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3 Are Climate Change Adaptation and 
Mitigation Options Eco-Efficient? 

Abstract

This chapter provides an overview of predicted global climate change, placing special emphasis on 
the implications for agriculture. The power of modelling for understanding both impacts on 
productivity and adaptation options is demonstrated. The models on agricultural production for  
50 crops predict significant impacts, with both winners and losers. The resultant need for systems 
reconstruction in highly vulnerable areas demonstrates a possible entry point for eco-efficient 
agriculture, in parallel with demands for adaptation measures that are climate smart and deliver on 
mitigation co-benefits. The chapter then focuses on Colombia and provides an end-to-end analysis of 
projected climatic changes for 2050, the impacts this may have on agriculture, and mitigation and 
adaptation options in the country’s rice sector. Priority options include managing the methane 
emissions of flooded rice, eliminating crop residue burning, irrigation, genetic modification for heat 
tolerance, and increasing efficiency of nitrogen fertilizer application. The relevance of  
eco-efficient agriculture in adapting to and mitigating climate change is discussed, with special 
emphasis on synergies between eco-efficiency and climate change adaptation or mitigation.
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Introduction

Climate change is widely considered one of the 
major drivers of societal change in the coming 
century, and agriculture has been identified as 
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particularly exposed and vulnerable to its impacts 
(Lobell et al., 2008; Roudier et al., 2011; Thornton 
et al., 2011). In addition to crop losses from the 
increased incidence of natural disasters (floods, 
droughts, fires, etc.) (Sivakumar et al., 2005; Tao 
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et al., 2009), agricultural systems will have to 
cope with changing rainfall regimes, geographical 
shifts in the occurrence of pests and diseases 
(Garrett et al., 2012; Jarvis et al., 2012), shorter 
growing seasons (Jones and Thornton, 2009), 
temperature stress (Challinor et al., 2007) and 
loss of climatic suitability (Jarvis et al., 2012). 
Global climate models4 (GCMs) predict that 
while climatic variability is certain to produce both 
winners and losers, the losses will far outweigh 
the gains in many cases. The tropics, in particular, 
are expected to experience crop yield decreases in 
the order of 10–30% (Moorhead, 2009). Likewise, 
South Asia might well be too heat stressed to 
grow wheat by 2050 (Ortiz et al., 2008; Lobell et 
al., 2012). Both of these regions depend heavily 
on agriculture for rural livelihoods, making them 
especially susceptible to climate-change-induced 
pressures.

Agriculture’s position in the climate change 
equation is perhaps unique; it is simultaneously a 
highly vulnerable sector as the numbers above 
indicate, a highly culpable sector with regard to its 
significant contribution to anthropogenic 
emissions (Key and Tallard, 2012), and also a 
sector with enormous potential for mitigating 
anthropogenic climate change (Hutchinson et al., 
2007; Tubiello and Fischer, 2007). Indeed, 
agriculture produces a disproportionate share of 
emissions of the high-impact gases methane  
(CH4) (47% of global total) and nitrous oxide 
(58% of global total) (Pye-Smith, 2011). It is 
responsible for 30% of all greenhouse gas 
emissions when taking into account land use 
change and deforestation for agricultural 
expansion, fuel, fiber, and food (IPCC 2007). On 
the other hand, carbon sequestration in 
agricultural soils could potentially offset 5–15% of 
global fossil fuel emissions (Lal, 2004), not to 
mention the mitigation power of deforestation 
reduction and fertilizer and irrigation optimization 
through sustainable intensification practices.

These considerations make climate-smart 
agriculture a critical topic for discussion and rapid 

action. Changing conditions require 
transformations in agricultural systems towards 
higher productivity, but on a lower-emissions 
trajectory (FAO, 2010a). Climate-smart agriculture 
aims to achieve food security for a world of  
9 billion people and successful adaptation to an 
increasingly variable climate, while reducing 
emissions and sequestering carbon. It includes 
practices such as agroforestry, mulching, water 
management, intercropping, and silvopastoralism, 
as well as technologies for climate risk 
management, such as more accurate weather 
forecasts and the development of improved food 
crop varieties (Cooper et al., 2012; Smith et al., 
2011; The World Bank, 2011). Specific definitions 
for climate-smart agriculture can vary widely 
depending on the source. For the purposes of this 
chapter we will use the following definition for 
climate-smart agriculture: an agricultural system 
employing practices which (a) contribute to 
farmer adaptation to climate change by bolstering 
the security of food systems, or (b) help to 
mitigate climate change by sequestering or 
preventing the release of carbon emissions, while 
(c) ideally increasing agricultural productivity.

Although climate-smart agricultural practices 
have been shown to be effective in matters of 
adaptation and mitigation, there remains the 
question of whether a climate-smart practice is 
necessarily an eco-efficient practice. When 
applied to agriculture, eco-efficiency describes a 
system that produces the most possible output 
with the least possible input, harmonizing 
economic, social, and environmental needs (see 
Mateo and Ortiz, Chapter 1 of this publication). 
But to what extent do eco-efficient practices 
overlap with climate-smart practices? Although 
climate-smart farming practices may be able to 
reduce emissions from agriculture, do they also 
constitute a system that uses resources effectively 
and efficiently for maximum yields?

This chapter shows how climate and crop models 
can be used to anticipate future scenarios for 
agricultural development and support decision 
making for priority adaptation and mitigation 
interventions. Future projections are presented, 
which are then used to evaluate impacts on 
agricultural production and systems. The chapter 

4 Global climate models, the term that we use here, are also 
called “global circulation models” and “general circulation 
models” by other authors.
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then presents a case study of Colombia, where 
likely climate changes are quantified, impacts on 
agricultural systems are assessed, and the efficacy 
of different adaptation and mitigation options for 
the country are outlined. This example is then used 
to discuss whether climate change presents a 
challenge or an opportunity for eco-efficient 
agriculture, looking at the impacts and potential 
responses in a broader political economy. Using 
the example, we address the following question: 
are the high-priority adaptation and mitigation 
options identified for Colombia necessarily eco-
efficient as well?

Aspects of global climate change 
relevant to agriculture

Predicted changes in the climate 
system
While GCMs are all based on the same underlying 
principles, they vary in their implementation. We 
rely on the comprehensive collection of GCM 
climate change data and statistics of the 
Intergovernmental Panel on Climate Change 
(IPCC) for the scenarios presented here. 

The IPCC used 24 GCMs in its Fourth Assessment 
Report (AR4) (IPCC, 2007) to show changes in 
climatic variables at various times in the future. 
The predictions depend on which of the various 
scenarios of economic and environmental 
development is assumed to occur, analyzed in 
detail in the IPCC’s Special Report on Emissions 
Scenarios (SRES) (IPCC, 2000). Overall, annual 
mean temperatures are predicted to increase by  
1–3° C by 2050 (depending on the SRES scenario), 
with mid- to high latitudes likely to warm at higher 
rates than the tropics. Changes in rainfall are 
varied and complex, ranging from -10 to +20% 
(again depending on the SRES scenario), with very 
high likelihood of increases along the Pacific coast 
of South America and in Eastern Africa, and 
decreases over South Asia (IPCC, 2007). More 
specifically, under the SRES A2 scenario (“business 
as usual”), global mean temperatures are predicted 
to rise by 1.6–8.4 °C by 2050, with winter 
temperatures and northern latitudes increasing 
most, while global average rainfall is predicted to 
increase as much as 1.9% by 2020 and 22.8% by 
2050 (IPCC, 2007).

Again under the SRES A2 scenario, the 
Mediterranean area of North Africa extending 
towards the Sahara is predicted to be drier 
throughout the year. Changes in rainfall in Asia 
are spatially variable, while in the Middle East, 
predictions show a decrease in overall rainfall 
[although with low certainty (IPCC, 2007)]. 
Changes in rainfall in the Amazon are highly 
uncertain, ranging from -10 to +15% by 2050.

All of these changes are expected to have 
profound implications for world agriculture, but 
the impact will depend on: the crop grown, farmer 
adaptability to climate change, type and severity 
of the expected change, and the current system 
vulnerability. Coping with these changes requires 
reliable predictions of future climate, coupled with 
reliable impact models and knowledge of 
adaptation options that can be implemented at 
the individual farm level (Jarvis et al., 2011; 
Thornton et al., 2011). 

Uncertainties in climate modelling
We cannot measure the response of the climate to 
natural or anthropogenic forcings in absolute 
terms, but we can represent it in GCMs. GCMs 
themselves, however, are based on imperfect 
approximations that cause inaccuracies and 
uncertainties. Inaccuracies occur when we do not 
reproduce observed climate patterns at the scales 
that they appear (i.e., predicted climates differ 
from observations). In contrast, uncertainties 
reflect the variability (i.e., spread) of GCM 
predictions and can arise from:

• Disagreement on the future socio-economic 
behavior of the world’s nations, leading to 
disagreement over which SRES scenarios to 
use

• Lack of understanding of the response of the 
climate system to anthropogenic forcing

• Inability to understand properly, and hence 
model, the different forcings in the climate 
system, which are then parameterized 
differently in the GCMs

• Disagreement over GCMs’ initial conditions 
(i.e., the fact that climate change experiments 
are initialized arbitrarily on the basis of a 
quasi-equilibrium control run) (Challinor et al., 
2009). 
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Often the conditions necessary to initialize 
GCMs in climate change experiments must be 
selected randomly (Gleckler et al., 2008; Taylor 
et al., 2012), which contributes to model 
spread. Uncertainties, therefore, are a range of 
predictions for any future time giving us a 
plausible range under which the impact of 
potential adaptation- or mitigation-oriented 
decisions can be analyzed (Moss et al., 2010; 
Webster et al., 2012). Quantifying these 
uncertainties is critical to understanding the 
future changes in climate and how agricultural 
systems will respond to them (Challinor et al., 
2009; Moss et al., 2010).

Given enough observed data, we can assess 
the predictive skill for any climatic variable 
prediction by the GCMs, but a variable that 
performs well in one instance (i.e., present-day 
climate) may not perform well in others  
(i.e., future scenarios) (Challinor and Wheeler, 
2008). In addition, the uncertainty determined 
for one variable does not necessarily represent 
the uncertainty of all the others. That is, one 
variable’s estimate of “high uncertainty” does 
not signify that the projection is highly 
uncertain in absolute terms. Quantification of 
uncertainty is critical for decisions regarding 
adaptation of agricultural systems to climate 
change (Smith and Stern, 2011; Smith et al., 
2011). These decisions directly impact 
farmers’ livelihoods and therefore need 
comprehensive analysis of current 
vulnerabilities and future uncertainties to avoid 
the risk of making faulty recommendations 
(Jarvis et al., 2011).

Decision making under uncertainty 
Despite the inherent uncertainties in climate 
change projections, there can be no excuse for 
inaction on the policy front. On the contrary, 
decisions on adaptation strategies should be 
anticipatory, putting into place as much 
effective policy and infrastructure as possible 
in the near term to avoid possibly irreversible 
repercussions. Moreover, anticipatory 
adaptation has the additional benefit of 
reducing the potential costs that may result 

from maladaptation, particularly for decisions 
regarding long-lived and costly infrastructure or 
sector-level planning (Ranger et al., 2010).  

Climate change adaptation is by no means 
without risk. Decision makers may fail to 
appreciate the magnitude of a climate-related risk 
and not deliver a crucial adaptation, or there is the 
possibility of overestimation of risk and thus 
“over-adaptation” and waste of resources (Willows 
and Connell, 2003). Although we cannot predict 
with complete certainty how the climate will be in 
the future, it is possible to take steps to buffer 
negative effects with minimum levels of risk. That 
is to say, adaptation does not necessarily require a 
perfectly accurate prediction. A framework 
developed by Willows and Connell (2003) 
emphasizes the necessity of keeping open or 
increasing the options that could allow adaptation 
measures to be implemented in the future, when 
the situation may be less uncertain. 

According to Willows and Connell (2003), risk 
assessments should aim to identify “no-regrets” 
alternatives or immediately actionable options that 
should deliver adaptation benefits under any 
circumstances regardless of actual climate 
outcomes. For example, an early-warning system 
for natural disasters would be a suitable 
adaptation for any foreseeable future; it would 
constitute a “no-regrets” option (Ranger et al., 
2010). Other plausible approaches include 
building flexibility into the adaptability measure, 
e.g., constructing infrastructure that could be 
modified in the future, if necessary, rather than 
rebuilt, or building flexibility into the decision-
making process itself by taking no-regrets actions 
first and delaying more high-stakes actions until 
better information is available (Ranger et al., 
2010). Doing so could help to avoid decisions that 
may become maladapted with time or limit further 
flexibility. Planned adaptation options may be the 
most appropriate in the face of low uncertainty, 
while generating adaptive capacity in a system 
might be a more appropriate strategy if there is 
high uncertainty of climate impacts. In any case, 
while uncertainty may complicate the decision-
making process, it should not hinder it altogether.
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crop becoming more than 10% more suitable. 
Over half (26) of the crops were relatively 
insensitive to climate change (suitability changing 
less than 5%). Global changes in suitability may, 
however, vary from one region to another and 37 
crops lost more than 50% of the area currently 
classified as suitable (Figure 1).

Trends in crop suitability also differed 
geographically. North Africa lost an average of 
80% crop suitability, while Europe made the most 
important gains with no crop losing more than 5% 
suitability on average. Latin America, the Pacific, 
the Caribbean, and sub-Saharan Africa lost about 
35–40% suitability overall, even allowing the crop 
area to migrate. Important issues of food security 
arise when crop suitability decreases significantly, 
especially in subtropics of the Mediterranean and 
India (Challinor et al., 2007).

Overall, the tropics become less suitable because 
critical thresholds of adaptability are exceeded in 
most marginally suitable areas (Figure 1). 
Predicted losses of more than 20% climate 
suitability will occur over 10, 15, 50, and 75% of 
the area currently growing cassava (Ceballos et 
al., 2011; Jarvis et al., 2012), bananas (Ramírez et 

Global impacts of climate change 
on agricultural production

We ranked the area harvested of the 50 most 
important crops reported by FAOSTAT (FAO, 
2010b) and assessed their patterns of crop 
suitability using the EcoCrop model, following the 
procedure described by Ramírez-Villegas et al. 
(2011). The areas of each crop ranged from 
26,290 to 2,161,000 km2, and each had a wide 
range of physiological responses to climate, for 
example growing seasons (40–365 days), rainfall 
(200–8,000 mm/yr) and temperatures (2–48 °C). 
Within their environmental ranges (as indicated by 
EcoCrop), adaptation for a particular crop ranged 
from very marginal to highly suitable. We 
expected, therefore, to show the range of climatic 
response of each crop and estimate the likely 
effects of climate change on crop distribution.

We found that if crops were assumed to migrate 
without limit, global crop suitability increased by 
0.84%, with buckwheat increasing most (+9.7%) 
and wheat decreasing most (-15.1%). At the 
global scale, 16 crops were less suitable, with 
wheat, sugar beet, white clover, and coffee 
becoming more than 10% less suitable, and no 

Figure 1. Average changes (main map) in climatic suitability by 2050s of the 50 most important crops globally 
(area basis), and accordance % (inset) of 18 global climate models.
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al., 2011; Van den Bergh et al., 2012), potatoes 
(Schafleitner et al., 2011), and beans (Beebe et 
al., 2011), respectively. In contrast, black leaf 
streak, a major disease in bananas, is predicted to 
decrease by 3–7% in most banana-growing areas 
(Ramírez et al., 2011). Crop traits that the model 
flagged as important were: cold/water logging 
tolerance for cassava (Ceballos et al., 2011;  
Jarvis et al., 2012), cold/heat tolerance for 
bananas (Ramírez et al., 2011), heat/cold/drought 
tolerance for potatoes (Schafleitner et al., 2011), 
and heat/drought tolerance for beans (Beebe et 
al., 2011). Although cold tolerance may seem an 
odd trait when climate change predicts higher 
temperatures, at least some tropical crops may 
extend into the subtropics where cold snaps can 
damage sensitive crops (e.g., citrus in Florida).

In the past, farmers have adapted their cropping 
systems to tackle adverse climates and to respond 
to other environmental pressures. It is likely that 
they will continue to adapt their systems as the 
climate changes by adopting new varieties – or 
even new crops altogether – and by changing 
agronomic practices such as time of sowing 
(IPCC, 2007; Krishnan et al., 2007; Srivastava  
et al., 2010). There is a clear need to develop 
strategies to alleviate the negative impacts and 
capitalize on the positive impacts of climate 
change, particularly in the most vulnerable 
regions such as the tropics and subtropics. 
Adaptation strategies to overcome reduced crop 
suitability include: 

• Changes in management to temporarily buffer 
negative climate change impacts

• Changes in infrastructure and timing, including 
modification of irrigation and drainage 
amounts, frequencies, and system types

• Modification of varieties in a well-defined 
regional breeding strategy, using both 
conserved genetic resources and molecular 
biotechnology to respond quickly to adaptation 
needs as they appear

• Changes in the intercropping, e.g., crop 
migration, taking into account economic and 
environmental sustainability 

Another possibility is changing one or more of the 
components of the cropping system. Changing 
crops might be the only option available to poor 
smallholders, who are the most vulnerable, least 
able to adapt to rapid change, and most limited in 
access to new technology. Crop substitution 
therefore appears to be a key issue when 
addressing adaptation pathways for negatively 
impacted areas. It will be a challenge to produce 
well-adapted varieties that also comply with the 
many entrenched socio-cultural traditions that 
might prevent their adoption, such as regional 
preferences for size and color of beans in 
Mesoamerica (Thornton et al., 2011), or fruit 
characteristics in commercial bananas (Ramírez et 
al., 2011; Van den Bergh et al., 2012). 
Substitution of completely new crops will be even 
harder to bring about.

Given the significant shifts in the geographic 
suitability of crops, a considerable turnover in 
agricultural technologies and practices is likely to 
take place. The result could be more opportunities 
for piggy-backing change, both through 
appropriate deployment of technologies/practices 
and the creation of suitable incentive mechanisms 
that ensure that new agricultural systems deliver 
greater eco-efficiency.  However, this poses the 
question: are climate change adaptation and 
mitigation measures always going to be eco-
efficient?  

Case study: End-to-end analysis 
of climate impacts and eco-
efficient responses in Colombia
This section develops a concrete example of a 
climate change challenge and the possible 
response mechanisms to put to the test the 
hypothesis that eco-efficient agriculture is 
synonymous with climate change adaptation and 
on-farm mitigation interventions specific to the 
case of Colombia. First, climate impacts are 
assessed and the effects these have on crop 
suitability are quantified. Possible response 
mechanisms in the rice sector are then developed 
and tested economically and biophysically for 
their likely effectiveness in adapting to the various 
challenges.
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Climate change scenarios for 
Colombia

Predicted climate changes 
We extracted annual rainfall and mean annual 
temperature data for Colombia for two time  
slices – 2030 and 2050 (Figure 2) – from  

19 global climate models (GCMs) forced with 
IPCC SRES scenario A2 (IPCC, 2007). SRES A2 is 
one of the less optimistic, “business-as-usual” 
scenarios based on continued regionally oriented 
economic and industrial intensification. 
Atmospheric concentrations of greenhouse gases 
(GHGs) over the 10 years since the SRES was 
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Figure 2. Changes in annual precipitation by (A) 2030 and (B) 2050, and in mean annual temperature by  
(C) 2030 and (D) 2050, predicted for Colombia under IPCC SRES emissions scenario A2. Average data 
based on 19 global climate models.
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published broadly match the scenario’s prediction. 
We emphasize that the predictions in the text that 
follows are derived from the GCMs and should be 
treated as such. 

Precipitation in Colombia will likely decrease in 
some areas and increase in others for both time 
slices [Figures 29(A) and 2(B)]. In general, 
precipitation could decrease in the north by  
40 mm/yr by 2030 and 90 mm/yr by 2050, while 
elsewhere it could increase by as much as  
80 mm/yr by 2030 and 180 mm/yr by 2050.

The largest predicted decreases in annual 
precipitation are in the departments of Atlántico, 
Norte de Santander, Cesar, Sucre, Arauca, and 
Magdalena, and the largest increases will likely be 
in Valle del Cauca, Amazonas, Cauca, Quindío, 
Nariño, Tolima, Huila, and Caquetá. Precipitation 
patterns in 2030 and 2050 may be very similar to 
current patterns, though differing in magnitude, 
with ranges of -3 to +3% in 2030, and -6 to +5% 
in 2050.

Overall, mean annual temperatures are predicted 
to increase by 1.0–1.4 °C by 2030 and by  
1.8–2.4 °C by 2050 (Table 1). Although mean 
annual temperatures will probably increase in all 
departments, the increase is likely to be greatest 
in Vaupés, Guainía, and Vichada for both 2030 
and 2050 [Figures 2(C) and 2(D)].

Colombia is projected to warm 1.4–2.5 °C 2050, 
while precipitation is likely to vary between -6% 
and +5% in the current values. Distribution of 
precipitation is also likely to change, again varying 
by region. Temperature-sensitive crops may be 
affected by the higher temperatures and have to 
move to higher altitudes to avoid suffering 
significant losses of yield and quality. There will 
likely be trade-offs, e.g., with areas at or under 
1,200 m altitude becoming less suitable for coffee 
than at present, while areas above 1,800 m 
become more suitable. 

Uncertainty assessment
Although the GCMs are based on current 
understanding of the atmospheric processes, they 
do not implement that understanding in exactly 
the same way, causing their outputs to differ. The 

global climate change community deals with this 
by expressing the variation (i.e., spread) in the 
output as “uncertainty”.5 Uncertainty is a property 
of the external world, not the model itself, and as 
such it arises from a lack of data and/or 
knowledge about the initial conditions of the 
system, including the impossibility of modelling at 
a very high resolution (Challinor and Wheeler, 
2008; Hawkins and Sutton, 2009; Majda and 
Gershgorin, 2010).

The uncertainties of the 19 GCMs for annual 
precipitation and annual mean temperature are 
shown in Figure 3. The dispersion between 
models for precipitation is high (Figure 3), 
especially along the Colombian Andes. This 
outcome is probably due to the complex 
topographic gradients of the Andean region, 
which cannot be resolved with such coarse 
models. Hence, some models project large 
increases and decreases in precipitation in 
highland areas, but only small changes in the 
country’s lowlands, such as the Eastern Plains and 
the Caribbean regions. The result is high 
uncertainty for regions in the center of the  
country (Table 1).

The largest decreases in precipitation – up to  
60 mm/yr by 2050 – are projected for the 
Caribbean region. The most pronounced 
increases are for the Amazon region and the 
coffee-growing zone: up to 130 mm/yr, although 
with relatively high uncertainty. 

Although the scales are different, the uncertainty 
for mean annual temperature is relatively low 
when compared with the uncertainty for annual 
precipitation (see also Hawkins and Sutton, 2009;  
2011 for a global analysis of uncertainty). Both 

5 Although we are unable to represent exactly in a 
mathematical model how nature works, in this case the 
complex interactions of atmospheric circulation, there a 
number of different models that mimic the processes 
tolerably well. The results of these models can be 
expressed as a comparison between models (see e.g., 
Knutti et al., 2009; Meeh et al., 2007). There is an 
implicit understanding that the models used are 
approximations to what might be obtained from a 
thorough analysis if a fully adequate model of real-world 
processes were available.
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Table 1. Changes in annual precipitation and mean annual temperature by 2030 and 2050 under IPCC SRES emissions scenario A2 
for departments in Colombia. 

 Precipitation (mm) Temperature (ºC)

 Region Department Current Percent Range Percent Range Current Change Range Change Range  
    Change 2030 Change 2050  2030 2030 2050 2050 
    2030  2050     

 Amazon Amazonas 4273.2 1.46% 305.4 2.45% 468.2 26.9 1.4 5.0 2.4 3.7

  Caquetá 3651.2 1.88% 716.2 3.55% 1196.8 24.9 1.3 3.9 2.2 2.8

  Guainía 2916.8 0.81% 363.8 1.45% 597.1 26.2 1.4 5.0 2.5 3.7

  Guaviare 3651.2 1.02% 457.2 2.30% 769.1 24.9 1.4 4.7 2.4 3.4

  Putumayo 3651.2 1.71% 986.1 3.29% 1701.7 24.9 1.1 3.0 2.0 1.9

  Vaupés 4273.2 0.74% 322.3 1.63% 470.7 26.9 1.4 5.0 2.5 3.6

 Andean Antioquia 4333.1 0.34% 424.9 0.64% 689.6 24.9 1.2 3.8 2.1 3.0

  Boyacá 5456.1 -0.38% 1095.7 -0.43% 1864.2 22.2 1.3 5.0 2.3 3.8

  Cundinamarca 5456.1 0.07% 1407.0 0.62% 2400.6 22.2 1.2 4.1 2.1 3.0

  Huila 5456.1 1.35% 863.7 2.53% 1370.6 22.2 1.1 2.7 1.9 1.8

  N. Santander 4333.1 -1.03% 698.7 -1.44% 1124.1 21.6 1.4 5.4 2.4 4.2

  Santander 4333.1 -0.43% 784.5 -0.64% 1369.9 24.9 1.3 5.3 2.3 4.0

  Tolima 5456.1 1.23% 678.4 2.15% 1232.7 22.2 1.1 3.1 1.9 2.4

 Caribbean Atlántico 971.7 -3.55% 335.3 -6.75% 613.5 26.5 1.1 2.5 1.8 2.2

  Bolívar 4333.1 -0.66% 323.1 -0.88% 539.7 24.9 1.3 4.3 2.2 3.4

  Cesar 4333.1 -0.89% 354.5 -1.28% 570.6 24.9 1.3 4.5 2.3 3.5

  Córdoba 4333.1 -0.60% 418.5 -0.85% 538.6 24.9 1.2 3.6 2.1 2.8

  La Guajira 971.7 -3.28% 286.7 -5.14% 446.5 26.5 1.2 3.0 1.9 2.6

  Magdalena 971.7 -3.70% 308.6 -6.23% 549.4 26.5 1.2 3.5 2.1 2.8

  Sucre 4333.1 -0.88% 355.8 -1.26% 502.3 24.9 1.2 3.9 2.1 3.0

 Coffee-growing Caldas 5456.1 0.95% 629.6 1.61% 1028.0 22.2 1.2 3.6 2.0 2.9

 
Zone

 Quindío 5456.1 1.21% 492.5 1.87% 797.7 22.2 1.1 2.9 1.9 2.5

  Risaralda 5369.7 0.97% 493.6 1.52% 766.8 25.5 1.1 2.9 1.9 2.5

 Eastern Plains Arauca 2501.2 -1.25% 812.3 -2.17% 1394.6 26.0 1.4 5.6 2.5 4.5

  Casanare 5456.1 -0.14% 735.9 -0.08% 1233.5 22.2 1.4 5.2 2.4 4.0

  Meta 5456.1 0.72% 760.7 1.72% 1391.0 22.2 1.3 4.3 2.2 3.1

  Vichada 2916.8 0.39% 381.3 0.58% 553.4 26.2 1.4 5.0 2.5 3.9

 Pacific Chocó 5369.7 0.70% 466.6 1.04% 805.3 25.5 1.2 2.2 1.9 2.0

 Southwest Cauca 5369.7 1.15% 857.7 2.13% 1274.8 25.5 1.1 1.8 1.8 1.3

  Nariño 5265.0 1.25% 649.5 2.32% 1090.2 24.9 1.0 1.4 1.8 1.0

  Valle del Cauca 5369.7 1.15% 601.1 1.78% 1024.5 25.5 1.1 2.0 1.8 1.7

the differences between models and the standard 
deviation of their outputs vary longitudinally, 
increasing towards the east of the country, 
particularly in the Eastern Plains and the Amazon. 
The uncertainty in these two areas is also higher 
than elsewhere. The GCMs differ considerably –  
by up to 5 °C – in their projections for 2030 and 
2050, although the mean of all models shows an 
increase of only half that by 2050. Differences 

between the GCMs, and thus their uncertainty, are 
relatively low in the southwest of the country.

GCM performance across Colombia
We cannot be certain which of the GCMs best 
represents the future climates. However, we can 
evaluate how well their output matches the 
baseline climates (1961–1990), i.e., present-day 
climates for which we have observational data.  
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Figure 3. Uncertainty between global climate models for IPCC SRES scenario A2 for annual precipitation (A and C) 
and mean annual temperature (B and D). In each subfigure, the map on the left is for 2030 and the map on 
the right is for 2050. Subfigures A and B are the range between the global climate models and subfigures  
C and D are the standard deviations. 
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A simple way to evaluate the performance of 
climate models is to compare their results against 
observations. 

We compared the results of each GCM with the 
readily-available climate databases WorldClim 
(Hijmans et al. 2005), Global Surface Summary of 
Day (GSOD) (Lott, 1998), Global Historical 
Climatology Network (GHCN) (Peterson and Vose, 
1997; Lott, 1998), and Climate Research Unit 
(CRU) (Mitchell and Jones, 2005) following the 
methodology of Ramírez-Villegas et al. (2012) and 
Ramírez-Villegas and Challinor (2012) (Figure 4). 
We analyzed total rainfall and mean temperature 
over four seasons (Dec–Feb, Mar–May, June–Aug, 
Sept–Nov) and the whole year (ANN). For each 
model, the mean of all stations (GHCN and 
GSOD) or grid cells (WorldClim and CRU) was 

computed, GCM grid cells grouped, and the 
spatial consistency of the mean climate prediction 
assessed by calculating the determination 
coefficient (R2) between the observed data and the 
GCMs. This coefficient defines the skill of each 
climate model to represent the climate of the 
baseline period.

The determination coefficient (R2) for the baseline 
of annual precipitation is medium-high for the 
majority of the GCMs, especially for the 
interpolated surfaces (WorldClim and CRU), but is 
lower for the station data (GSOD and GHCN) 
because of their geographic distribution and 
relative scarcity (Figure 4). The GCMs perform 
slightly better for annual data, but less well for 
seasonal data, especially in the second semester 
(JJA–SON). At least 40% of the seasons and 
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Figure 4. R2 values for Climate Research Unit (CRU) interpolated surfaces (c), WorldClim interpolated surfaces (wc), 
Global Historical Climatology Network (GHCN) weather station data (gh), and Global Surface Summary of 
Day (GSOD) weather station data (gs) in relation to each global climate model over the 1961–1990 period.
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GCMs perform poorly (R2<0.6) for precipitation, 
and only 20% perform well (R2>0.8). In contrast, 
R2 for mean temperature is greater than 0.95 for 
all the models, both for the annual cycle and for 
seasons of the year (see also Ramírez-Villegas et 
al., 2012). We conclude that GCMs can generate 
data of mean future climates with moderately high 
precision for temperature and low precision for 
precipitation, although models still have a long way 
to go before they can predict Colombian climate 
variations accurately.

Climate change impacts on crops
We calculated the average change in climatic 
suitability for 25 crops selected for their importance 
in harvested area (ha) and production (t) in 
Colombia (Table 2), calculated averages for each 
department, and grouped them by region. We 
estimated the change in climate suitability using 
EcoCrop (Hijmans et al., 2001; Ramírez-Villegas et 
al., 2011) and applied the SRES A2 scenario for 
2050 using data from 19 GCMs (Ramírez-Villegas 
and Jarvis, 2010). Current climate data were from 
WorldClim (Hijmans et al., 2005).

Overall, and using ±50% as the cutoff, losses in 
climate suitability between now and 2050 were 
greater than the gains. Losses could be seen in 
up to 82.7%, or about 945,790 km2, of the 
country’s total area (1,143,640 km2), while the 
remaining 17.3% (197,850 km2) should continue 
to have suitable climatic conditions for growing 
crops. The most critical regions are the Amazon, 
Caribbean, Pacific, and the Eastern Plains, where 
all departments are projected to have negative 
changes, although changes in several 
departments may be less than 15%. Changes will 
likely be positive in six of the seven Andean 
departments and all three of the coffee-growing 
region’s departments: Caldas (3.8%), Risaralda 
(4.9%), and Quindío (12%).

It is useful for planning purposes to determine 
how many of the 25 crops analyzed are likely to 
become more suitable for the climate (winners), 
and how many are likely to become less suitable 
(losers) (Figure 5). In this case, the threshold of 
climate suitability – that is, a crop’s climatic 
aptitude (CA) – for a winner or loser is ±5%. In 
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some departments in the Andean and Pacific 
regions (Antioquia, Boyacá, Cauca, 
Cundinamarca, Nariño, and Valle del Cauca), 
7–10 crops covering 1.6 million ha could gain in 
CA. In the departments of La Guajira, Cesar, and 
Bolívar in the country’s Caribbean region,  
9–13 crops covering 440,000 ha could decrease 
in CA. About 72 million ha show uncertainty 
(coefficient of variability between models) less 
than 30%, mostly in the Andean and Eastern 

Table 2. Climatic suitability changes in potential agricultural area for each department in Colombia.

 Region Department Change (%) Potential area Potential area 
    affected affected 
    km2 %

 Amazon Amazonas -24.8 108,780 9.5

  Caquetá -23.6 90,620 7.9

  Guainía -27.8 70,680 6.2

  Guaviare -19.6 55,830 4.9

  Putumayo -23.8 25,460 2.2

  Vaupés -28.4 53,100 4.6

 Andean Antioquia -5.7 63,700 5.6

  Boyacá 12.2 22,140 1.9

  Cundinamarca 3.6 22,550 2.0

  Huila 3.3 18,320 1.6

  Norte de Santander 0.5 21,980 1.9

  Santander -0.1 30,470 2.7

  Tolima 2.0 23,610 2.1

 Caribbean Atlántico -24.6 3,420 0.3

  Bolívar -14.8 27,150 2.4

  Cesar -12.9 22,880 2.0

  Córdoba -15.8 25,300 2.2

  La Guajira -34.7 20,840 1.8

  Magdalena -17.1 23,000 2.0

 Coffee-growing Zone Caldas 3.8 7,390 0.6

  Quindío 12.0 1,930 0.2

  Risaralda 4.9 3,470 0.3

 Eastern Plains Arauca -19.2 23,670 2.1

  Casanare -16.7 44,670 3.9 

  Meta -16.3 85,960 7.5

  Sucre -15.3 10,890 1.9

  Vichada -15.5 100,100 8.8

 Pacific Chocó -9.6 28,940 2.5 

 Southwest Cauca 6.3 26,650 2.3

  Nariño -3.4 30,470 2.7

  Valle del Cauca 1.8 17,370 1.5

Note:  Total percentage of area potentially affected would be 97.3% (1,112,800 km2).

Plains regions, which represent most of the 
country’s agricultural activity. 

Climate-smart adaptation and 
mitigation options for rice 
systems in Colombia
Colombian rice systems
Rice ranks first among short-cycle crops in terms 
of its importance to Colombia’s economy.  
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The country is the second largest rice producer in 
Latin America, and even so is a net rice importer. 
Rice is the primary source of calories for the  
low-income group, which accounts for over 37% 
of Colombia’s population (The World Bank, 2012). 
The two predominant systems of rice production 
in Colombia are mechanized – which includes 
both irrigated and rainfed systems – and manual, 
with all production activities being undertaken with 
hand labor. In 2007, Colombia produced 
2,471,545 tons of rice on over 400,000 ha of land 
(Fedearroz, 2007). 

An expert workshop on climate change at the 
International Center for Tropical Agriculture (CIAT) 
identified two potential climate-smart adaptation 
pathways for rice in Colombia: irrigation of 
traditional dryland rice and genetic modification 
for high-temperature tolerance. We also 
considered three mitigation measures for rice in 
Colombia: managing flooded rice to minimize CH4 
emissions, eliminating burning of crop residues, 
and optimizing the amount of applied fertilizer.

Types of economic analyses
Two important tools for selecting and prioritizing 
“no-regrets” adaptation or mitigation options are 
cost–benefit analysis (CBA) and cost-efficiency 
analysis (CEA). For adaptation purposes the most 
relevant analysis is usually the CBA, which asks 
whether the returns (benefits, such as avoided 

Figure 5. Changes in the suitability of 25 crops in Colombia estimated with EcoCrop: (A) climate more suitable;  
(B) climate less suitable; and (C) estimates of uncertainty (Coefficient of Variation, CV). 

damage/losses or extra developmental benefits 
compared with “business as usual”) are greater 
than the costs (extra investment compared with 
“business as usual”), and by how much. CBA 
quantifies all costs and benefits of an intervention 
with monetary values, making it appropriate when 
economic efficiency is the only decision-making 
criteria (UNFCCC, 2011). 

The impact of climate change on crops can be 
quantified with modelling, as can the extent to 
which impacts can be avoided through one or 
more adaptation options. Thus the most effective 
adaptation option can be chosen based on a 
discrete comparison of the cost of implementing 
the adaptation measure and its resulting benefits 
(improvement in crop production, avoidance of 
economic losses). Elements of climate change 
mitigation, on the other hand, are not always so 
easy to express in monetary terms. For example, 
the benefits of reduced GHG emissions are not 
restricted to the site of the emissions but are 
global in their effects, making them difficult to 
estimate (it is not yet possible to estimate GHG 
emission damages by modelling at the specific 
local level and then extrapolating globally). 
Positive environment-, health-, or livelihood-
related outcomes cannot be valued in a strictly 
monetary sense because they are not localized in 
the way that adaptation benefits are.
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CEA is useful for situations in which there is a 
concrete objective and where impacts are 
measurable but benefits are not (UNFCCC 2011), 
as is the case with many mitigation measures. The 
costs in a CEA can be valued in monetary terms, 
but the benefits must be expressed in “physical” 
units. It is then possible to construct a cost- 
efficiency curve that can be used to identify and 
prioritize those mitigation measures that are 
economically viable for achieving a well-defined 
physical target.

Cost–benefit analysis of adaptation 
options
Out of the area under rice production in Colombia, 
256,295 ha (64%) are irrigated and 29,556 ha 
(36%) are dryland/rainfed (Fedearroz, 2007). The 
potential area for irrigation based on water 
availability and climate is estimated to be  
6.6 million ha (AQUASTAT, 2010). Dryland rice will 
be vulnerable to yield losses from water stress 
caused by climate change, i.e., increased 
evapotranspiration due to higher temperatures and 
compounded by lower overall rainfall. Furthermore, 
the introduction of modern seed varieties has seen 
dryland rice lose competitiveness with irrigated 
systems; the average yield gap between irrigated 
and dryland systems can be more than 4 t/ha 
(Lang, 1996). 

We simulated the effects of climate change for 
dryland rice with the Decision Support System for 
Agrotechnology Transfer (DSSAT) (Jones et al., 

2003), using the variety and agronomy currently 
recommended by the National Federation of Rice 
Growers (Fedearroz, its Spanish acronym). We first 
simulated the effect of climate change without 
irrigation and subsequently its effect with 
irrigation. We estimated the costs of providing 
irrigation in terms of the initial investment required 
and the costs of operation and maintenance with 
a life span of 20 years. We calculated the benefits 
of the irrigation project as the difference between 
rice production with and without irrigation under 
the SRES scenario A2. We calculated operation 
and maintenance costs and estimated an increase 
of 1% annually, using an annual discount rate of 
12%.

Analysis of the financial flow shows that building 
an irrigation system in the Colombia’s Caribbean 
and Eastern Plains regions gives positive net 
present values (Figure 6), and in each case the 
development would be financially viable.

The second adaptation measure that we tested 
was a research program to seek and develop, by 
2030, new rice varieties tolerant of higher 
temperatures. The rising temperatures expected 
from climate change pose a threat to rice 
production by increasing the risk for spikelet 
sterility during development. However, rice 
germplasms exhibit great variability in their 
response to heat stress. Heat-tolerant cultivars 
have been shown to respond well to increased 
temperatures while still producing economic yield 

Figure 6. Costs and benefits year by year for an irrigation system project in Colombia’s Caribbean and Eastern Plains 
regions, and net present value (NPV) with a social discount rate of 12%.
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(Shah et al., 2011). Furthermore, improved 
cultivars could potentially offset stress from 
increased evapotranspiration by exhibiting better 
water use efficiency, greater harvest indices, and 
deeper/faster-growing roots.

We used the costs of a 26-year research program   
(including researchers, assistants, field workers, 
materials, infrastructure, and operational and 
administrative costs) and simulated the yields in 
2050 of the currently recommended variety and a 
synthetic variety less sensitive to temperature 
using DSSAT.6 We calculated the benefit as the 
economic value of the difference in production 
between the current and the synthetic varieties. 
We assumed a progressively decreasing rate of 
adoption with a final level of adoption of 15% for 
the whole country and a discount rate of 12% 
annually. 

The cost–benefit analysis shows that it is highly 
desirable to mount a research program to 
improve the resistance of rice to high 
temperatures, giving a large net present value 
(Figure 7). 

Cost-efficiency analysis of mitigation 
options
CEA assesses the economic costs and the 
technical efficiency of different options to achieve 
some predetermined level of environmental 
quality. The analysis assists the decision-making 
process by allowing feedback from those affected 
by a proposed program or plan of action to revise 
the objectives as part of the process. CEA allows 
the construction of curves of marginal cost, which 

Figure 7. Costs and benefits year by year for a research 
program to increase the resistance of rice to 
high temperatures, and net present value 
(NPV) with a social discount rate of 12%.

6 DSSAT largely represents the effects of temperature on rice 
as its effect on the development rate, in which higher 
temperatures shorten the duration of the various growth 
stages. We arbitrarily altered the genetic coefficients in 
DSSAT to make a synthetic variety that was less sensitive to 
temperature by increasing the genetic coefficients P1 and 
P5 by 15%. Coefficient P1 is the time period [expressed as 
growing degree days (GDD) above a base temperature of  
9 °C] from seedling emergence during which the rice plant 
is not responsive to changes in photoperiod. This period is 
also referred to as the basic vegetative phase of the plant. 
Coefficient P5 is the time period in GDD from the beginning 
of grain filling (3 to 4 days after flowering) to physiological 
maturity with a base temperature of 9 °C.
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are obtained by ordering all possible alternative 
actions according to their cost and their effect on 
the environmental factor under consideration. In 
the case of the reduction of GHG emissions in 
agriculture, the options can be modelled using the 
Cool Farm Tool, (www.coolfarmtool.org/Home), a 
tool originally developed by Unilever and 
researchers at the University of Aberdeen to help 
growers measure and understand on-farm GHG 
emissions.

Calculations of methane emissions reduction are 
based on empirical evidence collected from 
Colombian literature. Calculations of nitrogen/
yield relationships are based on modelling of 
potential yield under different treatments using 
the DSSAT CERES-Rice model. Quantifications of 
on-farm production in the different regions of 
Colombia are drawn from Fedearroz survey data.

Data from the field have shown that flooded rice 
generates greater emissions of CH4 than rice 
grown with intermittent irrigation (or irrigation 
interspersed with dry periods), which allows soil 
aeration and is unfavorable for the anaerobes that 
produce CH4. Flooded rice in Colombia is typically 
grown in the municipalities of Jamundí (Valle del 
Cauca) and Cúcuta (Santander). Substituting of 
intermittent irrigation for continuous flooding 
requires the following: (1) implementation of a 
system of monitoring and water use control at the 

www.coolfarmtool.org/Home
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level of the individual field; (2) training and field 
demonstrations of land preparation and the use of 
water budgeting balance; and (3) land preparation 
for more efficient water use. The cost to 
implement these measures is US$107/ha per year, 
which will reduce GHG emissions by 11.65 t CO2 
eq/ha per year in Cúcuta and 13.06 t CO2 eq/ha 
per year in Jamundí. The estimated cost efficiency 
is $9.20/t CO2 eq per ha per year in Cúcuta and 
$8.21/t CO2  eq per ha per year in Jamundí. The 
maximum potential reduction of emissions is 
197,050 t CO2 eq/yr for Cúcuta and 66,810 t CO2 
eq/yr for Jamundí.

Harvest residues are typically burned in the 
municipalities of Espinal (Tolima), Valledupar 
(Cesar), and Yopal (Casanare). Instead of burning, 
residues can be managed using minimum tillage 
and decomposition accelerators, which, including 
training, costs US$112 for Espinal and Valledupar, 
and US$57 for Yopal. The reductions of GHG 
emissions are 0.95, 0.53, and 0.47 t CO2 eq/ha 
per year for Espinal, Valledupar, and Yopal, 
respectively, with estimated cost efficiencies of 
$59, $104, and $120/t CO2 eq per ha per year. 
The potential reduction of GHG emissions is 
26,270 t CO2 eq/yr for Espinal, 3,280 t CO2 eq/yr 
for Valledupar, and 3,300 t CO2 eq/yr for Yopal. 

There are many factors that affect rice’s nitrogen 
use efficiency (NUE), or its ability to absorb and 
use nitrogen inputs. The result is often that more 
fertilizer is applied than can be used by the plant, 
or that not enough is applied to get maximum 
yields and economic returns. There are three 
possible approaches for increasing the efficiency 
of nitrogen fertilizer application to rice in 
Colombia, thereby reducing unnecessary inputs 
and decreasing emissions from crop fertilization 
(Figure 8). The first involves reducing overall 
nitrogen application, which increases NUE but 
entails reduction in rice yields (scenario A). The 
second requires no reduction or increase in  
nitrogen application, but requires more-effective 
management techniques so that what does get 
applied is used effectively by the plant (scenario 
B). The final approach involves both increasing  
nitrogen inputs and NUE through better 
management to arrive at optimum economic 

returns from the system (scenario C). All three 
scenarios are climate smart – they result in fewer 
emissions per ton of rice produced due to optimal N 
uptake – however we will only be analyzing scenario 
A for economic viability and relative eco-efficiency.

It is possible to halve the rates of fertilizer applied to 
rice in two regions of Colombia: the Andean and 
Caribbean regions. The cost of this option is 
estimated using the following equation: 

      )Z*F( rr
2

1
∇−∗∇= ∑ = Srssr PRC

where:

Cr= annual cost of measure C in region r (US$/ha);

Δ

Fr = reduction of 50% of the mean fertilizer of   
 the region in each cropping cycle (kg/ha);

Δ

Rrs = change in yield of the crop in region r in   
 semester s as simulated in DSSAT due to   
 the 50% reduction in fertilizer (t/ha);

Zr = mean price of fertilizer in 2010 (US$/ton);

Figure 8. Potential yield achieved under different 
application levels of nitrogen, based on 
modelling crop response with the DSSAT 
CERES-Rice model. The arrows represent 
different approaches for increasing efficiency 
of nitrogen fertilizer application in rice 
systems: A) Decreased N input but increased 
use efficiency maintains a stable yield,  
B) Same N input, with increased NUE and 
reduction of yield gap through optimal 
management, and C) increased N input to 
economic optimal levels, with associated 
increased NUE and increased management.
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Ps = mean value of rice in semester s (during  
  the last 10 yr in constant 2010 US$/ton).

The estimated costs of this option in terms of 
foregone production are: Andean, US$113/ha per 
year, and Caribbean, $183/ha per year. The 
expected reduction of GHG emissions are: 
Andean, 1.0 t CO2 eq/ha per year, and Caribbean, 
0.2 t CO2 eq/ha per year. Nevertheless, 
the estimates of cost efficiency are $109 and 
$170/t CO2 eq reduced for the Andean and 
Caribbean regions, respectively. The maximum  
potential reduction of GHG emissions is  
76,170 and 2,920 t CO2 eq/yr for the Andean and 
Caribbean regions, respectively.

It is important to keep in mind that the yield 
reductions caused by decreased nitrogen inputs 
have further repercussions for global food 
security. There is a possibility that reducing N 
application in one region or country could simply 
displace GHG emissions to another, which would 
have to produce more to make up for the 
decrease in yield, a factor which was not taken 
into account in this analysis.

The data for the three mitigation options in various 
departments in Colombia are summarized in  
Figure 9.

The priority adaptation and mitigation interventions 
identified for the rice sector all involve optimization 
of resource inputs and outputs, be it fertilizers or 
water, or improved use of “waste” products. The 
economic analysis demonstrates the cost-benefit 
ratios of these interventions from a climate change 
mitigation perspective, but equally could consider 
these from a competitiveness perspective, or 
prioritize them based on eco-efficiency principles. 

Eco-efficiency of climate-smart 
practices
Although the practices described above are already 
considered climate smart, our definition of the term 
leaves room for the possibility that, though a 
strategy may be climate smart, it may not 
necessarily be economically viable, environmentally 
sustainable, or make good use of resources. As 
noted by Keating et al. in Chapter 2 of this 
publication, eco-efficiency is a multifaceted 
concept that is characterized by a variety of 

Figure 9. Marginal abatement curves (MAC) (US$/t CO2 eq) for various interventions in rice culture in Colombia.
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potential measures. Thus, while an eco-efficient 
practice is highly likely to also be climate smart, 
some climate-smart practices are probably more 
eco-efficient than others if a number of such 
measures are taken into account.

Making use of some of the explicit measures 
noted by Keating et al. (Chapter 2 of this 
publication), we attempted to qualitatively 
evaluate the climate-smart adaptation and 
mitigation measures chosen for Colombia based 
on their relative eco-efficiency. A measure of 
eco-efficiency must be made with regard to the 
relation of inputs, such as labor, capital, nutrients, 
and water; with desired outputs, such as 
harvested product or economic profit. Table 3 
gives a positive or negative value for the eco-
efficiency measures to each of the 5 climate- 
smart practices; a negative value (red) is assigned 
when a practice requires more inputs (+) or 
results in less of the desired outputs (-), whereas a 
positive value (green) is assigned for a reduction 
in inputs (-) or increase in desired outputs (+).

Table 3 shows that not all of the climate-smart 
strategies chosen for Colombia are highly eco-
efficient, though some are more so than others. 

For example, the composting of crop residues in 
the field instead of burning appears to be highly 
eco-efficient – as it both reduces the amount of 
input required in terms of labor, water, and soil 
nutrients, and increases outputs in the form of 
ecosystem services. This inference is confirmed 
by the cost-efficiency analysis, which shows that 
eliminating residue burning it is capable of greatly 
reducing GHG emissions at a very reasonable 
cost to the farmer.

Conclusions

Despite the built-in uncertainties of global climate 
models, there is a reasonable amount of evidence 
to support the prediction that global temperatures 
could rise anywhere from 1 to 8 °C by 2050. 
Precipitation patterns are less predictable, though 
certain scenarios can predict with high certainty a 
global average increase of almost 23% by 2050, 
along with major changes in spatio-temporal 
distribution. Circumstances at the country level 
are similar, with Colombia predicted to undergo 
temperature increases between 1.4 and  
2.5 °C by 2050, shifting distributions of rainfall, 
and a range of regional precipitation changes  
(-6 to +5%).

Table 3. Eco-efficiency ratings for adaptation/mitigation strategies in Colombian rice systems.

 Eco-efficiency  Irrigation of Heat-tolerant Intermittent Residue Nitrogen 
 measure  dryland rice variety irrigation re-use efficiency

 Inputs Land area - - 0 0 +

  Soil nutrients + 0 0 - -

  Water + 0 + - 0

  Energy - 0 0 0 -

  Labor + 0 + 0 0

  Capital + + 0/+ 0 -

 Outputs Production (rice yield) + + + 0 -

  Profit or return on investment + + 0/+ 0/+ 0

  Security of food system + + 0 0 -

  Nutritional quality 0 0 0 0 0

  Ecosystem services 0/- 0 + + +

  Eco-efficiency rating 0.5 3 0 3.5 1

  Desirable 1
  0.5
  0
  -0.5
 Undesirable -1
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The implications of these changes for world 
agriculture could be profound, with some 37 of 
the most important crops predicted to lose more 
than 50% of area currently classified as suitable 
for their cultivation. Colombia could experience 
losses in crop suitability in up to 83% of the 
country’s total area, especially in the Amazon, 
Pacific, Caribbean, and Eastern Plains regions. In 
these regions, adaptation strategies will 
undoubtedly be necessary to cope with the 
impacts of decreased crop suitability.

Economic analyses of preferred adaptation and 
mitigation strategies for Colombian agriculture 
give encouraging results. Both the adoption of an 
irrigation system and the development of a 
research program for heat-resistant rice are 
economically viable, and, in the latter case, highly 
profitable in the mid-term. Mitigation strategies 
offer a more mixed bag: replacing flooded rice 
with intermittent irrigation reduces emissions at a 
relatively low cost. Using minimum tillage and 
decomposition accelerators instead of burning 
residues greatly reduces emissions, but at a 
higher cost.

Climate change necessitates the implementation 
of adaptation/mitigation measures to ensure food 
security. The critical question is whether these 
climate-smart strategies and measures that meet 
the standards of eco-efficiency are mutually 
inclusive. To be sure, many of the resources that 
eco-efficiency aims to manage prudently (water, 
nutrients, labor, finances, etc.) are the same 
resources that must be managed for adaptation/
mitigation purposes. For example, using 
minimum tillage and decomposers in Colombian 
rice fields instead of burning crop residues after 
harvest is eco-efficient because it greatly reduces 
the inputs of water and labor required for 
conventional puddled transplanting systems while 
leaving yields virtually unaffected (Bhushan et al., 
2007). The practice advances mitigation goals at 
the same time; omitting tillage and burning 
considerably reduces carbon emissions. 

Qualitatively evaluating the eco-efficiency of the 
climate-smart strategies chosen for Colombia in 

terms of the balance of inputs and outputs 
indicates that, while most eco-efficient practices 
are by default climate smart, not all climate-smart 
practices are necessarily highly eco-efficient. 
Instead, climate-smart practices display a range of 
compatibility with eco-efficient measures. While 
some, like the more precise application of 
nitrogen fertilizer, could result in significant 
reduction of inputs (soil nutrients, capital, labor, 
etc.) while augmenting desirable outputs, others 
may imply more labor, greater financial risk, or 
even unexpected environmental costs. 
Accordingly, those options which are a win for 
both system types should be emphasized in 
climate change planning to avoid the possibility of 
adaptation/mitigation coming at the price of 
efficiency and food security. Furthermore, climate 
financing could provide a boost to eco-efficient 
agriculture, thus opening the door for economic 
incentives to transform low-efficiency systems.
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