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a b s t r a c t

The Andean blackberry (Rubus glaucus) is an important source of income in hillside regions of Colombia.
However, growers have little reliable information on the factors that affect the development and yield of
the crop, and therefore there is a dearth of information on how to effectively manage the crop. Site specific
information recorded by small-scale producers of the Andean blackberry on their production systems and
soils coupled with publicly available meteorological data was used to develop models of such production
systems. Multilayer perceptrons and Self-Organizing Maps were used as computational models in the
identification and visualization of the most important variables for modeling the production of Andean
blackberry. Artificial neural networks were trained with information from 20 sites in Colombia where the
Andean blackberry is cultivated. Multilayer perceptrons predicted with a reasonable degree of accuracy
the production response of the crop. The soil depth, the average temperature, external drainage, and the
accumulated precipitation of the first month before harvest were critical determinants of productivity.
A proxy variable of location was used to describe overall differences in management between farmers
groups. The use of this proxy indicated that, even under essentially similar environmental conditions,
large differences in production could be assigned to management effects. The information obtained can be
used to determine sites that are suitable for Andean blackberry production, and to transfer of management
practices from sites of high productivity to sites with similar environmental conditions which currently
have lower levels of productivity.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Andean blackberry (Rubus glaucus Benth.), also known as the
Andes Berry or Mora de Castilla (Bioversity International, 2005) is
a fruit native to an area ranging from the northern Andes to the
southern highlands of Mexico (National Research Council, 1989). It
is grown as a commercial crop in Colombia, Ecuador, Guatemala,
Honduras, México and Panamá (Franco and Giraldo, 2002). It is an
important source of income in hillside regions of Colombia (Sora
et al., 2006). Productivity varies widely between regions and also
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between farms. Furthermore, the crop is harvested continuously
during the year and the productivity varies throughout the year.
At the same time growers have little reliable information on the
factors that effect the development and yield of the crop, and conse-
quently there is a dearth of readily available information on where
to grow the crop and how to effectively manage it.

Research on the Andean blackberry is limited and with the cur-
rent levels of research intensity it is unlikely that technological
packages can be developed for use by growers based on traditional
plot based experimentation varying individual factors that affect
crop production. The heterogeneous growing conditions and the
continuous production throughout the year of many tropical crops
mean that a large number of experiments or treatments required
to draw firm conclusions concerning the optimum management
of the crop under diverse conditions. The situation of a tropical
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crop such as the Andean blackberry contrasts strongly with that of,
let us say, raspberries in a temperate climate. In the case of most
temperate crops, there is a relatively short and well defined har-
vest period and all management is geared to optimal production in
that period. In tropical perennial crops that are harvested through-
out the year, the number of possible combinations of management
practices that need to be tested are enormous. Thus, for example
Andean blackberry production during the dry season may require
totally different water and pest management practices to those
required for the same crop in the wet season. A direct consequence
of these multiple management options is continual experimenta-
tion by producers of crops like Andean blackberries. Every time a
farmer harvests his crop, there is a unique event, an unreplicated
experiment (Cock, 2007). Experience with sugarcane, which is also
a perennial tropical crop that may be harvested throughout the year
in the low latitude tropics, has shown that by collecting information
on crop production produced with the naturally occurring varia-
tion in management and the environment, the crops response can
be modeled using statistical or best fit models (Isaacs et al., 2007).
This approach has later been successfully applied to another peren-
nial tropical crops, like coffee (Niederhauser et al., 2008). Given
the scarce available information and the limited resources for field
work research, and the high degree of heterogeneity in both growth
and management, we opted for a data-driven modeling approach
to provide information to growers on how to choose apposite sites
for and to better manage their crops.

Crop models are basically of two types which can roughly be
describe as mechanistic simulation models and best fit or statisti-
cal models. The mechanistic models have the great advantage, at
least in theory, that they can be extrapolated out of the range of
variation for which data exists as they are based on the basic phys-
iological functions of the plant and their response to variation in
individual parameters in the environment. Furthermore, variables
that affect the observed variation in crop response to changes in
the environment can be identified in causal relationships. However,
these mechanistic simulation models require detailed knowledge
of the functional relationships between the multiple physiologi-
cal and other processes involved in crop growth and development.
This knowledge base simply does not exist, and would take years
to develop, for a crop like the Andean blackberry that has received
little attention from researchers in the past. Statistical or best fit
models are generally simpler and rely upon relationships between
variations in observed crop growth and development and varia-
tions in the growing conditions. The best fit models, however, have
the dual disadvantage that they can neither be used to extrapolate
beyond the range of variation encompassed in the initial datasets
used to develop the models, and secondly they are not able to
determine whether relationships are causal or merely associations.
The best fit models do, however, have the advantage that they can
be constructed with a limited knowledge of the myriad individual
processes and their interaction with variation in the environment
that determines how a crop grows, develops and finally produces
a useful product. Thus, with insufficient resources to obtain the
knowledge required to develop mechanistic models, and the obser-
vation that best fit models have successfully been used in other
crops, this approach was selected for Andean blackberry.

Many of the best fit models used to predict crop yields are devel-
oped using existing information on both crop production and the
environment. In the case of small farm crops, such as the Andean
blackberry, information on crop production is not readily available
and certainly cannot readily be associated with the particular envi-
ronmental conditions under which a particular crop was harvested.
However, as we previously observed, every harvest is effectively
an unreplicated experiment. If it were possible to characterize the
production system in terms of management and the environmental
conditions, and if we were able to collect information on the har-

vested product of a large number of harvesting events under varied
conditions, it should be possible to develop best fit models for the
production system. Hence, first step in developing these models
was the acquisition of data on Andean blackberry production and
the characterization of the production systems.

Agricultural systems are difficult to model due to their complex-
ity and their non-linear dynamic behavior. The evolution of such
systems depends on a large number of ill-defined processes that
vary in time, that interact with each other, and whose relationships
are often highly non-linear and very often unknown (Jiménez et al.,
2008). Moreover, the available information describing these sys-
tems frequently includes both qualitative and quantitative data, the
former often difficult to include in traditional modeling approaches.
We surmised that bio-inspired models, such as artificial neural net-
works, are an appropriate alternative for developing models that
can be used to improve production systems.

Artificial neural networks have been successfully used to model
agricultural systems (Hashimoto, 1997; Schultz and Wieland, 1997;
Schultz et al., 2000). According to Jiménez et al. (2008), these tech-
niques are appropriate as an alternative to traditional statistical
models and mechanistic models, when the input data is highly
variable, noisy, incomplete, imprecise, and of a qualitative nature,
as is the case of our Andean blackberry dataset. Artificial neural
networks do not require prior assumptions concerning the data
distribution or the form of the relationships between inputs and
outputs (Sargent, 2001; Paul and Munkvold, 2005; Nagendra and
Khare, 2006). They are capable of “learning” non-linear models that
include both qualitative and quantitative information, and in gen-
eral, they provide superior pattern recognition capabilities than
traditional linear approaches (Murase, 2000; Schultz et al., 2000;
Noble and Tribou, 2007). They have become a powerful technique
to extract salient features from complex datasets (Chon et al., 1996;
Giraudel and Lek, 2001). Furthermore, when dealing with multiple
variables they can be used to produce easily comprehensible low-
dimensional maps that improve the visualization of the data, and
facilitate data interpretation (Barreto et al., 2007). Nevertheless,
there are a number of disadvantages concerning the use of artificial
neural networks, some of them are: its “black box” nature, which
makes it difficult to interpret relations between the inputs and out-
puts, the difficulty of directly including knowledge of a ecological
processes, the tendency to overtrain, and the need for enough data
to be properly trained (Schultz et al., 2000; Sargent, 2001; Paul and
Munkvold, 2005).

An important first step in developing models that explain vari-
ation in yield is the identification of relevant variables that affect
yield: identification of these variables guides the data collection
required as inputs into the model.

Several studies identify the most relevant variables, and explain
given responses in agriculture through the use of multilayer pre-
ceptrons. For instance, Miao et al. (2006) implemented a neural
network for identifying the most important variables for corn yield
and quality. Using soil and genetic data, and a sensitivity analy-
sis for each variable, they demonstrated that the hybrid was the
most important factor explaining variability of corn quality and
yield. In another study, Jain (2003) reported that the best frost
prediction was obtained from the relative humidity, solar activ-
ity and wind speed from 2 to 6 h before the frost event. Paul and
Munkvold (2005) predicting severity of gray leaf spot of maize (Cer-
cospora zeae-maydis) in corn (Zea mays L.), concluded that the best
variables for predicting severity were hours of daily temperatures,
hours of nightly relative humidity, and mean nightly temperature.
More recently, Jiménez et al. (2007) modeling sugarcane yield, sug-
gested that crop age and water balance were highly relevant for the
modeling process.

Self-Organizing Maps (SOM) have also been implemented to
improve the visualization of input–input and input–output depen-
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Fig. 1. Variables selected for the construction of the Andean blackberry yield model.

dencies. Thus, for example Moshou et al. (2004) found that a
waveband centered at 861 nm was the variable which best dis-
criminated healthy from diseased leaves with yellow rust (Puccinia
striiformis f. sp. tritici) in wheat (Triticum spp. cv. Madrigal). As
another example, Boishebert et al. (2006) pointed out that grow-
ing year was an important factor in the differentiation of yield of
strawberry varieties.

Extension agents, expert crop advisers and growers of Andean
blackberry have reached a general consensus that optimum condi-
tions for the crop are: soils with high of organic matter content and
a loamy texture, altitude between 1800 and 2400 m above sea level,
average relative humidity between 70 and 80%, average tempera-
ture between 11 and 18 degree Celsius (◦C), and 1500 and 2500 mm
of rainfall per year (Franco and Giraldo, 2002).

The goal of this research was to demonstrate that collection of
data from poor small-scale commercial producers of Andean black-
berry and its analysis by means of artificial neural networks can
provide growers with useful information to increase their produc-
tivity.

2. Materials and methods

2.1. Data collection and compilation

Corporación Biotec together with local Andean blackberry pro-
ducers developed a simple aid based on a calendar which was used
by the farmers to record information on the production of each
lot planted to blackberries on their farm. The soil characteristics
were determined by the soil and terrain evaluation methodology
known as RASTA (Rapid Soil and Terrain Assessment) (Alvarez et al.,
2004) for 20 different sites in the departments of Nariño and Cal-
das in Colombia. The information collected by the farmers on the
calendars and with RASTA was then transferred to the database of
the site-specific agriculture for tropical fruits (AEPS) project. This
database includes information on location, landrace varieties, yield,
harvest time and data on soil characteristics. A total of 488 records
of yield from the database were included in the analysis. These
records or “events” provided farmers’ estimates of the quantity (in
kilograms) of fruit harvested per plant for weekly periods (Fig. 1).

Environmental information of landscape and climate was
obtained for each site from a range of secondary data sources.
Topography and landscape data was extracted from the Shuttle
Radar Topography Mission (SRTM) (Farr and Kobrick, 2000), using
the Version 3 dataset available from the CSI-CGIAR. Long-term aver-

ages for monthly temperature and precipitation were obtained
from WORLDCLIM (Hijmans et al., 2005), and daily rainfall was
extracted from the 3b42 product of the Tropical Rainfall Measuring
Mission (TRMM) database (Bell, 1987).

2.2. Variable selection

The information compiled in the database for Andean blackberry
consisted of 28 variables (Table 1). This information included cat-
egorical variables describing geographical position (large areas for
departments, specific areas for particular localities within depart-
ments) and variety (thorn blackberry or normal blackberry), and
environmental variables based on landscape, soil and climate
(Table 1). Each yield observation was associated with the environ-
mental variables taking into account the date of harvest (Fig. 1).

2.3. Computational models

2.3.1. Multilayer perceptron
A multilayer perceptron (Bishop, 1995) was used to model

Andean blackberry yield, in such a manner that the output of the
neural network, the continuous variable yield, is determined by
the 28 variables we used as inputs. The Back-propagation algorithm
(Bishop, 1995) was employed in order to train the neural networks.
This algorithm is a gradient descent based optimizer which mini-
mizes the difference between the desired output of the model (in
the training dataset) and the actual output of the network, i.e. the
mean square error (MSE).

In order to provide a mechanism for testing the model perfor-
mance and to compare different models or network topologies, a
training and a validation dataset were created by random sam-
pling without replacement from the whole dataset. In this way,
each training step was performed using 80% of the whole dataset,
and every testing procedure to assess model performance, was per-
formed on the remaining 20%. This method, called “split-sample”
or “hold-out” validation, may assess predictive model perfor-
mance, but is not recommended in its simplest form for small
datasets (Goutte, 1997). However, the split sample procedure can
be improved for small dataset by repeating the “split-sample”
procedure several times, and then calculating the resulting per-
formance as the average of all the tests made over the different
validation subsets. Different “flavors” of this method have been
used with artificial neural networks (Efron, 1983). These include
“cross-validation”, “leave-one-out validation”, and “bootstrap val-
idation”.
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Table 1
Inputs used for development of Andean blackberry yield model.

Input Variable Type Abbreviation Source

1 Thorn or Normal blackberry Cata AB Thorn N AEPS
2 Nariño–Caldas (Large geographic area) Cata Nar-Cal AEPS
3 Nariño, la unión, chical Alto (specific geographic area) Cata Na un chical AEPS
4 Nariño, la unión,cusillo alto (specific geographic area) Cata Na un cusal AEPS
5 Nariño, la union, cusillo bajo (specific geographic area) Cata Na un cusba AEPS
6 Nariño, la unión, la jacoba (specific geographic area) Cata Na un lajac AEPS
7 Caldas Riosucio zona rural (specific geographic area) Cata Cal riosu zr AEPS
8 Altitude Conb Srtm SRTM
9 Slope Conb Slope SRTM

10 Internal drainage Conb IntDrain AEPS
11 External drainage Conb ExtDrain AEPS
12 Effective soil depth Conb EffDepth AEPS
13 Precipitable water of the harvest month Conb Trmm 0 TRMM
14 Precipitable water of the first month before harvest Conb Trmm 1 TRMM
15 Precipitable water of the second month before harvest Conb Trmm 2 TRMM
16 Precipitable water of the third month before harvest Conb Trmm 3 TRMM
17 Average temperature of the harvest month Conb TempAvg 0 WORLDCLIM
18 Temperature range of the harvest month Conb TempRang 0 WORLDCLIM
19 Accumulated precipitation of the harvest month Conb PrecAcc 0 WORLDCLIM
20 Average temperature of the first month before harvest Conb TempAvg 1 WORLDCLIM
21 Temperature range of the first month before harvest Conb TempRang 1 WORLDCLIM
22 Accumulated precipitation of the first month before harvest Conb PrecAcc 1 WORLDCLIM
23 Average temperature of the second month before harvest Conb TempAvg 2 WORLDCLIM
24 Temperature range of the second month before harvest Conb TempRang 2 WORLDCLIM
25 Accumulated precipitation of the second month before harvest Conb PrecAcc 2 WORLDCLIM
26 Average temperature of the third month before harvest Conb TempAvg 3 WORLDCLIM
27 Temperature range of the third month before harvest Conb TempRang 3 WORLDCLIM
28 Accumulated precipitation of the third month before harvest Conb PrecAcc 3 WORLDCLIM

a Categorical variables.
b Continuous variables.

Network topology is an important issue in training a neural
network model. The selection of the number of neurons in the
hidden layer was made by comparing neural networks having
1,2,3,4,5,6,7,8,9 and 10 hidden units. This comparison was carried
out by simple implementation of a bootstrap validation scheme
(Efron, 1983). Thus, each network was tested by performing “split-
sample” validations 100 times, and then the different values of the
averaged MSE were compared in order to determine the network
having the best performance. The topology with the lowest MSE
over the validation subset had 5 units in the hidden layer neural
network (Fig. 2) and was selected for further development.

An ensemble of 100 networks with the selected topology but
with different initialization was built and tested in order to improve
the generalization capabilities of the model (Dietterich, 2000;
Brown et al., 2005). Neural networks ensembles are less affected
by local minima, and have been shown to outperform their single
components (Yao and Liu, 1998). In our case, the source of diversity

Fig. 2. MSE of artificial neural networks with different number of neurons in hidden
layer.

among models was the starting point of the Back-propagation algo-
rithm (random initialization), and the resulting model output was
calculated by averaging the outputs of the 100 individual networks.

Finally, to identify the variables which contribute most to yield;
an analysis was conducted by means of the relevance metric based
on sensitivity described in Satizábal and Pérez-Uribe (2007). This
method assesses input relevance by calculating the partial deriva-
tive of the output of the neural network ensemble with respect
to each one of the inputs. Input sensitivity should reflect input
relevance because the Back-propagation algorithm finds higher
connection weights to inputs having more relevant information
and, in the same way, attenuates connections from noisy inputs.

2.3.2. Self-Organizing Maps
The Self-Organizing Map or SOM (Kohonen, 1995) is a non-

supervised algorithm which combines clustering and visualization.
The SOM maps high-dimensional datasets can be in a low-
dimensional output space (generally a grid of two dimensions)
with the SOM technique: observations with similar characteristics
appear clustered together in the low-dimensional map produced.
Such a map facilitates exploratory visual analysis of the clusters
and the relationships between the variables of a complex dataset.
However, a SOM does not preserve distance information. In order
to address this problem the topology is disregarded, and standard
clustering methods are applied to the SOM prototype vectors, and
then the clusters are displayed on a lattice (Vesanto and Ahola,
1999; Barreto and Pérez-Uribe, 2007).

We chose the K-means algorithm to group the observations into
a given number of K clusters. One of the limitations of this technique
is the a-priori definition of the number of clusters, which is fre-
quently unknown. To tackle this drawback, different K values were
tested and then different groups with different number of clus-
ters were calculated. The optimal number of K was then derived
using the Davies–Bouldin index (Davies and Bouldin, 1979). The
coordinate axes of the lattice are not clearly interpreted in terms
of the original variables. Instead, variables are typically visualized
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by a “component plane” representation, where several lattices, one
for each variable, are shown side by side. A lattice with a variable-
specific coloring is called a component plane. The component plane
representation is useful in finding dependencies between variables.
These dependencies are perceived as similar patterns in identical
areas of different component planes (Figs. 7–13). The dependency
search can be eased by organizing the component planes such that
similar planes are positioned near to each other (Vesanto and Ahola,
1999). In the present study, a SOM was used in order to facilitate
the visualization of the relations among the productivity and the 28
environmental and geographical variables, and establish the values
ranges of these variables associated with high, medium and low
yield.

3. Results and discussion

3.1. Model performance

The neural network model was evaluated to ensure that its
performance was acceptable for our purpose of determining rela-
tionship between the yield of the Andean blackberry and the
characteristics of sites where it was grown. To evaluate the model’s
performance we computed the coefficient of determination of the
real Andean blackberry’s yield and the yield predicted by the model
using only the data from the “hold-out” validation dataset (Fig. 3).
The coefficient of determination (0.89) indicates that the model
explained close to 90% of the total variation, which we consid-
ered sufficient to proceed to the next step of determining input
relevance.

The fit between the real yield values and the predicted values
taken from the validation data was close at the low levels of pro-
duction, but was poor over the range of 69–93 (Fig. 4). At the same
time, the model accurately predicted the expected yields at high
yield levels. This suggests that the model can be used to determine
ex ante the conditions and management associated with high yields
and hence to provide farmers with guidelines on how to obtain high
yields. In addition, the model can also determine site characteris-
tics that are inevitably associated with poor crop performance and

Fig. 3. Scatterplot displaying multilayer perceptron predicted yield versus real
Andean blackberry yield, using only the validation dataset.

these can be used to indicate to farmers that a particular site and
management combination is not a viable option.

3.2. Analysis of the variables relevance

We assessed the yield response to changes in the 28 variables
used in the model by obtaining the sensitivity of the model output
with respect to each one of the inputs. We used the relevance metric
based on sensitivity described in Satizábal and Pérez-Uribe (2007),
which expresses the amount of change of the output with the vari-
ations of the inputs. The nine most important variables identified
by the sensitivity metric were: soil depth, the average temperature
of the first month before harvest, the specific geographical areas
Nariño–la union–chical alto and Nariño–la union–cusillo bajo, the
average temperature of the harvest month, the average tempera-
ture of the second month before harvest, the average temperature
of the third month before harvest, external drainage and the accu-
mulated precipitation of the first month before harvest (Fig. 5).
There was a moderately sharp drop off of the sensitivity after the
ninth variable (see Fig. 5). A Wilcoxon test at an alpha level of 5%

Fig. 4. Line with markers displaying the fitness of the predicted and real Andean blackberry yield through the observations from the validation dataset (yield values upwardly
ordered).
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Fig. 5. Sensitivity distribution of the model with respect to the inputs.

(Table 2) indicated that the means of this group of nine variables
were significantly different (p = 0.0001) from the rest of the vari-
ables. Hence, the nine most important variables were selected for
further analysis.

3.3. Visualization of the relations between the variables found as
relevant by the sensitivity metric and clusters with similar
productivity of Andean blackberry

To further analyze the effects of the nine variables, a Kohonen
map was trained with the same observations we employed to train
the multilayer perceptron. The resulting bidimensional map is com-
posed of vector prototypes which associate topological information
of the original 28 variables with Andean blackberry yield (Fig. 6a).
These prototypes were clustered by using the K-means algorithm.
According to the Davies–Bouldin index, the map was divided into
6 clusters exhibiting similar features that influence Andean black-
berry productivity (Fig. 6b).

3.4. Component planes and variable dependencies

In order to improve the visualization of the dependencies
between the clusters shown in the Kohonen map (Fig. 6b) the “com-
ponent planes” of Andean blackberry productivity (Fig. 7a), and the
variables previously identified as the most relevant for modeling
Andean blackberry yield: effective soil depth (Fig. 8), the average
temperature of the harvest month, the average temperature of the
first, second and third months before harvest (Fig. 9a–d), two spe-
cific geographic areas (Figs. 10 and 11), external drainage (Fig. 12),
and the accumulated precipitation of the first month before harvest
(Fig. 13), were separated from the Kohonen map and displayed as
lattices.

3.4.1. Productivity plane
Yields greater than 1.16 kg/plant/week were associated with

regions in cluster 2 on the Kohonen map (Fig. 7a and b). Yield val-
ues between 0.0018 and 1.16 kg/plant/week correspond to clusters
1, 3, 4, 5 and 6 in the Kohonen map. Being 3, 4, 6 the clusters with
lowest yields.

3.4.2. Effective soil depth
Values of soil depth greater than 70 centimeters (cm) are asso-

ciated with clusters 3, 4 and 6 (Fig. 8) which are all associated with
low yields. In contrast, a soil depth between 40 and 70 cm appears
to be related to medium to high yield clusters (1, 2, 5). The cluster
with the highest yields had soil depths in the range of 60–70 cm sug-
gesting that this level of soil depth is optimal, and that an effective
soil depth greater than 70 cm is not necessary to obtain high yields.
Franco and Giraldo (2002) stated that for optimal Andean black-
berry development, soil depth should be deep enough to allow soil
moisture retention without problems of water logging. We suggest
that although soil depths above 70 cm were associated with low
yields in this study this is probably due to other factors associated
with the deeper soils.

3.4.3. Average temperature of the harvest month and average
temperatures of the first, second and third months before harvest

The Kohonnen maps for temperature of the first, second and
third months before harvest were similar (Fig. 9). The multilayer
perceptron showed that the average temperature of the first month
before harvest was more important than the others temperatures
(that occurs due to small differences captured to better fit the out-
put). However, the similarity of the components of temperature is
probably due to the low monthly variation in temperature under
the equatorial conditions of this study. The similarity of the temper-
ature patterns induced us to analyze them as a group rather than

Table 2
Wilcoxon test at an alpha level of 5% comparing means of relevance between the nine most important variables identified by the sensitivity metric and means of the rest of
variables.

T T (expected value) T (variance) Z (observed value) Z (critical value) Two-tailed p-value

171.000 85.500 527.250 3.724 1.960 0.0001
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Fig. 6. Kohonen map showing the resulting clusters. (a) U-matrix displaying the
distance among prototypes. The scale bar (right) indicates the values of distance.
The upper side exhibits high distances, whilst the lower displays low distances. (b)
Kohonen map displaying the 6 clusters obtained after using the K-means algorithm
and the Davies–Bouldin index.

separately. It is immediately evident that cluster 6 with tempera-
tures of about 24 ◦C is not suitable for high yields of blackberries
(Fig. 9). Clusters 1, 2 and 5 with medium to high yields are related
to temperatures between 16 and 18 ◦C (Fig. 9a–d) and low yields
appear to be associated with temperatures in the range of 14–15 ◦C.
Andean blackberry experts suggest the optimal temperature for a
healthy growth of this crop is between 11 and 18 ◦C. We suggest
a narrower temperature range with 16–18 ◦C associated with high
yields and lower yields as the temperature moves above or below
this range.

3.4.4. Geographic areas as proxy for crop management
Proxies can be used to estimate the effect of either immeasur-

able or unobservable variables on a given phenomenon (Thomas
et al., 1990; Steckel, 1995; Goodman et al., 1996; Adami et al.,
1999; Filmer and Pritchett, 1999; Montgomery et al., 1999). In our
study, geographical areas were integrated into the model with the
aim of capturing the effect of variables that were not measured.
The geographical proxies were added to the analysis specifically
to take into account management and social factors which were
not captured by the data collection process and which are likely
to be related to the geographic location of a site. For example,
farmers from a given locality are likely to use similar management
practices that will differ from those used by other communities
living in distant localities. The localities Nariño–la union–chical
alto (Fig. 10), and Nariño–la union–cusillo bajo (Fig. 11) were

Fig. 7. (a) Component plane of Andean blackberry yield, the scale bar (right) indi-
cates the range value of productivity in kg/plant/week .The upper side exhibits high
values of yield, whereas the lower displays low values. (b) Kohonen map displaying
the resultant 6 clusters and their labels according to yield values.

associated with cluster 2 which is characterized by the highest
yields. Whilst the association with high yields could be a conse-
quence of specific local environmental conditions not accounted
for by the environmental variables used in the model, we suggest
that is more likely that they are due to particular crop manage-
ment practices related to local knowledge and socio-economic
circumstances. In sugarcane certain groups of farmers consistently
obtain higher yields than others even in the same edapho-climatic
conditions (Isaacs et al., 2007). The difference is due to better man-
agement by certain groups which is related to socio-economic
factors including access to knowledge on optimal production prac-
tices.

3.4.5. External drainage and accumulated precipitation of the
first month before harvest

Scrutiny of the external drainage lattice (Fig. 12) gave no obvi-
ous clues as to how drainage affects the yield of blackberries. In
fact medium yield in cluster 5 is associated with poor external
drainage and in cluster 2 with high yields the external drainage
is highly variable. However, in all clusters with medium or high
yields poor external drainage is associated with low precipita-
tion of the first month before harvest (Fig. 13): not only does this
appear to be true from the Kohonnen maps, but it also makes
agronomic sense. Good external drainage is evidently more impor-
tant when rainfall is greater. This example clearly indicates how
the visual inspection of the Kohonnen maps can assist in under-
standing how various factors effect the growth and development
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Fig. 8. Component plane of effective soil depth. The scale bar (right) indicates the range value in centimeters of soil depth, the upper side of the scale exhibits high values,
whereas the lower displays low values.

of the crop and the interactions between them. Further inspec-
tion of Figs. 12 and 13 indicate that excellent external drainage
is not sufficient to overcome the effects of high or moderate pre-
cipitation with moderate external drainage in cluster 3. Overall
there was a tendency for low rainfall to be advantageous but
there were exceptions. However, when the two variables, precip-

itation of the first month before harvest and external drainage
are taken together it is clear that low rainfall accompanied with
varied external drainage conditions can provide good yields,
but that heavier precipitation of the first month before harvest
with poor drainage is not conducive to high levels of productiv-
ity.

Fig. 9. Components planes of the averages temperature: (a) temperature of the harvest month, (b) average temperature of the first month before harvest, (c) average
temperature of the second month before harvest, and (d) average temperature of the third month before harvest. In all figures, the scale bar (right) indicates the range value
in ◦C of temperature. The upper side exhibits high values, whereas the lower displays low values.
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Fig. 10. Component plane of the specific geographic area Nariño–la union–chical alto. The highest values indicate presence and the lowest absence as they are categorical
variables.

Fig. 11. Component plane of the specific geographic area Nariño–la union–cusillo bajo. The highest values indicate presence and the lowest absence as they are categorical
variables.

Fig. 12. Component plane of external drainage. In the scale bar (right), the highest value 3 indicates excellent or fast drainage, 2 moderate drainage, and 1 poor or slow
drainage.
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Fig. 13. Component plane of the accumulated precipitation of the first month before harvest. The scale bar (right) indicates the range value in millimeters of rainfall, the
upper side of the scale exhibits high values, whereas the lower displays low values.

4. Conclusions

Data collected by small farmers in the Andes couple with
information from existing data bases was successfully used to char-
acterize specific production events and to relate production to site
and time specific events. The analysis approach focuses first on
identifying those variables that explain most of the yield variabil-
ity by means of artificial neural networks (multilayer perceptron),
and then using the Self-Organizing Maps as a tool for dimension-
ality reduction and visualization of input–input and input–output
dependencies.

Artificial neural networks were found to be an effective tool for
managing the highly variable, noisy, and qualitative nature of agri-
cultural information collected by farmers and linked to publicly
available climate databases. Multilayer perceptrons were used to
develop a model based on dataset with 28 variables. This model
explained close to 90% of the variation in a validation set. Sensi-
tivity analysis was used to identify the most important variables
in determining variation in yield. Self-Organizing Maps were then
used to group Andean blackberry yield from different sites accord-
ing to similarity of growth conditions and management. Data was
not available to directly evaluate management practices, so local-
ities were used as a proxy for management. The SOM provided a
straightforward manner to visualize the distribution of the vari-
ables that affected yield. “Component planes” generated by SOM
illustrated the association of these variables with yield and iden-
tified two geographic areas as highly productive. The optimal
conditions for high yields are an average temperature between
16 and 18 ◦C, an effective soil depth between 60 and 70 cm, and
low rainfall during the first month before harvest in poor exter-
nal drainage locations or moderate to low rainfall in better drained
areas.

The identification of geographic areas with higher yields than
those that would be expected solely from the environmen-
tal conditions suggests that the farmers in those geographical
areas were managing their crops particularly effectively. How-
ever, there was not sufficient information to precisely determine
which management factors led to the high yields. At the same
time the mere identification of areas with farmers that prop-
erly manage their crops, offers the chance for these farmers
to disseminate their knowledge to other farmers with sim-
ilar environmental conditions so that they too can improve
yields.
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