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ABSTRACT 
 

The aim of this paper is to describe a methodology for recommending crop species for 
smallholder farmers in the tropics, targeted to biophysical and socio-economic niches, 
incorporating both available data and expert knowledge. Although it is important that 
species are matched to biophysical environments, it is equally important that they are 
matched to the unique socio-economic situation and management practices of a farmer. 
Agriculture in the tropics and subtropics is complex and heterogeneous, both 
biophysically and socio-economically. Bayesian modelling has been identified as the 
most appropriate method for incorporating sparse and uncertain data with expert 
knowledge to predict the probability of a given species being suitable for a given 
environment or niche. As a case study, a spatially enabled decision support tool designed 
to assist in the decision-making process of targeting forages in Central America is under 
development. It will use existing data and expert knowledge to mimic the decision-
making process involved in selecting forage varieties for specific socio-economic and 
biophysical environments. Validation and verification of the model are discussed, as 
well as the technological specifics of the tool development and deployment. 
 

Keywords and phrases: GIS, decision support tool, tropical agriculture, Bayesian modelling, socio-economic factors, 
expert knowledge, forages, Central America 
 
1.0 INTRODUCTION 

Research in tropical agriculture faces the challenge of developing crops, technologies and methodologies applicable 
not only to the unique biophysical environments of the tropics but also to socio-economic niches. Many farmers in 
tropical countries are smallholder farmers struggling to maintain and improve their livelihoods whilst remaining or 
becoming self-sufficient. At the same time environmental pressures dictate that technologies are needed which allow 
farmers to meet these needs in environmentally sustainable ways, through intensification and other appropriate 
technologies. 

64% of rural dwellers in Latin America live below the poverty line and are constrained in development by the risk of 
living in marginal and isolated hillsides. Approximately 77 million people live in the rural areas of Latin America, so 
for this part of the tropical world alone there are about 47 million rural poor (IFAD, 2001). 
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Biophysically there is huge variation within the tropics and subtropics, with Holdridge for example classifying 15 
lifezones for the tropics and subtropics alone (Leemans, 1990). However tropical countries are mostly developing 
countries without large research budgets or government subsidies. Most farmers cannot afford inputs such as 
irrigation or fencing, let alone yield monitors or expensive fertilizers. Therefore it is important that crops are well 
suited to biophysical niches without the need for large inputs such as fertilizer or irrigation. 

Biophysical niches however form only part of the picture. Equally important are socio-economic characteristics of 
the farmer and the community. There is no point for example in recommending coffee as a crop to a farmer, even if 
the soil and climate are ideally suited, if there is no market available for selling the product, or if the required labour 
force for planting and harvesting is not available. Other important factors include the amount of land available for 
planting, purpose of the crop (e.g. household consumption, cut and carry crop for cattle, local market crop or export 
crop), available time investment (e.g. a crop that matures within three months to plant in between maize crops, or a 
tree crop requiring a time investment of 20 years or more), financial resources, and cultural factors such as whether a 
farmer is traditional or progressive (level of risk-averseness). 

A number of organisations are dedicated to research and development in tropical agriculture, including international 
research centres, non-government organisations, ministries of agriculture and local agricultural extension agencies. A 
large amount of data has been collected throughout the tropical world on plant habitats, adaptation, characteristics 
and management. However in addition to data in formal databases and literature, a wealth of unrecorded knowledge 
exists inside experts’ heads. This knowledge is often tapped into when an expert is contacted to make 
recommendations for a certain crop or a certain area but obviously often this expert knowledge is not readily 
available to most farmers or their advisors. 

Lack of information and associated risks form a major constraint to development, so tools that capture data and 
expert knowledge are extremely valuable. This paper outlines a methodology for accomplishing this goal, and 
describes a spatially enabled decision support tool based on this methodology, applied to forage selection in Central 
America. 

The following section outlines Bayesian modelling, as a method for combining factors to predict the probability of 
an outcome. The case study of selecting forage species in Central America is then introduced and used to illustrate 
the conceptual model. This is followed by a section describing the implementation of the decision support tool and 
the process of validation and verification. Finally the specifics of the technology used to develop the tool are 
discussed as well as the deployment process.  

 

2.0 BAYESIAN MODELLING 

Many spatial methods and algorithms have been developed to solve the problem of predicting spatial habitat 
distribution. Commonly used techniques include simple statistical methods such as multiple linear regression, rule-
based classifications such as Classification and Regression Trees (CART), spatially explicit models such as habitat 
envelopes and artificial intelligence techniques such as Bayesian modelling, neural networks and multi-agent 
systems. 

Preliminary research has identified Bayesian modelling as the most appropriate way of incorporating uncertain and 
sparse data as well as expert knowledge. Bayesian methods provide a “formalism for reasoning under conditions of 
uncertainty, with degrees of belief coded as numerical parameters, which are then combined according to rules of 
probability theory” (Pearl, 1990).  A simple Bayesian model codes prior probabilities for each factor, then combines 
these to form joint probabilities. The prior probabilities may be derived from data, set by experts, or defined from a 
combination of data and expert opinion. The factors may then be combined with equal weighting, or weighting can 
again be calculated from available data, set by experts, or defined by a combination of the two. This process of 
combining prior probabilities produces joint probabilities for each possible outcome. 

Bayesian modelling does not seek to predict exact outcomes, but rather the probabilities of various outcomes, given 
the effects of the input factors on each outcome. Therefore if two factors strongly support a given outcome, then the 
combined effect of these two factors will produce a high probability for that outcome. Conversely if one factor 
strongly supports an outcome, but another factor does not, then the probability of that outcome occurring will be 
lessened. Uncertain data can be accounted for by reducing the probability that the data will support a given outcome. 
Expert opinion can be used to update prior probabilities defined by data, or to define prior probabilities where data is 



lacking. One of the advantages of Bayesian modelling is that it is easier to incorporate human reasoning and is thus 
very useful when the problem emerges in parallel with modelling. 

Figure 2.1. shows the concept of combining multiple evidence layers to produce a multi-level hypothesis based on 
joint probabilities. 
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Figure 2.1 Bayesian schema.  

 

3.0 CASE STUDY – FORAGE SELECTION IN CENTRAL AMERICA 

3.1 Tropical Forages in Central America 

Forages in Central America are used mainly as feed for cattle, either through grazing or for cut and carry, and play an 
important role in agriculture dominated production systems. Demand for livestock products in the developing world 
is increasing (Delgado et al, 1999), and farmers are responding by increasing milk and meat production. Improved 
forages can be introduced into tropical farming systems to improve livelihoods for smallholder farmers, reducing 
hunger and poverty. The International Center for Tropical Agriculture’s (CIAT) experience in Latin America and 
Asia, amongst other institutes, has demonstrated the effectiveness of new forage-based technologies for intensifying 
meat and milk production on small farms, as well as for other uses. Forages therefore can have a positive impact on 
development in the tropics. 
 
Smallholder cattle farmers in Central America typically have a very small amount of land with 10-50 ha being 
typical. In some regions over 70% of cattle farmers have less than 20 head of cattle (Cruz Flores, 2002, pers. comm.) 
Paddocks may be only 2-3 ha each. 
 
CIAT has a number of databases with data on forage adaptation, establishment and production trials (Barco et al, 
2002). The RIEPT database (International Network for Tropical Pasture Evaluation) contains data on 2539 trials of 
929 accessions in 28 locations in Central America (Figure 3.1). This database includes data about trial locations, 
such as elevation, temperature and rainfall, as well as data relating to the trials such as level of adaptation, plant 
height and cover. Although this data is undoubtedly useful, it contains biases as well as many inconsistencies, errors 
and gaps. This is where expert knowledge can be used to complement data. 
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Figure 3.1 RIEPT database trials in Central America. Source: Barco et al (2002) 

 
This project is linked to SoFT (Selection of Forages for the Tropics) in a complementary way. SoFT is an 
international project started in 2002, in which CIAT is involved, that aims to collect and make accessible expert 
knowledge about tropical forages. SoFT expert knowledge will include adaptation of forages in different biophysical 
niches in the tropics, and will be published as a database. The RIEPT database, expert knowledge gathered by SoFT, 
and expert knowledge and data available through CIAT make up the inputs to the case study for forages.  
 
The premise behind the development of a GIS-based decision support tool for targeting tropical forages is that many 
appropriate forage species are not being recommended to farmers, through lack of knowledge or experience of the 
farmers’ advisors. A tool that suggests appropriate forage species based on local biophysical factors, a farmer’s 
management practices and available markets and labour, can fill these gaps in knowledge, provide expert 
information, and ultimately benefit the farmer by suggesting species to trial that best fit the unique situation of the 
farmer. 
 
3.2 Conceptual Model 

Data and knowledge on tropical species exist as databases, in literature and as expert knowledge, and a computer-
based decision support tool is an effective way of bringing these together and making them available to farmers’ 
advisors. Because the success of each crop varies spatially, depending on factors such as climate, soil and 
management practices, a spatially enabled decision support tool can take spatial factors into account and can display 
intermediate and final results for improved interpretation. 

The model begins by identifying the biophysical characteristics of the location of interest. These biophysical 
characteristics include climate and soil descriptors, and are either derived from GIS maps, or requested from the user. 
In addition the user is required to input socio-economic and management information, including the required purpose 



of the species, the amount of land available for planting and whether labour is available. Access to markets is 
calculated from a GIS surface produced by CIAT, identifying travel time to closest populated areas. 

The management factors reduce the number of species under consideration, especially the purpose. However space 
and time available will also introduce limitations, e.g. there is no point planting grasses in a very small area.  

Prior probabilities for biophysical and socio-economic factors related to each species will have been previously 
calculated from databases and updated by experts, or, where data is not available, determined by experts. These prior 
probabilities are then used to calculate joint probabilities for each species for the specified location. These 
probabilities are then ranked and the top species are then suggested to the user. Maps created dynamically can be 
examined as well as reasons for these species being suggested or for alternative species not being suggested. A 
flowchart showing the conceptual model is presented in Figure 3.2. 

The user may choose to rerun the model to examine the effects of changes in management practices, addition of 
irrigation, or future climate change. In the case of a species expert using the tool they may wish to update certain 
prior probabilities. 
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Figure 3.2 Conceptual model showing process for combining biophysical, management and socio-economic data, 
expert knowledge and trial databases to produce a basket of options based on Bayesian probabilities 

The conceptual model has been developed with forages and the factors affecting them in mind. A combination of 
available data and expert opinion determined which factors should be included in each part of the model. For other 
species different factors may be relevant, indeed not all factors are relevant for all forage species. For example soil 
pH has no direct bearing on the success of the legume Arachis pintoi. The implementation of the model should 
remain flexible enough that new factors can be included as data becomes available or as experts determine their 
importance. The following section on implementation shows a specific example of determining the probability of 
success of three forage species in San Dionisio, Nicaragua. 

 



4.0 IMPLEMENTATION OF A GIS-BASED DECISION SUPPORT TOOL FOR 
TROPICAL AGRICULTURE 

4.1 Implementation 

The first step as outlined in the conceptual model in the previous section is to select a location. Say we are aiming to 
recommend forage options to a farmer located near San Dionisio in the Matagalpa department of Nicaragua (Figure 
4.1). This farmer has 7 ha available for planting and wishes to plant a long-term forage crop suitable for cut and 
carry. In this part of Nicaragua the average is less than one head of cattle per ha, so a paddock of 7ha could be 
expected to support around 5 cows. The aim is to reduce reliance on feed supplements at the same time as improving 
milk quality and quantity. He has access to labour for establishment and is open to suggestions for managing the 
crop. However he does not have irrigation installed or access to a tractor, and therefore needs a forage biophysically 
well adapted to his land.  

 

Figure 4.1 Location of San Dionisio in Nicaragua. 

Table 4.1 shows the biophysical, socio-economic and management characteristics of our hypothetical farmer in San 
Dionisio. The figures are derived from GIS data and from the farmer. 

Elevation 430masl Mean Annual Temperature 24C 

Mean Annual Rainfall 1217mm Minimum Monthly Temperature 17C 

Dry Season 5 months Maximum Monthly Temperature 32C 

Soil pH 5.5 Soil Texture heavy 

Soil Fertility medium Land Available 7 ha 

Time Available permanent Purpose Cut and carry

Access to Market 10-20 min Labour Available 

Risk-averseness low  

Table 4.1 Biophysical, socio-economic and management characteristics - farmer in San Dionisio 

Because the purpose of the crop is cut and carry as opposed to grazing or other uses, a number of forage species are 
immediately filtered out of consideration. We will consider here three species that are suitable for cut and carry: the 



legume Stylosanthes guianensis, the shrub Cratylia argentea and the legume Centrosema pubescens. In the full 
implementation of the tool all species suitable for cut and carry would be included in the analysis. 

Prior probabilities can be derived from data and expert knowledge for each of these species with relation to 
adaptation. Adaptation is classed as poor, regular, good or excellent and is recorded for trials in the RIEPT database. 
This is just one possible indicator of success, others are ease of establishment, time to full production, height and 
cover, resistance to pests and diseases, and suitability for desired purpose. Prior probabilities are shown for 
Stylosanthes guianensis for rainfall and soil pH in Figure 4.2. These can be interpreted as follows: If annual rainfall 
is 1200-1600mm, then adaptation is most likely to be excellent. If annual rainfall is below 900mm then adaptation is 
most likely to be poor or regular, and also in Central America a small proportion of the land has this rainfall class. 
Similarly for pH we can see that most of Central America has pH between 4 and 6, and adaptation in these classes 
will most probably be good. 

Stylosanthes guianensis - Adaptation by rainfall Stylosanthes guianensis - Adaptation by pH
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Figure 4.2 Prior probabilities for S. guianensis – adaptation by rainfall and by pH 

Similar figures can be created for the other factors for S. guianensis, and for all factors for C. argentea and C. 
pubescens. Prior probabilities are derived from the RIEPT database and updated using expert knowledge. These can 
be used to produce maps where GIS data is available, such as probability of good or excellent adaptation based on 
annual rainfall (Figure 4.3). 

Once prior probabilities have been defined for all factors for all species, they can be combined using Bayesian 
modelling with equal weighting or using data or expert knowledge to define weightings. In this example equal 
weightings are used to produce joint probabilities for each species for the farmer in San Dionisio. Figure 4.4 shows 
joint probabilities for Stylosanthes guianensis calculated from prior probabilities for the biophysical factors in Table 
4.1. Those factors that can be reliably mapped (all biophysical factors except soil properties) are mapped as joint 
probabilities for the area surrounding San Dionisio (Figure 4.5). With all biophysical factors, the land under 
consideration in San Dionisio has a 98% probability of producing good or excellent adaptation for S. guianensis. 
With the soil factors removed this figure remains the same but a larger proportion of the 98% is good rather than 
excellent. From the map in Figure 4.5 it can be seen that the probability of good or excellent adaptation reduces to 
the west of San Dionisio – this is mainly due to a reduction in annual rainfall.  
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Figure 4.5 Joint probabilities: probability of S. guianensis adaptation being excellent or good based on prior 
probabilities of biophysical factors – San Dionisio region 

The result is a ranking of species according to the probability of each having adaptation that is excellent or good, and 
of being appropriate to the farmer’s needs (Figure 4.6). 



 

Species Ranking Favourable factors Unfavourable factors 

S. guianensis 1 - 3 Elevation, Rainfall, pH, Soil pH, Soil fertility, 
Temperature 

Soil texture, Dry months 

C. argentea 3 - 1 Elevation, Temperature, Dry months, soil 
fertility 

Rainfall, Soil pH 

C. pubescens 2 -2 Elevation, Rainfall, Soil pH, Soil fertility Dry months, Minimum 
temperature 

Figure 4.6 Basket of options 

Favourable factors are those that contribute towards a 50% or higher probability of adaptation being excellent or 
good; unfavourable factors are conversely those that contribute towards a 50% or higher probability of adaptation 
being regular or poor. Those not listed do not contribute strongly either way. In the final decision support tool, users 
will be able to examine these factors and their contributions to the final ranking. 

The above outlines the process for combining various biophysical factors to produce joint probabilities. Introducing 
socio-economic factors becomes a little more problematic. Firstly socio-economic GIS data is usually aggregated and 
sometimes fairly coarse, making it impossible to deduce meaningful information about an individual or even group 
of individuals. Secondly socio-economic behaviour varies much more than biophysical behaviour (?), making any 
efforts of prediction much less reliable. Thirdly there is the problem of linking socio-economic knowledge to success 
of forages. 

Risk averseness, for example, could be incorporated into the model in the following way. When a species is 
recommended it is given a probability score based on what data and expert knowledge suggest the impact of 
biophysical factors on adaptation will be. The level of confidence that can be attributed to this probability could be 
derived from metadata or expert knowledge. For example, if there are many trials and expert knowledge all 
indicating that adaptation under certain conditions will be excellent, then the farmer can be confident that under 
similar conditions the species is likely to have excellent adaptation. However if data or knowledge is scarce or 
uncertain, then even though available data and knowledge suggests excellence, the level of confidence the farmer can 
have in this information is lower. A highly risk-averse farmer may opt for a species with worse adaptation, but higher 
confidence, whilst a farmer willing or able to take more risk may opt for a species with excellent predicted 
adaptation, but about which little is known, meaning that confidence in predicting the adaptation of the species is 
lower. 

Incorporating other socio-economic factors such as distance to market, economic status, farm size and labour force is 
still under investigation, and is dependent on addressing some of the issues mentioned above. 

   

4.2 Validation and Verification 

Because a large part of the inputs to the model are based on expert knowledge, it is difficult to validate the model 
using data-based techniques such as bootstrapping and jack-knifing. Expert opinion is necessary to judge the 
accuracy and effectiveness of the model. Applying the model to locations where forage trials are underway, but not 
included in the databases used to specify the model, allows for an assessment of the validity of the model. One such 
location is San Dionisio, with data currently being collected on trial sites for a number of species. Because CIAT is 
active in research in the area, there is also a large amount of expert knowledge on how forages can be expected to 
adapt locally, and this will be used to verify the model for this particular location. Similar verification will be carried 
out in other locations where CIAT has a lot of knowledge. 
 

5.0 TECHNOLOGY AND DEPLOYMENT 

The technology used to develop the tool is Borland Delphi and ESRI MapObjects LT (Borland 2001; ESRI 2000). 
Delphi allows a user-friendly graphical user interface to be developed, and MapObjects allows the inclusion of GIS 



functionality without the requirement of a proprietary GIS platform such as ArcGIS. MapObjects allows easy 
inclusion of mapping functionality such as display, zooming and feature identification. However because the model 
is grid-based, raster functionality is also required. This means that all data is stored in a regular grid rather than in 
polygons or points, and overlays and grid calculations can be easily carried out between layers because each grid has 
the same cell-size and extent. Although MapObjects 2.0 allows grid display it does not cater for map algebra, which 
is necessary for updating map displays dynamically based on probability calculations. Therefore MapObjects LT has 
been used with bitmaps for grid display, and databases for map algebra. 
 
The aim is to deploy the tool via CD and the internet. The intended users are farmers’ advisors, who for the most part 
will have access to a computer with a CD drive and/or with internet access, but not necessarily access to GIS 
packages, databases or the training to use them. The tool will initially be deployed via CD to key potential users in 
Central America, with their feedback used to improve subsequent versions of the tool. It is intended that ongoing 
training and support will be offered and that the tool will continue to be developed as more data and improved 
software becomes available.  
 

6.0 CONCLUSIONS 

Spatial modelling can be incorporated into an agricultural decision support tool to target species to biophysical and 
socio-economic niches. Biophysical GIS data combined with trial databases and expert knowledge can remove 
uncertainty around whether a given species is suitable in a given location, thereby making very efficient use of sparse 
data in a situation which is desperate for information. By also introducing socio-economic and management 
knowledge, the probability of a given species being a good recommendation at a given location under certain 
circumstances can be estimated. Socio-economic factors may be incorporated into the model or included in a 
subsequent evaluation phase, in discussion with farmers’ advisors. Validation is obviously needed, but this can 
proceed in parallel with model development. Deploying this information as a computer based decision support tool 
allows farmers’ advisors to consider the suitability of many species simultaneously. The GIS component also allows 
visualisation and interpretation of the difference in species suitability over space. 
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