1	Fate of soil-applied black carbon: downward migration, leaching and soil
2	respiration
3	
4	Julie Major*, Johannes Lehmann*, Marco Rondon†, and Christine Goodale‡
5	
6	*Department of Crop and Soil Sciences, Cornell University, Ithaca NY 14853;
7	†International Development Research Centre, Ottawa, ON K1G 3H9, Canada (formerly
8	at the Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713 Cali, Colombia);
9	[‡] Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853
10	
11	Author for correspondence: Johannes Lehmann, telephone: 607-254-1236, fax: 607-255-
12	2644, email: CL273@cornell.edu
13	
14	Keywords: biochar; black carbon; carbon leaching; carbon sequestration; dissolved
15	organic carbon; particulate organic carbon; soil carbon cycling; soil respiration; Oxisol
16	
17	Running title: Fate of black carbon
18	
19	

20 Abstract

21 Black carbon (BC) is an important pool of the global C cycle, because it cycles much 22 more slowly than others and may even be managed for C sequestration. Using stable 23 isotope techniques, we investigated the fate of BC applied to a savanna Oxisol in Colombia at rates of 0, 11.6, 23.2 and 116.1 t BC ha⁻¹, as well as its effect on non-BC soil 24 25 organic C. During the rainy seasons of 2005 and 2006, soil respiration was measured 26 using soda lime traps, particulate (POC) and dissolved organic C (DOC) moving by 27 saturated flow was sampled continuously at 0.15 and 0.3 m, and soil was sampled to 2.0 28 m. Black C was found below the application depth of 0-0.1 m in the 0.15-0.3 m depth interval, with migration rates of 52.4 ± 14.5 , 51.8 ± 18.5 and 378.7 ± 196.9 kg C ha⁻¹ yr⁻¹ 29 (±SE) where 11.6, 23.2 and 116.1 t BC ha⁻¹, respectively, had been applied. Over two 30 vears after application, 2.2% of BC applied at 23.2 t BC ha⁻¹ was lost by respiration, and 31 32 an even smaller fraction of 1% was mobilized by percolating water. Carbon from BC moved to a greater extent as DOC than POC. The largest flux of BC from the field (20-33 34 53% of applied BC) was not accounted for by our measurements and is assumed to have 35 occurred by surface runoff during intense rain events. Black C caused a 189% increase in 36 above-ground biomass production measured 5 months after application (2.4-4.5 t additional dry biomass ha⁻¹ where BC was applied), and this resulted in greater amounts 37 38 of non-BC being respired, leached and found in soil for the duration of the experiment. 39 These increases can be quantitatively explained by estimates of greater below-ground net 40 primary productivity with BC addition.

42 Introduction

43 Black carbon (BC) is an important C pool globally. Despite relatively low global production rates of 0.05-0.27 Pg vr⁻¹ (Forbes *et al.* 2006) compared to terrestrial net 44 primary productivity of about 60 Pg yr⁻¹ (Denman et al. 2007), biomass-derived BC has 45 46 been found to comprise about 30% of organic C in 76% of 57 soils from 6 orders 47 worldwide (Skjemstad & Taylor 1999; Skjemstad et al. 1996, 1999a, 1999b). Therefore, 48 BC cycles at a much slower rate than the non-BC fraction of soil organic C mainly due to 49 its high content of aromatic, graphitic, or elemental refractory C (Glaser et al. 1998). 50 Indeed, BC in deep-sea sediments has been found to be 2,400-13,900 years older than 51 associated non-BC (Masiello & Druffel 1998). Black C has also been observed to 52 represent the oldest C fraction in soils (Pessenda et al. 2001). Understanding the stability 53 of BC in soil is crucial in order to balance the global C budget (Czimczik & Masiello 54 2007). Managing BC for actively increasing the long-term C sink of atmospheric CO_2 in 55 the form of BC from biochar in soil has been proposed by Lehmann *et al.* (2006) and also 56 relies on accurate information about its stability. 57 However, very little is known about the stability of BC under field conditions.

58 Most studies are conducted by using laboratory incubations (Baldock & Smernik 2002;

59 Cheng et al. 2008b; Liang et al. 2008; Kuzyakov et al. 2009). The few published field

60 observations using repeated soil sampling show generally rapid disappearance rates (Bird

61 et al. 1999, Hammes et al. 2008; Nguyen et al. 2008) which may be explained by the fact

62 that a full mass balance was not possible and some BC loss may have occurred by mass

63 transport rather than mineralization.

64	Despite the observed long-term stability of BC, significant initial mineralization is
65	likely to occur. Rapid oxidation over several months of incubation was reported for
66	experimentally-produced BC (Cheng et al. 2006, 2008a). BC generated in the laboratory
67	is likely to contain a range of compounds exhibiting varying stability (Lehmann 2007).
68	During the first 10 years after BC deposition following forest fires in Kenya, the O/C
69	ratio significantly increased on BC surfaces (Nguyen et al. 2008), and 100-year-old BC
70	particles in Kenya (Nguyen et al. 2008) and dissolved BC-derived molecules in the US
71	(Hockaday et al. 2007) were found to be significantly altered, bearing abundant carboxyl
72	groups. The dynamics of BC mineralization during the first years after deposition to field
73	soil have not been studied up to now.
74	Several studies have argued that BC might stimulate the rates of loss of non-BC
75	soil C (Pietikäinen et al. 2000; Wardle et al. 2008), and proposed mechanisms for this
76	include priming of decomposition by labile C (glucose) (Hamer et al. 2004), and the
77	sorption by BC of compounds which inhibit microbial growth, such as phenols (Gundale
78	& DeLuca 2007). No data have been reported that test these processes under field
79	conditions in mineral soil.
80	In addition to mineralization to CO ₂ , BC may be transported in the landscape
81	(Rumpel et al. 2006a, 2006b; Hockaday et al. 2007; Guggenberger et al. 2008) both
82	laterally and vertically through soil. While BC has been identified in dissolved
83	(Guggenberger et al. 2008) and particulate (Mitra et al. 2002) organic C of natural river
84	water, the magnitude of leaching with percolating soil water has not been quantified.
85	Similarly unclear is whether BC moves primarily in dissolved or particulate form.
0.6	

86 Several authors have identified surface-deposited BC in subsoils (e.g. Brodowski *et al.*

87	2007; Leifeld et al. 2007). Yet while the BC was found to be associated with coarse silt
88	and sand (Brodowski et al. 2007), actual mechanisms for its movement have not been
89	established. Black C, alone or associated with mineral fractions, could move through soil
90	by facilitated transport in macropores. Particles with a median size of 2-5 μm moved
91	from topsoil through a sandy loam in the field (Laubel et al. 1999), and natural colloids
92	of up to 200 µm were mobilized through a coarse disturbed soil (Totsche et al. 2007),
93	also in the field. Black C found in soil has very similar size distributions, with most of the
94	particles typically being smaller than 50 µm (Skjemstad et al. 1996).
95	This work was undertaken to assess the fate of biomass-derived BC after addition
96	to surface soil in the field over two years. Our hypotheses were: (i) CO ₂ evolution will
97	initially increase due to rapid mineralization of the labile fraction of BC; (ii) longer-term
98	mineralization of BC over two years will be low due to its high stability; (iii) BC will
99	move rapidly into the subsoil; and (iv) BC will mainly travel in dissolved form through a
100	poorly aggregated clay Oxisol.
101	

103 Materials and Methods

104 *Site characteristics*

105 Experimental plots were established at Matazul farm in the Llanos Orientales 106 non-flooded savanna region of Colombia (N 04°10'15.2", W 07 °36'12.9"). The soil in 107 the experimental plots is an isohyperthermic kaolinitic Typic Haplustox sandy clay loam 108 (Soil Survey Staff 1994), which developed from alluvial sediments originating in the 109 Andes (Rippstein et al. 2001). Long-term average annual rainfall measured 110 approximately 200 km northeast of the plot is 2200 mm, and 95% of precipitation falls 111 between April and December. A marked dry season occurs between January and March, 112 and average annual temperature is 26°C. Based on stable C isotope signatures, present-113 day native C₄ vegetation dominated the area for a very extensive period, perhaps since 114 the Late Glaciation Period (Behling & Hooghiemstra 1998). Trees are found almost 115 exclusively along waterways, except in areas where fire control has been practiced in modern times. This C₄ vegetation results in δ^{13} C values for soil of -10.9‰ to -13.5‰ up 116 117 to a depth of 2 m as measured in this experiment.

118

119 Field experiment

120 The BC applied to the plots was produced in a controlled manner, in order to 121 provide sufficient amounts for a replicated experiment that included high application 122 rates, and yielded the most uniform BC material that could be obtained under local 123 conditions. Black C material 1 was produced in December 2004 from prunings of old 124 mango (*Mangifera indica* L.) trees, with a resulting δ^{13} C value of -29‰ (Table 1). A 125 mound of tightly packed logs (approx. 2 m high, 5 m diameter) was formed, covered with

126	dry grass and soil, and ignited through a tunnel at the base. The temperature in simple
127	kilns may range between 400°C to 600°C and carbonization times typically last 48 hours
128	(Emrich 1985). Black C was then ground by hand using a metallic disk pestle, to pass
129	through a 0.9 mm sieve, and mixed well. Black C generated under natural fires (Masiello
130	2004) or produced using modern technology for deliberate application as biochar
131	(Lehmann 2007) can have varying properties. Depending on the charred biomass type
132	and charring conditions, chemical properties including decomposability may differ
133	significantly (Baldock & Smernik 2002; Antal & Grønli 2003). The results shown here
134	have to be viewed in the context of the BC material used (Table 1).
135	At the onset of the dry season in December 2004, BC was incorporated to soil
136	under native savanna vegetation which to our knowledge had never been tilled or
137	cropped. The fields were selected on a flat plain with no visible inclination and the slope
138	was estimated to have been at most 2%. The site was mowed, and disked to break up the
139	soil. A randomized complete block design was applied, with plots measuring 4 by 5 m,
140	using 3 replications. Black C application rates were 0, 11.6, 23.2 and 116.1 t BC ha ⁻¹
141	(n=3). These rates correspond approximately to a 50% increase, doubling and five-fold
142	increase in soil C in the top 0.1 m, respectively. Skjemstad et al. (1999a) reported a
143	maximum, conservative estimate of BC content in Australian soils of 28 t BC ha ⁻¹ (at our
144	soil's density and application depth), and the rate of 116.1 t BC ha ⁻¹ brought the soil in
145	the range of soil organic C (SOC) stocks found in BC-rich Amazonian Terra preta soils
146	(147-506 t C ha ⁻¹ m ⁻¹) (Glaser et al. 2003). Black C was applied to each plot uniformly
147	using rakes, and incorporated to 0.1 m with 2 disk harrow passes. The control plots were
148	also disked.

150 Soil sampling

151	On 13-16 December 2006, i.e. 2 rainy seasons after application, soil was sampled
152	in all plots, in depth increments of 0-0.15, 0.15-0.3, 0.3-0.6, 0.6-1.2, and 1.2-2 m.
153	Sampling was carried out manually to 0.6 m with a \sim 50 mm diam. corer, and using a
154	tractor-driven hydraulic version of the same corer to 2 m. Composite samples were taken
155	in each plot, from 5 random sampling locations to 0.6 m and 3 of these locations to 2 m,
156	and hand mixed in buckets before a \sim 500 g subsample was taken for analysis. These
157	subsamples were air-dried, crushed and passed through an aluminum sieve with 2 mm
158	circular holes.
159	Soil was analyzed for particle size distribution by the hydrometer technique
160	(Bouyoucos 1927), after dispersion with sodium hexametaphosphate. In July 2006,
161	additional samples were taken for physical property analysis, using aluminum cores. In
162	each plot, a small pit was dug to 0.3 m, and subsamples were taken from 2 opposite sides
163	of pits from the surface, 0.15 and 0.3 m depths. Two cores (50 mm diameter, 50 mm
164	high) were taken at each depth and from each side of the pits. For depths of 0.6, 1.2 and 2
165	m, we assumed no effect of BC application on physical properties and two soil pits
166	located 5-10 m away from the experiment were used. In each of these pits, cores were
167	taken from 2 profiles on the side closest to the experiment. This yielded a total of 4
168	samples for each sampling depth.
169	Bulk density was determined by oven drying at 105°C for 24 h for samples from
170	all plots and depths (84 samples). Samples to 0.3 m depth from the control and 23.2 t BC

171 ha⁻¹ treatments were used to determine saturated hydraulic conductivity with a constant

head permeameter. Abnormally high saturated hydraulic conductivity data for one of the
control plots, at 0.3 m, was removed before statistical analysis due to the observation of
high termite activity in that plot and depth.

175

176 Carbon leaching measurement

177 In May 2005, free-draining lysimeters for measuring particulate and dissolved 178 organic C (POC and DOC) in water moving by saturated flow were installed in the unamended control and the plots receiving 23.2 t BC ha⁻¹. These were inserted from soil 179 180 pits at depths of 0.15 and 0.3 m, in "galleries" dug from the face of the pits and into the 181 experimental plots. The lysimeters consisted of 0.15 m diam. Pyrex® glass funnels filled 182 with quartz sand after washing with dilute HCl and NaOH, held by a glass wool plug. 183 The C content of the sand after washing was 0.04% by weight. Two funnels were placed 184 at each depth in each plot. Funnel pairs were fitted with plasticizer-free Tygon® 185 (Formula 2075) hose and the hoses joined with a copper "T" fitting, itself draining into 186 one amber glass bottle (washed as described above). This yielded a total of 24 funnels 187 and 12 collection bottles (1 per depth per plot). Field collection bottles were checked at 188 least weekly, and emptied when water had been collected. After each emptying of bottles, 189 a solution of HgCl₂ was added as a biocide to achieve a final concentration of 30 µM in a 190 1-L sample. Water sampling was carried out between May 2005 and January 2006 (yr 1), 191 and March and December 2006 (yr 2). At each collection time, the height of water in the 192 bottles was recorded and converted into volume using a curve created with the bottles. 193 Upon collection, water samples were stored in borosilicate glass vials with Teflon®-lined

caps and refrigerated at 4°C until analyzed. Samples were not refrigerated for 3-5 days
while being shipped to the USA.

196	Depending on sample availability, 40-60 mL of each water sample was vacuum
197	filtered using glazed ceramic Buchner funnels through binder-free glass filters
198	(Whatman® GF/F; 13 mm diam., 0.7 μ m pore size), which were then dried at 60°C for
199	24-36 h, cut up, and placed in tin cups for C and N analysis by dry combustion. Filtered
200	water samples were freeze-dried in progressively smaller glass vials, and the solids
201	weighed and prepared for C and N analysis by dry combustion. In the present study, we
202	used 0.7 μ m to separate dissolved organic C (DOC) from particulate organic C (POC).
203	However, we recognize that this separation is operational and that some colloids may
204	have sizes of less than $0.7 \mu\text{m}$.
205	For the calculation of total C leaching, the flux in each lysimeter was multiplied
206	by the C concentration in the sample. On two dates no samples were available for
207	analysis for the control due to sample loss. For one of these dates the value was
208	calculated as the average of the two adjacent dates, since these were very similar. In the
209	other case, the date was dropped completely since no assumption of similarity could be
210	made.
211	

212 Soil respiration measurement

Static-chamber soda lime traps (after Edwards 1982) were used in order to
determine the amount and isotopic composition of soil-respired CO₂. Plastic rings
obtained from cutting 20-L buckets (0.273 m diameter) were buried into the soil to a
depth of 0.1 m and measurements started in the second year after BC application on April

217 6 2006. To discern the short term response of respiration during the first year after BC 218 addition, a second set of rings was installed on 11 May 2006 on an adjacent area, and 219 identically treated using BC material 2 which was produced similarly to material 1. 220 except a soil trench was used instead of a mound (Table 1). In both sets of plots, two 221 rings were inserted at random locations away from the edges inside each replicate plot of 222 the 23.2 t BC ha⁻¹ and control treatments, for a total of 24. The soil inside the rings was 223 kept free of vegetation. Initially, 30 g of 4-8 mesh soda lime with indicator were exposed 224 in each chamber, based on recommendations from Edwards (1982). After 5 weekly trials, 225 the amount of soda lime was reduced to 10 g, since CO_2 absorption did not exceed 10% 226 of the saturation value for this amount of soda lime (as specified by the manufacturer). 227 The highest mass of CO₂ absorbed in a single trial represented 11% of the mass of soda 228 lime used. Prior to field exposure, soda lime was dried in wide-mouth (44 mm) glass jars 229 for 24 h at 105°C, capped tightly, cooled and then weighed on a scale with 1 mg 230 resolution. Uncapped jars ("traps") were placed on elevated pieces of wire mesh, on the 231 soil inside each ring. Chamber tops were formed from the rest of the 20 L plastic buckets, 232 sealed using a thick, tight rubber band covering the junction. Control traps were placed in 233 the plots, in chambers of the same internal volume as the treatment chambers. However, 234 they consisted of two bucket bottoms sealed together, i.e. no soil was exposed. Initially, 235 one control trap was used in each plot (total 12 control traps), but after observing low 236 variability among control traps, their number was reduced to 6 for the entire experiment. 237 Sampling frequency was initially weekly, but was reduced to biweekly halfway into the 238 rainy season.

239	The soda lime was left in the field for 24 h, removed and dried again for 24 h as
240	above. Final mass was obtained and the difference between initial and final mass
241	multiplied by 1.69 to correct for chemical water generation during the process of CO_2
242	absorption (Grogan 1998). Control traps account for CO ₂ absorbed during drying,
243	manipulation, from the initial atmosphere inside the chamber and any additional CO_2
244	contributed by leaks in chamber seals. Absorbed CO ₂ mass for the controls were
245	averaged, and this average value subtracted from absorbed CO2 mass in each treatment
246	jar. The maximum standard error observed among control traps was 17% for the duration
247	of the experiment. Trapped CO ₂ mass was further corrected for time of exposure, which
248	differed from 24 h by a maximum of 74 min over the duration of measurements.
249	The amount of CO_2 trapped depended in part on the diameter of the jars used to
250	expose the soda lime. On four occasions it was necessary to use jars of different mouth
251	size. To correct for this difference, a relationship was established between mouth size and
252	CO ₂ trapped by exposing jars of various sizes (30-44 mm mouth diam.) to ambient air for
253	approximately 60 h. This trial was repeated four times and conversion factors averaged.
254	Exposed soda lime jars were sealed with Teflon® tape and stored in sealed drums
255	with silica gel to absorb humidity. Samples were later composited into periods defined by
256	peaks in amount of CO ₂ absorbed over time (Fig. 4). All samples for dates within
257	individual peak absorption periods were combined, mixed, and a subsample ground for
258	90 s by hand using a mortar and pestle. For the first and last sampling dates, subsamples
259	were combined but replicates and controls were analyzed separately, to provide more
260	detailed data as well as information on variability. Approximately 0.2 g of ground
261	composited soda lime was placed into acid-washed glass tubes, which were then sealed

262	and evacuated. Three milliliters of phosphoric acid (40%) were added, and the tubes were
263	set on an orbital shaker for 1 h. The headspace gas was then sampled using a syringe and
264	transferred to evacuated single-use tubes.
265	
266	Plant biomass sampling
267	Plant biomass was sampled on 19 October 2006, where all above-ground
268	vegetation inside two 1-m ² quadrats was sampled in three replicated plots of the control
269	and 23.2 t BC ha ⁻¹ , on the new set of plots used for first year soda lime measurements.
270	Vegetation was separated into grasses, forbs and legumes, and fresh and dry mass was
271	determined after drying at 65°C for 72 h.
272	
273	Analytical procedures
274	Air-dried BC and soil were ground using a ball grinder (Oscillating Mill MM400
275	by Retsch, Newtown PA, USA). Carbon and N contents and isotope ratios were
276	determined by combustion on an isotope ratio mass spectrometer (IRMS; Europa Hydra
277	20/20 by Europa Scientific, Crewe UK) for solid samples, and gas on a GC-C-IRMS
278	(Europa Geo 20/20-Orchid by Europa Scientific, Crewe UK). The H content of BC was
279	measured by combustion on an oxygen analyzer (PDZ Europa 20-20, Heckatech HT by
280	Europa Scientific, Crewe UK). Ash content was measured according to ASTM (2007).
281	To measure pH, BC was mixed with either water or 1 N KCl in a 1:10 mass:volume ratio,
282	stirred 3 times over 1 h and the pH was read with a gel epoxy electrode (Symphony by
283	VWR, West Chester PA USA). Cation exchange capacity (CEC) of BC was determined
284	by double extraction with 1 N ammonium acetate at pH 7, flushing with isopropyl

alcohol followed by double 2 N KCl extraction. The ammonium content of the KCl 285 extract was determined colorimetrically using a Technicon® flow analyzer (Technicon 286 287 Corporation) and Nessler's reagent (Naude 1927). Available nutrients were extracted 288 using 2.5 g BC and 25 mL Mehlich III solution (Mehlich 1984), followed by shaking for 5 min and filtering. Nutrients (K, Ca, Mg, P) were analyzed by ICP atomic emission 289 290 spectrometry (IRIS Intrepid by Thermo Elemental, Franklin MA USA). 291 292 Calculations and statistical analyses 293 The amount of C contributed by BC and soil in samples was calculated from 294 Equation 1. $\delta^{13}C_{A+B}(A+B) = \delta^{13}C_{A}A + \delta^{13}C_{B}B$ [Eq. 1] 295 Where $\delta^{13}C_A = \delta^{13}C$ of corresponding control soil within field replicate 296 $\delta^{13}C_{\rm B} = \delta^{13}C$ of BC 297 $\delta^{13}C_{A+B} = \delta^{13}C$ of field sample 298 299 A = amount of C derived from C_4 sources (soil-C) 300 B = amount of C from BC301 A+B =total amount of C in field sample When no corresponding control was available for a specific sample, the average δ^{13} C of 302 303 controls for that date was used. When no controls were available for a specific date, the average δ^{13} C of controls at the closest date was used. It is recognized that end members 304 may not necessarily contribute C with isotopic values that are identical to the bulk δ^{13} C. 305 306 For example, the easily mineralizable or leachable fraction of BC may have a different

307	δ^{13} C than the total BC. This could be due to the fact that lignin is typically depleted in 13 C
308	compared to other plant compounds (Benner et al. 1987) and greater BC yields from
309	lignin than from cellulose or hemicellulose (Yang et al. 2007). However, C isotope ratios
310	have not been found to change with increasing charring temperature of C ₃ plants (Krull et
311	<i>al.</i> 2003) suggesting that labile and stable BC fractions have similar δ^{13} C values
312	compared to the large differences between the C3-derived BC and the C4 vegetation.
313	Statistical analyses were conducted using the general linear model procedure of
314	SAS (SAS Institute Inc. 2003), and means separated using the <i>t</i> -test at α =0.05.
315	

Results

Soil

318	The highest rate of BC application (116.1 t BC ha ⁻¹) reduced soil bulk density at
319	the surface and 0.15 m depths ($P < 0.05$) (Fig. 1). Also, BC application significantly
320	increased saturated hydraulic conductivity at the surface from 2.7 to 13.4 cm h^{-1} in the
321	control and 23.2 t BC ha ⁻¹ application rate, respectively (data not shown).
322	Soil C contents were greater in plots receiving greater amounts of BC (Fig. 2),
323	although only the highest BC application rate resulted in a significant difference from the
324	control ($P < 0.05$) at 0-0.15 m depth. For the 0.15-0.3 m depth increment, both the 23.2
325	and 116.1 t BC ha ⁻¹ rates had significantly more total C than the control ($P < 0.05$, $n=3$).
326	Black C was found mostly in the surface layer which comprised the application depth
327	with the highest application rate producing a significantly greater BC stock than others
328	($P < 0.05$, $n=3$). Small amounts of applied BC were also found in the 0.15-0.3 m depth
329	increment, with the high application rate (116.1 t ha ⁻¹) always resulting in significantly
330	greater ($P < 0.05$) BC stocks than the control (Fig 2). When controlling for bulk density,
331	the non-BC stock was greater in the high BC application rate than the control at both the
332	0-0.15 and 0.15-0.3 m depths, after 2 years (Fig. 2). The concentration of non-BC was
333	greater with all BC application rates (<i>P</i> <0.05) at 0-0.15 m (6.48, 8.01, 7.81 and 10.25 mg
334	soil C g soil ⁻¹ for 0, 11.6, 23.2 and 116.1 t BC ha ⁻¹ applied, respectively). Only the highest
335	rate significantly increased non-BC content at 0.15-0.3 m, from 4.60 to 6.46 mg soil C g
336	soil ⁻¹ (<i>P</i> <0.05).

340 Plant biomass

341	Total above-ground plant biomass measured 5 months after biochar application
342	increased by 189% when 23.2 t BC ha ⁻¹ was applied. Grasses, forbs and legumes on BC
343	amended plots had 93, 292 and 1916% greater biomass, respectively, than on plots
344	without BC application (P <0.05). The proportions of forbs and legumes were also greater
345	when BC was applied (Table 2).
346	Biomass was not measured in year two, however it was observed in the second-
347	year plot that vegetation composition had greater similarity to that which predominates in
348	the region and which covered the plots before establishment. Grasses dominated and
349	forbs were not as prominent, with or without BC application, than when sampling was
350	carried out at 5 months.
351	

352 Carbon leaching

353 The concentration of POC in water was greater at both 0.15 and 0.3 m (P<0.0001 and P < 0.005, respectively) in fields with 23.2 t BC ha⁻¹ than those without BC additions. 354 355 Results were similar for the total flux of POC leached (P<0.005 at both depths) (Fig. 3). 356 Cumulatively, 317 and 267% more POC was leached at 0.15 and 0.3 m, respectively, when BC was applied (only 23.2 t BC ha⁻¹ was investigated for leaching in comparison to 357 358 the control). At 0.15 m, both the volume-weighted average POC concentration and total 359 flux of POC leached were greater with BC addition, while at 0.3 m the volume-weighted 360 concentration of POC was not significantly affected by BC additions. Greater water flux 361 therefore explains the increase in total POC leached only at 0.3 m (Table 3). Volume-

weighted δ^{13} C values for POC were not significantly different between treatments at 0.15 362 363 m. However, at 0.3 m, BC additions resulted in significantly higher volume-weighted δ^{13} C values. Calculated amounts of BC-derived POC leached were low (Table 3), 364 365 corresponding to <1% of applied BC after two years. Black C application led to greater 366 amounts of non-BC-derived POC leached (P<0.05), corresponding to increases by 308 367 and 254% at 0.15 and 0.3 m, respectively over control plots. 368 Similar trends were observed for DOC, with cumulatively 158 and 199% more 369 DOC and 131% and 122% more non-BC-derived DOC leached 0.15 and 0.3 m, 370 respectively, when BC was applied as compared to non-amended plots. However, both 371 volume-weighted concentrations and total amounts of DOC (in both treatments) were 372 generally substantially greater than for POC. Also, this trend was much stronger when 373 BC had not been applied and the relative increase of POC leaching was greater than of 374 DOC after BC addition. Thus, the ratio of total DOC-to-total POC was 1.43 and 2.31 at 375 0.15 m with and without BC addition, respectively. At 0.3 m, these ratios were 1.93 and 376 2.37, respectively. The amount of C in DOC originating from BC was 680% greater at 377 0.15 m and 1342% greater at 0.3 m than that in POC, while absolute amounts of BC-378 induced increases in leached non-BC were similar in DOC and POC at both depths 379 (Table 3).

380

381 Soil respiration

The amount of C respired followed similar trends as leached C but was consistently greater (P < 0.05) when BC was added, during both the first and second year after BC application (Fig 4; only 23.2 t BC ha⁻¹ was investigated in comparison to the

385	control). Yet overall respiration rates were greater in the first than the second year.
386	Cumulatively, 41 and 18% more C was respired when BC was applied, as compared to
387	the non-amended control, in the first and second year, respectively (Table 4).
388	A small percentage of respired C originated from applied BC (P <0.05) (Table 4).
389	For the two dates where replicate samples of CO ₂ were analyzed, no significant
390	difference (<i>P</i> >0.05) in δ^{13} C was found between the control and BC-amended soil.
391	However, BC addition resulted in a 25% increase in non-BC respired (P <0.05). This
392	increase was greater in the first year after application (40%) than the second (6%).
393	Overall, the most important fate of C originating from BC directly measured here
394	was respiration (Table 5). The proportion which was mobilized by water was two (DOC)
394 395	was respiration (Table 5). The proportion which was mobilized by water was two (DOC) to three (POC) orders of magnitude lower. Increases in non-BC losses were also greatest
394 395 396	was respiration (Table 5). The proportion which was mobilized by water was two (DOC)to three (POC) orders of magnitude lower. Increases in non-BC losses were also greatestfor respiration, and again between two and three orders of magnitude greater than for
 394 395 396 397 	was respiration (Table 5). The proportion which was mobilized by water was two (DOC)to three (POC) orders of magnitude lower. Increases in non-BC losses were also greatestfor respiration, and again between two and three orders of magnitude greater than forDOC and POC, respectively.
 394 395 396 397 398 	was respiration (Table 5). The proportion which was mobilized by water was two (DOC) to three (POC) orders of magnitude lower. Increases in non-BC losses were also greatest for respiration, and again between two and three orders of magnitude greater than for DOC and POC, respectively.
 394 395 396 397 398 399 	was respiration (Table 5). The proportion which was mobilized by water was two (DOC)to three (POC) orders of magnitude lower. Increases in non-BC losses were also greatestfor respiration, and again between two and three orders of magnitude greater than forDOC and POC, respectively.

402 **Discussion**

403 Vertical movement of total C and BC in soil

404 After two years, only a small proportion of soil-applied BC had moved below the 405 0.1 m application depth into the 0.15-0.3 m sampling depth. Leifeld *et al.* (2007) observed BC migration rates of 630 to 1160 mm yr⁻¹, where 21-69% of BC migrated 406 407 below the incorporation depth of 0.3 m, down to a maximum of 1.40 m over a maximum 408 of 95 years in peat soils with very low bulk density. In our sandy Oxisol, BC traveled 409 from 0.1 to 0.3 m with water as both POC and DOC at the first collection date after BC application and the onset of the rainy season. For the 23.2 t BC ha⁻¹ application rate, 4.25 410 kg BC ha⁻¹ (0.02% of applied amount) over two years moved below 0.3 m depth as POC 411 and DOC (from Table 3), while 103.4 kg BC ha⁻¹ (0.45% of applied amount) was found 412 413 in soil between 0.15 and 0.3 m (Fig. 2). Black C was thus retained by the mineral subsoil. 414 We suspect that bioturbation could have been additionally involved in BC 415 movement below 0.15 m. Surface-applied lime was incorporated into an acidic Australian 416 soil by earthworms to a depth of 0.15 m (Chan *et al.* 2004), and earthworm burrows were 417 observed in our plots in cores from the 0.6-1.2 m depth increment, where the inside of the 418 burrow was much darker in color than the surrounding soil. Termites were also observed 419 to be active on experimental plots. 420 At 0-0.15 m, BC stocks after two years were 53, 41 and 20% less than applied amounts of 11.6, 23.2 and 116.1 t BC ha⁻¹, respectively, and leaching below 0.15 m 421 accounts for a loss of 0.02% of applied BC at the 23.2 t ha⁻¹ rate. Given that respiration 422

423 accounted for a 2.2% loss, and that much smaller proportions were found in the soil

424 between 0.15 and 0.3 m or leached below 0.3 m, a large proportion of applied BC may

425	have been lost by surface runoff. This represents the largest BC flux in this study. Shortly
426	after application, biochar might have been hydrophobic (Knicker et al. 2007), which
427	could have facilitated runoff during intense rain events. On steep slopes in Laos, surface-
428	deposited BC was preferentially eroded in comparison to other types of soil organic
429	matter due to its lack of association with minerals shortly after deposition, its light nature
430	and the fact that it did not significantly degrade during transport (Rumpel et al. 2006a).
431	Guggenberger et al. (2008) also found a larger proportion of BC from vegetation fire
432	exported by stream water than non-BC in a tundra catchment. A total export of 1 kg BC
433	ha ⁻¹ yr ⁻¹ was observed, where 0.22 to 34.4 t BC ha ⁻¹ was stored in catchment soil and
434	uniformly distributed to a depth of 1 m. In contrast to runoff, transfer of BC between
435	plots likely did not occur in our study, since the $\delta^{13}C$ of surface soil in control plots did
436	not change according to the direction of runoff on the field.
437	Lower bulk density, improved saturated hydraulic conductivity and water
438	infiltration at the surface (Fig. 1) resulted in greater water flux at both depths when BC
439	was added. Consequently, at 0.15 m the increase in total amounts of leached C after BC
440	additions was proportionally greater than the increase in the volume-weighted
441	concentration of POC as well as DOC (Table 3). At 0.3 m, volume-weighted C
442	concentrations were lower when BC was applied, but total C leached was still greater
443	with BC addition for both POC and DOC. This implies that greater water flux was solely
444	responsible for the increase in total C leached at 0.3 m. Dissolved organic C
445	concentrations found at 0.15 m (mean = 2.6 mg L^{-1}) in our study are in the range of those
446	found at 0.1 m below an Oxisol in a Brazilian Amazon forest (mean = approx. 7 mg L^{-1})
447	(Johnson et al. 2006).

448	The proportion of BC in DOC was much greater than BC in POC (Table 3). This
449	suggests that BC preferentially travels as colloidal particles $< 0.7 \ \mu m$, or as by-products
450	of BC decomposition and/or weathering. On the other hand, leaching of non-BC as a
451	result of BC additions increased 3.5-4.1 times for POC, but only 2.3-3.1 times for DOC
452	(Table 3). The reason may lie in the adsorptivity of BC. Black C sorbs a wide range of
453	organic compounds found in soils such as phenols (Gundale & DeLuca 2007), pesticides
454	(Yu et al. 2006), glucose and DOC from birch leaf extract (Pietikäinen et al. 2000).
455	
456	Black C effect on C cycling
457	The increase in respired C was mostly not related to BC, but rather to non-BC
458	respiration (Table 4). Still, soil respiration accounted for an overwhelmingly greater
459	proportion of BC flux than movement with water (Table 5). Black C may preferentially
460	harbor microorganisms in its highly porous structure (Pietikäinen et al. 2000), and these
461	are active as demonstrated by greater basal respiration with BC than with pumice
462	(Pietikäinen et al. 2000) and by greater substrate-induced respiration by BC addition to
463	forest humus (Wardle et al. 2008), in laboratory incubation studies. However, Steiner et
464	al. (2004) found no difference in basal or substrate-induced respiration in the laboratory,
465	when BC was added to either a control or synthetically fertilized Oxisol. Our results
466	show that despite greater soil C:N ratios with BC additions (26.1 vs. 14.8 with and
467	without BC, respectively), soil respiration increased. Possible reasons are (i) a greater
468	amount of biomass production and hence mineralization of plant litter; (ii) possibly a
469	larger microbial population in soils that received BC; or (iii) greater root respiration. The
470	latter was partly captured here despite rings being kept free of vegetation, since they were

471 only inserted to 0.1 m. The increase in non-BC respired with BC application was greater
472 in the first year than the second year, and this may indicate that BC's stimulatory effect
473 on soil and/or plant respiration tapers off during the first years after application.

474 Black C application resulted in greater amounts of non-BC in soil. This follows 475 from greater plant biomass production. A literature review by Lehmann and Rondon 476 (2006) found that plant biomass increased by up to 230% with BC application in 24 477 experiments using 10 different crops, when compared to optimally managed controls not 478 receiving BC. Greater plant productivity and consequently greater root and leaf turnover 479 and microbial activity likely led to greater POC and DOC leaching with BC application, 480 and explain the observed increase in non-BC cycling and non-BC soil stocks. Induced 481 increases were greatest, in absolute terms, for respired C and this is in agreement with the 482 explanation that greater non-BC fluxes with BC occurred through increased plant 483 biomass, with associated increases in both heterotrophic and autotrophic respiration. 484 Trujillo et al. (2006) estimated below ground net primary productivity to 0.5 m of mature savanna vegetation at 12.5 t ha⁻¹ yr⁻¹ (5.0 t C ha⁻¹ yr⁻¹ with 41% C in roots) on the same 485 486 farm where this work was carried out, using the compartment-flow model. The calculated additional C input through root turnover after BC application would represent 29 t C ha⁻¹ 487 488 over two years, assuming that our measured increases in above-ground biomass (Table 2) 489 translate into similar increases below ground. This amount is greater than the sum of the additional non-BC respired (1.82 t C ha⁻¹), leached below 0.3 m (0.007 t C ha⁻¹), and of 490 491 additional non-BC in soil accrued to 0.3 m (3.98 t ha⁻¹) over two years. Thus, greater 492 biomass production alone can explain the observed increases in non-BC fluxes, and BC-493 induced increased fluxes of native soil organic C is unlikely the cause.

494	Wardle et al. (2008) observed that the addition of BC to litterbags containing
495	boreal forest humus resulted in greater humus-C loss than expected from the loss of the
496	components taken separately. Hamer et al. (2004) also found that BC enhanced the
497	degradation of glucose in laboratory incubation studies. Our findings show the opposite,
498	where applying BC to soil leads to greater non-BC content. The effect of BC on plant
499	biomass and available substrates is not accounted for in data by Wardle et al. (2008),
500	since the litter bags necessarily exclude BC-stimulated plant C input. Physical export of
501	C might also have been attributed to C mineralization, since mineral surfaces are
502	expected to retain leached C and this would not be the case in the organic layer of the
503	forest floor (Lehmann & Sohi 2008). In addition, the experiment by Hamer et al. (2004)
504	did not include plants. Our results represent the net effect of BC on the soil and plants.
505	
506	Black C stability and implications for biochar soil management and C sequestration
507	The considerable proportion of BC which may have been lost by surface erosion
508	with water could accumulate in depressions, travel mostly as sediment in waterways,
509	potentially to the deep ocean where BC remains stable for thousands of years (Masiello &
510	Druffel 1998).
511	Dissolved organic C and POC leached are likely to be adsorbed in subsoils, and
512	thus become even more stable than topsoil C. Dissolved organic C concentrations in
513	temperate and arctic forests decreased sharply as soil solution moved through mineral soil
514	(Qualls & Haines 1992; Guggenberger & Zech 1994). Experimental evidence suggests
515	that organic molecules such as plant-derived carbohydrates and lignins (Guggenberger &
516	Zech 1994) are mainly retained abiotically by the soil matrix (Qualls & Haines 1992),

and subsequently degraded *in situ* by microorganisms. Sorption of organic C to soil
minerals is enhanced by the presence of Al and Fe oxides (Kaiser et al. 1996) which are
abundant in Oxisols. Indeed, organic C below 0.6 m in a temperate grassland soil was >
2,000 yr old, and had a residence time 8 times greater than C found at the surface
(Fontaine *et al.* 2007). The small amounts of leached BC observed here are also expected
to sorb to the mineral matrix in the subsoil.

523 Over two years, we calculated that < 3% of applied BC had been respired, of 524 which 75% occurred during the first year. As time passes and labile BC fractions are 525 mineralized, respiration of BC is likely to decrease even further. Using a first-order decay 526 model with two pools, the mean residence time (MRT) of the BC obtained from isotope recovery calculated to 600 years ($r^2=0.928$; n=12). When normalized to the same mean 527 528 annual temperature of 10°C (from 26°C using a Q₁₀ of 3.4 from Cheng et al. 2008b) the 529 resulting MRT of 3,264 years is in the same order of magnitude as that from laboratory 530 incubation studies of similar duration using soils from charcoal storage sites (1,335 years, 531 Cheng et al. 2008b), Amazonian Dark Earths (4,035 years, calculated from Liang et al. 532 2008), or fresh ryegrass BC (2,000 years, Kuzyakov et al. 2009). Modeling to long-term 533 equilibrium yielded slightly longer MRT of 1,300 and 2,600 years for BC from savanna 534 fires in Australia at a similar mean annual temperature of 27°C (Lehmann et al. 2008). In 535 addition to the degree of aging and the environmental conditions, however, also the 536 production conditions have to be considered when comparing BC decomposition rates, 537 for which little information is available to date.

538

539 Conclusions

540 Less than 3% of the applied BC was lost by CO₂ evolution, with a calculated 541 MRT of 600 years at 26°C mean annual temperature (3.264 years at 10°C). Since 75% of 542 the BC losses by mineralization occurred over the course of the first year, we expect that 543 such losses will decrease even further with time as the labile BC fraction is mineralized. 544 These low respiration losses suggest high stability of BC in soils, which confirms the role 545 that BC plays as a C sink in the global C cycle. When linked to sustainable and renewable 546 feedstock production, it also affirms the validity of exploring purposeful application of 547 BC to soils as a sink enhancement of stable SOC. We did not find evidence for an 548 enhanced loss of existing SOC due to addition of BC, but rather greater amounts of non-549 BC in soil, leachate and respired C explainable by greater plant productivity. In addition 550 to higher plant productivity, greater POC and DOC leaching could also be explained by a 551 greater water flux through soil due to influences of BC on soil structure. Black C 552 additions therefore had effects on both soil and plant C dynamics. 553 The suspected physical export of BC was significantly greater than 554 mineralization, with most of the BC likely being moved by surface erosion. This 555 potentially large translocation of BC in the landscape must be recognized and losses of 556 BC from soil can not be interpreted solely as mineralization. We cannot provide 557 information about whether the leached or eroded BC is mineralized to a greater or lesser 558 extent during transport or after accumulation. Since erosion fluxes were estimated to be a 559 significant portion of the total loss, the fate and the effects of BC moving laterally in the 560 landscape warrant further investigation.

561

562 Acknowledgements

563 Our heartfelt appreciation goes out to Pedro Herrera, Diego Molina, Gonzalo 564 Rojas and Maria del Pilar Hurtado for their dedicated help in the field. Support for J. 565 Major was provided by a Canada Graduate Scholarship from the Natural Sciences and 566 Engineering Research Council of Canada, and by the Saltonstall Fellowship from the 567 Department of Crop and Soil Sciences at Cornell University. Field and laboratory work 568 was supported by grants from Cornell's Center for the Environment, a USAID linkage 569 grant to CIAT, the Bradfield award from Cornell's Department of Crop and Soil 570 Sciences, Cornell's National Science Foundation (NSF) - Integrative Graduate Education 571 and Research Traineeship (IGERT) program, as well as research travel grants from 572 Cornell's Graduate School.

573

References

576	American Society for Testing and Materials (ASTM) (2007) [online] Standard test
577	method for chemical analysis of wood charcoal ASTM D1762-84 section 7.4.
578	ASTM International, West Conshohocken PA. Available at:
579	http://www.astm.org/Standards/D1762.htm [Accessed 7 January 2009].
580	Baldock JA, Smernik RJ (2002) Chemical composition and bioavailability of thermally,
581	altered Pinus resinosa (Red Pine) wood. Organic Geochemistry, 33, 1093-1109.
582	Antal MJ, Grønli M (2003) The art, science, and technology of charcoal production.
583	Industrial & Engineering Chemistry Research, 42, 1619-1640.
584	Behling H, Hooghiemstra H (1998) Late Quaternary palaeoecology and
585	palaeoclimatology from pollen records of the savannas of the Llanos Orientales in
586	Colombia. Palaeogeography, Palaeoclimatology, Palaeoecology, 139, 251-267.
587	Bird MI, Moyo C, Veendaal EM, Lloyd J, Frost P (1999) Stability of elemental carbon in
588	a savanna soil. Global Biogeochemical Cycles, 13, 923-932.
589	Benner R, Fogel ML, Sprague EK, and Hodson RE (1987) Depletion of ¹³ C in lignin and
590	its implications for carbon stable isotope studies. Nature, 329 , 708–710.
591	Bouyoucos GJ (1927) The hydrometer as a new and rapid method for determining the
592	colloidal content of soil. Soil Science, 23, 319-331.
593	Brodowski S, Amelung W, Haumaier L, Zech W (2007) Black carbon contribution to
594	stable humus in German arable soils. Geoderma, 139, 220-228.
595	Chan KY, Baker GH, Conyers MK, Scott B, Munro K (2004) Complementary ability of
596	three European earthworms (Lumbricidae) to bury lime and increase pasture

- 597 production in acidic soils of south-eastern Australia. *Applied Soil Ecology*, 26,
 598 257-271.
- Cheng CH, Lehmann J, Thies JE, Burton SD, Engelhard MH (2006) Oxidation of black
 carbon by biotic and abiotic processes. *Organic Geochemistry*, **37**, 1477-1488.
- 601 Cheng CH, Lehmann J, Engelhard M (2008a) Natural oxidation of black carbon in soils:
- 602 changes in molecular form and surface charge along a climosequence.

603 *Geochimica et Cosmochimica Acta*, **72**, 1598-1610.

- 604 Cheng CH, Lehmann J, Thies JE, Burton S (2008b) Stability of black carbon in soils
 605 across a climatic gradient. *Journal of Geophysical Research*, **113**, G02027.
- 606 Czimczik CI, Masiello CA (2007) Controls on black carbon storage in soils. *Global* 607 *Biogeochemical Cycles*, 21, GB3005.
- 608 Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine
- 609 D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias
- 610 PL, Wofsy SC and Zhang X (2007) Couplings between changes in the climate
- 611 system and biogeochemistry. In: *Climate Change 2007: The Physical Science*
- 612 Basis. Contribution of Working Group I to the Fourth Assessment Report of the
- 613 Intergovernmental Panel on Climate Change (eds. Solomon S, Qin D, Manning
- 614 M, Chen Z, Marquis M, Averyt KB, Tignor M and Miller HL), pp. 499-587.
- 615 Cambridge University Press, Cambridge, United Kingdom and New York, NY,616 USA.
- Edwards NT (1982) The use of soda-lime for measuring respiration rates in terrestrial
 systems. *Pedobiologia*, 23, 321-330.

- Emrich W (1985) Handbook of Charcoal Making: the Traditional and Industrial
 Methods. Springer, Berlin.
- Fontaine S, Barot S, Barre P, Bdioui N, Mary B, Rumpel C (2007) Stability of organic
 carbon in deep soil layers controlled by fresh carbon supply. *Nature*, 450, 277-
- 623 280.
- Forbes MS, Raison RJ, Skjemstad JO (2006) Formation, transformation and transport of
 black carbon (charcoal) in terrestrial and aquatic ecosystems. *Science of the Total Environment*, **370**, 190-206.
- 627 Glaser B, Haumaier L, Guggenberger G, Zech W (1998) Black carbon in soils: the use of
- 628 benzenecarboxylic acids as specific markers. *Organic Geochemistry*, **29**, 811-819.
- 629 Glaser B, Guggenberger G, Zech, W (2003) Identifying the pre-Columbian
- 630 anthropogenic input on present soil properties of Amazonian dark earths (Terra
- 631 Preta). In: Amazonian Dark Earths: Explorations in Space and Time (eds Glaser
- B, Woods WI), pp. 145-158 Springer-Verlag, Berlin.
- 633 Grogan P (1998) CO₂ flux measurement using soda lime: Correction for water formed
- 634 during CO₂ adsorption. *Ecology*, **79**, 1467-1468.
- 635 Guggenberger G, Zech W (1994) Composition and Dynamics of Dissolved
- 636 Carbohydrates and Lignin-Degradation Products in 2 Coniferous Forests, Ne
- 637 Bavaria, Germany. Soil Biology & Biochemistry, 26, 19-27.
- 638 Guggenberger G, Rodionov A, Shibistova O, et al. (2008) Storage and mobility of black
- 639 carbon in permafrost soils of the forest tundra ecotone in Northern Siberia. *Global*
- 640 *Change Biology*, **14**, 1367-1381.

641	Gundale MJ, DeLuca TH (2007) Charcoal effects on soil solution chemistry and growth
642	of Koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biology and
643	<i>Fertility of Soils</i> , 43 , 303-311.
644	Hamer U, Marschner B, Brodowski S, Amelung W (2004) Interactive priming of black
645	carbon and glucose mineralisation. Organic Geochemistry, 35, 823-830.
646	Hammes K, Torn MS, Lapenas AG, Schmidt MWI (2008) Centennial black carbon
647	turnover observed in a Russian steppe soil. Biogeosciences, 5, 1339-1350.
648	Hockaday WC, Grannas AM, Kim S, Hatcher PG (2007) The transformation and
649	mobility of charcoal in a fire-impacted watershed. Geochimica et Cosmochimica
650	<i>Acta</i> , 71 , 3432-3445.
651	Johnson M, Lehmann J, Guimaraes Couto E, Novaes Filho JP, Riha SJ (2006) DOC and
652	DIC in flowpaths of Amazonian headwater catchments with hydrologically
653	contrasting soils. <i>Biogeochemistry</i> , 81 , 45-57.
654	Kaiser K, Guggenberger G, Zech W (1996) Sorption of DOM and DOM fractions to
655	forest soils. Geoderma, 74, 281-303.
656	Knicker H, Muffler P, Hilscher A (2007) How useful is chemical oxidation with
657	dichromate for the determination of "black carbon" in fire-affected soils?
658	<i>Geoderma</i> , 142 , 178-196.
659	Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon
660	decomposition and incorporation into microbial biomass estimated by 14C
661	labeling. Soil Biology and Biochemistry, 41, 210-219.

662	Krull ES, Skjemstad JO, Graetz D, Grice K, Dunning W, Cook G, Parr JF (2003) C-13-
663	depleted charcoal from C4 grasses and the role of occluded carbon in phytoliths.
664	<i>Organic Geochemistry</i> , 34 , 1337-1352.
665	Laubel A, Jacobsen OH, Kronvang B, Grant R, Andersen HE (1999) Subsurface drainage
666	loss of particles and phosphorus from field plot experiments and a tile-drained
667	catchment. Journal of Environmental Quality, 28, 576-584.
668	Lehmann J (2007) Bio-energy in the black. Frontiers in Ecology and the Environment, 5,
669	381-387.
670	Lehmann J, Rondon M (2006) Bio-Char soil management on highly weathered soils in
671	the humid tropics. In: Biological Approaches to Sustainable Soil Systems (eds
672	Uphoff NT, Ball AS, Fernandes E et al.), pp. 517-530. CRC/Taylor & Francis,
673	Boca Raton.
674	Lehmann J, Sohi S (2008) Comment on "Fire-derived charcoal causes loss of forest
675	humus". Science, 321 , 1295.
676	Lehmann J, Gaunt J, Rondon M (2006) Bio-char sequestration in terrestrial ecosystems -
677	a review. Mitigation and Adaptation Strategies for Global Change, 11, 403-427.
678	Lehmann J, Skjemstad JO, Sohi S, Carter J, Barson M, Falloon P, Coleman K, Woodbury
679	P, Krull E (2008) Australian climate-carbon cycle feedback reduced by soil black
680	carbon. Nature Geoscience, 1, 832–835.
681	Liang B, Lehmann J, Solomon D, Sohi S, Thies JE, Skjemstad JO, Luizão FJ, Engelhard
682	MH, Neves EG, Wirick S (2008) Stability of biomass-derived black carbon in
683	soils. Geochimica et Cosmochimica Acta, 72, 6096-6078.

- Leifeld J, Fenner S, Muller M (2007) Mobility of black carbon in drained peatland soils.
 Biogeosciences, 4, 425-432.
- Masiello CA (2004) New directions in black carbon organic geochemistry. *Marine Chemistry*, **92**, 201-213.
- Masiello CA, Druffel ERM (1998) Black carbon in deep-sea sediments. *Science*, 280,
 1911-1913.
- McClain ME, Richey JE, Brandes JA, Pimentel TP (1997) Dissolved organic matter and
 terrestrial-lotic linkages in the central Amazon basin of Brazil. *Global*

č

692 *Biogeochemical Cycles*, **11**, 295-311.

- Mehlich A (1984) Mehlich-3 soil test extractant a modification of Mehlich-2 extractant.
 Communications in Soil Science and Plant Analysis, 15, 1409-1416.
- 695 Mitra S, Bianchi TS, McKee BA, Sutula M (2002). Black carbon from the Mississippi
- river: quantities, sources, and potential implications for the global carbon cycle. *Environmental Science & Technology*, **36**, 2296-2303.

698 Naude SM (1927) Information on Nessler's reagent (in German). Zeitschrift fur

- 699 *Physikalische Chemie-Stochiometrie und Verwandtschaftslehre*, **125**, 98-110.
- 700 Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2008) Long-

term dynamics of black carbon in cultivated soil. *Biogeochemistry*, **89**, 295-308.

- 702 Pessenda LCR, Gouveia SEM, Aravena R (2001) Radiocarbon dating of total soil organic
- matter and humin fraction and its comparison with 14C ages of fossil charcoal.
- 704 *Radiocarbon*, **43**, 595-601.
- Pietikäinen J, Kiikkila O, Fritze H (2000) Charcoal as a habitat for microbes and its effect
 on the microbial community of the underlying humus. *Oikos*, **89**, 231-242.

707	Qualls RG, Haines BL (1992) Biodegradability of dissolved organic-matter in forest
708	throughfall, soil solution, and stream water. Soil Science Society of America
709	Journal, 56 , 578-586.
710	Rippstein G, Amezquita E, Escobar G, Grollier C (2001) Condiciones naturales de la
711	sabana. In: Agroecologia y Biodiversidad de las Sabanas en los Llanos Orientales
712	de Colombia (eds Rippstein G, Escobar G, Motta F), pp. 1-21.Centro
713	Internacional de Agricultura Tropical (CIAT), Cali, Colombia.
714	Rumpel C, Chaplot V, Planchon O, Bernadou J, Valentin C, Mariotti A (2006a)
715	Preferential erosion of black carbon on steep slopes with slash and burn
716	agriculture. Catena, 65, 30-40.
717	Rumpel C, Alexis M, Chabbi A, Chaplot V, Rasse D.P, Valentin C, Mariotti A (2006b)
718	Black carbon contribution to soil organic matter composition in tropical sloping
719	land under slash and bum agriculture. Geoderma, 130, 35-46.
720	SAS Institute Inc. (2003) SAS version 9.1 for Windows. Cary NC.
721	Skjemstad JO, Taylor JA (1999) Does the Walkley-Black method determine soil
722	charcoal? Communications in Soil Science and Plant Analysis, 30, 2299-2310.
723	Skjemstad JO, Clarke P, Taylor JA, Oades JM, McClure SG (1996) The chemistry and
724	nature of protected carbon in soil. Australian Journal of Soil Research, 34, 251-
725	271.
726	Skjemstad JO, Taylor JA, Smernik RJ (1999a) Estimation of charcoal (char) in soils.
727	Communications in Soil Science and Plant Analysis, 30, 2283-2298.

728	Skjemstad JO, Taylor JA, Janik LJ, Marvanek SP (1999b) Soil organic carbon dynamics
729	under long-term sugarcane monoculture. Australian Journal of Soil Research, 37,
730	151-164.
731	Soil Survey Staff (1994) Key to Soil Taxonomy. Pocahontas Press, Blacksburg VA.
732	Steiner C, Teixeira WG, Lehmann J, Zech W (2004) Microbial response to charcoal
733	amendments of highly weathered soils and Amazonian Dark Earths in central
734	Amazonia - Preliminary results. In: Amazonian Dark Earths: Explorations in
735	Space and Time (eds Glaser B, Woods WI), pp. 195-213. Springer-Verlag, Berlin.
736	Totsche KU, Jann S, Kögel-Knabner I (2007) Single event-driven export of polycyclic
737	aromatic hydrocarbons and suspended matter from coal tar-contaminated soil.
738	Vadose Zone Journal, 6, 233-243.
739	Trujillo W, Fisher MJ, Lal R (2006) Root dynamics of native savanna and introduced
740	pastures in the Eastern Plains of Colombia. Soil and Tillage Research, 87, 28-38.
741	Wardle DA, Nilsson MC, Zackrisson O (2008) Fire-derived charcoal causes loss of forest
742	humus. Science, 320 , 629-629.
743	Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose,
744	cellulose and lignin pyrolysis. Fuel, 86, 1781-1788.
745	Yu XY, Ying GG, Kookana RS (2006) Sorption and desorption behaviors of diuron in
746	soils amended with charcoal. Journal of Agricultural and Food Chemistry, 54,
747	8545-8550.
748	
749	

TABLES

- **Table 1** Properties of BC applied to a Colombian savanna Oxisol. Values are averages of
- two analytical replicates

		BC ma	aterial
		1	2
pH	(H_2O)	10.14	10.07
pН	(KCl)	8.92	8.74
Total C	%	71.7	63.5
$\delta^{13}C$	‰	-28.86	-28.20
Total N	%	0.26	0.32
C/N		280	197
H/C		0.022	0.027
O/C		0.22	0.23
Ash	%	8.8	12.0
Ca*	$mg g^{-1}$	2.93	6.44
Mg*	$\mu g g^{-1}$	291	185
P*	$\mu g g^{-1}$	259	116
K*	$mg g^{-1}$	3.30	2.61
CEC	mmol _c kg ⁻¹	235	248

755 *Available nutrient contents

	Dry r	natter	Proportion of total			
	(t h	a ⁻¹)	(%)			
	- BC	+ BC	- BC	+ BC		
Grasses	1.13	2.19	69	46		
Forbs	0.47	1.86	29	39		
Legumes	0.04	0.71	2	15		
Total	1.64	4.75	100	100		

Table 2 Amount and proportion of above-ground biomass of spontaneous vegetation

	759	sampled on a control and BC-amended (23.2 t C ha ⁻¹) Colombian savanna Oxid	sol.
--	-----	---	------

764 **Table 3** Total amounts and volume-weighted average concentrations of C leached over two years as POC and DOC, at 0.15 and 0.3 m

depths on a Colombian savanna Oxisol. Different letters represent significant differences (P<0.05) between control (-BC) and BC-

amended (+BC) soil

Volume-weighted averages					Total amounts					
Depth			Total C conc.	δ ¹³ C	C leached	Proportion from soil	Proportion from BC	Prop. of applied BC	BC leaching rate*	BC-induced increase in non-BC leaching [*]
m			$\mu g \ C \ mL^{\text{-1}}$	‰	kg C ha ⁻¹	%	%	%	kg C ha ⁻¹ yr ⁻¹	kg C ha ⁻¹ yr ⁻¹
0.15	POC	- BC	0.91b	-15.87a	7.3b	100a	0b	0	0b	0b
		+ BC	2.50a	-13.91a	30.2a	98.1b	1.9a	0.003	0.32a	12.2a
	DOC	- BC	2.21b	-17.57a	16.8b	100a	0b	0	0b	0b
		+ BC	5.73a	-16.69a	43.2a	89.4b	10.6a	0.020	2.49a	11.9a
0.3	POC	- BC	2.04a	-16.86a	2.2b	100a	0b	0	0b	0b
		+ BC	1.39a	-14.95b	8.0a	96.6b	3.4a	0.001	0.15a	3.0a
	DOC	- BC	5.02a	-18.39a	5.2b	100a	0b	0	0b	0b
		+ BC	2.68b	-17.91a	15.5a	74.3b	25.7a	0.017	2.16a	3.4a

*Sampling was carried out over 2 rainy seasons and 1 dry season. To generate this estimate, a second dry season was assumed to last
the same number of days as the season sampled.

771 **Table 4** Total C respired over two years from a Colombian savanna Oxisol, measured using soda lime traps during the rainy season

only. Years 1 and 2 were sampled from different plots. Different letters represent significant differences (P<0.05) between control (-

873 BC) and BC-amended (+BC). Data was extrapolated from 24 h soda lime assays, with assay dates taken as center points of time

774 intervals between assays

		Volume- weighted average					
	Total respired C	Respired BC	Prop. of C as BC	Prop. of applied BC respired	BC respiration rate*	BC-induced increase in non-BC respiration*	δ ¹³ C
	t ha ⁻¹	kg ha ⁻¹	%	%	kg ha ⁻¹ yr ⁻¹	t ha ⁻¹ yr ⁻¹	%0
- BC	9.97b	0b	0b	0b	0b	0b	-13.76a
+ BC	13.03a	513.8a	3.94a	2.21a	377.0a	1.82a	-14.08a

*to generate these estimates, the respired amounts for the day with lowest measured respiration in each rainy season were used to estimate respiration for the duration of the dry season. Respired BC was estimated using the average proportion of BC respired for each year. The dry season was taken to last the same number of days in 2006 as in 2005 and was defined as ending on the first day when free-draining water was collected in March.

779

780

783 **Table 5** Fate of soil-applied BC, two years after application to soil (including dry seasons). Losses of BC by surface runoff were not

Flux type		Total flux over 2 years	Proportion of total flux	Rate	Proportion of applied BC	BC-induced increase in non-BC flux	Net effect on C stocks*
		kg C ha ⁻¹	%	kg ha ⁻¹ yr ⁻¹	%	kg ha ⁻¹ yr ⁻¹	t C ha ⁻¹
Respired as CO ₂		751.9	98.8	377.0	3.241	1818.0	+22.80
Leached below	as POC	0.586	0.08	0.32	0.003	12.18	
0.15 m	as DOC	4.580	0.60	2.49	0.020	11.90	
	Total	5.166	0.68	2.81	0.023	24.08	+24.55
Leached below	as POC	0.276	0.04	0.15	0.001	3.03	
0.3 m	as DOC	3.978	0.32	2.16	0.017	3.44	
	Total	4.254	0.52	2.31	0.018	6.47	+2.56
Total		761.32	100.00		3.282		
Net for respiration and leaching to 0.3 m							+22.79

784 measured and are excluded

785 *For each line, the BC-induced "loss" of non-BC was added to the amount of BC lost, and this was subtracted from the C added as BC

786 (23.2 t ha⁻¹) and additional non-BC as found in soil samples (Fig. 2). For respiration the depth increment used was 0-0.3 m.

788 FIGURE CAPTIONS

789

790 Fig. 1 Bulk density of a Colombian savanna Oxisol, 18 months after BC incorporation to

791 0.1 m (\pm SE, *n*=6 to 0.3 m depth, and *n*=4 below 0.3 m). Significant differences (*P*<0.05)

within a single depth are represented by different letters.

793

Fig. 2 Total soil C concentration (A) and C stocks from soil and BC (B and C), two rainy seasons after BC application to a Colombian savanna Oxisol under natural vegetation (\pm SE, *n*=3). Significant differences within a single depth are represented by different lowercase letters (significant differences in total C at 0.3 m not shown), and significant main effects are indicated by ** (*P*<0.01) and * (*P*<0.05). Letters showing differences in BC content in panels B and C are placed above bars. Points in panel A are placed at the center of the depth increment they represent.

801

802

803 **Fig. 3** Concentration (left), total amount (center) and δ^{13} C values (right) of POC (top) and

804 DOC (bottom) leached over two years in free-draining lysimeters placed at 0.15 and 0.3

805 m depth, either with $(+BC, 23.2 \text{ t C ha}^{-1})$ or without BC addition (-BC) to a Colombian

806 savanna Oxisol under natural vegetation (\pm SE, n=1, 2 or 3 depending on whether

samples were collected for all replicates in the field, and whether samples were lost

808 during transportation or storage). In the δ^{13} C panels, the upper reference line corresponds

809 to the δ^{13} C value of the soil and the lower line to the δ^{13} C value of BC.

811	Fig. 4 Amount of C respired and δ^{13} C from a Colombian savanna Oxisol, measured using
812	soda lime traps (\pm SE, <i>n</i> =6 for amounts of C). Years 1 and 2 were sampled from different
813	plots. Average rainfall collected over irregular time periods is shown with bars and given
814	per day. For δ^{13} C, all samples within chosen intervals (shaded and white areas) were
815	composited, and replicates were analyzed separately only on the first date of year 1 and
816	the last date of year 2 (\pm SE, <i>n</i> =3). The upper reference line corresponds to the δ^{13} C value
817	of the soil and the lower line to the value for BC. * indicates missing rainfall data.

FIGURES

- Figure 3.

843 844 Figure 4.