has been increasing and is projected to continue increasing due to population growth, rising incomes, and urbanization (FAO, 2009; Ghimire et al., 2015; Robinson & Pozzi, 2011). Supply has not kept pace with these demands, due primarily to low productivity (Rakotoarisoa, Iafrate, & Paschali, 2011). The development challenges posed by the drivers behind these trends are further complicated by climate change (Thornton, 2010; Thornton et al., 2007). One of the major factors behind the region's chronic low productivity is a lack of quality feed options with high nutrient content. Producers in mixed, rainfed crop-livestock systems are particularly constrained by a shortage of feed resources during dry seasons; this condition is increasingly aggravated by pressures arising from climate change and variability (Dzowela, 1990; Rakotoarisoa et al., 2011; Thornton, 2010).

Experts agree that better use of the natural resource base offers tremendous potential to increase livestock productivity in the region (FAO, 2009; Ghimire et al., 2015). Research programs such as Climate Smart Brachiaria have begun developing climate-friendly strategies to tap into this potential (Djikeng et al., 2014). Such efforts are built around the development of drought resistant *Brachiaria* forage varieties with climate change-mitigating properties (Ghimire et al., 2015; Maass et al., 2015). In this study we present an ex-ante assessment of the potential welfare impacts of introducing such technology in East Africa, using an economic surplus method previously described by Alston et al. (1995).

# 1.1 Study area and scope

The geographic focus of this study is Kenya, Tanzania, Ethiopia, Uganda, Rwanda, and Burundi. In order to develop estimates for potential rates of forage technology adoption, production systems are classified according to the Seré and Steinfeld scheme (Robinson et al., 2011). There are thirteen system categories in the Seré and Steinfeld scheme, but we only consider the six categories that have a significant areal presence and cattle population size in the study zone (Figure 1).<sup>1</sup>

<sup>&</sup>lt;sup>1</sup> The seven omitted categories are the three mixed irrigated (MI-) systems, the two hyper-arid (-Y) systems, and the urban and "other" categories.



Figure 1: Production systems map of the study area. Source: Authors' creation using data documented by Robinson et al. (2011).

In East Africa, dry season feed shortages have been of particular concern in mixed, rainfed crop-livestock systems (MRA, MRH, and MRT). These are the systems in which smallholder producers have the greatest potential to benefit from the introduction of improved forage varieties. Cattle density tends to be greatest in these areas (see Figure 2). Human population density is also substantial in these areas, while farm sizes tend to be small.



Figure 2: Cattle density map of the study area. Source: Authors' creation using data documented by Robinson et al. (2014)

Many farms are less than the minimum size required to support a cow and its calf, which leads to the inference that a substantial proportion of production in these areas relies on cut-and-carry.

Our calculation of the percentage of national territory covered by each production system is presented in Table 1, and our estimate of the percentages of the national milk cow population present in each production system is presented in Table 2. A comparison of these two tables reveals that, although mixed rainfed systems cover a small area relative to rangeland (LG) systems, they are the basis for the majority of milk production.

| Table 1: Percentage of national area corresponding to each production system                                                             |        |          |          |        |        |         |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|--------|--------|---------|--|--|--|
|                                                                                                                                          | Kenya  | Tanzania | Ethiopia | Uganda | Rwanda | Burundi |  |  |  |
| LGA                                                                                                                                      | 66.10% | 23.6%    | 45.2%    | 5.3%   | 0.0%   | 0.0%    |  |  |  |
| LGH                                                                                                                                      | 2.20%  | 10.4%    | 1.4%     | 15.2%  | 0.0%   | 0.0%    |  |  |  |
| LGT                                                                                                                                      | 3.40%  | 1.6%     | 1.4%     | 1.2%   | 0.0%   | 0.0%    |  |  |  |
| LG Subtotal                                                                                                                              | 71.70% | 35.60%   | 48.00%   | 21.70% | 0.00%  | 0.00%   |  |  |  |
| MRA                                                                                                                                      | 9.40%  | 27.3%    | 17.9%    | 1.8%   | 0.0%   | 0.0%    |  |  |  |
| MRH                                                                                                                                      | 4.70%  | 22.2%    | 4.8%     | 58.2%  | 31.6%  | 23.6%   |  |  |  |
| MRT                                                                                                                                      | 9.20%  | 6.2%     | 25.1%    | 7.2%   | 58.4%  | 68.9%   |  |  |  |
| MR                                                                                                                                       | 23.30% | 55.70%   | 47.80%   | 67.20% | 90.00% | 92.50%  |  |  |  |
| Subtotal                                                                                                                                 |        |          |          |        |        |         |  |  |  |
| Total*                                                                                                                                   | 95.00% | 91.30%   | 95.80%   | 88.90% | 90.00% | 92.50%  |  |  |  |
| *The columns do not add up to exactly 100% because production system categories with a small areal presence are excluded from the study. |        |          |          |        |        |         |  |  |  |

| Table 2: Percentage of milk cows in each system                                                                        |        |          |          |        |        |         |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------|--------|----------|----------|--------|--------|---------|--|--|--|--|
|                                                                                                                        | Kenya  | Tanzania | Ethiopia | Uganda | Rwanda | Burundi |  |  |  |  |
| LGA                                                                                                                    | 24.12% | 5.62%    | 5.66%    | 1.47%  | 0.00%  | 0.00%   |  |  |  |  |
| LGH                                                                                                                    | 1.17%  | 2.32%    | 0.15%    | 7.99%  | 0.00%  | 0.00%   |  |  |  |  |
| LGT                                                                                                                    | 3.27%  | 0.15%    | 0.34%    | 0.56%  | 0.00%  | 0.00%   |  |  |  |  |
| LG Subtotal                                                                                                            | 28.56% | 8.09%    | 6.15%    | 10.02% | 0.00%  | 0.00%   |  |  |  |  |
| MRA                                                                                                                    | 11.42% | 34.82%   | 17.83%   | 0.60%  | 0.00%  | 0.00%   |  |  |  |  |
| MRH                                                                                                                    | 12.89% | 36.03%   | 3.45%    | 59.02% | 18.92% | 7.49%   |  |  |  |  |
| MRT                                                                                                                    | 39.06% | 9.14%    | 66.94%   | 9.18%  | 69.68% | 56.17%  |  |  |  |  |
| <b>MR Subtotal</b>                                                                                                     | 63.37% | 79.99%   | 88.23%   | 68.80% | 88.60% | 63.66%  |  |  |  |  |
| Total*                                                                                                                 | 91.94% | 88.08%   | 94.38%   | 78.82% | 88.60% | 63.66%  |  |  |  |  |
| *The columns do not add up to 100% because production systems with a small areal presence are excluded from the study. |        |          |          |        |        |         |  |  |  |  |

Current milk cow population data for the countries in this study is readily available only at the national level. The method by which we calculated the system-level disaggregation is explained in detail in section 3.

# 2. Brachiaria technology and milk production

The genus *Brachiaria*, of the grass family, consists of roughly 100 species which grow in the tropics and subtropics. Most of these species are native to Africa, where they constitute important components of the natural savannah landscape (Ghimire et al. 2015). Outside of Africa, widespread commercial adaptation and adoption of *Brachiaria* species in non-native environments has enhanced livestock industries worldwide — notably in Latin America and the Caribbean, as well as in Asia and Australia — and has made *Brachiaria* the most extensively cultivated forage monoculture in the world (Ghimire et al., 2015; Jank, Barrios, do Valle, Simeão, & Alves, 2014).

Generally speaking, the widespread appeal of *Brachiaria* lies in its adaptability to low quality, acidic soils along with its resistance to drought, shade, flooding, and its palatability. From an environmental perspective, it is also appealing because it transfers carbon from the atmosphere into the soil, makes efficient use of nitrogen, and helps to minimize groundwater pollution (Fisher et al., 1994; Fisher & Kerridge, 1996; Rao, 2014; Rao, Kerridge, & Macedo, 1996; Subbarao et al., 2009).

The success of *Brachiaria* in other parts of the world has motivated concerted efforts to introduce higher performance, improved cultivars in Africa. The same *Brachiaria* hybrids developed at CIAT over the course of the 1980s and 1990s for release in the Americas (Mulato and Mulato II) have been introduced in several African countries on an experimental basis since 2001. Limited uptake and diffusion of these hybrids has occurred through farmer-to-farmer transfer of planting material promoted by research programs. Much of this diffusion has been associated with the spread of "climate adapted push-pull" farming systems (Midega et al., 2015). Based on seed sales, it has been estimated that, as of 2014, some 3,000 hectares of these hybrids were under cultivation in various African countries, primarily in East Africa (Maass et al., 2015).

While initial results have shown some promise (Ghimire et al., 2015; Kabirizi, Ziiwa, Mugerwa, Ndikumana, & Nanyennya, 2013), these hybrids were developed specifically in response to biotic and abiotic stresses in Latin America. Their introduction in Africa has encountered biotic challenges which must be overcome before adoption and diffusion can be significantly scaled up (Maass et al., 2015).

A Swedish funded program called "Climate-smart Brachiaria Grasses for Improving Livestock Production in East Africa" (CSB) is addressing these challenges (Djikeng et al., 2014; Ghimire et al., 2015). The program is led by the Biosciences Eastern and Central Africa-International Livestock Research Institute Hub, and is in partnership with the Kenyan Agricultural and Livestock Research Organization, the Rwanda Agricultural Board, CIAT, and Grasslanz Technology Limited. The program is currently implemented in Kenya and Rwanda, with plans to expand both in East Africa and beyond.

In advance of the CSB program, ten *Brachiaria* cultivars—mostly from the *brizantha* species, but also including the hybrids Mulato and Mulato II—were tested in green houses at CIAT in Colombia against East African baseline varieties. Results were encouraging and, beginning in 2013, eight of these ten cultivars were selected for field trials at multiple sites in Kenya and Rwanda. Of these eight, *B. brizantha* cultivars Piatá, Marandu, La Libertad (also known as MG-4), Toledo (also known as Xaraes), the *B. decumbens* cultivar Basilisk, and the hybrid Mulato II emerged as the best performing varieties. Mulato II and Marandu were subsequently removed from this list after they proved susceptible to local pest infestation. On-farm evaluation of the remaining four cultivars began in 2014 and is ongoing at the time of this study (Climate Smart Brachiaria Program, 2016; Ghimire et al., 2015).

Preliminary data from recent trials indicates that adoption of these mostly *B. brizantha* cultivars has increased baseline milk production of 3-5 liters/cow/day on participating farms by 15%-40% in Kenya and by an average of 36% in Rwanda. In a special feeding experiment conducted in Rwanda, it has also been found that cows fed these cultivars gain weight faster than the baseline, resulting in increased meat production (Ghimire et al., 2015).

*Brachiaria* grasses are drought resistant and resilient in low quality soils, and do well with relative low levels of fertilizer inputs. They are also resistant to many diseases affecting baseline varieties in East Africa, particularly Napier stunt and smut disease (Ghimire et al., 2015; Maass et al., 2015). *Brachiaria* production can be further enhanced by intercropping with legumes (Kabirizi et al., 2013) which themselves are useful sources nutrition for both humans and animals.

Though *Brachiaria* forage dry matter yields are lower than those of baseline varieties, their leaf areas are relatively larger, effectively increasing palatability and nutrition per unit dry matter weight (Ooko, 2015). The protein content of *Brachiaria*, which is 8-17% at harvest, remains stable for a relatively long time as compared to that of baseline varieties, which diminishes after about four months (Climate Smart Brachiaria Program, 2016; Ooko, 2015). Surplus *Brachiaria* not immediately consumed can be dried and conserved as hay for sale or future use. This is not possible with baseline varieties, which must instead be stored as green silage—a relatively expensive, labor intensive process (Ooko, 2015).

The advantages and disadvantages of improved *Brachiaria* grasses relative to baseline varieties appear to vary seasonally. While *Brachiaria* outperforms baseline varieties during dry seasons, the baseline varieties exhibit certain advantages during rainy seasons (Kabirizi et al., 2013). On many farms, it may make sense to introduce the improved

*Brachiaria* grasses as a dry season complement to the baseline grasses. Kabirizi et al. (2013) point out that small farms which introduce *Brachiaria* in such a complementary role would probably have to displace a cash crop in order to make room for the new addition, and may thus incur cost in terms of forgone revenue.

As of May 2016, at least 4,000 farmers in Kenya and Rwanda have planted one of the *Brachiaria* cultivars under CSB evaluation (Climate Smart Brachiaria Program, 2016). Experts at CIAT report that participating farmers appear to prefer the *B. brizantha* Piatá cultivar out of the four cultivars that are currently under CSB evaluation (J. A. Cardoso, email correspondence, April 12, 2016).

# 3. Materials and methods

In order to estimate the economic benefit for each country in the study area, we calculate the net present value (NPV) of the cost-benefit stream extending from the year of initiation of research until the adoption ceiling is reached. Country level costs occur in the form of diffusion costs during the first several years of adoption. The program level net present benefit is defined as the sum of these country level NPVs minus the research cost stream.

Benefits are calculated using the economic surplus model for closed economies as set forth by Alston et al. (1995), and can be defined in terms of producer surplus, consumer surplus, or total surplus (see Appendix A.1 for mathematical details). In this study, the primary beneficiaries of the new technology are smallholder producers, and so benefits should be calculated on a producer surplus basis. Nonetheless, results are also presented on a total surplus and consumer surplus basis should the reader be interested in examining consumer side impacts.

# 3.1 Research period and diffusion costs

Program level costs accrue in the form of research costs, while diffusion costs are incurred at the country level. A forage breeding expert consulted for this study suggested that the research period ( $T_r$ ) could last about 10 years and cost \$1.5 million per year (M. Peters, email correspondence, May 3, 2016). We assume, then, that release and uptake of the new technology begin in year 11.

We also assume that country-level diffusion efforts last for eight years. We model a given country's diffusion cost as a marginally diminishing function of the size of its target dairy industry, where target industry size is measured by the number of milk cows in the country's mixed, rainfed crop-livestock systems. More specifically, we set this cost to be equal to USD \$0.10 per milk cow, and set the percentage increase in cost for every 1% increase in industry size to 0.97% (see Appendix A.3 for details). These parameter settings are chosen because they generate diffusion cost magnitudes commensurate with the types

of promotional, capacitation, and outreach activities that are typical of program level diffusion efforts (Table 3). While these values are certainly debatable, the results of this study are not sensitive to them.

| Table 3: Diffusion cost per year (USD)                                                                                                                                                     |                             |                                     |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|--|--|--|--|--|--|
| Duration of dif                                                                                                                                                                            | fusion efforts: 8 years     |                                     |  |  |  |  |  |  |
| Diffusion cost                                                                                                                                                                             | per cow: \$0.10             |                                     |  |  |  |  |  |  |
| % increase in                                                                                                                                                                              | cost per 1% increase in ind | lustry size: 0.97%                  |  |  |  |  |  |  |
|                                                                                                                                                                                            | Diffusion cost/yr.          | Target industry size                |  |  |  |  |  |  |
|                                                                                                                                                                                            |                             | (number of milk cows in MR systems) |  |  |  |  |  |  |
| Kenya                                                                                                                                                                                      | \$231,198.66                | 3169616                             |  |  |  |  |  |  |
| Tanzania                                                                                                                                                                                   | \$348,876.53                | 5519334                             |  |  |  |  |  |  |
| Ethiopia                                                                                                                                                                                   | \$593,648.65                | 9419634                             |  |  |  |  |  |  |
| Uganda                                                                                                                                                                                     | \$152,807.48                | 2339196                             |  |  |  |  |  |  |
| Rwanda                                                                                                                                                                                     | \$17,327.86                 | 250127                              |  |  |  |  |  |  |
| Burundi                                                                                                                                                                                    | \$5,451.61                  | 55316                               |  |  |  |  |  |  |
| Note: Target industry size imputed based on country-level milk cow population size data from FAOSTAT averaged over 2009-2013 (2016c). See sections 3.4 and A.4 for imputation methodology. |                             |                                     |  |  |  |  |  |  |

# 3.2 Producer prices

In order to obtain the producer milk prices required by the economic surplus model we consulted both FAOSTAT and local field experts. Neither of these two sources on their own offered complete price data for all the countries involved in this study; but together they provide a mostly complete picture.

FAOSTAT reports recent producer milk prices for Kenya, Ethiopia, and Rwanda. For these countries, we used the average over 2010-2012, which is the most recent consecutive period for which FAOSTAT reports price data for all three countries.

Field experts provided price data for Tanzania, Ethiopia, Uganda, and Rwanda. In order to be consistent with the FAOSTAT prices, we again use the 2010-2012 average for these countries, except Uganda. Our Uganda respondent only reported prices for the years 2013-2015; and so the Uganda producer milk price is averaged over this period.

Our respondents reported prices in local currency per kilogram. We converted these prices to USD per metric ton using historical exchange rates retrieved for June 15<sup>th</sup> of each respective year.

For Rwanda and Ethiopia, we have price data from both FAOSTAT and field experts. In these cases we use the lesser of the two prices. No price data could be obtained for Burundi from any source. We set Burundi's producer price equivalent to that found in Rwanda.

| Table 4: Producer milk prices (USD/metric ton) |                                                                                 |           |                        |  |  |  |  |  |  |  |
|------------------------------------------------|---------------------------------------------------------------------------------|-----------|------------------------|--|--|--|--|--|--|--|
| Producer price Averaged over Source            |                                                                                 |           |                        |  |  |  |  |  |  |  |
| Kenya                                          | \$314.8                                                                         | 2010-2012 | FAOSTAT                |  |  |  |  |  |  |  |
| Tanzania                                       | \$369.5                                                                         | 2010-2012 | Field expert           |  |  |  |  |  |  |  |
| Ethiopia                                       | \$481.3                                                                         | 2010-2012 | FAOSTAT                |  |  |  |  |  |  |  |
| Uganda                                         | \$358.1                                                                         | 2013-2015 | Field expert           |  |  |  |  |  |  |  |
| Rwanda                                         | \$338.6                                                                         | 2010-2012 | Field expert           |  |  |  |  |  |  |  |
| Burundi                                        | \$338.6                                                                         | 2010-2012 | No data (Rwanda price) |  |  |  |  |  |  |  |
| Note: Authors                                  | Note: Authors' calculations using input from field experts and Faostat (2016b). |           |                        |  |  |  |  |  |  |  |

#### 3.3 Change in productivity and variable cost

As discussed in section 2, preliminary data suggest that adoption of the new technology can increase cow milk productivity (E[y]) by 15-40%. For the sake of expedience and parsimony, we focus only on milk production, and do not attempt to model other associated benefits and nuances mentioned in section 2 (increased meat production, push pull systems, value of mitigation, and enhanced production via leguminous intercropping).

The improved varieties require less fertilizer, implying a decrease in variable cost associated with the new technology. However, as mentioned in section 2, smallholder farmers who introduce the new technology in a complementary role would probably have to displace a cash crop, and thus incur a cost in the form of forgone revenue. At an aggregate level, this would offset welfare gains from the variable cost reduction to some extent, although it is unclear by how much. In an attempt to balance these considerations, we have set the percentage change in variable costs (E[C]) to 0%.

#### 3.4 Quantity of production affected

The quantity of production affected by the new technology (Q) is just the baseline production already occurring in areas where the new technology is likely to appeal to producers. The *Brachiaria* varieties under evaluation in the CSB program are expected to appeal primarily to producers in mixed, rainfed crop-livestock systems, where baseline varieties currently fail to generate a sufficient feed supply during dry seasons.

Recent milk production data for the countries in this study is currently only available at the

national level. In order to estimate milk production within individual production systems, we first overlaid FAO's 2010 cattle density map (Figure 2), onto the production system map (Figure 1) and counted the cattle within each production system (Robinson et al., 2014). In order to impute how many of these cattle were milk producing cows, we specified the model based on an observed empirical functional relationship between total cattle and milk producing cattle in the FAOSTAT country level data (Figures 3 and 4).



Figures 3 and 4: Number of milk cows plotted against total cattle for each of the countries in this study for 2010 and 2013. Authors' creation using data from FAOSTAT (2016c, 2016a).

The starting model specification rests upon the hypothesis that the empirical relation observed at the country level is scale invariant, and will thus be observed at sub-national levels of disaggregation (district, village, production system, etc.). We cannot test this hypothesis directly because we do not have disaggregated data. However, we do have enough data to test one important necessary (if not sufficient) condition for the hypothesis to be true: If the hypothesis is true, then 1) the imputed numbers of milk cows at the production system-level must add up to the country level milk cow total reported by FAOSTAT, and 2) the parameter values of the function used to impute these system-level numbers should be very close to the parameter values that were fitted at the country level using FAOSTAT data in Figures 3 and 4.

When we fit the system-level parameters for each country such that the respective sums are equal to the 2010 FAOSTAT country level totals, we indeed find that the parameter values are close to the country-level values. The results of this imputation, including the fitted parameter values, are included in Table 13 of section A.4 of the Appendix.

The system-level milk cow numbers imputed using this model are valid only for 2010, since that is the year of the cattle density map data used to fit the parameters. In order to

disaggregate milk cow population sizes to the system level for any year, we calculated each system's 2010 milk cow population as a percentage of the 2010 country-level milk cow population. These are the system-level percentages shown earlier in Table 2. Assuming that these percentages change little over time (e.g., a decade), we could then deduce the milk cow population size in any production system of a given country for any given year (within, say, a decade of 2010), by multiplying the milk cow percentages in Table 2 by the national milk cow population size reported by FAOSTAT for the country and year of interest. The most recent year for which FAOSTAT reports country-level milk cow population size for the countries in this study is 2013. As an additional conservative measure, we multiplied the percentages in Table 2 by a five year average (2009-2013) instead of focusing on a single year (FAOSTAT, 2016c). The results of this calculation for the production systems examined in this study are displayed in Table 5. The industry size figures used in the calculation of diffusion costs in section 3.1 are taken from this Table.

| Table 5: Milk cows disaggregated by production system (imputed) |           |           |           |           |          |         |  |  |  |
|-----------------------------------------------------------------|-----------|-----------|-----------|-----------|----------|---------|--|--|--|
|                                                                 | Kenya     | Tanzania  | Ethiopia  | Uganda    | Rwanda   | Burundi |  |  |  |
| LGA                                                             | 1356761.6 | 387400.4  | 594347.4  | 49973.1   | 0.0      | 0.0     |  |  |  |
| LGH                                                             | 66001.4   | 159775.9  | 15629.5   | 271777.7  | 0.0      | 0.0     |  |  |  |
| LGT                                                             | 183734.5  | 10033.7   | 35808.5   | 19035.7   | 0.0      | 0.0     |  |  |  |
| LG Subtotal                                                     | 1606497.5 | 557209.9  | 645785.3  | 340786.5  | 0.0      | 0.0     |  |  |  |
| MRA                                                             | 642276.7  | 2398932.1 | 1872406.9 | 20518.6   | 0.0      | 0.0     |  |  |  |
| MRH                                                             | 725105.9  | 2482741.2 | 362433.0  | 2006596.5 | 53469.7  | 7383.9  |  |  |  |
| MRT                                                             | 2196712.8 | 629663.1  | 7027729.7 | 312081.0  | 196927.4 | 55367.5 |  |  |  |
| MR Subtotal                                                     | 3564095.4 | 5511336.3 | 9262569.5 | 2339196.2 | 250397.1 | 62751.4 |  |  |  |
| Total                                                           | 5170592.9 | 6068546.3 | 9908354.9 | 2679982.7 | 250397.1 | 62751.4 |  |  |  |

In order to estimate system-level milk production, we multiplied the percentages in Table 2 by the 2009-2013 average milk production (Table 6). In doing so, we gloss over important heterogeneity in milk yields from one production system to another. This necessary simplification is an unavoidable consequence of the data limitations. The production affected by the new technology in each country (Q) is then just the sum of milk production in the MRA, MRH, and MRT systems in Table 6.

| tons)              |            |            |            |           |           |          |
|--------------------|------------|------------|------------|-----------|-----------|----------|
|                    | Kenya      | Tanzania   | Ethiopia   | Uganda    | Rwanda    | Burundi  |
| LGA                | 904655.73  | 108047.04  | 226444.82  | 17747.78  | 0.00      | 0.00     |
| LGH                | 44008.13   | 44561.93   | 5954.79    | 96521.06  | 0.00      | 0.00     |
| LGT                | 122509.69  | 2798.42    | 13642.94   | 6760.49   | 0.00      | 0.00     |
| LG Subtotal        | 1051187.6  | 141808.0   | 223075.2   | 119275.3  | 0.0       | 0.0      |
| MRA                | 428254.48  | 669068.77  | 713382.18  | 7287.13   | 0.00      | 0.00     |
| MRH                | 483483.03  | 692443.36  | 138086.03  | 712636.85 | 35570.37  | 3077.45  |
| MRT                | 1464714.77 | 175614.78  | 2677546.81 | 110834.65 | 131004.73 | 23075.95 |
| <b>MR Subtotal</b> |            |            |            |           |           |          |
| ( <i>Q</i> )       | 2376452.28 | 1537126.90 | 3529015.02 | 830758.63 | 166575.10 | 26153.40 |
| Total              | 3383300.1  | 1544423.9  | 3422667.5  | 937993.9  | 157129.9  | 21879.0  |

Table 6: Milk production disaggregated by production system (imputed, metric tons)

We expect the proportion of milk cows to be lower in rangelands (LG systems), where cattle are mainly held for beef production, and higher in the mixed smallholder (MR) systems. Our imputation method will generally enforce this expectation because 1) the ansatz whereby we impute the system-level data implies that the proportion of milk cows is a monotonically increasing function of the total cow population, 2) cattle density tends to be correlated with human population density (Robinson et al., 2014), and 3) rangeland systems, by their nature, occur in areas of relatively low human population density, and these areas thus contain relatively fewer cattle, as compared to MR system areas. See Appendix A.4 for a more mathematically detailed explanation.

#### 3.5 Adoption rate and uptake period

Field experts in Tanzania, Rwanda, Uganda, and Ethiopia were contacted in order to assess local conditions influencing technology adoption. Their responses, summarized in Tables 7-9, convey moderate optimism about technology uptake, but also acknowledge considerable impediments in terms of access to financing, access to quality inputs and extension services, and infrastructure, which may hamper diffusion and uptake of the new technology. We were unable to contact field experts in Kenya and Burundi.

# Table 7: Field expert opinion on adoption rate, diffusion time, and access to financing

(Note: For adoption rate and diffusion time, respondents were asked to give an actual adoption rate in %, and a diffusion time in years, but instead gave 1-5 scale ratings.)

|                                                                                              | Kenya | Tanzania | Ethiopia | Uganda | Rwanda | Burundi |
|----------------------------------------------------------------------------------------------|-------|----------|----------|--------|--------|---------|
| Likely adoption rate<br>(1=low, 5=high)                                                      | NR    | 3        | 2*       | 2**    | 4      | NR      |
| Diffusion time<br>(1=short, 5=long)                                                          | NR    | 2        | 5        | 3      | 3      | NR      |
| Effectiveness of diffusion<br>(1=not likely to spread at all,<br>5=likely to spread rapidly) | NR    | 2        | 2        | 4      | 3      | NR      |
| Access to financing<br>(1= none, 5= easily accessible)                                       | NR    | 2        | 4        | 3      | 5      | NR      |

\*Respondent gave a verbal response—"modest"—which we have interpreted numerically as 2.

\*\*Respondent gave an actual adoption rate—25%—which we have assigned a scale rating of 2.

**Table 8: Field expert opinion on the likelihood of new technology adoption in eachproduction system** (Scale of 1 to 5, where 1 = not at all likely and 5 = very likely)

|     | Kenya | Tanzania | Ethiopia | Uganda | Rwanda | Burundi |
|-----|-------|----------|----------|--------|--------|---------|
| LGA | NR    | 2        | 1        | 2      | NA     | NR      |
| LGH | NR    | 4        | 1        | 3      | NA     | NR      |
| LGT | NR    | 5        | 1        | 3      | NA     | NR      |
| MRA | NR    | 4        | 2        | 5      | NA     | NR      |
| MRH | NR    | 5        | 4        | 4      | 3      | NR      |
| MRT | NR    | 5        | 3        | 4      | 4      | NR      |

| Table 9: | Field expert opinion on most significant current constraints on production                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Kenya    | No response received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Tanzania | <ul> <li>Lack of national dairy herd</li> <li>Shortage of year round availability of quality feeds</li> <li>Inadequate dairy technology and agribusiness skill</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ethiopia | • Poor economic capacity (capital, land, labor) to absorb package of livestock & feed technologies (e.g., dairy breed plus improved forage).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Uganda   | <ul> <li>Over reliance on natural weather conditions and seasons for production</li> <li>Climate change and climate variability leading to feed shortage</li> <li>Poor productivity and performance of indigenous breeds</li> <li>Livestock pests and diseases</li> <li>High cost on inputs and investments in livestock enterprise</li> <li>Poor quality inputs</li> <li>Competition on feedstuff resources between humans and livestock</li> <li>Some of the policies especially on livestock health and breeding are not enforced</li> <li>Poor persistence of forage legumes in grass/legume mixture.</li> <li>Emergence of new forage diseases and pests</li> <li>Inadequate research funds, infrastructure and investment to generate appropriate knowledge to address farmers' tactical and strategic challenges.</li> <li>Lack knowledge on suitable forage cultivars, agronomic management practices, conservation and utilization.</li> <li>Farmers' inaccessibility to appropriate forage technologies and technical information.</li> </ul> |
| Rwanda   | <ul> <li>Physiological constraints: mammites problem</li> <li>Biotic: Napier stunt and smut disease</li> <li>Abiotic: drought and nutrient deficiency in the soil and aluminum soil toxicity</li> <li>Environmental constraints: inadequate feeds quantities and qualities all year round</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Burundi  | No response received                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Given this complex mix of promise and challenge, and given the significant gaps in the responses we received, we have decided to forgo the traditional point estimate format typically seen in economic surplus studies, and instead present results in an NPV heatmap and isoquant map format. These alternative formats allow the reader to examine outcomes for the adoption rate scenario(s) they deem reasonable or otherwise consistent with the local policy environment. They also allow one to quickly develop an intuition about how NPV outcomes vary with the assumed adoption rate.

Adoption over time is modeled using a logistic curve as seen in Figure 5. This two parameter curve reflects the typical slow start of adoption, followed by a period of rapid diffusion, and then a tapering off of uptake as the adoption rate ceiling is reached. The slope of the curve (i.e., the quickness with which adoption occurs) depends mathematically upon the duration of the uptake period (see Equation 6 in Appendix A.1 for further mathematical details). In Table 7, most respondents indicated a moderate or long uptake period, where the terms "moderate" and "long" are subject to a great deal of interpretation. Our interpretation for this study is that the uptake period ( $T_u$ ) would last 20 years in all countries. As mentioned in section 3.1, the research period is expected to last 10 years. The total time horizon is thus 30 years from initiation of research to peak adoption.





#### 3.6 Supply/demand elasticities, depreciation, probability of success

As usual in economic surplus studies, estimates of the supply and demand elasticities for the precise commodity and geographical area in question are difficult to come by. We set the milk supply and demand elasticities,  $\varepsilon$  and  $\eta$ , to 0.7 and 0.5, respectively, in accordance with a forages study conducted in West Africa (Thornton & Tarawali, 1999, p. 100). The discount rate (r) is set to 10%. The breeding expert consulted for this study suggested that an improved forage technology could remain viable for 30 years or more from release (M. Peters, email correspondence, May 3, 2016). Discounting at 10% renders such depreciation negligible, and so we have held the depreciation parameter ( $\delta_t$ ) constant at 1 (no depreciation). Based on the success of past forage research programs for release in other parts of the world, we feel justified in setting the probability of success (p) at 80%.

The model parameters discussed in the subsections above are summarized in Table 10.

| Table 10: Economic surplus model parameters |                            |          |  |  |  |  |  |
|---------------------------------------------|----------------------------|----------|--|--|--|--|--|
| Parameter                                   | Description                | Value    |  |  |  |  |  |
| ε                                           | Elasticity of milk supply  | 0.7      |  |  |  |  |  |
| η                                           | Elasticity of milk demand  | 0.5      |  |  |  |  |  |
| p                                           | Probability of success     | 80%      |  |  |  |  |  |
| $\delta_t$                                  | Depreciation factor        | 1        |  |  |  |  |  |
| E[y]                                        | Increase in productivity   | 15%-40%  |  |  |  |  |  |
| <i>E</i> [ <i>C</i> ]                       | Increase in variable cost  | 0%       |  |  |  |  |  |
| r                                           | Discount rate              | 10%      |  |  |  |  |  |
| $T_r$                                       | Length of research period  | 10 years |  |  |  |  |  |
| <i>T</i>                                    | Length of diffusion period | 20 years |  |  |  |  |  |

## 4. Results

In economic surplus studies such as this one, the NPV of a given research program can be sensitive to the choice of adoption rate, this choice often being an approximation based on expert opinion. Because estimates of adoption rates may be subjective and necessarily encapsulate a certain amount of uncertainty, they are often subject to a great deal of debate. In this study, the assessment of any single "probable" scenario is made more uncertain by the wide range of expected potential impacts the new technology might have on milk productivity (15%-40%). For these reasons, we decided to move beyond the typical point estimate format, which is capable of covering just a few scenario outcomes, in favor of a range of scenarios represented by a heatmap and isoquant format, which offers a broad overview of the outcomes landscape.

#### 4.1 NPV outcomes heatmap

NPV outcomes are displayed in a heatmap format in Figures 6-8. The three heatmaps are calculated on a producer surplus, consumer surplus, and total surplus basis, respectively. The heatmaps cover a total of 240 scenarios involving different combinations of adoption rates and % increases in productivity. Each heatmap cell is colored in accordance with the NPV value it contains. Lower values are redder, higher values are greener; and the 50<sup>th</sup> percentile of NPV values is colored yellow. We also generated producer and total surplus heatmaps for each country and include these in Appendix A.5. When reviewing the country-level heatmaps, it must be kept in mind that NPV outcomes include diffusion costs, but not research costs.

|     |            | Program le | vel (all coun | tries, incluc | les research | n cost)     |         |         |         |         |            |         |         |
|-----|------------|------------|---------------|---------------|--------------|-------------|---------|---------|---------|---------|------------|---------|---------|
|     |            | NPV Scena  | rio Heatmap   | (USD \$,000   | ), Producer  | Surplus bas | sis     |         |         |         |            |         |         |
|     |            |            | Increase in p | productivity  | /            |             |         |         |         |         |            |         |         |
|     |            | 5%         | 10%           | 15%           | 20%          | 25%         | 30%     | 35%     | 40%     | 45%     | <b>50%</b> | 55%     | 60%     |
|     | 5%         | -7,836     | -4,500        | -1,162        | 2,178        | 5,520       | 8,864   | 12,211  | 15,559  | 18,910  | 22,263     | 25,618  | 28,975  |
| e   | 10%        | -4,500     | 2,178         | 8,864         | 15,559       | 22,263      | 28,975  | 35,696  | 42,425  | 49,163  | 55,910     | 62,665  | 69,428  |
| rat | 15%        | -1,162     | 8,864         | 18,910        | 28,975       | 39,059      | 49,163  | 59,286  | 69,428  | 79,590  | 89,771     | 99,972  | 110,191 |
| ion | 20%        | 2,178      | 15,559        | 28,975        | 42,425       | 55,910      | 69,428  | 82,982  | 96,569  | 110,191 | 123,848    | 137,538 | 151,264 |
| opt | 25%        | 5,520      | 22,263        | 39,059        | 55,910       | 72,813      | 89,771  | 106,783 | 123,848 | 140,966 | 158,139    | 175,365 | 192,645 |
| PA  | <b>30%</b> | 8,864      | 28,975        | 49,163        | 69,428       | 89,771      | 110,191 | 130,689 | 151,264 | 171,916 | 192,645    | 213,452 | 234,336 |
|     | 35%        | 12,211     | 35,696        | 59,286        | 82,982       | 106,783     | 130,689 | 154,700 | 178,817 | 203,039 | 227,366    | 251,799 | 276,337 |
|     | 40%        | 15,559     | 42,425        | 69,428        | 96,569       | 123,848     | 151,264 | 178,817 | 206,508 | 234,336 | 262,302    | 290,405 | 318,646 |
|     | 45%        | 18,910     | 49,163        | 79,590        | 110,191      | 140,966     | 171,916 | 203,039 | 234,336 | 265,807 | 297,453    | 329,272 | 361,265 |
|     | 50%        | 22,263     | 55,910        | 89,771        | 123,848      | 158,139     | 192,645 | 227,366 | 262,302 | 297,453 | 332,818    | 368,399 | 404,194 |
|     | 55%        | 25,618     | 62,665        | 99,972        | 137,538      | 175,365     | 213,452 | 251,799 | 290,405 | 329,272 | 368,399    | 407,785 | 447,432 |
|     | 60%        | 28,975     | 69,428        | 110,191       | 151,264      | 192,645     | 234,336 | 276,337 | 318,646 | 361,265 | 404,194    | 447,432 | 490,979 |
|     | 65%        | 32,334     | 76,201        | 120,430       | 165,023      | 209,979     | 255,298 | 300,980 | 347,025 | 393,433 | 440,204    | 487,339 | 534,836 |
|     | 70%        | 35,696     | 82,982        | 130,689       | 178,817      | 227,366     | 276,337 | 325,728 | 375,541 | 425,774 | 476,429    | 527,505 | 579,002 |
|     | 75%        | 39,059     | 89,771        | 140,966       | 192,645      | 244,807     | 297,453 | 350,582 | 404,194 | 458,290 | 512,869    | 567,932 | 623,478 |
|     | 80%        | 42,425     | 96,569        | 151,264       | 206,508      | 262,302     | 318,646 | 375,541 | 432,985 | 490,979 | 549,524    | 608,618 | 668,262 |
|     | 85%        | 45,793     | 103,376       | 161,580       | 220,405      | 279,851     | 339,917 | 400,605 | 461,913 | 523,843 | 586,393    | 649,564 | 713,357 |
|     | 90%        | 49,163     | 110,191       | 171,916       | 234,336      | 297,453     | 361,265 | 425,774 | 490,979 | 556,880 | 623,478    | 690,771 | 758,760 |
|     | 95%        | 52,535     | 117,015       | 182,271       | 248,302      | 315,109     | 382,691 | 451,049 | 520,183 | 590,092 | 660,777    | 732,237 | 804,473 |
|     | 100%       | 55,910     | 123,848       | 192,645       | 262,302      | 332,818     | 404,194 | 476,429 | 549,524 | 623,478 | 698,291    | 773,963 | 850,496 |

Figure 6: Program level NPV outcomes heatmap on a producer surplus basis

|     |      | Program le | evel (all coun | tries, incluc | les research | n cost)      |         |         |         |         |         |           |           |
|-----|------|------------|----------------|---------------|--------------|--------------|---------|---------|---------|---------|---------|-----------|-----------|
|     |      | NPV Scena  | rio Heatmap    | (USD \$,000   | ), Consume   | r Surplus ba | sis     |         |         |         |         |           |           |
|     |      |            | Increase in p  | productivity  |              |              |         |         |         |         |         |           |           |
|     |      | 5%         | 10%            | 15%           | 20%          | 25%          | 30%     | 35%     | 40%     | 45%     | 50%     | 55%       | 60%       |
|     | 5%   | -6,502     | -1,832         | 2,841         | 7,517        | 12,196       | 16,878  | 21,563  | 26,251  | 30,942  | 35,636  | 40,333    | 45,033    |
| a   | 10%  | -1,832     | 7,517          | 16,878        | 26,251       | 35,636       | 45,033  | 54,442  | 63,863  | 73,296  | 82,741  | 92,198    | 101,667   |
| rat | 15%  | 2,841      | 16,878         | 30,942        | 45,033       | 59,151       | 73,296  | 87,468  | 101,667 | 115,894 | 130,147 | 144,428   | 158,735   |
| ion | 20%  | 7,517      | 26,251         | 45,033        | 63,863       | 82,741       | 101,667 | 120,642 | 139,665 | 158,735 | 177,854 | 197,021   | 216,237   |
| opt | 25%  | 12,196     | 35,636         | 59,151        | 82,741       | 106,407      | 130,147 | 153,963 | 177,854 | 201,821 | 225,862 | 249,979   | 274,171   |
| PA  | 30%  | 16,878     | 45,033         | 73,296        | 101,667      | 130,147      | 158,735 | 187,432 | 216,237 | 245,150 | 274,171 | 303,300   | 332,538   |
|     | 35%  | 21,563     | 54,442         | 87,468        | 120,642      | 153,963      | 187,432 | 221,048 | 254,811 | 288,722 | 322,780 | 356,986   | 391,339   |
|     | 40%  | 26,251     | 63,863         | 101,667       | 139,665      | 177,854      | 216,237 | 254,811 | 293,579 | 332,538 | 371,691 | 411,035   | 450,573   |
|     | 45%  | 30,942     | 73,296         | 115,894       | 158,735      | 201,821      | 245,150 | 288,722 | 332,538 | 376,598 | 420,902 | 465,449   | 510,239   |
|     | 50%  | 35,636     | 82,741         | 130,147       | 177,854      | 225,862      | 274,171 | 322,780 | 371,691 | 420,902 | 470,413 | 520,226   | 570,339   |
|     | 55%  | 40,333     | 92,198         | 144,428       | 197,021      | 249,979      | 303,300 | 356,986 | 411,035 | 465,449 | 520,226 | 575,367   | 630,872   |
|     | 60%  | 45,033     | 101,667        | 158,735       | 216,237      | 274,171      | 332,538 | 391,339 | 450,573 | 510,239 | 570,339 | 630,872   | 691,839   |
|     | 65%  | 49,736     | 111,149        | 173,070       | 235,500      | 298,438      | 361,884 | 425,839 | 490,302 | 555,274 | 620,753 | 686,742   | 753,238   |
|     | 70%  | 54,442     | 120,642        | 187,432       | 254,811      | 322,780      | 391,339 | 460,487 | 530,225 | 600,552 | 671,468 | 742,975   | 815,071   |
|     | 75%  | 59,151     | 130,147        | 201,821       | 274,171      | 347,198      | 420,902 | 495,282 | 570,339 | 646,073 | 722,484 | 799,572   | 877,336   |
|     | 80%  | 63,863     | 139,665        | 216,237       | 293,579      | 371,691      | 450,573 | 530,225 | 610,647 | 691,839 | 773,801 | 856,533   | 940,035   |
|     | 85%  | 68,578     | 149,194        | 230,680       | 313,034      | 396,258      | 480,352 | 565,314 | 651,146 | 737,848 | 825,418 | 913,858   | 1,003,167 |
|     | 90%  | 73,296     | 158,735        | 245,150       | 332,538      | 420,902      | 510,239 | 600,552 | 691,839 | 784,100 | 877,336 | 971,547   | 1,066,732 |
|     | 95%  | 78,017     | 168,289        | 259,647       | 352,090      | 445,620      | 540,235 | 635,936 | 732,723 | 830,596 | 929,555 | 1,029,600 | 1,130,730 |
|     | 100% | 82,741     | 177,854        | 274,171       | 371,691      | 470,413      | 570,339 | 671,468 | 773,801 | 877,336 | 982,075 | 1,088,017 | 1,195,161 |

Figure 7: Program level NPV outcomes heatmap on a consumer surplus basis

|     |      | Program le | vel (all coun | tries, includ | les researcl  | n cost)    |         |           |           |           |           |           |           |
|-----|------|------------|---------------|---------------|---------------|------------|---------|-----------|-----------|-----------|-----------|-----------|-----------|
|     |      | NPV Scena  | rio Heatmap   | (USD \$,000)  | ), Total Surj | olus basis |         |           |           |           |           |           |           |
|     |      |            | Increase in p | productivity  |               |            |         |           |           |           |           |           |           |
|     |      | 5%         | 10%           | 15%           | 20%           | 25%        | 30%     | 35%       | 40%       | 45%       | 50%       | 55%       | 60%       |
|     | 5%   | -3,169     | 4,837         | 12,848        | 20,864        | 28,885     | 36,911  | 44,942    | 52,979    | 61,021    | 69,067    | 77,119    | 85,177    |
| a   | 10%  | 4,837      | 20,864        | 36,911        | 52,979        | 69,067     | 85,177  | 101,306   | 117,457   | 133,628   | 149,820   | 166,032   | 182,265   |
| rat | 15%  | 12,848     | 36,911        | 61,021        | 85,177        | 109,379    | 133,628 | 157,923   | 182,265   | 206,653   | 231,088   | 255,569   | 280,096   |
| ion | 20%  | 20,864     | 52,979        | 85,177        | 117,457       | 149,820    | 182,265 | 214,793   | 247,403   | 280,096   | 312,871   | 345,729   | 378,669   |
| opt | 25%  | 28,885     | 69,067        | 109,379       | 149,820       | 190,389    | 231,088 | 271,915   | 312,871   | 353,956   | 395,170   | 436,513   | 477,985   |
| PA  | 30%  | 36,911     | 85,177        | 133,628       | 182,265       | 231,088    | 280,096 | 329,290   | 378,669   | 428,234   | 477,985   | 527,922   | 578,044   |
|     | 35%  | 44,942     | 101,306       | 157,923       | 214,793       | 271,915    | 329,290 | 386,917   | 444,797   | 502,930   | 561,316   | 619,954   | 678,845   |
|     | 40%  | 52,979     | 117,457       | 182,265       | 247,403       | 312,871    | 378,669 | 444,797   | 511,255   | 578,044   | 645,162   | 712,610   | 780,388   |
|     | 45%  | 61,021     | 133,628       | 206,653       | 280,096       | 353,956    | 428,234 | 502,930   | 578,044   | 653,575   | 729,523   | 805,890   | 882,674   |
|     | 50%  | 69,067     | 149,820       | 231,088       | 312,871       | 395,170    | 477,985 | 561,316   | 645,162   | 729,523   | 814,401   | 899,794   | 985,702   |
|     | 55%  | 77,119     | 166,032       | 255,569       | 345,729       | 436,513    | 527,922 | 619,954   | 712,610   | 805,890   | 899,794   | 994,322   | 1,089,474 |
|     | 60%  | 85,177     | 182,265       | 280,096       | 378,669       | 477,985    | 578,044 | 678,845   | 780,388   | 882,674   | 985,702   | 1,089,474 | 1,193,987 |
|     | 65%  | 93,239     | 198,519       | 304,670       | 411,692       | 519,586    | 628,351 | 737,988   | 848,496   | 959,876   | 1,072,127 | 1,185,249 | 1,299,243 |
|     | 70%  | 101,306    | 214,793       | 329,290       | 444,797       | 561,316    | 678,845 | 797,384   | 916,934   | 1,037,495 | 1,159,067 | 1,281,649 | 1,405,242 |
|     | 75%  | 109,379    | 231,088       | 353,956       | 477,985       | 603,174    | 729,523 | 857,033   | 985,702   | 1,115,532 | 1,246,522 | 1,378,672 | 1,511,983 |
|     | 80%  | 117,457    | 247,403       | 378,669       | 511,255       | 645,162    | 780,388 | 916,934   | 1,054,801 | 1,193,987 | 1,334,493 | 1,476,320 | 1,619,466 |
|     | 85%  | 125,540    | 263,739       | 403,429       | 544,608       | 687,278    | 831,438 | 977,088   | 1,124,229 | 1,272,859 | 1,422,980 | 1,574,591 | 1,727,693 |
|     | 90%  | 133,628    | 280,096       | 428,234       | 578,044       | 729,523    | 882,674 | 1,037,495 | 1,193,987 | 1,352,150 | 1,511,983 | 1,673,487 | 1,836,661 |
|     | 95%  | 141,721    | 296,473       | 453,087       | 611,561       | 771,898    | 934,095 | 1,098,155 | 1,264,075 | 1,431,857 | 1,601,501 | 1,773,006 | 1,946,373 |
|     | 100% | 149,820    | 312,871       | 477,985       | 645,162       | 814,401    | 985,702 | 1,159,067 | 1,334,493 | 1,511,983 | 1,691,535 | 1,873,149 | 2,056,826 |

Figure 8: Program level NPV outcomes heatmap on a total surplus basis

#### 4.2 NPV outcomes isoquant map

We used the Excel Solver Add-in to generate the isoquant map in Figure 9. Analogous to elevation maps, each isoquant on the map represents an NPV outcome "contour." That is to say, each isoquant curve represents the locus of possible combinations of productivity increase and adoption rate that will result in a particular NPV outcome. Any such combination along a given isoquant will result in the same NPV outcome. The internal rate of return (IRR) associated with each NPV isoquant is displayed in the map legend.

When plotted in logs as in Figure 10, the isoquants become straight lines with a slope very close to -1. This implies that, regardless of NPV outcome, a one-to-one tradeoff exists between the adoption rate and the expected % increase in productivity. If the increase in productivity falls some percentage below expectations, the same level of NPV will still be achieved so long as the associated adoption rate is the same percentage *above* expectations.

## 4.3 The NPV scenario envelope

Based on the logged map, we can go one step further and deduce a simple formula for determining the adoption rate necessary to achieve any given NPV outcome for a given % increase in productivity. In Figure 10, a trendline is fitted to the topmost logged isoquant, and its equation is displayed on the graph. Trendline equations for all of the logged isoquants are displayed in Table 11.

A plot of the y-intercept terms in Table 11 against the log of their associated NPV values reveals an interesting relation (Figure 11). Based on this relation, the y-intercepts in Table 11 can be approximately expressed in terms of their corresponding NPV and the two fitted parameters displayed in Figure 11. Since the slopes of all isoquants are all nearly equal to - 1, we can establish the following general NPV isoquant formula:

$$\ln A_{max} \approx -\ln E[y] + 0.8056 \ln NPV + 7.9655$$
 Eq. 1

Which can be simplified to:

$$A_{max} \approx \frac{NPV^{0.8056}}{E[y]} e^{7.9655}$$
 Eq. 2

This is an envelope equation in which the adoption rate ceiling  $(A_{max})$ , the expected percentage increase in productivity (E[y]), and NPV are allowed to vary, with all other model parameters held constant at the values displayed in Tables 6 and 10. The parameter

values in Tables 6 and 10 are encoded in the two fitted parameters 0.8056 and 7.9655. This equation allows us to explicitly determine the adoption rate ceiling required in order to achieve a specific NPV outcome of interest, given a certain % increase in productivity (or vice versa). Before deducing this formula, such calculations must be made using a root finding algorithm.

Envelope equations can also be generated on a total surplus or consumer surplus basis following the same steps described above.



Figures 9 and 10: Scenario isoquant maps



Figure 11: A plot of the log of the Isoquant NPV values in Table 11 against their corresponding y-intercept values

| Table 11: Logged isoquant trendline equations |                                           |  |  |  |  |  |  |  |  |
|-----------------------------------------------|-------------------------------------------|--|--|--|--|--|--|--|--|
| NPV Isoquant<br>(USD)                         | Fitted trendline equation                 |  |  |  |  |  |  |  |  |
| 10,000,000                                    | $\ln A_{max} = -0.9986 \ln E[y] + 5.0993$ |  |  |  |  |  |  |  |  |
| 100,000,000                                   | $\ln A_{max} = -0.9998 \ln E[y] + 6.7240$ |  |  |  |  |  |  |  |  |
| 250,000,000                                   | $\ln A_{max} = -1.0000 \ln E[y] + 7.5600$ |  |  |  |  |  |  |  |  |
| 500,000,000                                   | $\ln A_{max} = -0.9998 \ln E[y] + 8.2073$ |  |  |  |  |  |  |  |  |
| 750,000,000                                   | $\ln A_{max} = -0.9990 \ln E[y] + 8.5836$ |  |  |  |  |  |  |  |  |

# 4.4 Sensitivity analysis

NPV outcome sensitivity to inaccuracy in five of the model parameters was calculated on a total surplus basis. Sensitivity to each parameter is again presented in a heatmap format, with each cell indicating the sensitivity of the corresponding NPV outcome in Figure 8. Sensitivity is expressed as the percentage change in NPV given a 1% change in the given parameter (see Appendix A.2 for mathematical details). Sensitivity with an absolute value close to 1%, for example, means that the NPV outcome will be roughly as inaccurate as the parameter value itself. In these maps, green indicates relatively lower sensitivity, while red indicates relatively higher sensitivity, and yellow indicates the 50<sup>th</sup> percentile of values.

#### Sensitivity to supply and demand elasticities

The economic surplus model employed in this study makes use of supply and demand elasticities which are generally too expensive and time consuming to estimate directly, and which must therefore be compiled from among secondary sources. In this study, the milk supply and demand elasticities ( $\varepsilon$  and  $\eta$ ) were taken from a West Africa forages study. As the geographical characteristics are quite different between West and East Africa, this source invites analysis of model sensitivity to variation in these two parameters.

We found considerable model sensitivity to changes in supply elasticity, ranging from - 1.07% to -1% across most scenarios, and becoming precipitously more sensitive towards the upper left corner of the heatmap (Figure 12). Sensitivity to changes in the demand elasticity, on the other hand, is negligible, ranging between 0% and 0.4% (Figure 13).

#### Sensitivity to the % change in variable cost

Considerable uncertainty also surrounds the value of the expected % increase in variable cost (E[C]) associated with the new technology. As discussed in section 2, the improved forages require less fertilizer, thus reducing input costs. However, this might not necessarily translate into reduced cost for cut-and-carry farmers. And many smallholders growing their own forage might introduce the improved cultivars in a complementary role, potentially displacing a cash crop and thereby incurring a cost in the form of forgone revenue.

We found that model sensitivity to inaccuracy in the % increase in variable cost is not as pronounced as it is to the supply elasticity, but is still considerable, ranging between -1% and -0.67% across most scenarios, and becoming precipitously more sensitive towards the upper left corner of the heatmap (Figure 14).

#### Sensitivity to the % increase in productivity, producer price, and quantity affected

A degree of uncertainty also surrounds the expected % increase in productivity (E[y]), producer price (P), and quantity affected (Q). Sensitivity to E[y] is considerable, ranging

from 1% to 1.07% (Figure 15). Sensitivity to P and Q is also considerable, ranging from 1% to 1.04% across most scenarios, and becoming precipitously more sensitive towards the upper left corner of the heatmap (Figure 16).

|      |      | NPV (TS) Se | ensitivity w.r | .t. supply el | lasticity (e) |       |       |       |       |       |       |       |       |
|------|------|-------------|----------------|---------------|---------------|-------|-------|-------|-------|-------|-------|-------|-------|
|      |      |             | Increase in p  | oroductivity  |               |       |       |       |       |       |       |       |       |
|      |      | 5%          | 10%            | 15%           | 20%           | 25%   | 30%   | 35%   | 40%   | 45%   | 50%   | 55%   | 60%   |
|      | 5%   | -1.61       | -1.22          | -1.13         | -1.10         | -1.08 | -1.06 | -1.05 | -1.05 | -1.04 | -1.04 | -1.04 | -1.03 |
| e    | 10%  | -1.22       | -1.10          | -1.06         | -1.05         | -1.04 | -1.03 | -1.03 | -1.03 | -1.02 | -1.02 | -1.02 | -1.02 |
| rat  | 15%  | -1.13       | -1.06          | -1.04         | -1.03         | -1.03 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 |
| tion | 20%  | -1.10       | -1.05          | -1.03         | -1.03         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 |
| op   | 25%  | -1.08       | -1.04          | -1.03         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 |
| Ad   | 30%  | -1.06       | -1.03          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 |
|      | 35%  | -1.05       | -1.03          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 |
|      | 40%  | -1.05       | -1.03          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 |
|      | 45%  | -1.04       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 |
|      | 50%  | -1.04       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.03 |
|      | 55%  | -1.04       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.03 | -1.03 |
|      | 60%  | -1.03       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 |
|      | 65%  | -1.03       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 |
|      | 70%  | -1.03       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 | -1.03 |
|      | 75%  | -1.03       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 | -1.03 | -1.03 |
|      | 80%  | -1.03       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 | -1.03 | -1.04 |
|      | 85%  | -1.02       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 | -1.04 | -1.04 |
|      | 90%  | -1.02       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 | -1.03 | -1.04 | -1.04 |
|      | 95%  | -1.02       | -1.02          | -1.02         | -1.02         | -1.02 | -1.02 | -1.03 | -1.03 | -1.03 | -1.04 | -1.04 | -1.04 |
|      | 100% | -1.02       | -1.02          | -1.02         | -1.02         | -1.02 | -1.03 | -1.03 | -1.03 | -1.03 | -1.04 | -1.04 | -1.04 |

Figure 12: NPV (total surplus basis) sensitivity heatmap with respect to inaccuracy in the supply elasticity parameter

|     |      | NPV (TS) S | ensitivity w | .r.t. demand | delasticity | (n) |     |     |     |     |     |     |     |
|-----|------|------------|--------------|--------------|-------------|-----|-----|-----|-----|-----|-----|-----|-----|
|     |      |            | Increase in  | productivit  | у           |     |     |     |     |     |     |     |     |
|     |      | 5%         | 10%          | 15%          | 20%         | 25% | 30% | 35% | 40% | 45% | 50% | 55% | 60% |
|     | 5%   | .0         | .0           | .0           | .0          | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .0  |
| e   | 10%  | .0         | .0           | .0           | .0          | .0  | .0  | .0  | .0  | .0  | .0  | .0  | .01 |
| rat | 15%  | .0         | .0           | .0           | .0          | .0  | .0  | .0  | .01 | .01 | .01 | .01 | .01 |
| tio | 20%  | .0         | .0           | .0           | .0          | .0  | .01 | .01 | .01 | .01 | .01 | .01 | .01 |
| pt  | 25%  | .0         | .0           | .0           | .0          | .01 | .01 | .01 | .01 | .01 | .01 | .01 | .01 |
| Ad  | 30%  | .0         | .0           | .0           | .01         | .01 | .01 | .01 | .01 | .01 | .01 | .01 | .01 |
|     | 35%  | .0         | .0           | .0           | .01         | .01 | .01 | .01 | .01 | .01 | .01 | .01 | .02 |
|     | 40%  | .0         | .0           | .01          | .01         | .01 | .01 | .01 | .01 | .01 | .02 | .02 | .02 |
|     | 45%  | .0         | .0           | .01          | .01         | .01 | .01 | .01 | .01 | .02 | .02 | .02 | .02 |
|     | 50%  | .0         | .0           | .01          | .01         | .01 | .01 | .01 | .02 | .02 | .02 | .02 | .02 |
|     | 55%  | .0         | .0           | .01          | .01         | .01 | .01 | .01 | .02 | .02 | .02 | .02 | .02 |
|     | 60%  | .0         | .01          | .01          | .01         | .01 | .01 | .02 | .02 | .02 | .02 | .02 | .03 |
|     | 65%  | .0         | .01          | .01          | .01         | .01 | .01 | .02 | .02 | .02 | .02 | .03 | .03 |
|     | 70%  | .0         | .01          | .01          | .01         | .01 | .02 | .02 | .02 | .02 | .03 | .03 | .03 |
|     | 75%  | .0         | .01          | .01          | .01         | .01 | .02 | .02 | .02 | .02 | .03 | .03 | .03 |
|     | 80%  | .0         | .01          | .01          | .01         | .02 | .02 | .02 | .02 | .03 | .03 | .03 | .03 |
|     | 85%  | .0         | .01          | .01          | .01         | .02 | .02 | .02 | .03 | .03 | .03 | .03 | .04 |
|     | 90%  | .0         | .01          | .01          | .01         | .02 | .02 | .02 | .03 | .03 | .03 | .04 | .04 |
|     | 95%  | .0         | .01          | .01          | .01         | .02 | .02 | .02 | .03 | .03 | .03 | .04 | .04 |
|     | 100% | .0         | .01          | .01          | .02         | .02 | .02 | .03 | .03 | .03 | .04 | .04 | .04 |

# Figure 13: NPV (total surplus basis) sensitivity heatmap with respect to inaccuracy in the demand elasticity parameter

|     |      | NPV (TS) S | ensitivity w. | r.t. expected | d change in | input cost | (Ec) |     |     |     |     |     |     |
|-----|------|------------|---------------|---------------|-------------|------------|------|-----|-----|-----|-----|-----|-----|
|     |      |            | Increase in   | productivity  |             |            |      |     |     |     |     |     |     |
|     |      | 5%         | 10%           | 15%           | 20%         | 25%        | 30%  | 35% | 40% | 45% | 50% | 55% | 60% |
|     | 5%   | -1.53      | -1.11         | 99            | 91          | 86         | 82   | 78  | 75  | 72  | 69  | 67  | 65  |
| e   | 10%  | -1.16      | -1.0          | 93            | 87          | 83         | 80   | 76  | 73  | 71  | 68  | 66  | 64  |
| Lat | 15%  | -1.08      | 97            | 91            | 86          | 82         | 79   | 76  | 73  | 71  | 68  | 66  | 64  |
| io  | 20%  | -1.05      | 95            | 90            | 86          | 82         | 79   | 76  | 73  | 70  | 68  | 66  | 64  |
| pt  | 25%  | -1.03      | 95            | 89            | 85          | 82         | 79   | 76  | 73  | 71  | 68  | 66  | 64  |
| Ρq  | 30%  | -1.01      | 94            | 89            | 85          | 82         | 79   | 76  | 73  | 71  | 68  | 66  | 64  |
|     | 35%  | -1.0       | 94            | 89            | 85          | 82         | 79   | 76  | 73  | 71  | 69  | 66  | 64  |
|     | 40%  | -1.0       | 93            | 89            | 85          | 82         | 79   | 76  | 73  | 71  | 69  | 67  | 65  |
|     | 45%  | 99         | 93            | 89            | 85          | 82         | 79   | 76  | 73  | 71  | 69  | 67  | 65  |
|     | 50%  | 99         | 93            | 89            | 85          | 82         | 79   | 76  | 74  | 71  | 69  | 67  | 65  |
|     | 55%  | 99         | 93            | 89            | 85          | 82         | 79   | 76  | 74  | 71  | 69  | 67  | 65  |
|     | 60%  | 98         | 93            | 89            | 85          | 82         | 79   | 76  | 74  | 72  | 69  | 67  | 65  |
|     | 65%  | 98         | 93            | 89            | 85          | 82         | 79   | 77  | 74  | 72  | 70  | 68  | 66  |
|     | 70%  | 98         | 93            | 89            | 85          | 82         | 79   | 77  | 74  | 72  | 70  | 68  | 66  |
|     | 75%  | 98         | 93            | 89            | 85          | 82         | 79   | 77  | 74  | 72  | 70  | 68  | 66  |
|     | 80%  | 98         | 93            | 89            | 86          | 82         | 80   | 77  | 75  | 72  | 70  | 68  | 66  |
|     | 85%  | 98         | 93            | 89            | 86          | 83         | 80   | 77  | 75  | 72  | 70  | 68  | 67  |
|     | 90%  | 98         | 93            | 89            | 86          | 83         | 80   | 77  | 75  | 73  | 71  | 69  | 67  |
|     | 95%  | 98         | 93            | 89            | 86          | 83         | 80   | 77  | 75  | 73  | 71  | 69  | 67  |
|     | 100% | 98         | 93            | 89            | 86          | 83         | 80   | 78  | 75  | 73  | 71  | 69  | 67  |

Figure 14: NPV (total surplus basis) sensitivity heatmap with respect to inaccuracy in the % change in variable cost

|     |      | NPV (TS) Ser | nsitivity w.r.t | . expected | change in p | roductivity | (Ey) |      |      |      |      |      |      |
|-----|------|--------------|-----------------|------------|-------------|-------------|------|------|------|------|------|------|------|
|     |      | li           | ncrease in pr   | oductivity |             |             |      |      |      |      |      |      |      |
|     |      | 5%           | 10%             | 15%        | 20%         | 25%         | 30%  | 35%  | 40%  | 45%  | 50%  | 55%  | 60%  |
|     | 5%   | 1.0          | 1.0             | 1.0        | 1.0         | 1.0         | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
| e   | 10%  | 1.0          | 1.0             | 1.0        | 1.0         | 1.0         | 1.0  | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
| Lat | 15%  | 1.0          | 1.0             | 1.0        | 1.0         | 1.01        | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
| io  | 20%  | 1.0          | 1.0             | 1.0        | 1.01        | 1.01        | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.02 |
| pt  | 25%  | 1.0          | 1.0             | 1.01       | 1.01        | 1.01        | 1.01 | 1.01 | 1.01 | 1.01 | 1.02 | 1.02 | 1.02 |
| Ad  | 30%  | 1.0          | 1.0             | 1.01       | 1.01        | 1.01        | 1.01 | 1.01 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 |
|     | 35%  | 1.0          | 1.01            | 1.01       | 1.01        | 1.01        | 1.01 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.03 |
|     | 40%  | 1.0          | 1.01            | 1.01       | 1.01        | 1.01        | 1.02 | 1.02 | 1.02 | 1.02 | 1.03 | 1.03 | 1.03 |
|     | 45%  | 1.0          | 1.01            | 1.01       | 1.01        | 1.01        | 1.02 | 1.02 | 1.02 | 1.03 | 1.03 | 1.03 | 1.03 |
|     | 50%  | 1.0          | 1.01            | 1.01       | 1.01        | 1.02        | 1.02 | 1.02 | 1.03 | 1.03 | 1.03 | 1.03 | 1.04 |
|     | 55%  | 1.0          | 1.01            | 1.01       | 1.01        | 1.02        | 1.02 | 1.02 | 1.03 | 1.03 | 1.03 | 1.04 | 1.04 |
|     | 60%  | 1.0          | 1.01            | 1.01       | 1.02        | 1.02        | 1.02 | 1.03 | 1.03 | 1.03 | 1.04 | 1.04 | 1.04 |
|     | 65%  | 1.0          | 1.01            | 1.01       | 1.02        | 1.02        | 1.03 | 1.03 | 1.03 | 1.04 | 1.04 | 1.04 | 1.05 |
|     | 70%  | 1.01         | 1.01            | 1.01       | 1.02        | 1.02        | 1.03 | 1.03 | 1.04 | 1.04 | 1.04 | 1.05 | 1.05 |
|     | 75%  | 1.01         | 1.01            | 1.01       | 1.02        | 1.02        | 1.03 | 1.03 | 1.04 | 1.04 | 1.05 | 1.05 | 1.06 |
|     | 80%  | 1.01         | 1.01            | 1.02       | 1.02        | 1.03        | 1.03 | 1.04 | 1.04 | 1.04 | 1.05 | 1.05 | 1.06 |
|     | 85%  | 1.01         | 1.01            | 1.02       | 1.02        | 1.03        | 1.03 | 1.04 | 1.04 | 1.05 | 1.05 | 1.06 | 1.06 |
|     | 90%  | 1.01         | 1.01            | 1.02       | 1.02        | 1.03        | 1.03 | 1.04 | 1.04 | 1.05 | 1.06 | 1.06 | 1.07 |
|     | 95%  | 1.01         | 1.01            | 1.02       | 1.02        | 1.03        | 1.04 | 1.04 | 1.05 | 1.05 | 1.06 | 1.06 | 1.07 |
|     | 100% | 1.01         | 1.01            | 1.02       | 1.03        | 1.03        | 1.04 | 1.04 | 1.05 | 1.06 | 1.06 | 1.07 | 1.07 |

# Figure 15: NPV (total surplus basis) sensitivity heatmap with respect to inaccuracy in the % change in productivity

|     |      | NPV (TS) S | ensitivity w.r. | t. producer | price or qua | antity affect | ted (P or Q) |      |      |      |      |      |      |
|-----|------|------------|-----------------|-------------|--------------|---------------|--------------|------|------|------|------|------|------|
|     |      |            | Increase in p   | roductivity |              |               |              |      |      |      |      |      |      |
|     |      | 5%         | 10%             | 15%         | 20%          | 25%           | 30%          | 35%  | 40%  | 45%  | 50%  | 55%  | 60%  |
|     | 5%   | 1.61       | 1.22            | 1.13        | 1.10         | 1.08          | 1.06         | 1.05 | 1.05 | 1.04 | 1.04 | 1.03 | 1.03 |
| e,  | 10%  | 1.22       | 1.10            | 1.06        | 1.05         | 1.04          | 1.03         | 1.03 | 1.02 | 1.02 | 1.02 | 1.02 | 1.01 |
| rat | 15%  | 1.13       | 1.06            | 1.04        | 1.03         | 1.02          | 1.02         | 1.02 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
| io. | 20%  | 1.10       | 1.05            | 1.03        | 1.02         | 1.02          | 1.01         | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
| pt  | 25%  | 1.08       | 1.04            | 1.02        | 1.02         | 1.01          | 1.01         | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
| PA  | 30%  | 1.06       | 1.03            | 1.02        | 1.01         | 1.01          | 1.01         | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
|     | 35%  | 1.05       | 1.03            | 1.02        | 1.01         | 1.01          | 1.01         | 1.01 | 1.01 | 1.01 | 1.01 | 1.0  | 1.0  |
|     | 40%  | 1.05       | 1.02            | 1.01        | 1.01         | 1.01          | 1.01         | 1.01 | 1.01 | 1.01 | 1.0  | 1.0  | 1.0  |
|     | 45%  | 1.04       | 1.02            | 1.01        | 1.01         | 1.01          | 1.01         | 1.01 | 1.01 | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 50%  | 1.04       | 1.02            | 1.01        | 1.01         | 1.01          | 1.01         | 1.01 | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 55%  | 1.03       | 1.02            | 1.01        | 1.01         | 1.01          | 1.01         | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 60%  | 1.03       | 1.01            | 1.01        | 1.01         | 1.01          | 1.01         | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 65%  | 1.03       | 1.01            | 1.01        | 1.01         | 1.01          | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 70%  | 1.03       | 1.01            | 1.01        | 1.01         | 1.01          | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 75%  | 1.02       | 1.01            | 1.01        | 1.01         | 1.01          | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 80%  | 1.02       | 1.01            | 1.01        | 1.01         | 1.0           | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 85%  | 1.02       | 1.01            | 1.01        | 1.01         | 1.0           | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 90%  | 1.02       | 1.01            | 1.01        | 1.01         | 1.0           | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 95%  | 1.02       | 1.01            | 1.01        | 1.0          | 1.0           | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |
|     | 100% | 1.02       | 1.01            | 1.01        | 1.0          | 1.0           | 1.0          | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  | 1.0  |

# Figure 16: NPV (total surplus basis) sensitivity heatmap with respect to inaccuracy in producer price or quantity affected

## 5. Discussion

At the program level, the results of the economic surplus analysis, based on the available data and given the underlying assumptions, generally suggest that investment in a research program for the development of improved forage varieties for release in East Africa would be a low risk, high reward endeavor. Preliminary data from ongoing multi-site trials in Kenya and Rwanda suggests that release and uptake of improved forages would raise milk productivity by 15%-40%. On a producer surplus basis, NPV outcomes in this range are in the tens of millions of dollars so long as the adoption rate is greater than 10%, and rise quickly for a wide range of plausible adoption rates. A modest adoption rate ceiling of 30%, for example, requires only a 30% increase in productivity—well within the expected range of 15%-40% reported by experts—in order to result in producer-side NPV outcomes greater than \$100 million. If we include consumer-side benefits, the NPV outcomes are much greater, reaching half a billion dollars for a wide range of plausible scenarios.

At the country level, projected NPV outcomes are essentially a reflection of milk cow population sizes—highest in Ethiopia, followed by Tanzania, Kenya, Uganda, Rwanda, and Burundi. However, when analyzed in terms of NPV per milk cow, the best results are found in the countries with the smallest cow populations, Rwanda and Burundi, followed by Kenya, Ethiopia, Uganda, and Tanzania. With the country level results, it is important to keep in mind that NPV outcomes at this level do not include program level research cost.

As far as the inner workings of the model are concerned, the overwhelmingly positive assessment is due in large part to the massive pool of potential beneficiaries in the study area (reflected in *Q*), and because we assume there is no increase in input costs associated with adoption of the new technology (E[C] = 0). The relatively brief research period ( $T_r$ ), compared to prior CIAT forage research programs, also contributes to this result.

Sensitivity analysis reveals that the accuracy of our NPV outcomes is robust to uncertainty in milk demand elasticity, but vulnerable to the same in the milk supply elasticity parameter, the expected % change in variable cost, the expected % increase in productivity, the producer price, and the quantity affected. For most of the scenarios covered in the heatmaps, our NPV outcomes will be as inaccurate as our estimate of any one of these key parameters. However, we can infer that, taking account only of producer-side net benefits (Figure 6), NPV outcomes in the expected range of percentage productivity increases, and an adoption rate of at least 10%, would not turn negative even with an inaccuracy as high as 50% in any single one of the parameters examined in section 4.4. For a wide range of plausible scenarios such inaccuracy would merely mean the difference between an 8<sup>th</sup> order result (\$100s of millions) and a 7<sup>th</sup> order result (\$10s of millions). Major inaccuracies would have to occur in several parameters simultaneously in order to critically skew the model output.

When interpreting these results, it should be kept in mind that the economic surplus model employed in this study is a parsimonious, minimum data approach. This approach thus simplifies many important features of the underlying reality. In particular, we ignore any transition costs that might be associated with adoption of the new technology. More significantly, the model does not account for farm heterogeneity. That is to say, the model assumes that the percentage increase in productivity is the same for all adopting farms, regardless of variation in local conditions. Because of data limitations, our estimate of the production affected by the new technology is based on the national average yield, effectively introducing the assumption that yields are the same across all farms, regardless of variation in local conditions. These simplifications in representation may bias our NPV outcomes upward, depending on the structure of the heterogeneity present in the region. We also assume that the supply and demand elasticities, adoption rate ceilings, and uptake period durations are the same across all countries and across all production systems, although it is not clear in which direction these assumptions might drive the results.

On the other hand, our results are conservative in some respects. For example, we have taken no account of the additional benefits that might arise from increased meat production, enhanced production via leguminous intercropping, the storage and/or sale of hay, and the spread of climate adapted push-pull systems.

# 6. Conclusion

The results of our assessment suggest that investment in a research program for the development of improved forage varieties for release in East Africa would be a low risk, high reward endeavor. The economic surplus model output indicates that, even if adoption rate ceilings and expected % increases in productivity fall below current expectations, such a research program would likely generate discounted benefits on the order of many tens of millions of dollars.

Our results are subject to the effects of uncertainty in several key parameters, but the NPV outcomes are adequately large that inaccuracy in any single parameter is unlikely to reduce these values by a significant amount. For a wide range of plausible scenarios, a major inaccuracy in one of these parameters could potentially reduce the NPV up to an order of magnitude, but still with substantial positive effects.

In short, investment in improved forages has high potential return for dairy producers in East Africa. Key areas of investigation that could improve this model include better understanding of supply and demand elasticities, better characterization of the regional heterogeneity, and improved consideration of costs association with the diffusion of the technology. Nevertheless, there is great potential for forage technology in East Africa if wide scale adoption can be achieved.

#### References

Alston, J. M., Norton, G. W., & Pardey, P. G. (1995). *Science under scarcity: principles and practice for agricultural research evaluation and priority setting.* Cornell University Press. Retrieved from http://www.cabdirect.org/abstracts/19986772609.html

Climate Smart Brachiaria Program. (2016). *Annual Review*. Retrieved from http://www.kalro.org/sites/default/files/2016-May-18-Climate-SmartBrachiaria-ProgramAnnualReview.pdf

- Djikeng, A., Rao, I. M., Njarui, D., Mutimura, M., Caradus, J., Ghimire, S. R., ... Kelemu, S. (2014). Climate-smart Brachiaria grasses for improving livestock production in East Africa. *Tropical Grasslands-Forrajes Tropicales*, *2*(1), 38–39.
- Dzowela, B. H. (1990). The pasture network for eastern and southern Africa (PANESA): Its regional collaborative research programme. Retrieved from https://cgspace.cgiar.org/handle/10568/27823
- FAO. (2009). *Livestock in the Balance* (Annual). FAO. Retrieved from http://www.fao.org/docrep/012/i0680e/i0680e.pdf
- FAOSTAT. (2016a). Live animals; cattle, 2010, 2013. Retrieved from http://faostat3.fao.org/download/Q/\*/E
- FAOSTAT. (2016b). Producer price; milk, whole fresh cow, 2010-2012. Retrieved from http://faostat3.fao.org/download/P/PP/E
- FAOSTAT. (2016c). Producing animals; livestock primary; milk, whole fresh cow, 2009-2013. Retrieved from http://faostat3.fao.org/download/Q/\*/E

Fisher, M. J., & Kerridge, P. C. (1996). The agronomy and physiology of Brachiaria species. Brachiaria: Biology, Agronomy and Improvement. Cali, Colômbia: Centro Internacional deAgricultura Tropical, Tropical Forages Program and Communications Unit. Retrieved from http://www.sidalc.net/cgibin/wxis.exe/?IsisScript=catalco.xis&method=post&formato=2&cantidad=1&expre sion=mfn=022502

Fisher, M. J., Rao, I. M., Ayarza, M. A., Lascano, C. E., Sanz, J. I., Thomas, R. J., & Vera, R. R. (1994). Carbon storage by introduced deep-rooted grasses in the South American savannas. Retrieved from

http://www.nature.com/nature/journal/v371/n6494/abs/371236a0.html

- Ghimire, S., Njarui, D., Mutimura, M., Cardoso, J., Johnson, L., Gichangi, E., ... others. (2015).
   Climate-smart Brachiaria for improving livestock production in East Africa:
   Emerging opportunities. Retrieved from
   https://cgspace.cgiar.org/handle/10568/69364
- Jank, L., Barrios, S. C., do Valle, C. B., Simeão, R. M., & Alves, G. F. (2014). The value of improved pastures to Brazilian beef production. *Crop and Pasture Science*, 65(11), 1132–1137.
- Kabirizi, J., Ziiwa, E., Mugerwa, S., Ndikumana, J., & Nanyennya, W. (2013). Dry season
   forages for improving dairy production in smallholder systems in Uganda. *Tropical Grasslands-Forrajes Tropicales*, 1(2), 212–214.
- Maass, B. L., Midega, C. A., Mutimura, M., Rahetlah, V. B., Salgado, P., Kabirizi, J. M., ... Rao, I.
  M. (2015). Homecoming of Brachiaria: Improved hybrids prove useful for African animal agriculture. *East African Agricultural and Forestry Journal*, *81*(1), 71–78.

Midega, C. A., Bruce, T. J., Pickett, J. A., Pittchar, J. O., Murage, A., & Khan, Z. R. (2015). Climate-adapted companion cropping increases agricultural productivity in East Africa. *Field Crops Research*, *180*, 118–125.

Ooko, S. (2015, September 22). Wonder grass back in Africa, opens new horizon for Kenya's livestock sector. *Business Daily*. Retrieved from http://www.businessdailyafrica.com/Corporate-News/Wonder-grass-back-in-Africa-opens-new-horizon-for-livestock/-/539550/2880322/-/ptqbioz/-/index.html

- Rakotoarisoa, M., Iafrate, M., & Paschali, M. (2011). *Why has Africa become a net food importer*. FAO. Retrieved from http://womin.org.za/images/impact-of-extractiveindustries/land-grabs/FAO%20-%20Africas%20Food%20Trade%20Deficits.pdf
- Rao, I. M. (2014). 39 Advances in Improving Adaptation of Common Bean and Brachiaria Forage Grasses to Abiotic Stresses in the Tropics. Retrieved from http://www.crcnetbase.com/doi/pdf/10.1201/b16675-49
- Rao, I. M., Kerridge, P., & Macedo, M. (1996). Nutritional requirements of Brachiaria and adaptation to acid soils. *Biology, Agronomy and Improvement: Cali, Colombia: CIAT and EMBRAPA-CNPGC*. Retrieved from http://www.sidalc.net/cgibin/wxis.exe/?IsisScript=CATALCO.xis&method=post&formato=2&cantidad=1&exp resion=mfn=022503
- Robinson, T., & Pozzi, F. (2011). Mapping supply and demand for animal-source foods to 2030. *Animal Production and Health Working Paper*, *2*.
- Robinson, T., Thornton, P., Franceschini, G., Kruska, R., Chiozza, F., Notenbaert, A., ... See, L. (2011). Global livestock production systems, 152 pp.

Robinson, T., Wint, G. W., Conchedda, G., Van Boeckel, T. P., Ercoli, V., Palamara, E., ... Gilbert, M. (2014). Mapping the global distribution of livestock. *PloS One*, *9*(5), e96084.

Subbarao, G. V., Nakahara, K., Hurtado, M. P., Ono, H., Moreta, D. E., Salcedo, A. F., ... Ito, O. (2009). Evidence for biological nitrification inhibition in Brachiaria pastures. *Proceedings of the National Academy of Sciences*, *106*(41), 17302–17307.
http://doi.org/10.1073/pnas.0903694106

- Thornton, P. K. (2010). Livestock production: recent trends, future prospects. *Philosophical Transactions of the Royal Society B: Biological Sciences*, *365*(1554), 2853–2867. http://doi.org/10.1098/rstb.2010.0134
- Thornton, P. K., Herrero, M., Freeman, H. A., Okeyo, A. M., Rege, E., Jones, P. G., & McDermott, J. (2007). Vulnerability, climate change and livestock-opportunities and challenges for the poor. Retrieved from https://cgspace.cgiar.org/handle/10568/2205
- Thornton, P. K., & Tarawali, G. (1999). *An ex post economic impact assessment of planted forages in West Africa* (Vol. 2). ILRI (aka ILCA and ILRAD). Retrieved from https://books.google.com.co/books?hl=en&lr=&id=T-

i1vCE1t6gC&oi=fnd&pg=PA86&dq=an+ex-

post+economic+impact+assessment+of+forages+west+africa&ots=D\_cpD0GIWP&si g=tof1f\_daxEmheYNP2Qdy5eCEPtQ

# Appendix

#### A.1 The economic surplus model

In this study, benefits are defined in terms of the change in producer, consumer, or total surplus resulting from adoption of the new technology. We use Alston et al.'s economic surplus model to calculate these benefits (1995). The commodity in question is a perishable good which is not traded internationally; and so we use the closed economy equations. These are defined by Alston et al. as follows (1995, pp. 360, 380–5).

The annual change in total surplus:

$$\Delta TS_t = K_t PQ\left(1 + \frac{1}{2}Z_t\eta\right)$$
 Eq. 3

Where  $Z_t$  is the proportionate decrease in price in year *t*, defined as:

$$Z_t = \frac{K_t \varepsilon}{\varepsilon + \eta}$$
 Eq. 4

And  $K_t$  is the supply curve shift in year *t*:

$$K_t = \left[\frac{E[Y]}{\varepsilon} - \frac{E[C]}{1 + E[Y]}\right] p A_t \delta_t$$
 Eq. 5

Where  $A_t$  is the adoption rate in any given year of uptake, and is determined by a logistic curve:

$$A_t = \frac{A_{max}}{1 + e^{-(\alpha + \beta t)}}$$
 Eq. 6

Where  $A_{max}$  is the adoption rate ceiling, and the parameters  $\alpha$  and  $\beta$  control displacement and slope, respectively; and are determined by the duration of research and the duration of uptake.

The annual change in consumer surplus is defined as:

$$\Delta CS_t = Z_t PQ \left( 1 + \frac{1}{2} Z_t \eta \right)$$
 Eq. 7

The annual change in producer surplus is defined as:

$$\Delta PS_t = \Delta TS_t - \Delta CS_t \qquad \qquad \mathbf{Eq. 8}$$

The other parameters in equations 3-5 are defined in Table 10.

The net present value of the research program is then calculated as:

$$NPV = \sum_{t}^{T} \frac{\Delta T S_t - k_t}{(1+r)^t}$$
 Eq. 9

Where  $k_t$  is the program level cost in year *t*.

### A.2 NPV derivatives w.r.t. key parameters

The derivatives of the *NPV* of the program benefit-cost stream with respect to key model parameters are displayed below. Benefits in each period are measured in terms of the change in total surplus ( $\Delta TS_t$ ).

These are the formulas used to perform sensitivity analysis in section 4.4. Sensitivity to any given parameter u is calculated as the percentage change in NPV given a percentage change in u:

$$\frac{\%\Delta NPV}{\%\Delta u} = \frac{\partial \ln NPV}{\partial \ln u} = \frac{\partial NPV}{\partial u} \frac{u}{NPV}$$
 Eq. 10

The derivatives of *NPV* w.r.t. to key model parameters follow.

W.r.t. the supply elasticity ( $\varepsilon$ ):

$$\frac{\partial NPV}{\partial \varepsilon} = \sum_{t=1}^{T} \frac{1}{(1+r)^t} \left( \frac{\partial K_t}{\partial \varepsilon} \frac{\Delta TS_t}{K_t} + \frac{1}{2} K_t P Q \eta \frac{\partial Z_t}{\partial \varepsilon} \right)$$
 Eq. 11

Where

$$\frac{\partial Z_t}{\partial \varepsilon} = \frac{Z_t}{K_t} \left( \frac{\partial K_t}{\partial \varepsilon} + Z_t \frac{\eta}{\varepsilon^2} \right)$$
 Eq. 12

And

$$\frac{\partial K_t}{\partial \varepsilon} = -\frac{E[y]}{\varepsilon^2} p A_t \delta_t$$
 Eq. 13

W.r.t. the demand elasticity ( $\eta$ ):

$$\frac{\partial NPV}{\partial \eta} = PQ \frac{1}{2} \sum_{t=1}^{T} \frac{K_t}{(1+r)^t} \left( \frac{\partial Z_t}{\partial \eta} \eta + Z_t \right)$$
 Eq. 14

Where

$$\frac{\partial Z_t}{\partial \eta} = -\frac{Z_t^2}{\varepsilon K_t}$$
 Eq. 15

W.r.t. the expected increase in cost (*E*[*C*]):

$$\frac{\partial NPV}{\partial E[C]} = \sum_{t=1}^{T} \frac{1}{(1+r)^t} \left( \frac{\partial K_t}{\partial E[C]} \frac{\Delta TS_t}{K_t} + \frac{1}{2} K_t PQ\eta \frac{\partial Z_t}{\partial E[C]} \right)$$
 Eq. 16

Where

$$\frac{\partial Z_t}{\partial E[C]} = \frac{\partial K_t}{\partial E[C]} \frac{Z_t}{K_t}$$
 Eq. 17

and

$$\frac{\partial K_t}{\partial E[C]} = -\frac{pA_t\delta_t}{1+E[y]}$$
 Eq. 18

W.r.t. the expected increase in productivity (*E*[*y*]):

$$\frac{\partial NPV}{\partial E[y]} = \sum_{t=1}^{T} \frac{1}{(1+r)^t} \left( \frac{\partial K_t}{\partial E[C]} \frac{\Delta TS_t}{K_t} + \frac{1}{2} K_t PQ\eta \frac{\partial Z_t}{\partial E[y]} \right)$$
 Eq. 19

Where

$$\frac{\partial Z_t}{\partial E[y]} = \frac{\partial K_t}{\partial E[y]} \frac{Z_t}{K_t}$$
 Eq. 20

and

$$\frac{\partial K_t}{\partial E[y]} = \left(\frac{1}{\varepsilon} + \frac{E[C]}{(1+E[y])^2}\right) pA_t \delta_t$$
 Eq. 21

W.r.t. the quantity affected (*Q*) and price (*P*):

$$\frac{\partial NPV}{\partial Q} = \frac{1}{Q} \sum_{t=1}^{T} \frac{\Delta TS_t}{(1+r)^t} = \frac{PV}{Q}$$
 Eq. 22

$$\frac{\partial NPV}{\partial P} = \frac{1}{P} \sum_{t=1}^{T} \frac{\Delta TS_t}{(1+r)^t} = \frac{PV}{P}$$
 Eq. 23

In both these cases, then, the percentage change in *NPV* given a percentage change in the parameter is:

$$\frac{\partial \ln NPV}{\partial \ln(P \text{ or } Q)} = \frac{PV}{NPV}$$
 Eq. 24

#### A.3 Diffusion cost

The diffusion cost (*DC*) is modeled as follows:

$$DC = \lambda M^{\rho}$$
;  $\lambda = $0.10$ ,  $\rho = 0.97$  Eq. 25

Where, for a given country, M is the number of milk producing cows,  $\lambda$  is the diffusion cost per cow, and  $\rho$  is the percentage increase in the diffusion cost per percentage increase in number of milk cows. Since we have set  $\rho < 1$ , diffusion cost is marginally diminishing in milk cow population size.

#### A.4 Imputation of system-level milk cow population size

In order to impute milk cow population size at the production system level, we first summed the total cow population in each production system zone by overlaying the production system map in Figure 1 onto the cattle density map in Figure 2. These tallies are displayed in Table 12.

The empirical relation observed in Figures 3 and 4 can be expressed mathematically as follows:

$$\boldsymbol{M} = e^{-b} \boldsymbol{C}^a \qquad \qquad \text{Eq. 26}$$

Where M is the country-level milk cow population size reported by FAOSTAT, which can be estimated as a function of the total cow population C; and a and b are parameters fitted to the data. In the 2010 graph (Figure 3), a = 1.1113 and b = 3.2355.

We hypothesized that this relation is scale invariant, and could be used as an ansatz to model milk cow population size at sub-national levels of disaggregation. That is, the number of milk cows in a given production system could be imputed using the ansatz:

$$M_i = e^{-b} C_i^a$$
 Eq. 27

Where the i indexes production system, and the values of a and b must be close to their values at the country level.

| Table 12: 2010 total cattle of  | disaggreg | ated by pr   | oduction     | system  |          |              |
|---------------------------------|-----------|--------------|--------------|---------|----------|--------------|
|                                 | Burun     | Ethiopi      | Kenya        | Rwand   | Tanzani  | Ugand        |
|                                 | di        | а            |              | a       | а        | а            |
| LGA                             | 0         | 3322170      | 4116976      | 0       | 1223012  | 241273       |
| LGH                             | 0         | 121460       | 284307       | 0       | 564216   | 1086028      |
| LGT                             | 0         | 258146       | 702903       | 0       | 50289    | 102367       |
| LGY                             | 0         | 0            | 561          | 0       | 3669     | 0            |
| MIA                             | 0         | 245343       | 61238        | 0       | 75888    | 0            |
| MIH                             | 7350      | 4296         | 78049        | 5613    | 24176    | 5223         |
| MIT                             | 2733      | 803015       | 222326       | 7286    | 3972     | 1677         |
| MRA                             | 0         | 9432923      | 2125379      | 0       | 6013215  | 109421       |
| MRH                             | 47738     | 2118675      | 2365977      | 265964  | 6196315  | 6413741      |
| MRT                             | 291155    | 3140780<br>4 | 6303699      | 842509  | 1869350  | 1227967      |
| MRY                             | 0         | 0            | 706          | 0       | 15504    | 0            |
| Other                           | 185255    | 2008340      | 1022597      | 129776  | 1647486  | 2531685      |
| Urban                           | 8995      | 595027       | 394850       | 43232   | 841544   | 80244        |
| Total                           | 543226    | 5031719<br>8 | 1767956<br>7 | 1294381 | 18528635 | 1179962<br>5 |
| FAOSTAT total (2010)            | 596412    | 5338219<br>2 | 1786285<br>2 | 1334820 | 19245648 | 1210353<br>2 |
| % difference                    | -9.8%     | -6.1%        | -1.0%        | -3.1%   | -3.9%    | -2.6%        |
| MR Subtotal*                    | 338892    | 4295940<br>2 | 1079576<br>1 | 1108473 | 14094384 | 7751129      |
| MR tot as % of total            | 56.8%     | 80.5%        | 60.4%        | 83.0%   | 73.2%    | 64.0%        |
| LG Subtotal**                   | 0         | 3701775      | 5104186      | 0       | 1837517  | 1429668      |
| LG tot as % of total            | 0.0%      | 7.4%         | 28.9%        | 0.0%    | 9.9%     | 12.1%        |
| *Excluding MRY, **Excluding LGY |           |              |              |         |          |              |

We do not have the disaggregated system level data necessary to test this hypothesis. (If we did, then there would be no need to invent this imputation method.) As a second-best approach, for each country in the study we fit the parameters a and b in Eq. 27 using the system level cow totals ( $C_i$ ) that were summed in Table 13 and the FAOSTAT country-level total. That is, for each country, we fit a and b such that:

$$\sum_{i}^{n} e^{-b} C_i^a - \boldsymbol{M} = 0$$
 Eq. 28

The fit was performed using the Excel Solver Add-in.

We then checked to see if the fitted values of a and b were close to their country-level values. In every case, they were close to within  $10^{-1}$ . These system-level fitted values for a

and *b* are displayed in Table 13, along with the system-level milk cow totals imputed using Eq. 27.

| (imputed)                   |         |          |         |        |          |         |  |  |  |  |  |
|-----------------------------|---------|----------|---------|--------|----------|---------|--|--|--|--|--|
| (imputed)                   |         |          |         |        |          |         |  |  |  |  |  |
|                             | Burundi | Ethiopia | Kenya   | Rwanda | Tanzania | Uganda  |  |  |  |  |  |
| LGA                         | 0       | 604426   | 1206593 | 0      | 387963   | 49973   |  |  |  |  |  |
| LGH                         | 0       | 15895    | 58696   | 0      | 160008   | 271778  |  |  |  |  |  |
| LGT                         | 0       | 36416    | 163398  | 0      | 10048    | 19036   |  |  |  |  |  |
| LGY                         | 0       | 0        | 51      | 0      | 502      | 0       |  |  |  |  |  |
| MIA                         | 0       | 34435    | 10338   | 0      | 16094    | 0       |  |  |  |  |  |
| MIH                         | 809     | 403      | 13602   | 681    | 4344     | 668     |  |  |  |  |  |
| MIT                         | 269     | 126832   | 44444   | 914    | 549      | 186     |  |  |  |  |  |
| MRA                         | 0       | 1904157  | 571189  | 0      | 2402413  | 20519   |  |  |  |  |  |
| MRH                         | 6509    | 368579   | 644850  | 53412  | 2486344  | 2006596 |  |  |  |  |  |
| MRT                         | 48807   | 7146898  | 1953577 | 196715 | 630577   | 312081  |  |  |  |  |  |
| MRY                         | 0       | 0        | 66      | 0      | 2612     | 0       |  |  |  |  |  |
| Other                       | 29492   | 347528   | 249688  | 23729  | 545660   | 704691  |  |  |  |  |  |
| Urban                       | 1014    | 91217    | 85105   | 6847   | 252884   | 14472   |  |  |  |  |  |
| Imputed total               | 86900   | 10676785 | 5001599 | 282298 | 6899999  | 3400000 |  |  |  |  |  |
| Faostat total (2010)        | 86900   | 10676783 | 5001600 | 282300 | 6900000  | 3400000 |  |  |  |  |  |
| % difference                | 0.0%    | 0.0%     | 0.0%    | 0.0%   | 0.0%     | 0.0%    |  |  |  |  |  |
| MR Subtotal*                | 55316   | 9419634  | 3169616 | 250127 | 5519334  | 2339196 |  |  |  |  |  |
| MR tot as % of total        | 63.7%   | 88.2%    | 63.4%   | 88.6%  | 80.0%    | 68.8%   |  |  |  |  |  |
| LG Subtotal**               | 0       | 656736   | 1428688 | 0      | 558019   | 340787  |  |  |  |  |  |
| LG tot as % of total        | 0.0%    | 6.2%     | 28.6%   | 0.0%   | 8.1%     | 10.0%   |  |  |  |  |  |
| а                           | 1.114   | 1.100    | 1.131   | 1.131  | 1.145    | 1.126   |  |  |  |  |  |
| b                           | 3.223   | 3.200    | 3.224   | 3.238  | 3.178    | 3.133   |  |  |  |  |  |
| *Excluding MRY, **Excluding | ng LGY  |          |         |        |          |         |  |  |  |  |  |

Table 12, 2010 .:11 lati 1: d b 1. ati. ÷, 4

Note that the proportion of milk cows to total cows in a given production system is a monotonically increasing function of total cows in the system:

$$\frac{M_i}{C_i} = e^{-b}C_i^{a-1}$$
 Eq. 29

Since cattle density is correlated with human population density, and since LG systems occur in areas of low human population density relative to MR systems, then Eq. 29 implies that milk cow population as a proportion of the total cow population in LG systems will be strictly less than this proportion in MR systems, as expected.

# A.5 Scenario heat maps by country

NPV heatmaps for each country are presented below on a producer surplus and total surplus basis. Keep in mind that these heatmaps include diffusion costs but not program research costs.

|      |      | Kenya (does | n't include i | research co  | st)          |              |        |         |         |         |         |         |         |
|------|------|-------------|---------------|--------------|--------------|--------------|--------|---------|---------|---------|---------|---------|---------|
|      |      | NPV Scenari | o Heatmap (   | (USD \$,000) | , Producer S | Surplus basi | is     |         |         |         |         |         |         |
|      |      | li          | ncrease in p  | roductivity  |              |              |        |         |         |         |         |         |         |
|      |      | 5%          | 10%           | 15%          | 20%          | 25%          | 30%    | 35%     | 40%     | 45%     | 50%     | 55%     | 60%     |
|      | 5%   | 312         | 1,090         | 1,869        | 2,648        | 3,428        | 4,208  | 4,989   | 5,771   | 6,553   | 7,335   | 8,118   | 8,901   |
| e    | 10%  | 1,090       | 2,648         | 4,208        | 5,771        | 7,335        | 8,901  | 10,469  | 12,040  | 13,612  | 15,186  | 16,762  | 18,341  |
| rat  | 15%  | 1,869       | 4,208         | 6,553        | 8,901        | 11,254       | 13,612 | 15,974  | 18,341  | 20,712  | 23,088  | 25,468  | 27,853  |
| tion | 20%  | 2,648       | 5,771         | 8,901        | 12,040       | 15,186       | 18,341 | 21,503  | 24,674  | 27,853  | 31,039  | 34,234  | 37,437  |
| opt  | 25%  | 3,428       | 7,335         | 11,254       | 15,186       | 19,131       | 23,088 | 27,057  | 31,039  | 35,034  | 39,041  | 43,061  | 47,093  |
| Ad   | 30%  | 4,208       | 8,901         | 13,612       | 18,341       | 23,088       | 27,853 | 32,636  | 37,437  | 42,256  | 47,093  | 51,948  | 56,821  |
|      | 35%  | 4,989       | 10,469        | 15,974       | 21,503       | 27,057       | 32,636 | 38,238  | 43,866  | 49,518  | 55,195  | 60,896  | 66,622  |
|      | 40%  | 5,771       | 12,040        | 18,341       | 24,674       | 31,039       | 37,437 | 43,866  | 50,327  | 56,821  | 63,347  | 69,904  | 76,494  |
|      | 45%  | 6,553       | 13,612        | 20,712       | 27,853       | 35,034       | 42,256 | 49,518  | 56,821  | 64,165  | 71,549  | 78,974  | 86,439  |
|      | 50%  | 7,335       | 15,186        | 23,088       | 31,039       | 39,041       | 47,093 | 55,195  | 63,347  | 71,549  | 79,801  | 88,104  | 96,456  |
|      | 55%  | 8,118       | 16,762        | 25,468       | 34,234       | 43,061       | 51,948 | 60,896  | 69,904  | 78,974  | 88,104  | 97,294  | 106,546 |
|      | 60%  | 8,901       | 18,341        | 27,853       | 37,437       | 47,093       | 56,821 | 66,622  | 76,494  | 86,439  | 96,456  | 106,546 | 116,707 |
|      | 65%  | 9,685       | 19,921        | 30,242       | 40,647       | 51,137       | 61,712 | 72,372  | 83,116  | 93,945  | 104,859 | 115,858 | 126,941 |
|      | 70%  | 10,469      | 21,503        | 32,636       | 43,866       | 55,195       | 66,622 | 78,147  | 89,770  | 101,492 | 113,312 | 125,230 | 137,247 |
|      | 75%  | 11,254      | 23,088        | 35,034       | 47,093       | 59,264       | 71,549 | 83,946  | 96,456  | 109,079 | 121,815 | 134,664 | 147,625 |
|      | 80%  | 12,040      | 24,674        | 37,437       | 50,327       | 63,347       | 76,494 | 89,770  | 103,175 | 116,707 | 130,368 | 144,158 | 158,075 |
|      | 85%  | 12,826      | 26,262        | 39,844       | 53,570       | 67,442       | 81,458 | 95,619  | 109,925 | 124,376 | 138,972 | 153,712 | 168,598 |
|      | 90%  | 13,612      | 27,853        | 42,256       | 56,821       | 71,549       | 86,439 | 101,492 | 116,707 | 132,085 | 147,625 | 163,327 | 179,192 |
|      | 95%  | 14,399      | 29,445        | 44,672       | 60,080       | 75,669       | 91,439 | 107,390 | 123,522 | 139,835 | 156,329 | 173,003 | 189,859 |
|      | 100% | 15,186      | 31,039        | 47,093       | 63,347       | 79,801       | 96,456 | 113,312 | 130,368 | 147,625 | 165,082 | 182,740 | 200,598 |

Figure 17: Country level NPV scenario outcomes heatmap for Kenya, producer surplus basis

|     |      | Kenya (does | sn't include | research co  | ost)          |            |         |         |         |         |         |         |         |
|-----|------|-------------|--------------|--------------|---------------|------------|---------|---------|---------|---------|---------|---------|---------|
|     |      | NPV Scenar  | io Heatmap   | (USD \$,000  | ), Total Surp | olus basis |         |         |         |         |         |         |         |
|     |      |             | ncrease in p | productivity |               |            |         |         |         |         |         |         |         |
|     |      | 5%          | 10%          | 15%          | 20%           | 25%        | 30%     | 35%     | 40%     | 45%     | 50%     | 55%     | 60%     |
|     | 5%   | 1,401       | 3,269        | 5,138        | 7,008         | 8,880      | 10,753  | 12,627  | 14,502  | 16,379  | 18,257  | 20,135  | 22,016  |
| e   | 10%  | 3,269       | 7,008        | 10,753       | 14,502        | 18,257     | 22,016  | 25,779  | 29,548  | 33,321  | 37,100  | 40,883  | 44,671  |
| rat | 15%  | 5,138       | 10,753       | 16,379       | 22,016        | 27,663     | 33,321  | 38,991  | 44,671  | 50,361  | 56,063  | 61,776  | 67,499  |
| io  | 20%  | 7,008       | 14,502       | 22,016       | 29,548        | 37,100     | 44,671  | 52,261  | 59,870  | 67,499  | 75,147  | 82,814  | 90,500  |
| opt | 25%  | 8,880       | 18,257       | 27,663       | 37,100        | 46,566     | 56,063  | 65,590  | 75,147  | 84,734  | 94,351  | 103,998 | 113,675 |
| Ad  | 30%  | 10,753      | 22,016       | 33,321       | 44,671        | 56,063     | 67,499  | 78,978  | 90,500  | 102,066 | 113,675 | 125,328 | 137,023 |
|     | 35%  | 12,627      | 25,779       | 38,991       | 52,261        | 65,590     | 78,978  | 92,425  | 105,931 | 119,496 | 133,120 | 146,803 | 160,545 |
|     | 40%  | 14,502      | 29,548       | 44,671       | 59,870        | 75,147     | 90,500  | 105,931 | 121,439 | 137,023 | 152,685 | 168,423 | 184,239 |
|     | 45%  | 16,379      | 33,321       | 50,361       | 67,499        | 84,734     | 102,066 | 119,496 | 137,023 | 154,648 | 172,370 | 190,190 | 208,107 |
|     | 50%  | 18,257      | 37,100       | 56,063       | 75,147        | 94,351     | 113,675 | 133,120 | 152,685 | 172,370 | 192,176 | 212,102 | 232,148 |
|     | 55%  | 20,135      | 40,883       | 61,776       | 82,814        | 103,998    | 125,328 | 146,803 | 168,423 | 190,190 | 212,102 | 234,159 | 256,362 |
|     | 60%  | 22,016      | 44,671       | 67,499       | 90,500        | 113,675    | 137,023 | 160,545 | 184,239 | 208,107 | 232,148 | 256,362 | 280,750 |
|     | 65%  | 23,897      | 48,463       | 73,233       | 98,206        | 123,382    | 148,762 | 174,345 | 200,132 | 226,122 | 252,315 | 278,711 | 305,311 |
|     | 70%  | 25,779      | 52,261       | 78,978       | 105,931       | 133,120    | 160,545 | 188,205 | 216,101 | 244,234 | 272,602 | 301,206 | 330,045 |
|     | 75%  | 27,663      | 56,063       | 84,734       | 113,675       | 142,887    | 172,370 | 202,124 | 232,148 | 262,443 | 293,009 | 323,845 | 354,953 |
|     | 80%  | 29,548      | 59,870       | 90,500       | 121,439       | 152,685    | 184,239 | 216,101 | 248,272 | 280,750 | 313,537 | 346,631 | 380,033 |
|     | 85%  | 31,434      | 63,682       | 96,278       | 129,221       | 162,512    | 196,151 | 230,138 | 264,472 | 299,155 | 334,184 | 369,562 | 405,287 |
|     | 90%  | 33,321      | 67,499       | 102,066      | 137,023       | 172,370    | 208,107 | 244,234 | 280,750 | 317,656 | 354,953 | 392,639 | 430,715 |
|     | 95%  | 35,210      | 71,320       | 107,865      | 144,844       | 182,258    | 220,106 | 258,388 | 297,105 | 336,256 | 375,841 | 415,861 | 456,315 |
|     | 100% | 37,100      | 75,147       | 113,675      | 152,685       | 192,176    | 232,148 | 272,602 | 313,537 | 354,953 | 396,850 | 439,229 | 482,089 |

Figure 18: Country level NPV scenario outcomes heatmap for Kenya, total surplus basis

|     |      | Tanzania (d | doesn't inclu | de research  | cost)        |              |        |        |        |         |         |         |              |
|-----|------|-------------|---------------|--------------|--------------|--------------|--------|--------|--------|---------|---------|---------|--------------|
|     |      | NPV Scena   | rio Heatmap   | (USD \$,000) | , Producer S | Surplus basi | is     |        |        |         |         |         |              |
|     |      |             | Increase in p | roductivity  |              |              |        |        |        |         |         |         |              |
|     |      | 5%          | 10%           | 15%          | 20%          | 25%          | 30%    | 35%    | 40%    | 45%     | 50%     | 55%     | 6 <b>0</b> % |
|     | 5%   | -162        | 387           | 937          | 1,487        | 2,038        | 2,589  | 3,140  | 3,692  | 4,244   | 4,796   | 5,349   | 5,902        |
| e   | 10%  | 387         | 1,487         | 2,589        | 3,692        | 4,796        | 5,902  | 7,009  | 8,118  | 9,228   | 10,340  | 11,453  | 12,567       |
| rat | 15%  | 937         | 2,589         | 4,244        | 5,902        | 7,564        | 9,228  | 10,896 | 12,567 | 14,241  | 15,918  | 17,599  | 19,283       |
| io  | 20%  | 1,487       | 3,692         | 5,902        | 8,118        | 10,340       | 12,567 | 14,800 | 17,038 | 19,283  | 21,533  | 23,788  | 26,049       |
| opt | 25%  | 2,038       | 4,796         | 7,564        | 10,340       | 13,125       | 15,918 | 18,721 | 21,533 | 24,353  | 27,182  | 30,020  | 32,867       |
| Ad  | 30%  | 2,589       | 5,902         | 9,228        | 12,567       | 15,918       | 19,283 | 22,660 | 26,049 | 29,452  | 32,867  | 36,295  | 39,736       |
|     | 35%  | 3,140       | 7,009         | 10,896       | 14,800       | 18,721       | 22,660 | 26,616 | 30,589 | 34,579  | 38,587  | 42,613  | 46,655       |
|     | 40%  | 3,692       | 8,118         | 12,567       | 17,038       | 21,533       | 26,049 | 30,589 | 35,151 | 39,736  | 44,343  | 48,973  | 53,626       |
|     | 45%  | 4,244       | 9,228         | 14,241       | 19,283       | 24,353       | 29,452 | 34,579 | 39,736 | 44,921  | 50,134  | 55,376  | 60,647       |
|     | 50%  | 4,796       | 10,340        | 15,918       | 21,533       | 27,182       | 32,867 | 38,587 | 44,343 | 50,134  | 55,961  | 61,823  | 67,720       |
|     | 55%  | 5,349       | 11,453        | 17,599       | 23,788       | 30,020       | 36,295 | 42,613 | 48,973 | 55,376  | 61,823  | 68,312  | 74,843       |
|     | 60%  | 5,902       | 12,567        | 19,283       | 26,049       | 32,867       | 39,736 | 46,655 | 53,626 | 60,647  | 67,720  | 74,843  | 82,018       |
|     | 65%  | 6,456       | 13,683        | 20,970       | 28,316       | 35,723       | 43,189 | 50,715 | 58,301 | 65,947  | 73,653  | 81,418  | 89,243       |
|     | 70%  | 7,009       | 14,800        | 22,660       | 30,589       | 38,587       | 46,655 | 54,793 | 62,999 | 71,275  | 79,621  | 88,035  | 96,520       |
|     | 75%  | 7,564       | 15,918        | 24,353       | 32,867       | 41,461       | 50,134 | 58,887 | 67,720 | 76,632  | 85,624  | 94,696  | 103,847      |
|     | 80%  | 8,118       | 17,038        | 26,049       | 35,151       | 44,343       | 53,626 | 62,999 | 72,463 | 82,018  | 91,663  | 101,399 | 111,225      |
|     | 85%  | 8,673       | 18,160        | 27,749       | 37,440       | 47,234       | 57,130 | 67,129 | 77,229 | 87,432  | 97,737  | 108,145 | 118,655      |
|     | 90%  | 9,228       | 19,283        | 29,452       | 39,736       | 50,134       | 60,647 | 71,275 | 82,018 | 92,875  | 103,847 | 114,934 | 126,135      |
|     | 95%  | 9,784       | 20,407        | 31,158       | 42,037       | 53,043       | 64,177 | 75,439 | 86,829 | 98,347  | 109,992 | 121,765 | 133,666      |
|     | 100% | 10,340      | 21,533        | 32,867       | 44,343       | 55,961       | 67,720 | 79,621 | 91,663 | 103,847 | 116,173 | 128,640 | 141,248      |

Figure 19: Country level NPV scenario outcomes heatmap for Tanzania, producer surplus basis

|     |      | Tanzania ( | doesn't inclu | de research  | cost)         |            |         |         |         |         |         |         |         |
|-----|------|------------|---------------|--------------|---------------|------------|---------|---------|---------|---------|---------|---------|---------|
|     |      | NPV Scena  | rio Heatmap   | (USD \$,000  | ), Total Surp | olus basis |         |         |         |         |         |         |         |
|     |      |            | Increase in p | oroductivity |               |            |         |         |         |         |         |         |         |
|     |      | 5%         | 10%           | 15%          | 20%           | 25%        | 30%     | 35%     | 40%     | 45%     | 50%     | 55%     | 60%     |
|     | 5%   | 607        | 1,925         | 3,245        | 4,566         | 5,887      | 7,210   | 8,533   | 9,857   | 11,182  | 12,507  | 13,834  | 15,161  |
| e   | 10%  | 1,925      | 4,566         | 7,210        | 9,857         | 12,507     | 15,161  | 17,819  | 20,480  | 23,144  | 25,811  | 28,482  | 31,157  |
| rat | 15%  | 3,245      | 7,210         | 11,182       | 15,161        | 19,149     | 23,144  | 27,147  | 31,157  | 35,175  | 39,200  | 43,234  | 47,275  |
| ion | 20%  | 4,566      | 9,857         | 15,161       | 20,480        | 25,811     | 31,157  | 36,516  | 41,888  | 47,275  | 52,674  | 58,088  | 63,515  |
| opt | 25%  | 5,887      | 12,507        | 19,149       | 25,811        | 32,495     | 39,200  | 45,927  | 52,674  | 59,443  | 66,233  | 73,045  | 79,877  |
| Ad  | 30%  | 7,210      | 15,161        | 23,144       | 31,157        | 39,200     | 47,275  | 55,379  | 63,515  | 71,681  | 79,877  | 88,104  | 96,362  |
|     | 35%  | 8,533      | 17,819        | 27,147       | 36,516        | 45,927     | 55,379  | 64,874  | 74,409  | 83,987  | 93,606  | 103,266 | 112,969 |
|     | 40%  | 9,857      | 20,480        | 31,157       | 41,888        | 52,674     | 63,515  | 74,409  | 85,358  | 96,362  | 107,420 | 118,532 | 129,698 |
|     | 45%  | 11,182     | 23,144        | 35,175       | 47,275        | 59,443     | 71,681  | 83,987  | 96,362  | 108,806 | 121,318 | 133,900 | 146,550 |
|     | 50%  | 12,507     | 25,811        | 39,200       | 52,674        | 66,233     | 79,877  | 93,606  | 107,420 | 121,318 | 135,302 | 149,370 | 163,524 |
|     | 55%  | 13,834     | 28,482        | 43,234       | 58,088        | 73,045     | 88,104  | 103,266 | 118,532 | 133,900 | 149,370 | 164,944 | 180,620 |
|     | 60%  | 15,161     | 31,157        | 47,275       | 63,515        | 79,877     | 96,362  | 112,969 | 129,698 | 146,550 | 163,524 | 180,620 | 197,839 |
|     | 65%  | 16,490     | 33,835        | 51,323       | 68,955        | 86,731     | 104,650 | 122,713 | 140,919 | 159,269 | 177,762 | 196,399 | 215,180 |
|     | 70%  | 17,819     | 36,516        | 55,379       | 74,409        | 93,606     | 112,969 | 132,498 | 152,194 | 172,057 | 192,086 | 212,281 | 232,643 |
|     | 75%  | 19,149     | 39,200        | 59,443       | 79,877        | 100,502    | 121,318 | 142,325 | 163,524 | 184,913 | 206,494 | 228,266 | 250,229 |
|     | 80%  | 20,480     | 41,888        | 63,515       | 85,358        | 107,420    | 129,698 | 152,194 | 174,908 | 197,839 | 220,988 | 244,354 | 267,937 |
|     | 85%  | 21,811     | 44,580        | 67,594       | 90,853        | 114,358    | 138,109 | 162,105 | 186,346 | 210,833 | 235,566 | 260,544 | 285,767 |
|     | 90%  | 23,144     | 47,275        | 71,681       | 96,362        | 121,318    | 146,550 | 172,057 | 197,839 | 223,896 | 250,229 | 276,837 | 303,720 |
|     | 95%  | 24,477     | 49,973        | 75,775       | 101,884       | 128,299    | 155,022 | 182,051 | 209,386 | 237,028 | 264,977 | 293,233 | 321,795 |
|     | 100% | 25,811     | 52,674        | 79,877       | 107,420       | 135,302    | 163,524 | 192,086 | 220,988 | 250,229 | 279,810 | 309,732 | 339,993 |

Figure 20: Country level NPV scenario outcomes heatmap for Tanzania, total surplus basis

|           |      | Ethiopia (d | loesn't includ | le research  | cost)       |             |         |         |         |         |         |         |         |
|-----------|------|-------------|----------------|--------------|-------------|-------------|---------|---------|---------|---------|---------|---------|---------|
|           |      | NPV Scena   | rio Heatmap    | (USD \$,000  | ), Producer | Surplus bas | is      |         |         |         |         |         |         |
|           |      |             | Increase in p  | oroductivity | ,           |             |         |         |         |         |         |         |         |
|           |      | 5%          | 10%            | 15%          | 20%         | 25%         | 30%     | 35%     | 40%     | 45%     | 50%     | 55%     | 60%     |
|           | 5%   | 1,212       | 2,844          | 4,478        | 6,113       | 7,749       | 9,386   | 11,024  | 12,663  | 14,303  | 15,944  | 17,586  | 19,229  |
| e         | 10%  | 2,844       | 6,113          | 9,386        | 12,663      | 15,944      | 19,229  | 22,519  | 25,812  | 29,110  | 32,413  | 35,719  | 39,029  |
| rat       | 15%  | 4,478       | 9,386          | 14,303       | 19,229      | 24,165      | 29,110  | 34,065  | 39,029  | 44,003  | 48,986  | 53,979  | 58,981  |
| <u>io</u> | 20%  | 6,113       | 12,663         | 19,229       | 25,812      | 32,413      | 39,029  | 45,663  | 52,314  | 58,981  | 65,666  | 72,367  | 79,085  |
| opt       | 25%  | 7,749       | 15,944         | 24,165       | 32,413      | 40,686      | 48,986  | 57,313  | 65,666  | 74,045  | 82,450  | 90,881  | 99,339  |
| PA        | 30%  | 9,386       | 19,229         | 29,110       | 39,029      | 48,986      | 58,981  | 69,014  | 79,085  | 89,193  | 99,339  | 109,523 | 119,745 |
|           | 35%  | 11,024      | 22,519         | 34,065       | 45,663      | 57,313      | 69,014  | 80,767  | 92,571  | 104,427 | 116,334 | 128,293 | 140,303 |
|           | 40%  | 12,663      | 25,812         | 39,029       | 52,314      | 65,666      | 79,085  | 92,571  | 106,124 | 119,745 | 133,434 | 147,189 | 161,012 |
|           | 45%  | 14,303      | 29,110         | 44,003       | 58,981      | 74,045      | 89,193  | 104,427 | 119,745 | 135,149 | 150,638 | 166,213 | 181,872 |
|           | 50%  | 15,944      | 32,413         | 48,986       | 65,666      | 82,450      | 99,339  | 116,334 | 133,434 | 150,638 | 167,949 | 185,364 | 202,884 |
|           | 55%  | 17,586      | 35,719         | 53,979       | 72,367      | 90,881      | 109,523 | 128,293 | 147,189 | 166,213 | 185,364 | 204,642 | 224,047 |
|           | 60%  | 19,229      | 39,029         | 58,981       | 79,085      | 99,339      | 119,745 | 140,303 | 161,012 | 181,872 | 202,884 | 224,047 | 245,362 |
|           | 65%  | 20,873      | 42,344         | 63,993       | 85,819      | 107,823     | 130,005 | 152,365 | 174,902 | 197,617 | 220,510 | 243,580 | 266,828 |
|           | 70%  | 22,519      | 45,663         | 69,014       | 92,571      | 116,334     | 140,303 | 164,478 | 188,859 | 213,447 | 238,240 | 263,240 | 288,446 |
|           | 75%  | 24,165      | 48,986         | 74,045       | 99,339      | 124,871     | 150,638 | 176,643 | 202,884 | 229,362 | 256,076 | 283,027 | 310,215 |
|           | 80%  | 25,812      | 52,314         | 79,085       | 106,124     | 133,434     | 161,012 | 188,859 | 216,976 | 245,362 | 274,017 | 302,942 | 332,135 |
|           | 85%  | 27,461      | 55,645         | 84,134       | 112,926     | 142,023     | 171,423 | 201,127 | 231,135 | 261,448 | 292,063 | 322,983 | 354,207 |
|           | 90%  | 29,110      | 58,981         | 89,193       | 119,745     | 150,638     | 181,872 | 213,447 | 245,362 | 277,618 | 310,215 | 343,152 | 376,430 |
|           | 95%  | 30,761      | 62,321         | 94,261       | 126,581     | 159,280     | 192,359 | 225,818 | 259,656 | 293,874 | 328,471 | 363,448 | 398,805 |
|           | 100% | 32,413      | 65,666         | 99,339       | 133,434     | 167,949     | 202,884 | 238,240 | 274,017 | 310,215 | 346,833 | 383,872 | 421,331 |

Figure 21: Country level NPV scenario outcomes heatmap for Ethiopia, producer surplus basis

|     |      | Ethiopia (d | oesn't incluc | le research  | cost)         |            |         |         |         |         |         |         |           |
|-----|------|-------------|---------------|--------------|---------------|------------|---------|---------|---------|---------|---------|---------|-----------|
|     |      | NPV Scenar  | rio Heatmap   | (USD \$,000  | ), Total Surp | olus basis |         |         |         |         |         |         |           |
|     |      |             | Increase in p | productivity |               |            |         |         |         |         |         |         |           |
|     |      | 5%          | 10%           | 15%          | 20%           | 25%        | 30%     | 35%     | 40%     | 45%     | 50%     | 55%     | 60%       |
|     | 5%   | 3,496       | 7,414         | 11,335       | 15,259        | 19,185     | 23,113  | 27,044  | 30,978  | 34,914  | 38,853  | 42,794  | 46,738    |
| e   | 10%  | 7,414       | 15,259        | 23,113       | 30,978        | 38,853     | 46,738  | 54,633  | 62,538  | 70,453  | 78,378  | 86,313  | 94,259    |
| rat | 15%  | 11,335      | 23,113        | 34,914       | 46,738        | 58,584     | 70,453  | 82,344  | 94,259  | 106,196 | 118,155 | 130,138 | 142,143   |
| io  | 20%  | 15,259      | 30,978        | 46,738       | 62,538        | 78,378     | 94,259  | 110,180 | 126,141 | 142,143 | 158,185 | 174,268 | 190,391   |
| opt | 25%  | 19,185      | 38,853        | 58,584       | 78,378        | 98,235     | 118,155 | 138,139 | 158,185 | 178,295 | 198,467 | 218,703 | 239,002   |
| Ad  | 30%  | 23,113      | 46,738        | 70,453       | 94,259        | 118,155    | 142,143 | 166,221 | 190,391 | 214,651 | 239,002 | 263,444 | 287,977   |
|     | 35%  | 27,044      | 54,633        | 82,344       | 110,180       | 138,139    | 166,221 | 194,428 | 222,758 | 251,212 | 279,789 | 308,490 | 337,315   |
|     | 40%  | 30,978      | 62,538        | 94,259       | 126,141       | 158,185    | 190,391 | 222,758 | 255,287 | 287,977 | 320,828 | 353,842 | 387,016   |
|     | 45%  | 34,914      | 70,453        | 106,196      | 142,143       | 178,295    | 214,651 | 251,212 | 287,977 | 324,946 | 362,120 | 399,499 | 437,081   |
|     | 50%  | 38,853      | 78,378        | 118,155      | 158,185       | 198,467    | 239,002 | 279,789 | 320,828 | 362,120 | 403,664 | 445,461 | 487,510   |
|     | 55%  | 42,794      | 86,313        | 130,138      | 174,268       | 218,703    | 263,444 | 308,490 | 353,842 | 399,499 | 445,461 | 491,729 | 538,302   |
|     | 60%  | 46,738      | 94,259        | 142,143      | 190,391       | 239,002    | 287,977 | 337,315 | 387,016 | 437,081 | 487,510 | 538,302 | 589,457   |
|     | 65%  | 50,684      | 102,214       | 154,171      | 206,554       | 259,364    | 312,600 | 366,263 | 420,353 | 474,869 | 529,811 | 585,180 | 640,976   |
|     | 70%  | 54,633      | 110,180       | 166,221      | 222,758       | 279,789    | 337,315 | 395,335 | 453,850 | 512,860 | 572,365 | 632,364 | 692,858   |
|     | 75%  | 58,584      | 118,155       | 178,295      | 239,002       | 300,277    | 362,120 | 424,531 | 487,510 | 551,056 | 615,171 | 679,853 | 745,103   |
|     | 80%  | 62,538      | 126,141       | 190,391      | 255,287       | 320,828    | 387,016 | 453,850 | 521,331 | 589,457 | 658,229 | 727,648 | 797,713   |
|     | 85%  | 66,494      | 134,137       | 202,510      | 271,611       | 341,443    | 412,003 | 483,294 | 555,313 | 628,062 | 701,540 | 775,748 | 850,685   |
|     | 90%  | 70,453      | 142,143       | 214,651      | 287,977       | 362,120    | 437,081 | 512,860 | 589,457 | 666,871 | 745,103 | 824,153 | 904,021   |
|     | 95%  | 74,414      | 150,159       | 226,815      | 304,382       | 382,861    | 462,250 | 542,551 | 623,762 | 705,885 | 788,919 | 872,864 | 957,720   |
|     | 100% | 78,378      | 158,185       | 239,002      | 320,828       | 403,664    | 487,510 | 572,365 | 658,229 | 745,103 | 832,987 | 921,880 | 1,011,783 |

Figure 22: Country level NPV scenario outcomes heatmap for Ethiopia, total surplus basis

|     |      | Uganda (d | oesn't includ | e research o | cost)        |             |        |        |        |        |        |        |        |
|-----|------|-----------|---------------|--------------|--------------|-------------|--------|--------|--------|--------|--------|--------|--------|
|     |      | NPV Scena | rio Heatmap   | (USD \$,000) | , Producer S | Surplus bas | is     |        |        |        |        |        |        |
|     |      |           | Increase in p | productivity |              |             |        |        |        |        |        |        |        |
|     |      | 5%        | 10%           | 15%          | 20%          | 25%         | 30%    | 35%    | 40%    | 45%    | 50%    | 55%    | 60%    |
|     | 5%   | 1         | 312           | 623          | 934          | 1,245       | 1,557  | 1,869  | 2,181  | 2,493  | 2,805  | 3,118  | 3,431  |
| e   | 10%  | 312       | 934           | 1,557        | 2,181        | 2,805       | 3,431  | 4,057  | 4,684  | 5,312  | 5,941  | 6,570  | 7,200  |
| rat | 15%  | 623       | 1,557         | 2,493        | 3,431        | 4,370       | 5,312  | 6,255  | 7,200  | 8,147  | 9,096  | 10,046 | 10,998 |
| ion | 20%  | 934       | 2,181         | 3,431        | 4,684        | 5,941       | 7,200  | 8,463  | 9,729  | 10,998 | 12,271 | 13,547 | 14,826 |
| opt | 25%  | 1,245     | 2,805         | 4,370        | 5,941        | 7,516       | 9,096  | 10,681 | 12,271 | 13,866 | 15,466 | 17,071 | 18,682 |
| Ad  | 30%  | 1,557     | 3,431         | 5,312        | 7,200        | 9,096       | 10,998 | 12,908 | 14,826 | 16,750 | 18,682 | 20,620 | 22,566 |
|     | 35%  | 1,869     | 4,057         | 6,255        | 8,463        | 10,681      | 12,908 | 15,146 | 17,393 | 19,650 | 21,917 | 24,193 | 26,480 |
|     | 40%  | 2,181     | 4,684         | 7,200        | 9,729        | 12,271      | 14,826 | 17,393 | 19,973 | 22,566 | 25,172 | 27,791 | 30,422 |
|     | 45%  | 2,493     | 5,312         | 8,147        | 10,998       | 13,866      | 16,750 | 19,650 | 22,566 | 25,499 | 28,447 | 31,412 | 34,394 |
|     | 50%  | 2,805     | 5,941         | 9,096        | 12,271       | 15,466      | 18,682 | 21,917 | 25,172 | 28,447 | 31,743 | 35,058 | 38,394 |
|     | 55%  | 3,118     | 6,570         | 10,046       | 13,547       | 17,071      | 20,620 | 24,193 | 27,791 | 31,412 | 35,058 | 38,728 | 42,423 |
|     | 60%  | 3,431     | 7,200         | 10,998       | 14,826       | 18,682      | 22,566 | 26,480 | 30,422 | 34,394 | 38,394 | 42,423 | 46,480 |
|     | 65%  | 3,744     | 7,831         | 11,953       | 16,108       | 20,297      | 24,519 | 28,776 | 33,067 | 37,391 | 41,749 | 46,141 | 50,567 |
|     | 70%  | 4,057     | 8,463         | 12,908       | 17,393       | 21,917      | 26,480 | 31,082 | 35,724 | 40,404 | 45,124 | 49,884 | 54,682 |
|     | 75%  | 4,370     | 9,096         | 13,866       | 18,682       | 23,542      | 28,447 | 33,398 | 38,394 | 43,434 | 48,520 | 53,651 | 58,826 |
|     | 80%  | 4,684     | 9,729         | 14,826       | 19,973       | 25,172      | 30,422 | 35,724 | 41,076 | 46,480 | 51,935 | 57,442 | 62,999 |
|     | 85%  | 4,998     | 10,363        | 15,787       | 21,268       | 26,807      | 32,404 | 38,059 | 43,772 | 49,542 | 55,371 | 61,257 | 67,201 |
|     | 90%  | 5,312     | 10,998        | 16,750       | 22,566       | 28,447      | 34,394 | 40,404 | 46,480 | 52,621 | 58,826 | 65,097 | 71,432 |
|     | 95%  | 5,626     | 11,634        | 17,715       | 23,868       | 30,093      | 36,390 | 42,760 | 49,201 | 55,716 | 62,302 | 68,961 | 75,692 |
|     | 100% | 5,941     | 12,271        | 18,682       | 25,172       | 31,743      | 38,394 | 45,124 | 51,935 | 58,826 | 65,798 | 72,849 | 79,980 |

Figure 23: Country level NPV scenario outcomes heatmap for Uganda, producer surplus basis

|     |      | Uganda (do | besn't include | e research o | ost)         |           |        |         |         |         |         |         |         |
|-----|------|------------|----------------|--------------|--------------|-----------|--------|---------|---------|---------|---------|---------|---------|
|     |      | NPV Scena  | rio Heatmap    | (USD \$,000) | , Total Surp | lus basis |        |         |         |         |         |         |         |
|     |      |            | Increase in p  | roductivity  |              |           |        |         |         |         |         |         |         |
|     |      | 5%         | 10%            | 15%          | 20%          | 25%       | 30%    | 35%     | 40%     | 45%     | 50%     | 55%     | 60%     |
|     | 5%   | 436        | 1,182          | 1,928        | 2,675        | 3,422     | 4,170  | 4,919   | 5,667   | 6,417   | 7,167   | 7,917   | 8,668   |
| e   | 10%  | 1,182      | 2,675          | 4,170        | 5,667        | 7,167     | 8,668  | 10,171  | 11,675  | 13,182  | 14,691  | 16,202  | 17,714  |
| rat | 15%  | 1,928      | 4,170          | 6,417        | 8,668        | 10,923    | 13,182 | 15,446  | 17,714  | 19,987  | 22,264  | 24,545  | 26,830  |
| io  | 20%  | 2,675      | 5,667          | 8,668        | 11,675       | 14,691    | 17,714 | 20,745  | 23,784  | 26,830  | 29,884  | 32,946  | 36,015  |
| opt | 25%  | 3,422      | 7,167          | 10,923       | 14,691       | 18,471    | 22,264 | 26,068  | 29,884  | 33,712  | 37,553  | 41,405  | 45,269  |
| Ad  | 30%  | 4,170      | 8,668          | 13,182       | 17,714       | 22,264    | 26,830 | 31,414  | 36,015  | 40,634  | 45,269  | 49,923  | 54,593  |
|     | 35%  | 4,919      | 10,171         | 15,446       | 20,745       | 26,068    | 31,414 | 36,784  | 42,177  | 47,594  | 53,034  | 58,498  | 63,986  |
|     | 40%  | 5,667      | 11,675         | 17,714       | 23,784       | 29,884    | 36,015 | 42,177  | 48,370  | 54,593  | 60,847  | 67,132  | 73,447  |
|     | 45%  | 6,417      | 13,182         | 19,987       | 26,830       | 33,712    | 40,634 | 47,594  | 54,593  | 61,631  | 68,708  | 75,824  | 82,978  |
|     | 50%  | 7,167      | 14,691         | 22,264       | 29,884       | 37,553    | 45,269 | 53,034  | 60,847  | 68,708  | 76,617  | 84,574  | 92,579  |
|     | 55%  | 7,917      | 16,202         | 24,545       | 32,946       | 41,405    | 49,923 | 58,498  | 67,132  | 75,824  | 84,574  | 93,382  | 102,248 |
|     | 60%  | 8,668      | 17,714         | 26,830       | 36,015       | 45,269    | 54,593 | 63,986  | 73,447  | 82,978  | 92,579  | 102,248 | 111,986 |
|     | 65%  | 9,419      | 19,229         | 29,120       | 39,092       | 49,146    | 59,281 | 69,497  | 79,794  | 90,172  | 100,632 | 111,172 | 121,794 |
|     | 70%  | 10,171     | 20,745         | 31,414       | 42,177       | 53,034    | 63,986 | 75,031  | 86,171  | 97,405  | 108,733 | 120,155 | 131,671 |
|     | 75%  | 10,923     | 22,264         | 33,712       | 45,269       | 56,935    | 68,708 | 80,589  | 92,579  | 104,676 | 116,882 | 129,195 | 141,617 |
|     | 80%  | 11,675     | 23,784         | 36,015       | 48,370       | 60,847    | 73,447 | 86,171  | 99,017  | 111,986 | 125,079 | 138,294 | 151,633 |
|     | 85%  | 12,429     | 25,306         | 38,322       | 51,477       | 64,771    | 78,204 | 91,776  | 105,486 | 119,336 | 133,324 | 147,451 | 161,717 |
|     | 90%  | 13,182     | 26,830         | 40,634       | 54,593       | 68,708    | 82,978 | 97,405  | 111,986 | 126,724 | 141,617 | 156,666 | 171,871 |
|     | 95%  | 13,936     | 28,356         | 42,949       | 57,716       | 72,656    | 87,770 | 103,057 | 118,517 | 134,151 | 149,959 | 165,939 | 182,094 |
|     | 100% | 14,691     | 29,884         | 45,269       | 60,847       | 76,617    | 92,579 | 108,733 | 125,079 | 141,617 | 158,348 | 175,271 | 192,386 |

#### Figure 24: Country level NPV scenario outcomes heatmap for Uganda, total surplus basis

|     |      | Rwanda (d | oesn't includ | e research o | cost)        |             |       |       |       |        |        |        |        |
|-----|------|-----------|---------------|--------------|--------------|-------------|-------|-------|-------|--------|--------|--------|--------|
|     |      | NPV Scena | rio Heatmap   | (USD \$,000) | , Producer S | urplus basi | s     |       |       |        |        |        |        |
|     |      |           | Increase in p | roductivity  |              |             |       |       |       |        |        |        |        |
|     |      | 5%        | 10%           | 15%          | 20%          | 25%         | 30%   | 35%   | 40%   | 45%    | 50%    | 55%    | 60%    |
|     | 5%   | 21        | 77            | 134          | 190          | 247         | 303   | 360   | 416   | 473    | 530    | 587    | 643    |
| a   | 10%  | 77        | 190           | 303          | 416          | 530         | 643   | 757   | 871   | 985    | 1,099  | 1,213  | 1,327  |
| rat | 15%  | 134       | 303           | 473          | 643          | 814         | 985   | 1,156 | 1,327 | 1,499  | 1,671  | 1,844  | 2,017  |
| ion | 20%  | 190       | 416           | 643          | 871          | 1,099       | 1,327 | 1,557 | 1,786 | 2,017  | 2,248  | 2,479  | 2,711  |
| opt | 25%  | 247       | 530           | 814          | 1,099        | 1,385       | 1,671 | 1,959 | 2,248 | 2,537  | 2,827  | 3,119  | 3,411  |
| Ad  | 30%  | 303       | 643           | 985          | 1,327        | 1,671       | 2,017 | 2,363 | 2,711 | 3,060  | 3,411  | 3,763  | 4,116  |
|     | 35%  | 360       | 757           | 1,156        | 1,557        | 1,959       | 2,363 | 2,769 | 3,177 | 3,587  | 3,998  | 4,411  | 4,826  |
|     | 40%  | 416       | 871           | 1,327        | 1,786        | 2,248       | 2,711 | 3,177 | 3,645 | 4,116  | 4,589  | 5,064  | 5,542  |
|     | 45%  | 473       | 985           | 1,499        | 2,017        | 2,537       | 3,060 | 3,587 | 4,116 | 4,648  | 5,183  | 5,721  | 6,262  |
|     | 50%  | 530       | 1,099         | 1,671        | 2,248        | 2,827       | 3,411 | 3,998 | 4,589 | 5,183  | 5,781  | 6,383  | 6,988  |
|     | 55%  | 587       | 1,213         | 1,844        | 2,479        | 3,119       | 3,763 | 4,411 | 5,064 | 5,721  | 6,383  | 7,049  | 7,719  |
|     | 60%  | 643       | 1,327         | 2,017        | 2,711        | 3,411       | 4,116 | 4,826 | 5,542 | 6,262  | 6,988  | 7,719  | 8,456  |
|     | 65%  | 700       | 1,442         | 2,190        | 2,944        | 3,704       | 4,470 | 5,243 | 6,021 | 6,806  | 7,597  | 8,394  | 9,197  |
|     | 70%  | 757       | 1,557         | 2,363        | 3,177        | 3,998       | 4,826 | 5,661 | 6,504 | 7,353  | 8,210  | 9,073  | 9,944  |
|     | 75%  | 814       | 1,671         | 2,537        | 3,411        | 4,293       | 5,183 | 6,082 | 6,988 | 7,903  | 8,826  | 9,757  | 10,696 |
|     | 80%  | 871       | 1,786         | 2,711        | 3,645        | 4,589       | 5,542 | 6,504 | 7,475 | 8,456  | 9,446  | 10,445 | 11,453 |
|     | 85%  | 928       | 1,901         | 2,886        | 3,880        | 4,886       | 5,901 | 6,927 | 7,964 | 9,011  | 10,069 | 11,137 | 12,216 |
|     | 90%  | 985       | 2,017         | 3,060        | 4,116        | 5,183       | 6,262 | 7,353 | 8,456 | 9,570  | 10,696 | 11,834 | 12,984 |
|     | 95%  | 1,042     | 2,132         | 3,235        | 4,352        | 5,482       | 6,624 | 7,780 | 8,949 | 10,132 | 11,327 | 12,535 | 13,757 |
|     | 100% | 1,099     | 2,248         | 3,411        | 4,589        | 5,781       | 6,988 | 8,210 | 9,446 | 10,696 | 11,961 | 13,241 | 14,535 |

Figure 25: Country level NPV scenario outcomes heatmap for Rwanda, producer surplus basis

|           |      | Rwanda (d | oesn't include | e research o | cost)        |           |        |        |        |        |        |        |        |
|-----------|------|-----------|----------------|--------------|--------------|-----------|--------|--------|--------|--------|--------|--------|--------|
|           |      | NPV Scena | rio Heatmap (  | USD \$,000)  | , Total Surp | lus basis |        |        |        |        |        |        |        |
|           |      |           | Increase in p  | roductivity  |              |           |        |        |        |        |        |        |        |
|           |      | 5%        | 10%            | 15%          | 20%          | 25%       | 30%    | 35%    | 40%    | 45%    | 50%    | 55%    | 60%    |
|           | 5%   | 100       | 235            | 371          | 506          | 642       | 778    | 913    | 1,049  | 1,185  | 1,321  | 1,457  | 1,594  |
| e         | 10%  | 235       | 506            | 778          | 1,049        | 1,321     | 1,594  | 1,866  | 2,140  | 2,413  | 2,687  | 2,961  | 3,235  |
| rat       | 15%  | 371       | 778            | 1,185        | 1,594        | 2,003     | 2,413  | 2,824  | 3,235  | 3,648  | 4,061  | 4,475  | 4,890  |
| <u>io</u> | 20%  | 506       | 1,049          | 1,594        | 2,140        | 2,687     | 3,235  | 3,785  | 4,337  | 4,890  | 5,444  | 5,999  | 6,556  |
| opt       | 25%  | 642       | 1,321          | 2,003        | 2,687        | 3,373     | 4,061  | 4,751  | 5,444  | 6,139  | 6,836  | 7,535  | 8,236  |
| Ad        | 30%  | 778       | 1,594          | 2,413        | 3,235        | 4,061     | 4,890  | 5,722  | 6,556  | 7,395  | 8,236  | 9,080  | 9,928  |
|           | 35%  | 913       | 1,866          | 2,824        | 3,785        | 4,751     | 5,722  | 6,696  | 7,675  | 8,658  | 9,645  | 10,636 | 11,632 |
|           | 40%  | 1,049     | 2,140          | 3,235        | 4,337        | 5,444     | 6,556  | 7,675  | 8,798  | 9,928  | 11,063 | 12,203 | 13,349 |
|           | 45%  | 1,185     | 2,413          | 3,648        | 4,890        | 6,139     | 7,395  | 8,658  | 9,928  | 11,205 | 12,489 | 13,781 | 15,079 |
|           | 50%  | 1,321     | 2,687          | 4,061        | 5,444        | 6,836     | 8,236  | 9,645  | 11,063 | 12,489 | 13,924 | 15,368 | 16,821 |
|           | 55%  | 1,457     | 2,961          | 4,475        | 5,999        | 7,535     | 9,080  | 10,636 | 12,203 | 13,781 | 15,368 | 16,967 | 18,576 |
|           | 60%  | 1,594     | 3,235          | 4,890        | 6,556        | 8,236     | 9,928  | 11,632 | 13,349 | 15,079 | 16,821 | 18,576 | 20,343 |
|           | 65%  | 1,730     | 3,510          | 5,305        | 7,115        | 8,939     | 10,778 | 12,632 | 14,501 | 16,384 | 18,282 | 20,195 | 22,123 |
|           | 70%  | 1,866     | 3,785          | 5,722        | 7,675        | 9,645     | 11,632 | 13,637 | 15,658 | 17,697 | 19,753 | 21,825 | 23,915 |
|           | 75%  | 2,003     | 4,061          | 6,139        | 8,236        | 10,353    | 12,489 | 14,645 | 16,821 | 19,016 | 21,231 | 23,466 | 25,720 |
|           | 80%  | 2,140     | 4,337          | 6,556        | 8,798        | 11,063    | 13,349 | 15,658 | 17,989 | 20,343 | 22,719 | 25,117 | 27,538 |
|           | 85%  | 2,276     | 4,613          | 6,975        | 9,362        | 11,775    | 14,213 | 16,675 | 19,163 | 21,677 | 24,215 | 26,779 | 29,368 |
|           | 90%  | 2,413     | 4,890          | 7,395        | 9,928        | 12,489    | 15,079 | 17,697 | 20,343 | 23,018 | 25,720 | 28,451 | 31,210 |
|           | 95%  | 2,550     | 5,167          | 7,815        | 10,495       | 13,206    | 15,948 | 18,723 | 21,528 | 24,365 | 27,234 | 30,134 | 33,065 |
|           | 100% | 2,687     | 5,444          | 8,236        | 11,063       | 13,924    | 16,821 | 19,753 | 22,719 | 25,720 | 28,756 | 31,827 | 34,933 |

#### Figure 26: Country level NPV scenario outcomes heatmap for Rwanda, total surplus basis

|     |      | Burundi (d | oesn't includ | e research o | ost)      |            |     |       |       |       |       |       |       |
|-----|------|------------|---------------|--------------|-----------|------------|-----|-------|-------|-------|-------|-------|-------|
|     |      | NPV Scena  | rio Heatmap   | (USD \$,000) | , Produce | Surplus ba | sis |       |       |       |       |       |       |
|     |      |            | Increase in p | roductivity  |           |            |     |       |       |       |       |       |       |
|     |      | 5%         | 10%           | 15%          | 20%       | 25%        | 30% | 35%   | 40%   | 45%   | 50%   | 55%   | 60%   |
|     | 5%   | -1         | 6             | 14           | 22        | 30         | 38  | 46    | 54    | 62    | 69    | 77    | 85    |
| e   | 10%  | 6          | 22            | 38           | 54        | 69         | 85  | 101   | 117   | 133   | 149   | 165   | 181   |
| rat | 15%  | 14         | 38            | 62           | 85        | 109        | 133 | 157   | 181   | 204   | 228   | 252   | 276   |
| ion | 20%  | 22         | 54            | 85           | 117       | 149        | 181 | 212   | 244   | 276   | 309   | 341   | 373   |
| opt | 25%  | 30         | 69            | 109          | 149       | 188        | 228 | 268   | 309   | 349   | 389   | 430   | 471   |
| Ad  | 30%  | 38         | 85            | 133          | 181       | 228        | 276 | 325   | 373   | 422   | 471   | 520   | 569   |
|     | 35%  | 46         | 101           | 157          | 212       | 268        | 325 | 381   | 438   | 495   | 552   | 610   | 668   |
|     | 40%  | 54         | 117           | 181          | 244       | 309        | 373 | 438   | 503   | 569   | 635   | 701   | 767   |
|     | 45%  | 62         | 133           | 204          | 276       | 349        | 422 | 495   | 569   | 643   | 717   | 792   | 868   |
|     | 50%  | 69         | 149           | 228          | 309       | 389        | 471 | 552   | 635   | 717   | 801   | 884   | 969   |
|     | 55%  | 77         | 165           | 252          | 341       | 430        | 520 | 610   | 701   | 792   | 884   | 977   | 1,071 |
|     | 60%  | 85         | 181           | 276          | 373       | 471        | 569 | 668   | 767   | 868   | 969   | 1,071 | 1,173 |
|     | 65%  | 93         | 196           | 301          | 406       | 511        | 618 | 726   | 834   | 943   | 1,053 | 1,164 | 1,276 |
|     | 70%  | 101        | 212           | 325          | 438       | 552        | 668 | 784   | 901   | 1,020 | 1,139 | 1,259 | 1,380 |
|     | 75%  | 109        | 228           | 349          | 471       | 593        | 717 | 842   | 969   | 1,096 | 1,225 | 1,354 | 1,485 |
|     | 80%  | 117        | 244           | 373          | 503       | 635        | 767 | 901   | 1,036 | 1,173 | 1,311 | 1,450 | 1,590 |
|     | 85%  | 125        | 260           | 397          | 536       | 676        | 817 | 960   | 1,105 | 1,250 | 1,398 | 1,546 | 1,697 |
|     | 90%  | 133        | 276           | 422          | 569       | 717        | 868 | 1,020 | 1,173 | 1,328 | 1,485 | 1,643 | 1,804 |
|     | 95%  | 141        | 293           | 446          | 602       | 759        | 918 | 1,079 | 1,242 | 1,406 | 1,573 | 1,741 | 1,911 |
|     | 100% | 149        | 309           | 471          | 635       | 801        | 969 | 1,139 | 1,311 | 1,485 | 1,661 | 1,839 | 2,020 |

Figure 27: Country level NPV scenario outcomes heatmap for Burundi, producer surplus basis

|     |      | Burundi (doe | esn't include | research c   | ost)        |          |       |       |       |       |       |       |       |
|-----|------|--------------|---------------|--------------|-------------|----------|-------|-------|-------|-------|-------|-------|-------|
|     |      | NPV Scenari  | o Heatmap (   | USD \$,000), | Total Surpl | us basis |       |       |       |       |       |       |       |
|     |      | li li        | ncrease in pr | oductivity   |             |          |       |       |       |       |       |       |       |
|     |      | 5%           | 10%           | 15%          | 20%         | 25%      | 30%   | 35%   | 40%   | 45%   | 50%   | 55%   | 60%   |
|     | 5%   | 10           | 28            | 47           | 66          | 85       | 104   | 123   | 142   | 161   | 180   | 199   | 218   |
| a   | 10%  | 28           | 66            | 104          | 142         | 180      | 218   | 256   | 294   | 332   | 370   | 408   | 446   |
| rat | 15%  | 47           | 104           | 161          | 218         | 275      | 332   | 389   | 446   | 504   | 561   | 619   | 677   |
| io  | 20%  | 66           | 142           | 218          | 294         | 370      | 446   | 523   | 600   | 677   | 754   | 831   | 909   |
| opt | 25%  | 85           | 180           | 275          | 370         | 465      | 561   | 657   | 754   | 850   | 947   | 1,045 | 1,142 |
| Ad  | 30%  | 104          | 218           | 332          | 446         | 561      | 677   | 792   | 909   | 1,025 | 1,142 | 1,260 | 1,378 |
|     | 35%  | 123          | 256           | 389          | 523         | 657      | 792   | 928   | 1,064 | 1,201 | 1,339 | 1,477 | 1,615 |
|     | 40%  | 142          | 294           | 446          | 600         | 754      | 909   | 1,064 | 1,221 | 1,378 | 1,536 | 1,695 | 1,854 |
|     | 45%  | 161          | 332           | 504          | 677         | 850      | 1,025 | 1,201 | 1,378 | 1,556 | 1,735 | 1,914 | 2,095 |
|     | 50%  | 180          | 370           | 561          | 754         | 947      | 1,142 | 1,339 | 1,536 | 1,735 | 1,935 | 2,136 | 2,338 |
|     | 55%  | 199          | 408           | 619          | 831         | 1,045    | 1,260 | 1,477 | 1,695 | 1,914 | 2,136 | 2,358 | 2,582 |
|     | 60%  | 218          | 446           | 677          | 909         | 1,142    | 1,378 | 1,615 | 1,854 | 2,095 | 2,338 | 2,582 | 2,828 |
|     | 65%  | 237          | 484           | 734          | 986         | 1,240    | 1,496 | 1,755 | 2,015 | 2,277 | 2,541 | 2,808 | 3,076 |
|     | 70%  | 256          | 523           | 792          | 1,064       | 1,339    | 1,615 | 1,894 | 2,176 | 2,460 | 2,746 | 3,035 | 3,326 |
|     | 75%  | 275          | 561           | 850          | 1,142       | 1,437    | 1,735 | 2,035 | 2,338 | 2,644 | 2,952 | 3,263 | 3,577 |
|     | 80%  | 294          | 600           | 909          | 1,221       | 1,536    | 1,854 | 2,176 | 2,501 | 2,828 | 3,159 | 3,493 | 3,830 |
|     | 85%  | 313          | 638           | 967          | 1,299       | 1,635    | 1,975 | 2,318 | 2,664 | 3,014 | 3,367 | 3,724 | 4,085 |
|     | 90%  | 332          | 677           | 1,025        | 1,378       | 1,735    | 2,095 | 2,460 | 2,828 | 3,201 | 3,577 | 3,957 | 4,341 |
|     | 95%  | 351          | 715           | 1,084        | 1,457       | 1,834    | 2,216 | 2,603 | 2,993 | 3,388 | 3,788 | 4,192 | 4,600 |
|     | 100% | 370          | 754           | 1,142        | 1,536       | 1,935    | 2,338 | 2,746 | 3,159 | 3,577 | 4,000 | 4,427 | 4,860 |

Figure 28: Country level NPV scenario outcomes heatmap for Burundi, total surplus basis



International Center for Tropical Agriculture Since 1967 Science to cultivate change

www.ciat.cgiar.org

www.cgiar.org







CIAT is a CGIAR Research Center