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Abstract

The northwest and central parts of the Indo-Gangetic Plain (IGP) of South Asia are among the most 
productive agricultural regions of the world. But production is becoming unsustainable due to 
depletion or degradation of soil and water resources, rising production costs, decreasing input use 
efficiency, and increasing environmental pollution. In contrast, cereal production systems in the 
eastern IGP are largely traditional, with low yields and farm income. Eco-efficient farming can be used 
to enhance productivity throughout the IGP. Eco-efficient agriculture can borrow technologies or 
packages of practices from intensive agriculture and marry them with practices that reduce 
environmental impacts, such as laser-aided land leveling, reduced or zero tillage and direct/drill 
seeding, precise water management, crop diversification, and improved plant nutrient management. 
Such eco-efficient practices are expected to raise land and water productivity, improve resource use 
efficiency, reduce risks and vulnerability of cropping systems to climate change, diversify farm 
income, and improve family nutrition and livelihood. A comprehensive understanding of scientific, 
technical, environmental, economical, and societal issues, including farmers’ re-education, are 
prerequisite to effectively promote eco-efficient farming practices.
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The Indo-Gangetic Plains

The Indo-Gangetic Plains cover some  
700,000 km2 in Pakistan, India, Nepal, and 
Bangladesh and are home to nearly one billion 
people.

Narang and Virmani (2001), divided the IGP 
into five subregions, based on physiographic, 
climatic, and vegetation patterns (Figure 1).

Subregions 1 and 2 (northwestern IGP) have a 
semiarid climate with 400–800 mm annual 
rainfall. The land is gently sloping or flat. The 
topography is dotted with saucer-shaped 
depressions with poor drainage, locally named as 
“chaurs”. These create flood-plain lakes or 
wetlands with 50 to 400 cm water depth during 
the peak rainy season. They are more abundant in 
the eastern than in the western part of the IGP.  In 
coastal areas, these depressions form the marshy/
swampy lands. They are used as community 
fishing ground in the wet season, and for winter 
rice, maize and vegetable crops after the water 
recedes. Soils are alluvial and calcareous with 
some alkaline soils in pockets. The groundwater is 
mostly depleted or of marginal quality. Mean farm 
size is 3.55 ha, mostly irrigated and mechanized 
(Table 1). Some parts are intensively cultivated, 
with liberal application of chemical inputs, while 
agriculture in other areas is rainfed with limited 

use of inputs (Singh et al., 2009). Surface water 
and groundwater are used for irrigation and 
many farmers take full advantage of improved 
technologies to enhance crop yields and profit 
(Erenstein et al., 2007; Erenstein and Laxmi, 
2008; Singh et al., 2009). Wheat and basmati 
and non-basmati long grain rice are the main 
crops in subregion 1, while the main crops in 
subregion 2 are basmati and long grain rice, 
wheat, maize, black gram (Phaseolus mungo 
L.), green gram or mung bean [Vigna radiate 
(L.) R. Wilczek], sunflower, potato, sugarcane, 
cowpea, and dhaincha (Sesbania aculeata 
Pers.) grown for green manure in rice-based 
systems (Gupta et al., 2005). The annual land 
use intensity (LUI) is relatively low (182%) (Singh 
et al., 2009).

In the central IGP (subregion 3), the climate is 
hot subhumid, with 650–970 mm of annual 
rainfall. The topography is mostly saucer-shaped 
(see description above for subregions 1 and 2). 
Soils are alluvial with pockets of alkaline soils on 
the plains and acidic soils on the hills. Major 
crops cultivated include rice, sugarcane, wheat, 
maize, soybean, cotton, potato, and pigeon pea 
in rice- or maize-based systems, with an annual 
LUI of 191%. Mean farm size is 0.94 ha (Table 1), 
with limited farm mechanization and adoption of 
resource conserving technologies (RCTs) (Singh 
et al., 2009).
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Figure 1. Five sub-regions of the Indo-Gangetic Plains (IGP) in South Asia.

 SOURCE: Narang and Virmani (2001).
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Eastern IGP (subregions 4 and 5) has a hot 
subhumid climate with a mild winter (5.4 °C in 
January) and higher rainfall (1000–1800 mm per 
annum) than other regions. The land is gently 
sloping with alluvial, calcareous/alkaline, and 
acidic soils that are poorly drained. Flooding is a 
serious problem in this area. The rich 
groundwater resource is contaminated with 
fluoride and arsenic in some pockets. Half of the 
irrigated area is supplied with surface water and 
half using groundwater. Rice is the dominant 
crop, followed by potato, wheat, maize, sunflower, 
onion, jute, and lentil in rice-based cropping 
systems. Cropping intensity is quite high (LUI of 
233%) (Singh et al., 2009) and mean farm size is 
only 0.59 ha (Table 1). Farmers are relatively poor, 
and use power tillers for land preparation and 
seeding (Singh et al., 2009). Farmers supplement 

their income with other activities such as working 
as laborers on other farms or in local industries, 
services, and business (Erenstein, 2009). 
Migration for off-farm employment is also 
common in other subregions.

Two or more crops are grown each year in 
most parts of the IGP. Rice followed by wheat 
(R–W) is the predominant cropping system in the 
IGP in India, and Nepal, while double-cropping 
with rice (R–R) is the predominant cropping 
system in the IGP in Bangladesh, and cotton–
wheat (Cot–W) is predominant in Pakistan  
(Table 2). Maize cultivation has increased in recent 
times both in terms of area and production in the 
eastern IGP because winter maize is more 
productive and profitable and requires less water 
than winter (boro) rice (Timsina et al., 2011). 

Table 1. Selected indicators of farmers’ resource endowments and farm characteristics in the Indo-Gangetic Plains 
(IGP).

 Particulars Northwest IGP Central IGP Eastern IGP

 Mean farm size (ha/household) 3.55 0.94 0.59

 Share of operational land owned (%) 91 85 86

 Irrigated land (%) 100 60 90

 Rainfed land (%) 0 40 10

 Depth to water table, 1997/98 (m) 11 8 32

 Depth to water table, 2007/08 (m) 19 14 39

 Annual land use intensity (% of cultivated area) 182 191 233

 Crops   

  Monsoon season Rice, sugarcane, Rice, maize, pulses Rice, maize, fiber  
    fodder, pearl millet  crops, vegetables

  Winter season Wheat, sugarcane, Wheat, vegetables, Boro rice, maize,  
    fodder, vegetables pulses, mustard vegetables, wheat

 Livestock (per household)   

  Cattle 4.3 1.4 1.9

  Goats/sheep 0.7 1.1 1.9

  Chickens 14.1 5.2 6.9

 Agricultural implements   

  Tractors (per 1,000 households) 260.6 36.3 2.0

  Power tillers (per 1,000 households) 0.0 7.0 33.6

  Zero-till seed drills (per 1,000 households) 35.2 10.9 0.0

  Rotovators (per 1,000 households) 7.8 0.8 0.0

  Reapers (per 10,000 households) 8.9 0.0 0.0

  Combine harvesters (per 10,000 households) 5.1 0.0 0.0

  Laser levelers (per 100,000 households) 2.5 0.0 0.0

SOURCE: Singh et al. (2009).
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Cereals may also be alternated with other crops, 
such as potato, lentil, chickpea, mustard, or 
sunflower in winter, and jute, fodder maize, rice, 
mung bean, or cowpea during the spring season.

The area under R–W on the IGP trebled and 
production increased fivefold from 1960 to  
2000 (Saharawat et al., 2009). Now, however, the 
cereal systems in subregions 1–3 are becoming 
more and more unprofitable and less sustainable 
due to yield stagnation, a 50% decline in total 
factor productivity, increasing production costs 
(high cost of land, labor, and chemical inputs), 
and declining returns from additional inputs 
(Ladha et al., 2003; Singh et al., 2009). Despite 
this, farmers continue to intensify R–W systems 
and are reluctant to diversify to crops with lower 
water requirements, mainly because of high 
subsidies for power, fertilizer, and irrigation water, 
and well-developed production and marketing 
systems for rice and wheat in the region 
(Erenstein, 2009; Saharawat et al., 2009). In the 
eastern IGP (subregions 4 and 5), rice and wheat 
are produced in traditional, labor-intensive 
systems on small (average 0.59 ha) farms. 
Frequent droughts, flooding in the monsoon 
season, late rice harvests which delay planting of 
wheat, and limited use of inputs are common and 
lead to low productivity and returns (Gupta and 
Seth, 2007). However, LUI is high (233%) because 
of year-round cropping (Erenstein, 2009; Singh et 
al., 2009).

The problems of both regions of the IGP can 
be addressed through adoption of eco-efficient 
agriculture that enhances and sustains 
productivity and profitability of the rice-, wheat- 
and maize-based systems while minimizing the 
adverse impact on the environment.

Rising Demand, Declining 
Yields: the Need for Eco-
Efficient Agriculture
It is estimated that demand for food and 
non-food commodities is likely to increase by 
75–100% globally between 2010 and  
2050 (Keating et al., 2010; Tilman et al., 2011). 
The increase in demand in South Asia is 
expected to be at least as much. As there is little 
scope for expanding the area under cultivation 
in South Asia, there is thus an urgent need to 
further intensify land use and increase 
productivity of cereal systems to meet the 
growing demand. Projections indicate that 
production of rice, wheat, and maize will have to 
increase by about 1.1%, 1.7%, and 2.9% per 
annum, respectively, over the next four decades 
to ensure food security in South Asia (O. 
Erenstein, pers. comm.). National mean yields 
of all three cereals in South Asia are below 
global averages (except for maize in 
Bangladesh) and yield gaps of 50% or more 
exist in all the three crops (Table 3) (Aggarwal et 
al., 2008; Lobel et al., 2009). Thus, there is a 

Table 2. Major cereal cropping systems (area in m ha and % of total area) in four South Asian countries.

 Cereal cropping Bangladesh India Nepal Pakistan Total

 Systems m ha % m ha % m ha % m ha % m ha %

 R–W 0.60 5.05 9.20 11.81 0.57 18.15 2.20 17.09 12.57 11.88

 R–R 4.50 37.88 4.70 6.03 0.30 9.55 – – 9.50 8.98

 R–R–R 0.30 2.53 0.04 0.05 – – – – 0.34 0.32

 R–M 0.35 2.95 0.53 0.68 0.43 13.69 – – 1.31 1.24

 R–Pulses – – 3.50 4.49 – – – – 3.50 3.31

 R–Veg – – 1.40 1.80 – – – – 1.40 1.32

 R–Potato 0.30 2.53 – – – – – – 0.30 0.28

 Cot–W – – 1.39 1.78 – – 3.10 24.09 4.49 4.24

 M–W – – 1.80 – 0.04 1.27 1.00 7.77 2.84 2.68

 Millet–W – – 2.44 3.13 – – – – 2.44 2.31 

R = Rice; W = Wheat; M = Maize; Veg = Vegetables; Cot = Cotton; – refers either data not available or negligible area. 

SOURCE: Jat et al. (2011).
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great potential to increase the yields of major 
cereals in South Asia (Ladha et al., 2009; Timsina 
et al., 2011).

Economic and environmental 
concerns
Energy use is generally high in intensive cereal 
production systems. Of the total energy used for 
crop production, fertilizer and chemical energy 
inputs comprise 47% for wheat, 43% for rice 
(Khan et al., 2009b), and 45% for maize (Kraatz et 
al., 2008). About 60% of this is due to nitrogen 
(N) fertilizers alone. In the R–W system in 
northwest IGP most of the energy is used for land 
preparation—wet tillage and puddling for rice and 
preparatory tillage operations for wheat, pump 
irrigation, and combine harvesting. Conventional 
tillage is not only fuel- and cost-inefficient, it also 
contributes to a larger carbon footprint through 
increased emission of CO2 (Grace et al., 2003).

 The liberal or excessive use of natural 
resources and external inputs such as N fertilizers 
and other agrochemicals in the western and 
central regions of IGP has caused environmental 
and ecological degradation—soil degradation 
(salinity and alkalinity, soil erosion), depletion of 
soil organic matter due to oxidation of soil carbon 
under conventional tillage, depletion of 
groundwater in large areas, pollution of surface 

and groundwater, and leakage of reactive N into 
the environment (Bijay-Singh et al., 2008). 

Power subsidy to farms leads to inefficient use 
of electricity, particularly for pumping water. For 
example, in 2007, 7.5 billion units of electricity 
(28% of total power consumed in the state) were 
used for tube-wells in Punjab alone, in addition to 
the diesel consumed (Anonymous, 2008). 

As a result of excessive exploitation of 
groundwater, the depth to water table has 
increased steadily in many areas (Hira and Khera, 
2000; Hira, 2009; Rodell et al., 2009), for 
example, by 0.2 m/year between 1973 and 2001 
and by 1 m/year between 2000 and 2006 in 
Punjab (Humphreys et al., 2010). The rates of 
groundwater depletion were greatest in the 
northwest Indian IGP: in 2009 groundwater was 
overexploited in 103 out of 138 administrative 
blocks in Punjab and 55 out of 108 in Haryana 
(Humphreys et al., 2010). With the continued 
decline in water table, power consumption for 
tube-well irrigation will double by 2023 and the 
cost to farmers of maintaining pump 
infrastructure and replacing failed pumps will 
escalate. Moreover, saline groundwater is 
intruding into fresh groundwater aquifers 
(Humphreys et al., 2010). Fluoride and arsenic 
contamination of groundwater is also a problem 

Table 3. Yields (t/ha) and yield gaps (t/ha) for rice, wheat, and maize in sub-regions of the Indo-Gangetic Plains (IGP).

 Yield and North-west Central Eastern 

 yield gaps Pak. Punjab Indian Punjab Haryana Uttar Pradesh Bihar Bangladesh

 Rice (Paddy)

  Potential yield 5.2(M); 3.8(F) 8.8(M); 6.5(E) 6.6(E); 5.9(F) 6.1(M); 6.6(E) 5.5(M); 6.1(E) 5.4(E); 7.1(E)

  Average yield 3.6(M); 1.6(F) 5.0(M); 5.0(E) 5.0(E); 4.7(F) 3.1(M); 2.9(E) 2.0(M); 1.8(E) 4.6(E); 6.3(E)

  Yield gap 1.6(M); 2.2(F) 3.8(M); 1.5(E) 1.6(E); 1.2(F) 3.0(M); 3.7(E) 3.5(M); 4.3(E) 0.8 (E); 0.8(E)

 Wheat      

  Potential yield 6.8(M); 4.6(F) 5.5(M); 4.6(E) 4.0(M); 5.4(E) 5.0(M); 3.8(E) 3.8(M)  4.2(F); 3.4(E)

  Average yield 2.7(M); 2.5(F) 4.1(M); 4.1(E) 3.8(M); 4.2(E) 2.5(M); 2.5(E) 2.2(M)  2.9(F); 2.5(E)

  Yield gap 4.1(M); 2.1(F) 1.4(M); 0.5(E) 0.2(M); 1.2(E) 2.5(M); 1.3(E) 1.6(M) 1.3(F); 0.9(E)

 Maize      

  Potential yield 9.2(M); 6.9(F) 5.1(M) – 3.0(E) 5.7(E) 9.0(M)

  Average yield 3.5(M); 1.9(F) 2.6(M) – 1.3(E) 1.7(E) 5.7(M)

  Yield gap 5.7(M); 5.0(F) 2.5(M) – 1.7(E) 4.0(E) 3.3(M) 

(M): Model-based; (E): Experimental on-station or on-farm; (F): Farmers’ best yield.
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in some areas of the IGP. Fluoride in groundwater 
above the safe limit of 1.5 mg/liter has been 
recorded in five districts of Bihar, two districts of 
Chhattisgarh, four districts of Jharkhand, and 
seven districts each of Uttar Pradesh and West 
Bengal. Similarly, occurrence of arsenic above the 
safe limit of 0.01 mg/liter in groundwater from the 
intermediate aquifer at a depth of 20 to 100 m has 
been observed in 12 districts of Bihar, five districts 
of Uttar Pradesh, and one district each of 
Chhattisgarh and Assam (Anonymous, 2008; Hira, 
2009).

Agricultural systems in northwest and central 
IGP also produce large amounts of greenhouse 
gases (GHGs), particularly from flooded rice fields 
(Pathak et al., 2002; Pathak et al., 2003; Bhatia et 
al., 2010; Pathak et al., 2011). While emission of 
methane (CH4) from flooded rice systems can be 
reduced by adopting different water and crop 
management strategies (Adhya et al., 2009; 
Gupta-Vandana et al., 2009), such changes, plus 
increased N fertilizer use, in intensive cereal 
systems would be likely to increase production of 
nitrous oxide (N2O), another GHG (Pathak et al., 
2007; Wassmann et al., 2009). This trade-off 
between CH4 and N2O emissions is a major 
limitation in devising an effective strategy for 
mitigating GHG emissions from the R–W system 
(Ladha et al., 2009). Burning of rice residues to 
clear the land for wheat also releases large 
amounts of CO2 into the atmosphere (Ladha et al., 
2003). Farm machinery, including the pumps used 
for irrigation, emitted 283–437 kg CO2-C/ha of 
rice and 33–58 kg CO2-C/ha of wheat in a R–W 
system (Pathak et al., 2011).

Clearly, new approaches are needed to develop 
agricultural production systems that are productive 
and sustainable, both economically and 
ecologically. Eco-efficient agriculture offers such 
an approach.

Eco-Efficient Agriculture

Eco-efficiency is concerned with the efficient and 
sustainable use of resources in farm production 
and land management. It can be increased either 
by altering the management of individual crop and 
livestock enterprises or by altering the land-use 

system. Conceptually the eco-efficiency seems to 
be similar to the concepts of ecological 
intensification (Cassman, 1999; Dobermann et al., 
2008) and conservation agriculture (CA) (Hobbs et 
al., 2008), while encompassing both the 
ecological and economic dimensions of 
sustainable agriculture. In addition to the 
economic aspect, evolving social, institutional, 
market, and policy-related pressures will determine 
the extent of development of eco-efficient 
agriculture (Keating et al., 2010).

At the farm level, eco-efficiency might be 
represented in terms as diverse as food output per 
unit labor, the biodiversity benefits provided by 
retention of natural habitat per unit food 
production, or the aggregate food output per unit 
water or fertilizer applied (Keating et al., 2010). 
Production increases of the last 50 years were 
achieved at significant cost to the natural resource 
base (degraded soils and ecosystem impacts, 
including habitat fragmentation threatening 
biodiversity) as well as the global environment. 
Future production increases must come from 
stabilizing yields in areas where yields are already 
high and increases in production in areas where 
yields are currently low, while promoting ecological 
sustainability. The agricultural revolution over the 
next 40 years has to be the eco-efficiency 
revolution, with 50 to 100% increases in the 
efficiency with which scarce resources of land, 
water, nutrients, and energy are used. Importantly, 
this greater output and efficiency has to be 
achieved while maintaining or restoring land, 
water, biodiversity, and agroecosystems.

Practices that have been shown to increase the 
productivity and eco-efficiency of agriculture at the 
farm level include resource-conserving 
technologies (RCTs) such as laser land leveling 
and direct seeding (Hobbs and Gupta, 2003; 
Ladha et al., 2003; Sharma et al., 2005; Gupta 
and Seth, 2007; Harington and Hobbs, 2009; 
Ladha et al., 2009), integrated crop management 
(ICM) (Nguyen, 2002; Balasubramanian et al., 
2005), integrated crop and resource management 
(Ladha et al., 2009), integrated farming systems 
(Hesterman and Thorburn, 1994), and integrated 
soil–crop system management (Chen et al., 2011).
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These and other components of eco-efficient 
agriculture are discussed in more detail below.

Key Components of Eco-Efficient 
Agriculture in the IGP

Laser leveling and land preparation
Integrating laser-leveling with other best 
management practices has been shown to 
increase productivity of R–W systems by 7–19% 
and reduce water consumption for irrigation by 
12–30% in on-station and farmer-participatory 
trials in India, increasing net returns by  
US$113–US$300/ha per year (Jat et al., 2009). 
This has been reflected in a rapid increase in the 
number of laser units employed in the northwest 
Indian IGP between 2001 and 2008, from zero to 
925 and in the laser-leveled area from zero to  
0.2 m ha (Jat et al., 2009; Ladha et al., 2009). 
The laser-leveled area in Pakistan increased from 
zero to 0.18 m ha during the same period 
(Harrington and Hobbs, 2009; M. Ahmed, pers. 
comm.).

Reduced/zero tillage and direct/drill 
seeding
Zero-tillage (ZT) wheat has been the most 
successful technology for reducing resource use 
in R–W systems, particularly in the Indian IGP. The 
prevailing ZT technology in the IGP uses a 
tractor-drawn zero-till seed drill to drill wheat 
directly into unplowed fields with a single pass of 
the tractor. The ZT drills are made domestically at 
a cost of around US$400 (Thakur, 2005). 
Alternatively, wheat seed can be broadcast on a 
saturated soil surface before or after the rice 
harvest (Erenstein and Laxmi, 2008). This is ideal 
for resource-poor farmers, requiring no land 
preparation or machinery, but its use is still largely 
confined to low-lying fields that remain too moist 
for tractors to enter, particularly in the eastern IGP.

ZT as applied to the R–W systems in the IGP 
has three characteristic features that separate it 
from related systems elsewhere (Erenstein, 2003). 
First, ZT is typically applied only to the wheat crop 
in the double-cropped system, with the 
subsequent rice crop still intensively tilled. 
Second, ZT wheat after rice does not necessarily 
entail an increased reliance on herbicide, as the 

paddy rice fields are relatively weed-free at harvest 
time. Third, ZT wheat does not necessarily imply 
the retention of crop residues as mulch. In fact, the 
prevailing Indian ZT seed drills are relatively poor in 
trash handling, but this has not been a major issue 
in view of the limited biomass remaining in R–W 
systems after the rice crop (Erenstein et al., 2007).

Combining precision land-leveling, ZT, and drill 
seeding wheat with leaving crop residues on the 
soil surface quadrupled farmer income compared 
with reduced-till or conventional-till wheat, mainly 
due to higher yields resulting from timely planting 
and reduced tillage cost (Gupta and Seth, 2007; 
Jat et al., 2011). Smallholders in the eastern IGP 
have also increased yields and reduced costs by 
adopting ZT for broadcast seeding of wheat  
(Gupta et al., 2003). It is estimated that 20–25% of 
the wheat area in northwest IGP is now under 
zero- or reduced tillage, with or without crop 
residues left on the soil surface (Erenstein,  
2009).

Similarly, direct seeding of rice has the potential 
to provide several benefits to farmers and the 
environment over conventional practices of land 
preparation such as puddling and transplanting. 
Recently, Kumar and Ladha (2011) reviewed the 
benefits of direct seeding compared with 
transplanting into puddled soil, which typically 
include reduction in irrigation water use  
(12–35%), labor (0–46%), and cultivation costs 
(2–32%); higher net economic returns, and 
reduced methane emissions. However, yields are 
lower in some cases, especially with dry seeding 
combined with reduced/zero tillage, as a result of 
uneven and poor crop stand, poor weed control, 
higher spikelet sterility, crop lodging, and poor 
knowledge of water and nutrient management. 
Most rice varieties are bred and selected for 
transplantation into puddled land. Risks associated 
with a shift from puddle transplanting to direct 
seeding include a shift toward hard-to-control 
weed flora; development of herbicide resistance in 
weeds; evolution of weedy rice; increases in 
soil-borne pathogens and pests such as 
nematodes; higher emissions of nitrous oxide—a 
potent greenhouse gas; and nutrient disorders, 
especially N and micronutrients. Grain yields and 
net income were lower from reduced-till and 
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zero-till direct-seeded or bed-planted rice than 
from conventional rice, despite significant savings 
in water use (Ladha et al., 2009; Gathala et al., 
2011; Jat et al., 2011). This was because of 
increased weed infestation. Further research is 
needed to develop suitable weed control 
technologies for direct seeded rice systems 
(Kumar and Ladha, 2011).

Thus, direct seeding of rice will be adopted 
only once an integrated package of technologies 
has been developed, including improved weed 
control and cultivars that perform well under 
these conditions.

Water management
As already noted, water consumption can be 
significantly reduced by directly seeding rice into 
dry soil instead of transplanting into puddled soil 
(Bhuiyan et al., 1995; Bouman, 2001; Cabangon 
et al., 2002; Sharma et al., 2002), and by growing 
rice on raised beds (Borrel et al., 1997). However, 
yields on raised beds may be reduced by 15% or 
more compared with traditionally-grown rice 
(Sharma et al., 2002; Vories et al., 2002; Gathala 
et al., 2011). Similarly, other water conservation 
techniques, such as crop-need-based water 
application, alternate wetting and drying (AWD), 
aerobic rice culture, etc. would both increase 
water use efficiency and irrigated crop area 
(Cabangon et al., 2002; Bouman et al., 2005; 
Bhushan et al., 2007; Gathala et al., 2011). For 
example, AWD irrigation of rice transplanted into 
puddled soil reduced water use by 25% with little 
impact on yield (7-year average of 7.8 t/ha 
compared with 8.1 t/ha) (Gathala et al., 2011). 

Some of the water conservation technologies 
have positive impacts on resource use and the 
environment, such as increased water infiltration 
leading to groundwater recharge, lower energy 
use due to less pumping of water, enhanced soil 
quality, reduced methane emissions, and short-
term carbon sequestration in soil due to retention 
of crop residues instead of burning (Jat et al., 
2011).

Crop diversification
Farmers in the IGP are being encouraged to grow 
high value crops, such as vegetables, fruits, and 

cut flowers, and to expand production of fodder 
crops and livestock/dairy farming for both local 
and export markets. In the central and eastern 
IGP, farmers following the R–W system leave land 
fallow for about 60–70 days in the pre-monsoon 
(pre-kharif) season, after the wheat harvest. 
Growing short-season pulses such as mung bean 
(green gram), black gram, green manure crops 
such as sesbania, vegetables, or other high-value 
crops during this period would diversify the R–W 
cropping system, improve soil quality, and 
increase farmers’ income (Gupta and Seth, 2007; 
Singh et al., 2007).  

Integrated crop–fish/poultry/duck/livestock 
systems also would diversify farm income, 
improve food and nutritional security, enhance 
land and water productivity, and preserve 
ecosystems (Ayyappan et al., 2009).

Plant nutrition management

Nitrogen sources and nitrogen-use 
efficiency in eco-efficient farming
Efficient N use is central to eco-efficiency in 
agriculture (Keating et al., 2010). The term 
nitrogen-use efficiency (NUE) relates only to 
applied fertilizer N, although crops absorb N from 
other sources. Four agronomic indices are 
commonly used to measure NUE in crops and 
cropping systems: (a) partial factor productivity 
(PFPN), expressed as the total grain yield per unit 
of N applied; (b) agronomic efficiency (AEN), 
expressed as the increase in grain yield over that 
of the zero-N control per unit of N applied; (c) 
apparent recovery efficiency (REN), defined as the 
percentage of applied N absorbed by the crop in 
aboveground biomass; and (d) internal or 
physiological efficiency (PEN), defined as the 
increase in grain yield over that of the zero-N 
control per unit of N acquired by the crop (Novoa 
and Loomis, 1981; Ladha et al., 2005). 

Two key factors that influence crop yields and 
REN in cereal cropping systems are the spatial and 
temporal synchronization of applied N with crop 
demand and use of N-efficient crop cultivars 
(Tilman, 1998; Balasubramanian et al., 2004; 
Ladha et al., 2005; Balasubramanian, 2010). For 
example, application of N transplanted rice in the 
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IGP (551 farms) based on need indicated by a 
leaf-color chart (LCC) increased grain yield by 0.24 
to 0.75 t/ha and net income by US$41 to  
US$49/ha (Regmi and Ladha, 2005; Varinderpal-
Singh et al., 2007; Ladha et al., 2009). Takebe et al. 
(2006) demonstrated that applying the  
correct N dose at full heading stage increased the 
wheat protein content to more than 120 g/kg.

Balanced fertilizer use is also critical. For 
example, Norse (2003) has shown that application 
of fertilizer with unbalanced N–P2O5–K2O ratios 
(e.g., 100–36–19 in China, 100–37–12 in India, 
and 100–35–45 in USA) may diminish plant 
utilization of applied N and thus reduce NUE. 
Deficiency of calcium, magnesium, sulfur, and 
micronutrients reduce plant response to N and 
hence reduce NUE (Aulakh and Bahl, 2001; Aulakh 
and Malhi, 2004; Mosier, 2002). Thus, deficiency  
of nutrients other than N must be corrected to get 
an optimal response to N (Ladha et al 2005).

Soil and soil organic matter
Soil organic matter (SOM) is a key component of 
soil health and acts as a temporary storehouse of 
nutrients. It is reported that more than 50% of  
crop N is obtained from SOM in most soils except 
coarse textured sandy soils (Dourado-Neto et al., 
2010). Crops use applied N more efficiently in 
organic-matter-rich soils than in organic-matter-
poor soils.

Maintenance of SOM is critical for increasing 
eco-efficiency in farming, especially in tropical soils. 
Fertilizer N added to soil plays both a constructive 
and a destructive role in the maintenance of SOM 
(Ladha et al., 2011). Application of fertilizer N 
increases production of biomass, part of which is 
added to soil to enrich SOM (Sisti et al., 2004). 
However, fertilizer N also increases mineralization of 
SOM. Oxidization of SOM is also promoted by 
conventional tillage, removal of vegetation cover, 
and exposure of the soil to the sun’s radiation 
(Khan et al., 2007; Powlson et al., 2010).

Overall, practices such as ZT, maintenance of 
permanent groundcover, and crop rotation help 
increase SOM levels and thus maintain soil health 
and crop productivity (Ladha et al., 2009; Jat et al., 
2011).

SOM levels can also be increased by applying 
organic materials, including crop residues, green 
manure, and animal manure, and biowaste such 
as byproducts from food-processing and city/
municipal biowastes (Yadvinder-Singh et al., 2005; 
Sidhu et al., 2008), as can crop productivity and 
fertilizer use efficiency (Ladha et al., 2011). 
However, organic materials such as crop residues 
and animal manures have competing uses 
(fodder, fuel, roofing material) and thus their 
availability for use as a soil amendment is limited 
(Erenstein, 2009). Also conventional practices of 
organic amendment such as incorporation and 
composting are labor-intensive. Therefore, in-field 
cycling of available crop residues is likely to be the 
most effective and least expensive option for the 
farmers (Yadvinder-Singh et al., 2011).

Integrated nutrient management
The ideal approach for eco-efficient agriculture is 
integrated nutrient management (INM), or 
optimum use of all available nutrient sources—
SOM, BNF, crop residues, manures, and mineral 
fertilizers. The integrated soil fertility management 
in Africa (Vanlauwe et al., 2004), site-specific 
nutrient management in Asia (Dobermann and 
White, 1999; Dobermann et al., 2004; Buresh, 
2010), and integrated plant nutrient systems 
(Bruinsma, 2003) are some of the efforts to 
promote the efficient use various nutrient sources. 
INM can save 5–30% of fertilizer N and increase 
grain yield by 10–15% (Vanlauwe et al., 2002; 
Balasubramanian et al., 2004; Dobermann and 
Cassman, 2004; Ladha et al., 2005; Bijay-Singh 
et al., 2008; Buresh, 2010). Stress tolerant crop 
varieties when combined with INM systems and 
ICM increase grain yields and NUE even under 
stressful conditions (Havlin, 2004; Ortiz et al., 
2008; Ribaut et al., 2009; Ali-Jauhar and 
Santlaguel, 2011). 

Intensive Eco-Efficient 
Agricultural Systems

Globally, the demand for food and agricultural 
products is projected to double by 2050 (Keating 
et al., 2010). Given that only 7 to 12% of the 
projected increase in food production between 
2010 and 2050 is likely to come from expansion 
of arable land area (Fischer et al., 2005), most of 
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the increase will have to come from intensification 
of existing production systems —13–15% from 
increased cropping intensity and 75–76% from 
increased yields (Fischer et al., 2005, 2007). This 
can be achieved sustainably only through eco-
efficient agriculture. Here we present three 
examples of eco-efficient agricultural systems 
operating successfully in the IGP that could be 
replicated in other similar agroecological zones.

Intensive eco-efficient cereal 
production systems in the northwest 
and central IGP
Intensive irrigated cereal production systems of 
the northwest and central IGP combine CA 
practices with efficient water, nutrient, and pest 
management. Land management, crop 
establishment, and crop management practices 
employed include land leveling, ZT, direct/drill 
seeding, deep placement of fertilizer N, residue 
mulch, and diverse crop sequences/rotations. 
The systems achieve land productivity of 70–90% 
of site yield potential for major crops; water 
productivity of 0.8 to 1.0 kg grain/m3 water for 
rice and 2.0–2.5 kg grain/m3 water for maize and 
wheat; agronomic N use efficiency of 20–25 kg 
additional grain/kg N applied for rice and wheat 
and 25–30 kg additional grain/kg N applied for 
maize; crop N recovery efficiency of significantly 
more than 50%; reduce farm energy use by 
40–50%; reduce methane and N2O emission by 
40–50%; and increase soil organic matter to 
2–3% in most soils except in sandy soils. The 
systems are thus highly productive and profitable, 
efficient in resource use and conservation, 
enhance ecological efficiency and climatic 
resilience, improve soil quality, preserve 
biodiversity, and have minimal environmental 
footprints (Gupta et al., 2003; Byerlee et al., 
2003; Gupta and Seth, 2007; Harrington and 
Hobbs, 2009; Ladha et al., 2009). Such systems 
currently occupy some 4 million hectares of land 
in the IGP.

Integrated farming systems for rainfed 
lowlands
Integrated farming systems (IFSs) are a natural 
resource management strategy advocated by the 
Central Rice Research Institute (CRRI), Cuttack, 
India. The objective is to achieve economic and 

sustainable production of diverse products to 
meet farm families’ needs and to cater to local 
market demands, while preserving the resource 
base and maintaining environmental quality 
(Hesterman and Thorburn, 1994). Generic IFS 
models developed by CRRI integrate cropping 
with horticulture, fish, poultry, ducks, pigs, 
sericulture, mushroom culture, bee-keeping, farm 
woodlots, depending on agroclimatic and 
socio-economic conditions (Table 4). A micro 
watershed (15–18% of the farm area) is used to 
drain excess water from rice fields during floods 
in deepwater ecosystems, and to provide one or 
two supplementary irrigations for field crops 
during periods of drought. All crop residues and 
other farm wastes including animal droppings are 
recycled or composted and returned to the land. 
Initial cost of earth works for land shaping ranges 
between US$2900 and US$3300/ha.

 IFSs have been shown to stabilize crop 
production (especially in rainfed ecosystems); 
enhance resource recycling; ensure efficient use 
of all inputs; generate year-round employment; 
improve farm income, cash flow, and family 
nutrition; and maintaine healthy ecosystem 
services in the face of biotic, abiotic, and 
environmental stresses and climate-change-
induced extreme weather events in the lowlands 
(Srivastava et al., 2004; Mangala, 2008). The 
benefit/cost ratio increased from 1.89 for rice 
alone to 2.27 for rice plus horticultural crops, 
2.80 for rice plus horticultural crops and fish, and 
to more than 3.00 if ducks were added to the 
system (Srivastava et al., 2004). The IFS model 
for rainfed medium lowland has been adopted on 
100 ha of land in Orissa State, India, and the 
model for deepwater areas on 40 ha. These IFS 
systems could be expanded to the eastern IGP, 
but this would require financial assistance to help 
with the costs of initial land shaping, training of 
and technical support to farmers during the first 
year of adaptation and adoption, and 
development of market access for the multiple 
products produced in the IFS.

Integrating grain legumes in the rice–
wheat system in Bangladesh
Incorporating grain legumes in the R–W system 
has the potential to increase farm income, 
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Table 4. Characteristics, land-shaping cost, productivity, employment generation and income of integrated farming 
systems (IFSs) developed for irrigated, rainfed medium lowland, and deepwater areas.

 Rice–fish–multicrop IFS model Rice–fish–horticulture–farm animals Multistorey rice–fish–farm animals–  
 for irrigated lowland IFS model for rainfed medium agroforestry IFS model for   
  lowland deepwater ecology

  

  
 Upland (15% of area) + 2–3-m-wide Upland (15% of area) + 2–3-m-wide Upland (15% of area) + 2–3-m-wide  
 bunds (20% of area): perennial & bunds (20% of area): perennial & bunds (20% of area): perennial &  
 seasonal fruit crops & trees; tubers, seasonal fruit crops & trees; tubers, seasonal fruit crops & trees; tubers,  
 vegetables, ducks, poultry, vegetables, goats tethered, rabbits  vegetables, goats tethered, rabbits  
 mushroom, bee-keeping in cages, ducks, poultry in cages, ducks, poultry

 Irrigated lowland rice (50% of area): Rainfed lowland rice (40% of area): Rainfed lowland rice (20% of area):  
 rice–pulse/oil seed/vegetable crops rice–pulse/oil seed/vegetable crops rice–pulse/oil seed/vegetable crops

 Micro watershed (15% of area): fish Micro watershed (18% of area): fish Deep-water rice (20% of area):  
 refuge, aquaculture, irrigation during refuge, aquaculture, irrigation Deep-water rice–summer/boro rice  
 droughts during droughts 

Micro watershed (18% of area): fish
  Fish nursery (7% of area):  refuge, aquaculture, irrigation during  
  fingerlings droughts

   Fish nursery (7% of area): fingerlings 

 Initial investment: US$2900 to 3300/ha  

 Productivity in t/ha per year: Productivity in t/ha per year: Productivity in t/ha per year:
 Food crops: 16–18 Food crops: 16–18 Food crops: 14–15
 Fish + prawns: 0.4–0.5 Fish + prawns: 0.5–0.6 Fish + prawns: 1
 Bird meat: 0.5–0.7 Meat: 0.5–0.8 Meat: 0.5–0.8
 Animal fodder/feed: 5–6 Animal fodder/feed: 5–6 Animal fodder/feed: 3–5
 Flowers, fuel wood, etc. Eggs (number): 8,000 Fuel wood: 10–12
  Pearl, flowers, wood, etc. 

 Additional employment:  Additional employment: Additional employment: 
 250–300 person days/ha per year 400–450 person days/ha per year 400–500 person days/ha per year

 Income per ha per year: Income per ha per year: Income/ha per year:
 US$1300–US$1600 US$1800–US$2900 US$2200–US$3300 

 Teak trees on bunds can be sold at maturity (30+ years) to meet large family expenses

SOURCE:  Central Rice Research Institute, Cuttack, India.

improve soil fertility, and thus enhance the 
sustainability of the farming system. For example, 
farmers in Bangladesh planting mungbean during 
the short fallow period between winter wheat and 
monsoon rice earned more than US$600/ha more 
than those who left the land fallow (A. Sarkar, 

pers. comm.). Improved short-duration, salt-
tolerant crop varieties (e.g., BARI mung-6 in 
Bangladesh, hybrid pigeonpea in India) could 
intensify or diversify crop production in the IGP 
(Dahiya et al., 2002; Khan et al., 2009a).  
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Summary and Conclusions

Intensive eco-efficient farming has an important 
role to play in addressing existing and emerging 
problems of intensive cereal production systems 
in the IGP.

In the water-poor northwest IGP, changes 
envisaged include enhancing eco-efficiency in 
intensive cereal production systems and replacing 
rice with crops with lower water requirements. In 
the rainfall- and groundwater-rich eastern IGP, 
viable options include integration of irrigated 
winter (boro) rice, maize, and annual crops such 
as sugarcane and banana, inclusion of grain or 
green manure legumes in the R–W cropping 
system, and intensification of rice-based cropping 
systems and crop–livestock systems. Generic IFS 
models have been developed that employ land-
leveling and micro watershed to grow rice, upland 
crops, fruit trees, timber trees, produce fish and 
poultry, and support bee-keeping and sericulture. 
However, although the system has been shown to 
stabilize crop production, enhance resource use 
efficiency and recycling, generate year-round 
employment, improve income, cash flow and 
family nutrition, and maintain healthy 
environment, farmer adoption is still limited.

Improving the productivity of farm-scale 
eco-efficient agriculture to the level achieved on 
research plots will be a challenge as it requires 
transfer of complex and knowledge-intensive 
principles and practices to millions of smallholder 
farmers. This will require massive concerted 
efforts in six areas:

•	 Large-scale training or technical mentoring 
programs in eco-efficient agriculture for 
agricultural scientists, extension workers, and 
farmers.

•	 Development of appropriate machinery and 
farm machinery rental services to allow farmers 
to adopt conservation agriculture practices and 
integrated soil, water, and crop management 
technologies.

•	 Research and development based on farmers’ 
feedback to solve practical problems in the 
adoption of CA and related integrated crop 
management technologies.

•	 Development of local champions to showcase 
and promote the best management practices 
and other technologies to farmers in their 
respective areas.

•	 Development of price support and markets for 
new agricultural products produced in 
integrated farming systems.

•	 Focused institutional and policy support, 
including appropriate incentives and crop 
insurance to reduce risks for the widespread 
dissemination and adoption by farmers of 
intensive eco-efficient agricultural practices in 
the IGP of South Asia.
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