Molecular identification of cassava mealybugs

Maritza Cuervo, Paul Calatayud, Diego Fernando Muñera, Anthony Bellofi and Lee A. Calvert
International Center for Tropical Agriculture, CIAT, Apartado Aéreo 6713, Cali, Colombia
Email: lcalvert@cgar.org

Introduction

The cassava mealybug, Phenococcus manihoti Matile-Ferrero and Phenococcus herreni Cox & Williams (Homoptera: Pseudococcidae), are oligophagous insects living mainly on cassava Manihot esculenta Crantz (Euphorbiaceae). During the early 1970s, P. manihoti was accidentally introduced into Africa from South America, spreading rapidly across Afrotropical zones such as Benin, Senegal, Congo, Togo, Gabon and Cameroon and in the absence of its natural enemies it caused severe damages. In South America, P. manihoti is present only in restricted areas of Paraguay, Brazil and Bolivia. In contrast, P. herreni is more widely distributed in South America (Bolivia, Brazil, Colombia, French Guiana, Grenada, Guyana, Tobago and Venezuela), but it is not present in Africa (Williams & Granara de Willink, 1992). These two mealybug species show a high degree of similarity in appearance, particularly in females, and it is difficult to differentiate them at the species level. The consistent characters that distinguish them is that P. manihoti is pink and reproduces by thelytokous parthenogenesis and that P. herreni is yellow and bisexual (Cox & Williams, 1981; Williams & Granara de Willink, 1992). Therefore, only observations of live material will resolve the differentiation of these two species. Because no firm evidence by molecular-based approach was done to differentiate them, the question arises as to whether or not P. manihoti should be considered to be the same species as P. herreni.

Materials and Methods

Collection of the mealybug samples. The samples from Africa, Brazil and Paraguay were collected in the respective countries and preserved in 70% EtOH. A colony in CIAT was the source of P. herreni from Colombia and the P. manihoti were collected from the field at CIAT headquarters.

RAPD PCR analysis. Total DNA was isolated from individual mealybugs using a method developed for plants with volumes of reagents appropriate for the small weight of the mealybugs. The DNA was amplified using the polymerase chain reaction (PCR). The primers used were Operon H9 (5’ TGTACGTGAC 3’), and H16 (5’ TCTCAGCTG 3’). The reactions were carried out using Taq polymerase and programmable thermal controllers (PCT-100, MJ Research, Waltham, MA).

PCR, cloning and sequence analysis of a region of the 16S mitochondrial DNA. The mitochondrial DNA was amplified using the PCR. The primer 4119 (5’ GCCGTGTTAACAACAAACAT 3’) was the forward primer and primer 4118 (5’ CCGGCTGTAATCAGATCGT 3’) was the reverse primer.

Results and Discussion

PCR RAPD analysis of mealybugs. Populations of P. manihoti, P. herreni and P. manihoti were tested using the Operon primers H9 and H16 in RAPD analysis. For P. herreni, a populations from Colombia and Brazil were tested, and the amplified products from both sets of primers had very similar banding patterns (Figures 1 and 2). For P. manihoti, a population from Paraguay was compared to a population from the Republic of Congo. Both set of primers amplified nearly identical set of products from both populations. Only one population of P. manihoti was tested and the patterns of amplified products for both of the primers were very distinct from the other mealybugs tested. The first two primers that were tested both proved efficient for distinguishing between the three species. This implies that these species are sufficiently evolutionarily different at the molecular level to produce multiple unique amplified products. Both primers proved useful in confirming that the populations in Latin America and Africa of P. manihoti were of the same species. The two Latin American populations of P. herreni also appeared nearly identical using RAPD analysis, and it was concluded that these are the same species. Since the morphologies of these two species are very similar, it is not easy to distinguish between them using morphological characteristics. The RAPDs are a diagnostic method that can be used for the rapid identification of these species. Also the ease of distinguishing between these P. herreni and P. manihoti was additional evidence that these are indeed unique species.

Mitochondrial 16S gene cDNA cloning. From the amplified products, cDNA clones were produced for the P. herreni Colombian population, the P. manihoti Congo and Paraguay populations and the P. manihoti Colombian population. We have not yet completed in all of the cDNA cloning especially for the P. herreni Brazilian population. Although several of the clones have been sequenced and a preliminary dendrogram analysis has been done (Figure 3), the analysis of this data is pending the completion of representatives of all five populations.

Conclusions

It was easy to see differences between P. herreni and P. manihoti with two RAPDs that were tested. They are useful tools to rapidly distinguish the cassava mealybug P. herreni and P. manihoti species.

The Operon primers H9 and H16 in RAPD analysis proved useful in confirming that the populations in Latin America and Africa of P. manihoti are closely related and that the two Latin America populations of P. herreni also appeared closely related.

Using a sequenced region of the 16S ribosomal DNA a phylogenetic analysis indicated that P. herreni is a different species from P. manihoti.

References


