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Abstract 21 

 22 

Aim: Application of Environmental Envelope Modelling (EEM) for conservation planning 23 

requires careful validation. Opinions of experts who have worked with species of interest in the 24 

field can be a valuable and independent information source to validate EEM because of their 25 

first-hand experience with species occurrence and absence. However, their use in model 26 

validation is limited because of the subjectivity of their feedback. In this study we present a 27 

method on the basis of cultural consensus theory to formalize expert model evaluations. 28 

 29 

Methods: We developed for five tree species, distribution models with nine different variable 30 

combinations and Maxent EEM software. Species specialists validated the generated distribution 31 

maps through an online Google Earth interface with the scores from Invalid to Excellent. Experts 32 

were also asked about the commission and omission errors of the distribution models they 33 

evaluated. We weighted expert scores according to consensus theory. These values were used to 34 

get to a final average expert score for each of the produced distribution models. The consensus-35 
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weighed expert scores were compared with un-weighed scores and correlated to four 36 

conventional model performance parameters after cross-validation with test data: Area Under 37 

Curve (AUC), maximum Kappa, commission error and omission error. 38 

 39 

Results: The median consensus-weighed expert score of all species-variable combinations was 40 

close to Fair. In general, experts that reached more consensus with peers were more positive 41 

about the EEM outcomes compared to those that had more opposite judgements. Both 42 

consensus-weighed and un-weighed scores were significantly correlated to corresponding AUC, 43 

maximum Kappa and commission error values, but not to omission errors. More than half of the 44 

experts indicated that the distribution model they considered best, included areas where the 45 

species is known to be absent. One third also indicated areas of species presence that were 46 

omitted by the model.  47 

 48 

Conclusions: Our results indicate that experts are fairly positive about EEM outcomes but its 49 

application for conservation actions remains limited according to them. Methods to formalize 50 

expert knowledge allow a wider use of this information in model validation and improvement, 51 

and they complement conventional validation methods of presence-only modelling. Online GIS 52 

and survey applications facilitate the consultation of experts.    53 

 54 

Keywords: Cultural consensus theory; Environmental Envelope Modelling; Expert opinion; 55 
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 60 
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 62 

Introduction 63 

 64 

A good understanding of the actual distribution of any plant species is one of the key parameters 65 

allowing evaluation of its conservation status and the formulation of effective conservation 66 

strategies. However, for most plant species, only a limited amount of data on their distribution is 67 

available (Nic Lughadha et al. 2005; Newton and Oldfield 2008). This is particularly true for 68 

regions that harbour high levels of plant diversity, including tropical and subtropical zones in 69 

Africa, Asia, Latin America and the Caribbean (Nic Lughadha et al. 2005). 70 

 Environmental Envelope modelling (EEM) can be used to develop predictive models that 71 

make inferences about species´ geographic distributions (Araújo and Peterson 2012). EEM is 72 

therefore considered a useful tool to overcome the lack of complete distribution data (Guarino et 73 

al. 2002). This kind of modelling technique defines a species’ ecological niche to predict areas of 74 

potential species occurrence. This is done on the basis of environmental data obtained for 75 

occurrence sites where a species has been observed and from sites where it is absent. Because 76 

absence points are difficult to obtain, often randomly generated background points are used as an 77 

alternative to discriminate less suitable environments from more suitable environments in areas 78 



where the species has been observed (Pearce and Boyce 2006). Presence points can be derived 79 

from georeferenced herbarium specimens, genebank accessions and/or vegetation/plant species 80 

inventories. The latter are made increasingly available online by herbaria and gene banks through 81 

portals like the Global Biodiversity Information Facility (GBIF) (www.gbif.org). One of the 82 

advantages of EEM is that no prior knowledge on the ecophysiology or reproductive biology of 83 

plant species is needed to develop a model (Guisan and Zimmerman 2000). This allows a 84 

systematic approach to predict distributions and assess the conservation status for large species 85 

numbers.  86 

EEM is therefore now widely applied in ecological and biodiversity conservation studies 87 

(Araújo and Peterson 2012). Yet, application of this tool in conservation planning should be 88 

critically evaluated. To it is, the algorithm chosen to model species distribution from actual 89 

observation data influences the outcomes. This may lead to modelled distributions that deviate 90 

significantly from reality (Loiselle et al. 2003). An additional challenge comes from the fact that 91 

the modelled distribution ranges are influenced by the environmental variables included and/or 92 

omitted in the model. An adequate selection of determinant variables for any species distribution 93 

can thus improve the model significantly (Austin 2007).  94 

The results of EEM presence-only modelling have therefore been extensively cross-95 

validated with test data consisting of presence and pseudo-absence points using statistical 96 

parameters like maximum Kappa and/or Area Under Curve (AUC) (e.g. Loiselle et al. 2003; 97 

Elith et al. 2006; Hernandez et al. 2006). Nevertheless, because of the lack of confirmed points 98 

of species absence, it remains difficult to provide a good estimate of the commission error; this is 99 

the extent to which models predict occurrence in areas where the species is actually absent 100 

(Anderson et al. 2003; Rupprecht et al. 2011). In addition, sampling bias can result in 101 

dependence between presence points to train a distribution model and the presence points to test 102 

model performance (Dorman et al. 2007). This may lead to high rates of model performance 103 

whereas a model may actually omit many not-yet-sampled areas of species occurrence (Hijmans 104 

2012).  105 

Opinions of experts, like foresters, ecologists, botanists and park managers are another 106 

key information source that can be used to validate and fine-tune the outcomes of EEM because 107 

of their experience with specific species in the field (Thuiller 2003; Beauvais et al. 2006). In 108 

addition to species presence, they also can provide valuable information about the extent to 109 

which models predict species absence in areas where species don’t occur naturally. They may 110 

also be a good source to validate model performance in under-sampled areas. Expert feedback 111 

also provides insight on how relevant potential users consider distribution modelling to be for 112 

their field activities on in situ conservation, seed collection and inventories of specific species, to 113 

name just a few potential uses. This fits in a wider discussion about the applicability of species 114 

distribution mapping and EEM for conservation and sustainable use of biodiversity (Knight et al. 115 

2008; Araújo and Peterson 2012; Guisan et al. 2013).  116 

Increased computer capacity and internet availability during the last decade have allowed 117 

the development and widespread application of many new, powerful EEM tools to predict 118 

species distribution (e.g. Elith et al. 2006; Thuiller et al. 2009). At the same time, this has 119 

allowed the development of online mapping tools, like ArcGIS Server, Google Earth and 120 

GeoWiki, which make it possible to remotely consult specialists including botanists, ecologists 121 

http://www.gbif.org/


or park managers located in different parts of a country and in the world, and consider their 122 

opinion in distribution model validation and improvement. In many cases only a few experts are 123 

available for specific plant species. In these cases, these tools make it possible to connect them 124 

online and ask for their feedback in a systematic and efficient way.    125 

Expert-based judgements are often not applied or reported in evaluating EEM because 126 

they are considered to be subjective. Measurements of model performance that use presence and 127 

pseudo-absence points, like AUC or maximum Kappa, are, despite their limitations, preferred in 128 

EEM studies. This is because of their formal nature which allows repeatability and comparability 129 

between different studies. 130 

It is possible, though, to analyse expert-based opinions in a more objective way. Romney 131 

et al. (1986) developed an approach to formalize informant knowledge on the basis of cultural 132 

consensus theory. The consensus model estimates the probability that an informant provides 133 

correct answers in function of the concordance of her/his answers with overall group consensus. 134 

This technique has been applied in social and ethnobotanical sciences to weigh informant 135 

responses (e.g. Weller and Mann 1997; van Etten 2006; Benz et al. 2007).  136 

In this study, we present an approach on how to formalize expert evaluation applying 137 

consensus theory to examine the relevance of distribution models for species’ conservation 138 

assessment and planning. First, the rate of expert agreement indicates how reliable the expert 139 

evaluations are to select the best distribution model. Secondly, consensus theory allows 140 

identifying for each expert how trustworthy his/her answers are compared to other specialists. 141 

This information can be used to weigh the opinions of different experts in average scores for 142 

model evaluation.  143 

In EEM, expert knowledge has been used to identify critical environmental variables and 144 

species environmental ranges in the case of small sample sizes (Barry and Elith 2006) or to 145 

identify areas for crop suitability (Ecocrop 2007). It is also being incorporated in the 146 

development of distribution models (Bierman et al. 2010). But we found only a few references 147 

that reported the use of experts for model evaluation (Anderson et al. 2003; Ramírez-Villegas et 148 

al. 2010). To our knowledge, this is the first time an approach is presented to formalize expert 149 

knowledge for the validation of EEM outcomes.  150 

For five socio-economically important tree species native to Latin America and the 151 

Caribbean, we present distribution models run in Maxent with nine different environmental 152 

variable combinations. Species specialists evaluated model outcomes through an online survey in 153 

Google docs with a dynamic Google Earth interface. We compare expert judgements, with and 154 

without applying consensus theory, with four commonly used measures of model performance 155 

after cross-validation with test data; maximum Kappa, Area Under Curve (AUC), and 156 

commission and omission error. We further examine the patterns of variable selection and model 157 

appreciation by experts with and without applying consensus theory.  158 

 159 

Methods 160 

 161 

Species  162 

 163 



The five tree species we tested here are Annona cherimola Mill. (cherimoya), Bactris gasipaes 164 

Kunth (peach palm), Bertholletia excelsa Bonpl. (Brazil nut), Cedrela odorata L. (Spanish 165 

cedar) and Nothofagus nervosa Phil. (raulí; synonym for N. alpina (Poepp. & Endl.) Oerst.). 166 

These species were prioritized by LAFORGEN, the Latin American Forest Genetic Resources 167 

Network of scientists and practitioners, and have been selected in a project named 168 

MAPFORGEN (www.mapforgen.org)). This project aims at evaluating the conservation status 169 

of 100 socio-economically important woody species native to Latin America and the Caribbean. 170 

As part of this analysis, the species distribution ranges are modelled. The five selected species 171 

occur in different ecological and geographical zones in Latin America and the Caribbean, and 172 

their distribution has been studied relatively well compared to other MAPFORGEN species.  173 

 174 

EEM 175 

 176 

We applied a presence-only EEM approach using the Maxent program (Phillips et al. 2006). This 177 

is a widely used EEM tool of which the algorithm is reported as predicting species distribution 178 

well, in comparison to other modelling software (Elith et al. 2006; Hernandez et al. 2006). It is 179 

already used by several environmental agencies (Elith et al. 2011).  180 

We obtained presence points coming from herbaria and genebank passport data for the 181 

five selected species through GBIF. This dataset was complemented with presence points 182 

provided by several members of LAFORGEN: Corporación para el Desarrollo de los Recursos 183 

Naturales (CEDERENA) Ecuador; World Agroforestry Centre (ICRAF) Peru; Instituto Forestal 184 

(INFOR) Chile; and Instituto Nacional de Tecnología Agropecuaria (INTA) Argentina. We only 185 

considered points within the native distribution ranges defined according to the Germplasm 186 

Resources Information Network (GRIN) of the United States Department of Agriculture, 187 

Agricultural Research Service, National Genetic Resources Program (USDA, ARS, NGRP) 188 

(http://www.ars-grin.gov/). The timber species C. odorata, and N. nervosa, and non-timber 189 

species B. excelsa occur in general only in natural populations. The fruit species A. cherimola 190 

and multi-use palm species B. gasipaes are in phases of incipient or semi-domestication 191 

(National Research Council 1989; Clement et al. 2010). These species rely partly on 192 

conservation through use on farms and presence records include observations from natural 193 

populations, and trees maintained circa situm in backyards, home gardens and smallholder 194 

farms.  195 

We checked the presence points for inconsistencies between the recorded coordinates and 196 

the reported highest-level administrative unit in a country (e.g. departments or states), after 197 

Scheldeman and van Zonneveld (2010). Inconsistent points were removed. In addition, we used a 198 

Mahalanobis distance analysis to identify points in atypical climates (0.025 < p > 0.975) as they 199 

are probably errors (Chapman 2005). Distances between points were calculated with values of 19 200 

bioclimatic variables as defined by Busby (1991) representing different interannual bioclimatic 201 

conditions important for a plant’s establishment and survival. Climate data were derived, for 202 

each species presence point, from the 30 seconds resolution Worldclim dataset (Hijmans et al. 203 

2005).  204 

 205 
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Each of the nine models that we developed in Maxent, used as input a different environmental 206 

variable combination from the 19 bioclimatic variables, one soil-type classification map and a 207 

categorical ecological zone map (Table 1). Climatic variables are important factors to explain 208 

geographic patterns of species diversity and distribution at large spatial scales (Pearson and 209 

Dawson 2003; Field et al. 2008). Soils play an important role in shaping plant distribution and 210 

diversity at smaller spatial scales (Willis and Whittaker 2002; Pearson and Dawson 2003). Data 211 

on ecological zones help to further define species distribution areas.  212 

The 19 bioclimatic variables can be clustered in different groups of highly correlated 213 

variables of mean annual values and intra-annual fluctuations of temperature and precipitation 214 

(van Zonneveld et al. 2009). We therefore also selected a core set of four bioclimatic variables 215 

that represent precipitation and temperature mean annual values and seasonality. This set of 216 

variables consisted of annual mean temperature (C°), annual precipitation (mm/y), temperature 217 

seasonality (standard deviation of monthly temperature x 100) and precipitation seasonality 218 

(variation coefficient of monthly precipitation). The map of soil units was derived from the 219 

SOTERLAC database (Batjes 2005) and followed FAO´s classification of soil units (FAO 1988). 220 

The map of ecological zones was derived from FAO’s terrestrial ecological zone classification 221 

(FRA 2001).  222 

We used Maxent default settings and applied the 10 percentile training presence threshold 223 

to restrict potential distribution areas. The latter is one of the threshold values provided by 224 

Maxent and limits the modelled areas of occurrence to a distribution range in which 90% of the 225 

presence points are located inside the modelled area while 10% of the presence points are outside 226 

the modelled areas of occurrence. Background points were taken from the whole study area that 227 

comprises Latin America and the Caribbean (maximum longitude in decimal degrees = -32.375, 228 

minimum longitude = -121.125, maximum latitude = 34.5833, minimum latitude = -55.9583). 229 

From the modelled areas, we excluded intensive agricultural areas, bare lands and urban areas as 230 

delineated by the Global Land Cover 2000 Project (Fritz et al. 2003). We anticipate that our tree 231 

species don’t occur in these land use types because they have low forest cover and no natural 232 

vegetation. 233 

 234 

Online expert evaluation survey 235 

 236 

For each species, we developed an online survey in Spanish (see Appendix 1). Hyper Text 237 

Markup Language (HTML) code and Cascading Style Sheets (CSS) were used to develop a web 238 

page to present a questionnaire for each of the five species. The script of the Webpages can be 239 

adapted for own use. Within the web page of each species respectively, the nine modelled 240 

distribution maps were presented in Keyhole Markup Language (KML) format in an Application 241 

Programming Interface (API) of Google Earth. An embeddable form hosted in Google Docs was 242 

included in the web pages to store the evaluation scores provided by experts. For each species, 243 

we sent an invitation with a link to the online survey to: 1) LAFORGEN members who had 244 

indicated research interest in conservation and use of the respective species (many of them are 245 

actively involved in such research); and 2) researchers who we found to have studied these 246 

species, following a literature review of genetic and ecological studies for each respective 247 



species. In total, 99 persons were invited to participate. The survey took place from 10 August 248 

2009 to 29 September 2009.   249 

In the Google Earth interface, each respective species expert could select and view the 250 

modelled distribution derived from each of the nine variable combinations to evaluate them 251 

visually. Experts were asked to concentrate on the areas they knew best under the assumption 252 

that the variable combinations would predict species occurrence with the same quality across the 253 

whole distribution range. We asked them to indicate their geographic area of expertise (e.g. 254 

country and/or departments or provinces). Distribution maps were presented on a scale from low 255 

(yellow) to high probability (red) of species occurrence. Experts did not receive information 256 

about the environmental datasets that had been used to generate each model. Specialists could 257 

zoom to the geographical distribution area of their expertise (we recommended a minimum eye 258 

height of about 25 miles (~ 40 km), whereas they could choose one of five scores to rate the 259 

modelled distributions: 1 (invalid), 2 (bad), 3 (fair), 4 (good) and 5 (excellent). Maps in 260 

Appendix 2 show the concordance and disagreement of the species distribution models under the 261 

different variable combinations in their predictions of species occurrence.  262 

 263 

Commission and omission errors according to experts 264 

 265 

Distribution models used in conservation planning should ideally have a low commission error to 266 

minimize the costs for implementing conservation measures to protect species (Araújo and 267 

Peterson 2012). Over-prediction resulting in a high rate of commission errors can occur because 268 

migration limitations to species movement are not taken into account in EEM. For example, past 269 

and current barriers can substantially restrict real distributions compared to their potential 270 

distributions (Svenning and Skov 2007). On the other hand, for the discovery of new populations 271 

it is important that models have a low omission error (Araújo and Peterson 2012). Accessing new 272 

populations is important for germplasm collecting and to improve in situ conservation of species´ 273 

genepools.  Omission errors may occur because of sampling bias resulting from over-sampling in 274 

areas which are easy accessible, like areas close to roads. Sampling is much more difficult in 275 

more remote areas with potentially new species populations, which remain under-represented 276 

and may consequently be under-predicted in EEM (Hijmans 2012).  277 

Therefore, we also asked each expert if the model that he or she had selected as 278 

producing a distribution most similar to the species distribution in their area of expertise 279 

contained commission and/or omission errors. We further asked the reasons for commission 280 

error; whether model prediction in areas of species absence was due to human-mediated species 281 

extinction and/or because these areas were outside the native distribution range. 282 

 283 

Application of consensus theory to formalize expert evaluation 284 

 285 

The consensus model assumes that each informant has a probability to provide the correct 286 

answers to questions on which a researcher doesn´t have the right answers prior to inquiry 287 

(Romney et al. 1986). In our case, we didn’t know how the different distribution models are 288 

related to the real species distributions. The model further assumes that respondents make their 289 

observations within the same cultural context (Romney et al. 1986). In our case, we tapped into a 290 



community of biological scientists. We assume that this community consists of one cultural 291 

group, although our experts come from different biological disciplines and were maybe trained 292 

with other conceptual backgrounds. A third postulation is that informants’ answers are 293 

independent from each other (Romney et al. 1986). We consulted each expert individually about 294 

their opinion on the produced models. 295 

The consensus model estimates the level of accuracy of an informant´s response to 296 

questions by its concordance to the answers of the other informants in a group. The levels of 297 

accuracy or competence rates (D) are calculated for each informant, they are between 0 and 1, 298 

and can be used to weigh each informant’s response in the final analyses. Indeed, the results 299 

from several case studies support consensus theory confirming that within a cultural group, 300 

informants whose answers are closer to consensus also have more correct answers compared to 301 

persons whose answers are more opposed to consensus (see Romney et al. 1986). The former 302 

persons tend also to be more consistent in their answers when they are being asked again after a 303 

certain period. 304 

In our study, we used the rate of agreement between species experts as a way to estimate 305 

the reliability of the overall expert model evaluation and model selection for a specific species. 306 

Secondly, we used the expert competence rates to weigh average expert scores per species-307 

variable combination. In the remaining text of this paper, we will refer to these scores as 308 

consensus-weighed expert scores. Similarly, un-weighed expert scores were calculated, but 309 

without taking into account competence values.  310 

We will examine how consensus-weighing influences (1) best model selection according 311 

to experts; (2) quality of the distribution models according to experts; (3) expert score correlation 312 

with Maximum Kappa and AUC, and commission and omission errors; and (4) commission and 313 

omission errors according to experts. The steps involved to calculate competence values were 314 

written with the basic functions included in R (R Development Core Team 2010).   315 

 316 

The first step in consensus model calculation is the development of a matrix with the proportions 317 

of agreement in answers between paired experts. Originally, Romney et al. (1986) developed this 318 

matrix on the basis of the rates of matches between 0 and 1 in answers on true/false or multiple 319 

choice questions (Romney et al. 1986). Later this has been extended to covariance matrices 320 

(Weller & Mann 1997). In our case, each species expert provided a rank score from 1 to 5 for 321 

nine different models. Instead of rate of matches or covariance, we then calculated the proportion 322 

of agreement between respondents as Spearman correlation coefficients. The main difference 323 

between correlation coefficients and rates of matches is that correlation coefficients can also be 324 

negative when two experts systematically disagree, and thus range from -1 to 1.  325 

 The second step is correction of matches for guessing (Romney et al. 1986). In our case, 326 

the chances that two respondents return the same series of scores by simply guessing are 327 

practically zero. However, to avoid singular computations in further analysis of the correlation 328 

matrix, we subtracted 0.0001 from pairwise correlation coefficients.  329 

We then carried out a maximum-likelihood factor analysis on the correlation coefficient 330 

matrices. This was only done with one factor, as indicated by Romney et al. (1986). The amount 331 

of variance explained in this first factor reflects the rate of consensus between experts (Weller & 332 



Mann 1997). We used this as an indicator of the rate of expert agreement on model performance 333 

and best model selection.   334 

The results from the maximum-likelihood factor analysis were also used to obtain for 335 

each expert its competence rate on the basis of his/her concordance with group consensus. Expert 336 

scores can only be weighed with zeros or positive competence rates (0≤D≤1). In our case, 337 

though, an expert could receive negative competence rates when he or she rated consistently 338 

opposite to consensus scores. In these cases, values were converted to zero, i.e. the lowest 339 

competence value that can be contributed to weigh expert scores. 340 

We use the terminology of competence rates following Romney et al. (1986) to estimate 341 

expert agreement and accuracy in model validation. By no means, these rates refer to the overall 342 

professional skills and knowledge of our experts.   343 

 344 

Selection and relevance of variable combinations   345 

 346 

We carried out a non-parametric ANOVA test (Friedman) to test if the model outcomes of one or 347 

more of the nine variable combinations were consistently more appreciated by the experts of the 348 

five different species compared to the results with the other combinations. We also examined if 349 

there were differences in variable combination appreciation between consensus-weighed and un-350 

weighed expert scores. 351 

 352 

Correlation of expert-based judgement with conventional model performance parameters 353 

 354 

We compared consensus-weighed and un-weighed expert scores with the corresponding values 355 

of four commonly used parameters in the validation of EEM outcomes: AUC, maximum Kappa, 356 

and commission and omission error values from cross-validation. Correlations were calculated as 357 

Pearson´s coefficient. Kappa measures the proportion of agreement between the test data and the 358 

modelled areas of species occurrence and absence (Fielding and Bell 1997). In presence-only 359 

modelling, AUC is the likelihood that a randomly selected presence point from test data is 360 

located at a site with a higher probability of species occurrence than that of a pseudo-absence 361 

point, i.e. a randomly selected point in the study area (Philips et al. 2006). Commission errors 362 

were calculated as the percentage of false positives in the test data, yielding a predicted 363 

distribution area of where the species in reality is absent (Araújo and Peterson 2012). In a similar 364 

way, omission errors were calculated as the percentage of false negatives in the test data. 365 

To calculate these four parameters, we trained every distribution model in Maxent with 366 

75% of randomly selected presence points and each model was cross-validated with test data in 367 

DIVA-GIS. Test data consisted of 25% of the remaining observation data and pseudo-absence 368 

points (five times the number of presence points), randomly generated in the geographic 369 

bounding box of the test data. Pseudo-absence points were restricted to this bounding box to 370 

reduce the number of such points that are located far away from the known, observed distribution 371 

range. This type of points may inflate AUC and maximum Kappa values, and reduce artificially 372 

commission errors derived from cross-validation (Lobo et al. 2008).  373 

Finally, we tested with homogeneity χ
2 

tests if application of consensus theory changes 374 

the rate of commission and omission errors according to experts. 375 



  376 

Results 377 

 378 

Expert evaluation 379 

 380 

Of the 99 persons we invited to participate in the validation exercise, 45 responded. This yielded 381 

on average almost nine experts per species. Experts came from 13 countries and were affiliated 382 

with universities, herbaria, and international, national, regional or non-governmental agricultural 383 

and environmental research institutions. One B. excelsa expert and one C. odorata expert were 384 

excluded from the analysis because they considered model outcomes under all variable 385 

combinations as being invalid. Although this helps us understanding how relevant these models 386 

are for some experts in general, it does not give us information to discriminate between the 387 

variable combinations.  388 

N. nervosa experts reached the highest consensus between each other compared to 389 

experts for the other species. Therefore the variance explained by the first axis of the factor 390 

analysis and average competence value was highest for their expert score correlation matrix 391 

(Table 2). For the other four species considerably less variance was explained by the first factor 392 

axis and the average competence values for these species experts were also lower (Table 2).  393 

In the case of C. odorata, we received sufficient expert response to look at species 394 

agreement among experts in two different geographic areas: 1) Mexico and Central America 395 

(n=6); and 2) South America (n=7). The variance explained by the first factor was 0.36 for both 396 

expert groups. We compared this value for both groups with a normal distribution of 1000 397 

bootstraps of respectively six and seven randomly drawn experts without replacement (µ = 0.37 398 

sd = 0.049; µ = 0.35 sd = 0.047). In either case there is a high probability to find randomly better 399 

values of consensus than 0.36 (p = 0.56; p = 0.45). 400 

 401 

Quality and selection of distribution models  402 

 403 

The median of consensus-weighed expert scores over all 45 species-variable combinations was 404 

2.91, in other words near to Fair according to the qualitative scores initially defined. These 405 

scores were significantly higher than the corresponding un-weighed scores (Figure 1; Wilcoxon 406 

paired test, p = 0.049). The median of un-weighed scores was 2.71. 407 

 408 

On average across all species, variable combination 8 -which included the 19 bioclimatic 409 

variables plus the soil and ecological zone layer- resulted in the best distribution models 410 

according to un-weighed expert scores (Figure 2; Friedman, df = 8, χ
2 

= 16.37, p = 0.04). 411 

However, according to  consensus-weighed expert scores, no variable combination resulted in 412 

consistently better or worse models when taken into account all five species (Figure 2; Friedman, 413 

df = 8, consensus-weighed average expert scores: χ
2 

= 14.05, p = 0.08).  414 

The ranges between maximum and minimum consensus-weighed expert scores of the 415 

nine variable combinations per species were much higher compared to un-weighed scores 416 

(Appendix 3; Friedman, df = 4, χ
2
 = 37.44, p < 0.001). These wider ranges made it easier to 417 



select the best variable combination per species compared to un-weighed scores (Figure 3; 418 

Appendix 3).  419 

For specific species, some variable combinations performed particularly well according 420 

to our consensus-weighed expert scores. The best A. cherimola and N. nervosa predictive models 421 

were close to the qualitative score Good (Figure 3; Appendix 3; respectively score 3.90 with 422 

variable combination 4 –which included the 19 bioclimatic variables plus the soil layer- and 3.82 423 

with variable combination 7 that consisted of the four bioclimatic variables plus the ecological 424 

zone layer. In the case of B. excelsa, the score of the best model was even between Good and 425 

Excellent (Figure 3; Appendix 3; score 4.30 with variable combination 2 that consisted only of 426 

the four bioclimatic variables). 427 

 428 

Correlation with model performance parameters 429 

 430 

Both consensus-weighed and un-weighed specialist judgements correlated significantly to 431 

corresponding AUC, maximum Kappa and commission error when all 45 species-variable 432 

combinations were taken together (Table 3). Correlation between these parameters and un-433 

weighed expert scores were similar to the correlation with un-weighed judgements of species 434 

specialists (Table 3). Expert opinions did not correlate significantly with omission error (Table 435 

3). Almost all correlations with commission and omission errors were negative. This would be 436 

because expert appreciation and rate of these errors are inversely related.  437 

The best variable combinations according to the conventional parameters were different 438 

from the best model choice according to the experts independently if they were consensus-439 

weighed or not. According to the AUC, maximum Kappa and commission error values, variable 440 

combination 4 –which included the 19 bioclimatic variables plus the soil layer- resulted in the 441 

best distribution models (Appendix 3; Friedman AUC, df = 8, χ
2
 = 25.63, p < 0.01; Friedman 442 

Kappa, df = 8, χ
2
 = 20.98, p < 0.01; Friedman commission error, df = 8, χ

2
 = 28.59, p < 0.0001). 443 

The lowest omission errors were observed in variable combination 3 that consisted of the 19 444 

bioclimatic variables plus the ecological zone layer (Appendix 3; Friedman, df = 8, χ
2
 = 15.73, p 445 

= 0.046). 446 

 Considering each species individually, consensus-weighing only improved for B. excelsa 447 

the correlations between specialist judgments and the model performance parameters (Table 3). 448 

In the case of A. cherimola, we found highly significant correlations between the specialist 449 

evaluations and AUC, maximum Kappa and commission error (Table 3). Similar results were 450 

obtained with consensus-weighed and un-weighed expert scores (Table 3). No clear correlations 451 

were observed for N. nervosa and C. odorata (Table 3). Correlation between B. gasipaes expert 452 

scores and the model performance parameters worsened much when expert scores were 453 

consensus-weighed (Table 3).  454 

 455 

Commission and omission error according to experts 456 

 457 

Averaged per species, 54 % of the preferred models had a commission error according to 458 

consensus-weighed expert judgment (Table 4). Forty-three percent of our species specialists 459 

indicated these were areas outside the native distribution range. Twenty-two percent indicated 460 



that this was due to human disturbance like selective extraction. Thirty-five percent did not 461 

specify the reason for species absence in predicted areas of occurrence (Table 4). For each 462 

species on average, 31 % of the experts indicated areas of species occurrence that were not 463 

predicted in his/her preferred model (omission) (Table 4). We did not obtain significant 464 

differences between the commission errors according to consensus-weighed and un-weighed 465 

expert scores; either did we for omission errors. Only a significant difference was observed 466 

between consensus-weighed and un-weighed values when we asked for the reasons of 467 

commission error (Homogeneity, df = 2, χ
2
 = 10.80, p = 0.004). The reason for this was that 468 

experts with higher competency values tended not to clarify the reasons of the commission error 469 

(Table 4). 470 

 471 

Discussion 472 

 473 

In this paper, we present an approach using consensus theory to formalize expert knowledge to 474 

validate the outcomes of EEM. The average consensus-weighted score per species-variable 475 

combination was higher than the average un-weighted model score. This suggests that experts 476 

who have more favourable opinions about models reach more easily consensus between one 477 

another, whereas more sceptic experts appear to diverge from consensus. Our results suggest that 478 

application of the consensus model could thus be a way to filter out sceptical “mavericks“ in the 479 

validation of models by experts. 480 

The variation explained in the first axis of the factor analysis shows overall agreement 481 

between experts of a specific species. We propose to use this measure to indicate how reliable 482 

consensus-weighed expert evaluations of distribution models. Using this criterion, the expert 483 

selection of the best distribution model for N. nervosa would seem to be trustworthy because of 484 

the high degree of expert consensus on the quality of the modelling outcomes. However, the best 485 

model chosen by N. nervosa experts didn’t coincide with the best model choice according to 486 

conventional model performance parameters. Similar discordance between expert evaluation and 487 

model performance after cross-validation with presence-pseudo-absence data was observed in 488 

other studies as well (Anderson et al. 2003). We suggest that in the case of high agreement 489 

between experts –as in the case of N. nervosa- their opinion should be considered seriously in the 490 

validation and selection of distribution models. In other cases, when experts more disagree, 491 

conventional parameters such as AUC, Kappa, commission and omission error could be the lead 492 

parameters for model evaluation and selection. 493 

N. nervosa occurs in the South American temperate rainforests that occurs only in Chile 494 

and Argentina. Consensus was much lower for the other four species that have a more extensive 495 

distribution range and cover three or more countries. Opposite opinions may arise between 496 

experts belonging to geographical zones with differences in species´ niches. There also could be 497 

a sampling bias towards specific geographic zones. To improve EEM outcomes, distribution 498 

models could be developed for different geographic zones and accordingly be evaluated 499 

separately by expert groups from these different geographic zones. In the software Flora map, for 500 

example, it is possible to model species distributions for separate sub clusters of presence points 501 

located in different climate zones (Jones et al. 2002). An extra advantage of this additional step is 502 

that a possible sampling bias for a specific climate zone would be reduced because records from 503 



different zones are modelled independently. This requires further research and expansion of 504 

expert validation exercises. 505 

Low expert agreement may also simply occur because of poor model quality in every 506 

geographic zone due to sampling bias across the whole distribution range and the use of 507 

suboptimal sets of environmental layers. We examined how C. odorata experts from two 508 

different areas - i.e. Central America and Mexico, and South America - agreed with other species 509 

specialists from their own area. Yet, for both regions, expert agreement was not higher than that 510 

of a randomly group of experts drawn from both regions.  511 

All consulted experts had a scientific biological background. Yet their disciplines may 512 

differ and they could view the distribution models from different perspectives depending on to 513 

the culture of their discipline. It requires further research to understand whether expert agreement 514 

could be improved when specialists are consulted in separate groups according to their 515 

disciplines. 516 

 517 

Experts and conventional parameters did not coincide in their best model choice. So, even 518 

though there is a significant relation between three of the four conventional parameters and 519 

expert evaluation results, there are several discrepancies. Of the four conventional parameters, 520 

only the omission error values did not correlate significantly with expert scores. We don ´t know 521 

why they don´t correspond, but calculation of omission errors may have been affected by spatial 522 

sorting bias, this occurs when test data is located nearby model training data. Experts are less 523 

restricted by sampling bias and may consider as well under and not-sampled areas when they 524 

estimate omission errors. 525 

We didn’t find strong evidence that consensus-weighing improves the correlation 526 

between expert scores and AUC, maximum Kappa, commission and omission errors. Only for 527 

one of the five species, i.e. B. excelsa, correlations between expert scores and conventional 528 

parameters clearly improved when these were consensus-weighed. Interestingly, this was also 529 

the species with the highest expert scores after consensus-weighing. This model also had the 530 

lowest commission and omission errors after cross-validation (Appendix 3). On the other hand, 531 

we also found a significant decrease in correlation for B. gasipaes when expert scores were 532 

weighed. As it is, we only had very few B. gasipaes experts (n=5) compared to other species 533 

(n≥7). The low number of experts in combination with relatively low degree of consensus may 534 

explain why the consensus model didn’t perform well for B. gasipaes in reference to the 535 

conventional parameters.   536 

The number of informants necessary to receive confident results depends on the 537 

consensus between the consulted informants (Romney et al. 1986). The more likely informants 538 

agree with each other, the lower number of experts is required in model validation. On the basis 539 

of responses on true-false questions, Romney et al. (1986) estimated for different competence 540 

rates, the minimum number of informants that is necessary to get accurate responses. Sometimes 541 

only a few experts are required; in their evaluation of true-false responses up to four informants 542 

with competence rates above 0.7 provided accurate responses (Romney et al. 1986). This makes 543 

this type of validation exercises also potentially relevant for plant species for which only a low 544 

number of specialists exists. So, the challenge becomes to estimate the competence rates of the 545 

invited experts before the validation exercise. For species such as N. nervosa that have a 546 



restricted distribution in a specific ecosystem, seven informants seem to be more than sufficient 547 

as they reached in our study an average competence rate of 0.7. For other, more widely 548 

distributed species the number of experts may need to be higher to get confident results. 549 

 550 

According to our consensus-weighed expert scores average, model quality was towards Fair, 551 

whereas the best model choices per species, yielded an average between Fair and Good. This 552 

indicates that these models are considered useful by our experts although their applicability 553 

remains limited in their opinion. In part this may be explained because Maxent generated 554 

considerable commission errors, predicting areas of occurrence where the species is absent. This 555 

affects EEM application for reserve design because areas may be included where the species is 556 

actually absent, which results in non-efficient investment in conservation (Araújo and Peterson 557 

2012) For each species on average, more than half of our experts indicated that the model they 558 

considered best-performing, had a commission error and included areas where the species is 559 

absent. One third of the experts also indicated that areas of actual species presence were omitted 560 

by the model of their preference. The low omission percentage compared to the rate of 561 

commission error suggests that these models are more appropriate for new population discovery 562 

and germplasm collecting than for reserve design. 563 

Scale also affects applicability of the modelled distributions (Guisan and Thuiller 2005). 564 

Maxent and other EEM software can predict the full distributions of a species and therefore is 565 

useful to assess species´ conservation status across their whole distribution ranges. However it 566 

doesn´t give that much precision about which interventions should be carried out at a local scale. 567 

Many experts tend to work at this scale and are only familiar with a part of the species 568 

distribution range which they know in detail. On such a local scale, modelled distributions tend 569 

to be less accurate than any expert’s knowledge of real field situation. Two experts rated all nine 570 

potential distribution maps as invalid. This suggests that the modelled distributions were 571 

inaccurate, and thus not useful, at the local scale with which they were familiar. It is thus 572 

recommended to indicate to which scale distribution maps are accurate (Hurlbert and Jetz 2007; 573 

Lobo et al. 2008). On the other hand, EEM should also meet the needs for potential users. 574 

Therefore, modellers provide users more and more explanations how to apply Maxent and other 575 

EEM algorithms for ecological studies and biodiversity conservation (Elith et al. 2011; Araújo 576 

and Peterson 2012; Guisan et al. 2013). 577 

According to our experts, 43 % of the commission errors in their preferred models, were 578 

predictions outside the species distribution range. Inclusion of spatial constraints in EEM may 579 

help reduce these over-predictions (Blach-Overgaard et al. 2010). According to the experts, 21 % 580 

of the identified commission errors in their preferred models comes from the fact that species 581 

had become locally extinct due to selective extraction and forest degradation. It is a challenge to 582 

take these factors into account in EEM and requires a combined analysis with a threat 583 

assessment.   584 

We only asked experts if they observed commission and/or omission errors or not. In 585 

further studies, more details can be asked about the nature and extent of these errors. However, a 586 

balance should be sought between depth of questioning and the ease for experts to respond.    587 

 588 



No variable combination performed consistently better for all five species compared to other 589 

variable combinations according to consensus-weighed expert scores. This means that at this 590 

moment, we cannot recommend a particularly outstanding variable combination to model the 591 

distribution of other economically important tree species in the Americas. It can be anticipated 592 

that the quality of some environmental layers would require improvement whereas a more 593 

optimal variable combination with additional environmental layers could further improve EEM 594 

results. Perhaps experts from the different test species will be able to reach higher consensus and 595 

also agree an overarching best model on the basis of an improved set of environmental layers. 596 

An important limitation in EEM is the lack of high resolution soil maps. Soil properties 597 

are known to be important factors for shaping the distribution of plant species (Coudun et al. 598 

2006). But currently only low-resolution soil maps are available at the regional level in Latin 599 

America and the Caribbean. The SOTERLAC soil map we used is still coarse compared to the 600 

interpolated bioclimatic layers that we used. Initiatives are underway to develop higher-601 

resolution soil maps (Sanchez et al. 2009). Among other environmental variables that could 602 

improve model outcomes are solar radiation (Austin 2007) and normalized difference vegetation 603 

index (NDVI) (Prates-Clark et al. 2008).  604 

EEM has been developed in ecology to understand the relationships between wild species 605 

and their environment, and normally is not applied to predict the distributions of semi-606 

domesticated and/or cultivated species, as was done with peach palm and cherimoya in this 607 

study. Nevertheless, the technique has also been used to model the distribution of tropical fruit 608 

species and locally important crops (e.g. Miller and Knouft 2006; Scheldeman et al. 2007; 609 

Solano and Feria 2007). Many of these species are grown in traditional low-input production 610 

systems and/or maintained in semi-natural habitats (e.g. Clement et al. 2010; Scheldeman et al. 611 

2003). This suggests that they are adapted to specific environmental conditions and are not 612 

intensively managed. Even so, the ecological range in which cultivated plant species are grown 613 

can be expected to be wider compared to the environmental ranges in which wild species 614 

populations occur. These plants were domesticated to adapt to  different types of growing 615 

conditions and management practices, where they can grow well with less competition of other 616 

plants (Miller and Knouft 2006; van Zonneveld et al. 2009). As distribution of semi-617 

domesticated and/or cultivated plants is determined by both cultural and environmental factors, it 618 

would be interesting to study whether distribution modelling of these species can improve when 619 

cultural variables are included. It remains a challenge to find good quality data to develop 620 

geospatial layers of cultural variables like localities of archaeological plant remains, historical 621 

human routes and linguistic diversity (e.g. Pearsall 1992; Levis et al. 2012; Gorenflo et al. 2012).  622 

 623 

It is clear that the results of EEM can also be improved by using better presence point quality and 624 

quantity (Anderson et al. 2003; Feely and Silman 2011). Despite the fact that data points are 625 

increasingly shared by genebanks and herbaria through online portals like GBIF, for many plant 626 

species only few presence points are available. Sampling gaps and sorting bias are especially a 627 

problem when EEM is used to better understand species-environmental relationships (Elith et al. 628 

2011). Therefore there is an urge for more data collection in the field (Feely and Silman 2011). 629 

Yet field collection is expensive.  630 



At the same time, incomplete sampling is the main reason to use EEM in the case of 631 

predicting other areas where a species occurs, on the basis of initial knowledge on its 632 

distribution. This is the principal use of EEM for in situ conservation planning and targeted 633 

collecting for herbaria and germplasm samples (Guarino et al. 2002). In this study, we view 634 

EEM from this perspective. 635 

Another, less-costly approach to improve the knowledge about species distributions is 636 

combining existing information obtained from experts with the results of EEM. This can be done 637 

e.g. by combining modelled species distributions with distribution range maps drawn by experts 638 

(Graham and Hijmans 2006) or correcting them based on existing descriptive literature 639 

(Rámirez-Villegas et al. 2010). This could be done in much more detail, when species specialists 640 

are directly involved in identifying the extent of species distributions and in the revision of 641 

presence point data. Especially relevant is local knowledge on species occurrence from under-642 

sampled areas which are difficult to access for field inventories and germplasm collecting 643 

because of logistic and administrative constraints. Equally important, species specialists can also 644 

provide absence points (Tognelli et al. 2009). Both types of information enrich the understanding 645 

of species distributions and help to improve EEM results as well.  646 

Active involvement of existing national and international networks of foresters, 647 

taxonomists, ecologists, and/or nature conservationists could increase the number of participants 648 

in validation exercises. Amongst others, such networks are often established to facilitate sharing 649 

information. Indeed, several studies indicate that local experts, including amateurs, are willing to 650 

share information on species occurrence. The clearest examples are with bird watching and 651 

reporting (Silvertown 2009), but there also cases where weed or other plant species are 652 

monitored (Silvertown 2009; Bradley and Marvin 2011). Such knowledge could be relevant to 653 

enrich inventory programs that aim to minimize sampling biases (Feely and Silman 2011). 654 

Expert feedback could also be used to iteratively improve EEM to better predict species 655 

geographic distribution ranges and better understand species-environmental relationships.  656 

Finally, online GIS and survey applications and the involvement of networks can 657 

facilitate the development of methods to carry out this type of consultation for large numbers of 658 

species, to interact in a time-effective way with many experts and present the generated species 659 

distribution maps for evaluation in an attractive and user-friendly way. 660 

 661 

Conclusions 662 

 663 

Experts were fairly positive about the distribution model outcomes. This is encouraging although 664 

the applicability of EEM for conservation planning remains limited according to expert opinion. 665 

To get better results, EEM will require several improvements like the inclusion of better 666 

environmental layers. 667 

We obtained several interesting results about expert agreement, model appreciation and 668 

correlation of expert scores with conventional parameters. This confirms the potential of expert 669 

knowledge and the use of consensus theory for model validation. At the same time, we observed 670 

for several species low expert agreement and substantial discrepancies between expert scores and 671 

conventional parameters. We suggest that expert judgements should be considered seriously in 672 

model selection and evaluation when species specialists reach high consensus. In addition, 673 



consensus theory allows to increase the weight of the most knowledgeable experts in final model 674 

validation and to filter out sceptical “mavericks”. In the case of low expert agreement, however, 675 

conventional parameters may remain the leading reference to measure model performance. Low 676 

expert agreement may be a result of overall poor model quality or geographically differences in 677 

model performance and expert knowledge domains. Further research should be carried out to 678 

better understand the possible occurrence of these zones and how to form geographically 679 

separate expert groups.   680 
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Table 1. The nine different variable combinations that experts validated to develop species 941 

distribution models with Maxent. 942 

 943 
 

Variable 

combination 

19 bioclimatic 

variables* 

4 bioclimatic 

variables** Soil units*** 

Ecological 

zones**** 

1 X  
  

2 
 

X 
  

3 X 
 

x 
 

4 X 
  

x 

5 
  

x x 

6 
 

X x 
 

7 
 

X 
 

x 

8 X 
 

x x 

9 
 

X x x 

*see www.worldclim.org for more details about the 19 bioclimatic variables 

** annual mean temperature, annual precipitation, temperature seasonality, 

precipitation seasonality 

*** Layer derived from SOTERLAC database (Batjes 2005) following FAO’s soil 

classification (FAO 1988) 

**** FAO ‘s terrestrial ecological zone classification (FRA 2001) 

  944 



Table 2. Agreement on the evaluation of Maxent distribution 

modelling with nine different variable combinations. Rates of 

concordance are indicated by the variance explained in the first 

axis of a maximum likelihood factor analysis and the average 

competence value (D) according to consensus theory. 

Species  
Number 

of experts 

Variance 

explained in 

first factor 

Average competence 

value (D) 

A. cherimola 
9 0.29 0.31 

B. gasipaes 5 0.39 0.45 

B. excels 
9 

0.39 0.36 

C. odorata 13 0.29 0.25 

N. nervosa 7 0.59 0.70 

  945 



Table 3. Pearson correlation coefficients between average expert scores 

of specific variable combinations and corresponding model 

performance parameters. Correlations are provided for both consensus-

weighed and un-weighed scores.  

 
Consensus-weighed expert scores 

 
AUC max Kappa 

Commission 

error 

Omission 

error 

All experts (n = 43) 
0.30* 0.37* -0.33* -0.07 

     

A. cherimola (n = 9) 0.90** 0.83** -0.90** -0.40 

B. gasipaes (n = 5) 0.19 0.11 -0.11 0.09 

B. excelsa (n = 9 ) 0.87** 0.73* -0.52 -0.43 

C. odorata (n = 13) 0.23 -0.03 -0.22 0 

N. nervosa (n = 7) 0.20 0.58 -0.21 0.06 

 
Un-weighed expert scores 

 

 
AUC max 

Kappa 

Commission 

Error 

Omission 

error 

All experts (n = 43) 0.29* 0.39** -0.31* -0.05 

     

A. cherimola (n = 9) 0.85** 0.86** -0.83** -0.38 

B. gasipaes (n = 5) 0.54 0.42 -0.37 -0.18 

B. excelsa (n = 9 ) 0.76* 0.65 -0.25 -0.23 

C. odorata (n = 13) 0.13 0.06 -0.14 -0.08 

N. nervosa (n = 7) 0.27 0.59 -0.32 0.11 

*p < 0.05, **p < 0.01 

 946 
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Table 4. Expert feedback per species (%) with respect to inclusion of areas where the species is absent 948 
(commission) in the model which they selected as best-fitting. 949 
Weighed expert scores 

 
Un-weighed expert scores 

Species No Yes No answer 

 

No Yes No answer 

A. cherimola 3.98 40.91 55.11 

 

11.11 33.33 55.56 

B. excelsa 0.00 67.62 32.38 

 

0 66.67 33.33 

B. gasipaes 0.00 31.24 68.76 

 

0 60 40 

C. odorata 15.62 70.33 14.05 

 

23.08 69.23 7.69 

N. nervosa 19.18 61.09 19.73 

 

14.29 71.43 14.29 

Mean 7.76 54.24 38.00 

 

9.69 60.13 30.17 

        

Expert feedback per species (%) about reasons for species absence in predicted areas of occurrence in 

the model which they selected as best-fitting. 

Consensus-weighed expert scores 

 
Un-weighed expert scores 

Species 

Human 

disturbance 

Outside 

distribution 

range 

No 

answer 

 

Human 

disturbance 

Outside 

distribution 

range No answer 

A. cherimola 0.00 47.59 52.41 

 

0 66.67 33.33 

B. excelsa 14.92 61.28 23.79 

 

33.33 66.67 16.67 

B. gasipaes 0.00 0.00 100.00 

 

0 66.67 33.33 

C. odorata 68.57 31.43 0.00 

 

55.56 44.44 0 

N. nervosa 24.04 75.96 0.00 

 

20 80 0 

Mean 21.51 43.25 35.24 

 

20.11 63.22 16.67 

        

Expert feedback per species (%) with respect to exclusion of areas where the species is present 

(omission) in the model which they selected as best-fitting. 

Consensus-weighed expert scores 

 
Un-weighed expert scores 

Species No Yes No answer 

 

No Yes No answer 

A. cherimola 40.91 3.98 55.11 

 

22.22 22.22 55.56 

B. excelsa 36.28 53.40 10.33 

 

44.44 44.44 11.11 

B. gasipaes 0.00 27.42 72.58 

 

0.00 60.00 40.00 

C. odorata 56.68 21.22 22.10 

 

53.85 38.46 7.69 

N. nervosa 30.75 49.52 19.73 

 

42.86 42.86 14.29 

Mean 32.92 31.11 35.97 

 

32.67 41.60 25.73 



 950 

Figure 1. Boxplots of the consensus-weighed and un-weighed expert scores of the produced 951 

distribution models for all 45 species-variable combinations.  952 

 953 

  954 



 955 
Figure 2. These boxplots show per variable combination the consensus-weighed and un-weighed 956 

expert scores of the five test tree species Annona cherimola, Bactris gasipaes, Bertholletia 957 

excelsa, Cedrela odorata and Nothofagus nervosa.  958 



 959 
Figure 3. These boxplots show per species the consensus-weighed and un-weighed expert scores 960 

for each of the nine variable combinations. These combinations consist of a subset of the 19 961 

bioclimatic variables of Worldclim, a soil layer from SOTERLAC and ecological zone layer 962 

from FAO. 963 

  964 



Appendix 1. URL links to the Spanish questionnaire to validate plant species distribution models  965 

 966 

Annona cherimola: http://gisweb.ciat.cgiar.org/mapforgen/ann_che.html 967 

Bactris gasipaes: http://gisweb.ciat.cgiar.org/mapforgen/bac_gas.html 968 

Bertholletia excelsa: http://gisweb.ciat.cgiar.org/mapforgen/ber_exc.html 969 

Cedrela odorata: http://gisweb.ciat.cgiar.org/mapforgen/ced_odo.html 970 

Nothofagus nervosa: http://gisweb.ciat.cgiar.org/mapforgen/not_ner.html 971 

  972 
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Appendix 2. Observed and modelled distributions of the five test species. The first map shows 973 

the presence points used in the environmental envelope modelling in Maxent. The other five 974 

maps show for each species the concordance in species occurrence prediction of the generated 975 

distribution models using the nine different variable combinations. The 10 percentile training 976 

presence threshold was used to restrict potential distribution areas.  Maps were edited in Arc 977 

map. 978 

 979 

 980 
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Appendix 3. Consensus-weighed and un-weighed expert scores and the values of four 982 

conventional measurements of model performance through cross-validation (AUC maximum 983 

Kappa, commission error and omission error) for Maxent Environmental Envelope Modelling 984 

(EEM) outcomes for each of the five test species and nine variable combinations. 985 

 986 

Consensus-weighed expert scores 

Variable 

combination 

1 2 3 4 5 6 7 8 9 Median 

score 

Range 

max- min 

score 

A. cherimola 2.91 2.85 3.46 3.90 1.29 3.54 3.52 3.48 2.97 3.46 2.61 

B. gasipaes 2.92 2.59 3.13 2.63 1.39 2.45 2.29 3.18 2.70 2.63 1.79 

B. excelsa 3.54 4.30 3.02 2.28 2.19 3.93 3.05 3.00 2.51 3.02 1.69 

C. odorata 3.11 3.34 2.95 2.48 1.78 2.17 1.95 2.61 1.91 2.48 1.55 

N. nervosa 2.54 2.79 2.77 2.83 1.30 3.80 3.82 3.12 3.35 2.83 2.52 

Median score 2.92 2.85 3.02 2.63 1.39 3.54 3.05 3.12 2.70   

Range max-  

min score 

1.00 1.71 0.69 1.62 0.90 1.76 1.87 0.87 1.44   

            

Un-weighed expert scores 

Variable 

combination 

1 2 3 4 5 6 7 8 9 Median 

score 

Range 

max- min 

score 

A. cherimola 2.67 3.56 3.22 3.00 1.78 3.00 2.56 3.00 2.67 3.00 1.78 

B. gasipaes 2.44 2.22 2.89 2.78 2.11 2.33 2.44 3.11 2.56 2.44 1.00 

B. excelsa 3.00 3.20 2.80 2.80 2.20 3.20 2.60 3.00 2.60 2.80 1.00 

C. odorata 2.62 2.77 2.54 2.62 2.46 2.46 2.38 2.85 2.31 2.54 0.54 

N. nervosa 2.71 2.71 2.71 2.71 1.29 3.57 3.57 3.14 3.14 2.71 2.29 

Median score 2.67 2.77 2.80 2.78 2.11 3.00 2.56 3.00 2.60   

Range max-  

min score 

0.56 1.34 0.68 0.38 1.17 1.24 1.19 0.29 0.83   

            

Area Under Curve (AUC) of cross-validated models 

Variable 

combination 

1 2 3 4 5 6 7 8 9 Median 

score 

Range 

max- min 

score 

A. cherimola 0.963 0.983 0.967 0.978 0.891 0.976 0.975 0.976 0.965 0.975 0.085 

B. gasipaes 0.844 0.779 0.857 0.875 0.601 0.738 0.758 0.87 0.786 0.758 0.269 

B. excelsa 0.844 0.801 0.832 0.889 0.683 0.822 0.784 0.881 0.84 0.822 0.198 

C. odorata 0.887 0.796 0.883 0.901 0.792 0.816 0.851 0.877 0.858 0.851 0.085 

N. nervosa 0.84 0.889 0.849 0.84 0.721 0.786 0.791 0.784 0.786 0.786 0.07 

Median score 0.844 0.801 0.857 0.889 0.721 0.816 0.791 0.877 0.84   

Range max-  

min score 

0.123 0.204 0.135 0.138 0.29 0.238 0.217 0.192 0.179   

Maximum values are in bold and underlined  

            

            

            

            

            

            



            

Appendix 3. Continuation   987 

 988 

Maximum Kappa of cross-validated models 

Variable 

combination 

1 2 3 4 5 6 7 8 9 Median 

score 

Range 

max- min 

score 

A. cherimola 0.836 0.917 0.828 0.867 0.623 0.867 0.861 0.871 0.842 0.861 0.248 

B. gasipaes 0.609 0.487 0.574 0.6 0.27 0.436 0.539 0.617 0.583 0.539 0.347 

B. excelsa 0.653 0.547 0.627 0.693 0.427 0.599 0.667 0.653 0.68 0.653 0.253 

C. odorata 0.593 0.463 0.607 0.684 0.489 0.509 0.596 0.642 0.605 0.596 0.153 

N. nervosa 0.600 0.694 0.635 0.663 0.400 0.682 0.529 0.565 0.682 0.565 0.282 

Median score 0.609 0.547 0.627 0.684 0.427 0.599 0.596 0.642 0.68   

Range max-  

min score 

0.243 0.454 0.254 0.267 0.353 0.431 0.332 0.306 0.259   

 

Commission error (%) of cross-validated models 

Variable 

combination 

1 2 3 4 5 6 7 8 9 Median 

score 

Range 

max- min 

score 

A. cherimola 7.63 3.97 7.42 4.25 25.37 5.12 5.93 3.80 6.25 5.93 21.57 

B. gasipaes 39.39 34.78 34.78 33.33 40.25 41.48 45.45 35.90 42.68 41.48 9.56 

B. excelsa 39.13 39.13 45.31 39.66 47.37 42.27 51.13 39.66 44.00 44.00 11.47 

C. odorata 23.14 36.56 28.34 21.63 38.85 35.75 28.77 26.39 27.95 28.77 12.46 

N. nervosa 16.67 25.00 19.75 20.35 39.02 29.11 31.19 24.42 26.58 29.11 14.61 

Median score 23.14 34.78 28.34 21.63 39.02 35.75 31.19 26.39 27.95   

Range max-  

min score 

31.76 35.16 37.89 35.41 22.00 37.15 45.20 35.86 37.75   

 

Omission error (%) of cross-validated models 

Variable 

combination 

1 2 3 4 5 6 7 8 9 Median 

score 

Range 

max- min 

score 

A. cherimola 18.2 14.48 12.74 15.48 16.02 13.13 13.34 15.18 14.76 14.76 2.89 

B. gasipaes 23.08 27.17 14.49 18.75 28.17 33.45 38.46 20.27 34.25 33.45 18.19 

B. excelsa 14.29 14.29 22.73 14.71 29.41 18.25 58.82 14.71 20 20.00 44.11 

C. odorata 20.50 21.35 9.65 13.89 19.08 20.48 16.20 12.98 16.87 16.87 7.49 

N. nervosa 25.51 27.78 22.47 13.87 21.28 30.34 16.39 23.81 20.99 21.28 13.94 

Median score 20.50 21.35 14.49 14.71 21.28 20.48 16.39 15.18 20.00   

Range max-  

min score 11.22 13.49 13.08 4.88 13.39 20.32 45.48 10.83 19.49   

Maximum Kappa values with a bold and underlined font are the maximum values for a specific species and 

variable combination. In the case of commission and omission errors,  minimum values are in bold and underlined 

font. 
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