Pasture-livestock Research
and Training Program

For
(CIAT)
Centro Internacional de Agricultura Tropical

A Proposal
by

R. E. Blaser
Prof. of Agronomy
Virginia Polytechnic Institute
Blacksburg, Virginia
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Foreword</td>
<td>1</td>
</tr>
<tr>
<td>II. Program Objectives</td>
<td>8</td>
</tr>
<tr>
<td>III. Concepts of Pasture Improvement for Livestock Production</td>
<td>10</td>
</tr>
<tr>
<td>A. Development of the Pasture and Livestock Program in Florida and Australia</td>
<td>13</td>
</tr>
<tr>
<td>IV. Situation and Scope of Soil-Pasture-Livestock Program</td>
<td>16</td>
</tr>
<tr>
<td>A. Natural Grasslands</td>
<td>17</td>
</tr>
<tr>
<td>1. Availability and nutritional problems</td>
<td>19</td>
</tr>
<tr>
<td>2. Burning influence</td>
<td>20</td>
</tr>
<tr>
<td>3. Grasses</td>
<td>21</td>
</tr>
<tr>
<td>4. Legumes</td>
<td>21</td>
</tr>
<tr>
<td>5. Fertilization and liming</td>
<td>22</td>
</tr>
<tr>
<td>B. Sown Pastures</td>
<td>23</td>
</tr>
<tr>
<td>1. Animal evaluation</td>
<td>24</td>
</tr>
<tr>
<td>2. Conservation and supplemental feed</td>
<td>25</td>
</tr>
<tr>
<td>3. Fertilization and liming</td>
<td>26</td>
</tr>
<tr>
<td>4. Tropical legumes</td>
<td>28</td>
</tr>
<tr>
<td>5. Plant protection and weed control</td>
<td>28</td>
</tr>
<tr>
<td>6. Improved selections of tropical pasture and forage plants</td>
<td>28</td>
</tr>
<tr>
<td>7. Collections and introductions</td>
<td>29</td>
</tr>
<tr>
<td>8. Seed production of tropical pastures and forage plants</td>
<td>30</td>
</tr>
<tr>
<td>9. Economic analysis of livestock production from pastures</td>
<td>31</td>
</tr>
<tr>
<td>C. Animal Management, Nutrition, Physiology, Parasites and Genetics</td>
<td>32</td>
</tr>
<tr>
<td>1. Ruminant nutrition</td>
<td>32</td>
</tr>
<tr>
<td>2. Reproductive physiology</td>
<td>33</td>
</tr>
<tr>
<td>3. Disease and parasite control</td>
<td>34</td>
</tr>
<tr>
<td>4. Genetics</td>
<td>34</td>
</tr>
<tr>
<td>L. Training Program, Dissemination of Information and Collaboration with National Institutions</td>
<td>35</td>
</tr>
<tr>
<td>Procedure for Developing an Integrated Pasture-Livestock Program</td>
<td>37</td>
</tr>
<tr>
<td>Staff and Facilities</td>
<td>40</td>
</tr>
<tr>
<td>A. Professional Staff for Pasture-Animal Program</td>
<td>40</td>
</tr>
<tr>
<td>B. Educational and Training Programs for Technicians, Extension and Research Personnel</td>
<td>42</td>
</tr>
<tr>
<td>C. Physical Facilities</td>
<td>42</td>
</tr>
<tr>
<td>Review of Selected Investigations and Substantiating Information</td>
<td>44</td>
</tr>
<tr>
<td>A. Year-round Feed Systems -- Animal Evaluations of Pasture and Supplementary Feeds</td>
<td>44</td>
</tr>
</tbody>
</table>
FOREWORD

This proposal was prepared as a guideline for developing a productive pasture- and animal research and training program for the Centro Internacional de Agricultura Tropical (CIAT). The purpose of the program is to provide needed high animal protein foods for human consumption to improve health, strength, vigor, and initiative incentives of individual persons and the prosperity of farmers and economies of developing countries in the humid tropics by using the land, animal and climatic resources more effectively. In countries where consumption of animal protein is low (an estimated supply of 25.6 gm. in Colombia as compared to 64.4 gm. daily per person in the U.S.), the natural grasslands represent a reservoir whereby food production can be increased in two ways: (1) bringing unproductive and idle lands into more efficient use to increase output per hectare and (2) increasing output per animal. Furthermore, as the human population increases, the better and more accessible grasslands will be diverted toward production of foodstuffs for direct human consumption. Even as this evolutionary process continues, immense tracts of less cultivable land will remain for pasture development. Improvement of the natural grasslands and efficient production and utilization of sown pastures are long-range and formidable tasks that CIAT should assume.

The efficient production of livestock products from ruminants on soils not suited to crops for direct human consumption depend on adaptive, and later original, research information, pilot demonstration, and training of farm technicians and extension and research personnel. The resolving of the biological complex of climatic, edaphic, and animal input factors and their interplay for efficient animal production depends on an integrated team approach as given under program objectives and procedures (Sections II and V).

The projection encompasses a comprehensive and expansive scope, recognizing that elaboration must be appropriately and conveniently phased into the development activities of CIAT and collaborative institutions as prescribed by available human and physical resources. The costs of the program will be very sizeable;
the deterrents do not appear to be unsolvable; the potentialities for improvement are excellent.

It was suggested that this proposal be projected to include African investigations. Political unrest in several African countries and time scheduling did not permit travel to this continent for a review of pasture-animal developments in the various ecological zones and discussions with pasture and animal professionals. The problems, along with objectives and procedures for resolving them, given in this report apply specifically to the hot, humid tropics but should have general application to the International Institute of Tropical Agriculture Pasture and Forestry Program.
PROGRAM OBJECTIVES

To investigate and develop simple year-around pasture and forage systems of a quantity and nutritional value for efficient production of various livestock enterprises and to disclose maximum economic potentials of producing livestock commodities from tropical soils and environments as needed sources of protein and energy for humans.

To attain economic success in this project all input factors, as soils, pastures, animal nutrition, animal health, etc., are important and must be coordinated and directed toward high outputs per animal and per land area. It is imperative to stress outputs per animal and per land area as high forage yields are meaningless if their utilizable energy for animal production is low. Likewise, excellent animal hygiene controls or other manipulations that do not function to maintain and increase economical outputs of animal products are academic.

An integrated team approach directed toward fully exploiting the complex interplays of climatic-soil-plant-animal factors in producing animal products should be enthusiastically pursued. Some goals to be attained are: (1) Improved animal nutrition through use of long-lived pasture perennials with high dry matter production, (2) rapid production cycles - first calf born when heifers are less than 30 months old, (3) long and efficient reproductive life of cows with a yearly average of an 85% raised calf crop, (4) cattle with desirable marketable carcasses weighing 275 kilos in two years, and (5) dairy cows with uninterrupted and reasonably high levels of production (average 11-15 kilos daily for 280 days) for successive lactations.

All of the subsequent objectives should be administrated and directed toward realizing the primary objective in a total program of research. Cheaply produced feed is imperative as livestock production cannot attain economic status without it; thus the sowing and utilizing of pasture and forages for profitable livestock enterprises would have first research priority while research is in progress, however, priorities may need to be altered.

Investigations with Sown (improved and introduced) Pasture Species

Phase I To characterize and select sizeable land sites that may be economically
developed for significant production contributions because of favorable soil and ecological factors for growing desirable pasture plants.

a. Broad soil classification maps are to be made from aerial photographs by a team of specialists (plant ecologist, geologist, and pedologist).

b. Climatic conditions will be described for the underdeveloped land areas.

Case 2: Adaptive research - introducing and testing of grasses and legumes for total and seasonal growth, longevity, competition, and herbage acceptability.

a. Response interactions with modified environments such as burning, seedbed preparation, cultivating, draining, irrigating, soil amendments, herbicides, insecticides, and defoliation intensities will be evaluated with small plot clipping trials that are occasionally grazed.

b. To find adapted tropical legumes that fix nitrogen efficiently for themselves and grass associates and that are readily consumed by ruminants for the improvement of animal performance and reproduction.

1. *Rhizobia* strains and companionability in grass associations will be investigated.

2. Collections of legume and *Rhizobia* variants will be obtained from the extensive exploitations and plant introductions by C.S.I.R.O. in Australia and introductions by the U.S.D.A. and other forage programs. Germplasm legume and *Rhizobia* variants will be maintained.

3. Cooperate in regional testing of tropical legumes.

4. To investigate possible symbiotic nitrogen fixing relationship with tropical grasses and its practical exploitation.

5. To test selected species and varieties of pasture plants for total and seasonal yields, persistence, aggressiveness, acceptability to ruminants fed ad libitum or grazed, and for quality of herbage.

a. Grasses and legumes will be grown in monocultures and mixtures of the best adapted and compatible species with treatment variables such as fertilization, defoliation intensity and frequency (stage of growth), and irrigation under intermittent...
grazing or alternate grazing and cutting

Preliminary data on herbage quality will be evaluated by chemical analyses (Van Soest and other methods) and in vitro or in vivo (nylon bag) techniques. For the more promising species data on nutritive value indices (digestibility coefficients and consumption) will be obtained at several morphological stages of growth by ad libitum feeding green chop or as hay.

Pilot experiments will be initiated to investigate cultural and management practices and grazing sequences for obtaining year-around grazing.

To disclose the potential output of animal products per hectare and per beast from selected grasses and legumes grown alone and in mixtures. Adapted and promising species will be evaluated with animals in grazing experiments. Data will be obtained on the influence of pasture species on animal nutrition and on the quality and quantity of animal products. The effects of the animal on soil-plant interrelationships will be studied so as to characterize changes in production potentials which might result from the cycling of animal excreta (animal to soil to plant to animal) over a period of years. In order to make wise compromises between outputs per animal and per hectare the mixtures and species being grazed will be evaluated at two or three stocking pressures based on herbage available per animal.

It is very important to make thorough economic evaluations of all grazing trials. The economist should be a team collaborator at the time of planning the grazing and other experiments.

1. Some variables to be evaluated with simple factorial combinations are rotational vs. continuous grazing, soil fertility levels, irrigation, leguminous effects. Supplementary feeding will be practiced only to avoid animal losses at high stocking pressures.

11. Herbage availability, through selective grazing, influences nutritional aspects; hence, diagnostic samplings of forage produced and consumed should be made monthly.

111. Intake and digestibility and chemical and botanical compositions of pasturage
may be obtained during seasonal periods when distinct differences occur in herbage quality.

In addition to animal products and their characteristics, supplementary data will be taken on liver, blood, and rumen samples.

Investigations should include a study of methods of animal management and control of diseases and parasites; the effects of animal concentrations (stocking pressures) on diseases and parasite infestations and the influence of pasture nutritional differences on animal tolerance to diseases and parasites should be studied.

To develop dependable pasturage of suitable nutritional quality for year-around grazing through the manipulation of soil, plant, and animal factors when disease and parasite controls are employed with all variables.

Soil factors include the manipulation of irrigation and fertility to aid in obtaining more uniform plant growth at various seasons.

Plant factors include grazing intensity, sequence of species within and among pastures, and periodic resting to accumulate growth that may be grazed in situ.

Animal factors include their numbers on a land area (farm) by manipulating the breeding, calving, marketing, and lactating curves to coincide with seasonal undulations in nutrition (quality and amount of pasturage).

To develop a 12-month feed program(s) through flexible utilization of pasture for grazing and for hay and silage. Forage harvested and stored during periods of excess growth will be fed during periods of slow rates of dry matter production. Arrested grazing offers an opportunity to study the influence on parasite populations.

Such feed programs may be arranged by using a single species or a series of species or mixtures in different pastures.

Species and mixtures will need to be evaluated for yield, quality and losses with methods of conservation at morphological stages of growth as well as for ease of conservation.
Flexible management of animals which considers their nutritional requirements and the undulating yield and quality of pasture and forage.

d. Supplementary feedstuffs.

i. To investigate the production of supplemental crops to be fed as greenchop,lage, hay or grazed in situ when pasturage is low.

ii. To evaluate the utilization of cellulosic by-products.

iii. To study the usefulness of cheap urea supplementation with molasses or other organic compounds as a means of improving animal performance.

v. To conduct related investigations for the establishment of methods for controlling or alleviating any serious deterrent(s) that may interfere with efficient animal production from pastures and forages as they appear during the research investigations or may be encountered by cattle producers.

a. Factors that may require special research are:

i. Nutrition. This will include research on nutrient content and utilization in ruminants, supplementation of pastures, or other forages for maximum efficiency and causes and control of metabolic disturbances.

ii. Physiology of reproduction in males and females. Research will be directed toward uncovering the causes of reproductive failures and studying preventative measures.

iii. Parasites and diseases. Effects of livestock-pasture management and certain anthelmintics on internal parasitism will be investigated. The effectiveness of various drugs in controlling external parasites will be studied. Disease prevention will consist of using sound management and immunization against prevalent diseases. If other diseases or toxicities arise, these will be investigated.

iv. Soil problems as interrelated with physiological plant disturbances.

v. Nematodes and insects that alter plant growth.

vi. Plant diseases.

vii. Control measures for severe weed infestations.
Phase 6. To develop methods of producing, processing, storing, and marketing abundant viable seed supplies of desirable grasses and legumes. Phenological characteristics as related to factors that affect seed production will be studied for species.

a. Some treatment variables to be investigated are row vs. sod sowing; fertilization; defoliation management; water, insect, disease, and herbicide control; disk- ing or cultivating old sods; methods of harvesting; processing; and storing seeds.

b. Commercial seed production by qualified persons will be encouraged as information becomes available.

Phase 7. To intensify plant exploration and international distribution and to improve grasses and legumes through breeding, selection, and genetical studies.

a. Collections of introductions and accessions.

1. To identify species and develop genotypes that furnish feed during periods of low production. Early evaluations will be made with animals by intermittent grazing and in vivo, in vitro, and chemical evaluations.

11. Maintenance and distribution of vegetative and seed germplasm.

b. To conduct basic genetic research and to develop techniques which support breeding investigations of various plant species.

1. Modes of reproduction, floral biology, pollen production and receptibility, incompatibilities, seed formation and dormancy, apomictic reproduction, dehiscence and shattering, etc.

c. To participate in international programs of grass and legume improvement:

1. For allocating breeding responsibilities with species so as to concentrate efforts,

11. For participating in the establishing of standards for evaluating species and varieties,

111. For developing varieties adapted to sizeable ecological regions, and

1v. For production and distribution of foundation seed stock.

Utilization and Improvement of Natural Grasslands

1. To investigate the yield and nutritional value of various botanical components
of natural grasslands in different environments.

a. Output of animal products per ruminant and per acre at different stocking pressures will be obtained as outlined in Phases 3 and 4.

i. Variables to be investigated include fencing, controlled burning, mowing, drainage, arrested grazing, and supplements based on nutritional factors such as energy feeds, urea-protein, and minerals.

2. To develop simple low cost methods of establishing higher quality and more productive grasses and legumes by judicious stocking in combinations with practices such as burning and draining, seedbed preparation and aerial applications of seeds, fertilizers and pesticides.

3. To develop a 12-month grazing system(s) for producing beef cattle through the manipulation of animals, and natural pastures in combination with seeded pastures and supplemental forages.

a. Supplementary soil, plant, and animal data as outlined in Phase 4-a should be obtained to aid in explaining the results.

4. Data are to be evaluated economically and an economist should cooperate in designing grazing and other experiments.

Animal Environmental Control

1. To evaluate under laboratory controls the significance of tropical conditions such as high temperature and humidity on animal production.

 a. This area should be investigated if animal performance is suboptimal when nutrition and other biological input factors are controlled.

Animal Breeding

1. To improve the rate of reproduction, longevity, and productivity of ruminants through breeding in humid tropics under normal stresses of temperatures, humidity, diseases, insects, and nutrition.

 a. The main breeding scheme will be to cross native cattle with high producing imported cattle with the objective of retaining the adaptive characteristics of the native stock and the high production rate of the imported stock. Also, selec-
tion may be directed toward using a given strain or type of animal and meat production.

Training and Educational Program

1. To develop an international educational and training program for the improvement of pasture-animal programs.
 a. Research personnel
 i. Postgraduate and postdoctorate in-service experience and training to improve basic training.
 b. Extension personnel.
 i. In-service training at one or more locations and special training courses.
 ii. Involvement for short periods with research projects.
 iii. Methods for accumulating and disseminating information.
 c. To aid in training of technicians for managing pastures and animals.
 i. In-service short course and training programs.
 ii. Brief involvement with research pursuits.
 iii. Repeat short courses.
 d. Special educational programs.
 i. Short courses, workshops, symposia, conferences, and seminars directed at specific audiences.
 e. Accumulation, review and dissemination of information pertinent to pasture and animal research workers.

CONCEPTS OF PASTURE IMPROVEMENT FOR LIVESTOCK PRODUCTION

Here are two primary concepts of pasture improvement: (1) Utilization of the natural grasslands through better management of such pastures and animals. (2) Destruction of grasslands by fire or other ways and growing of seeded species after changing the environment. Both of these concepts have merit and universal acceptance of either alone is untenable. For example, there should be endeavors to maintain and imp
prove the production of native species in environments where there is a drastic shortage of a very erratic distribution of moisture and where irrigation is not available as in the short prairie grass region of U.S.A. and in some climatic zones of all continents. Also, very infertile, droughty, or flooded soil environments should remain in the natural vegetation. When yearly rainfall is reasonably high and reliable for a period of six months (more or less), it is usually preferable to destroy the native vegetation, if the soil environment can be altered at low costs, so as to grow more productive and nutritious seeded pasture plants. It is quite possible that the very low nutritional value of native species in many natural grazing lands is attributable to natural selection processes because palatable and heavy grazed species have gradually disappeared from sods.

The value of native species are strongly influenced by the fertility status of soils. In temperate arid and low rainfall regions soils are usually shallow but high in bases and fair in organic matter. Pastures on such soils are nutritious, but total production would not justify the use of seeded species. The native vegetation in humid tropical areas is generally of very poor quality because of the extremely infertile soils. Furthermore, as mentioned above, the more desirable species have been eliminated leaving those which are tolerant of low fertility conditions.

The concept of replacing native species on alluvial or reasonably fertile soils in tropical areas is unquestionably desirable. The destruction of indigenous sods on lateritic soils, and the seeding improved pastures may be questionable and should be pursued with caution. Lateritic soils, as in the Llanos of Colombia, may have very desirable physical or structural features, but they are usually extremely infertile. The highest fertility of such soils is near the surface where there is limited organic matter. Lateritic soils are characteristically very low in base exchange capacity (3 to 10 me.), and often are only 5 per cent base saturation. They are extremely acid; the availability of calcium, magnesium, and potassium are often no more than 0.5 me. per 100 grams of soil. Lateritic soils are low in minerals, except aluminum and iron. The buffering capacities of aluminum compounds are extremely high, making it difficult to alter the pH. Phosphate
fixation is usually very high. For such infertile soils, longtime experiments are necessary to ascertain the feasibility of using seeded species when soil fertility has been changed. Growing species that are better "miners" of soil nutrients and concentrating cattle on smaller areas will only aggravate soil depletion. For such soils, the availability of lime and low cost fertilizers are very important considerations. Supplying calcium and phosphorus as mineral supplements to the cattle on natural pastures may be an economical way of avoiding further mineral deficiencies and permit the profitable raising of cattle.

Development of the Pasture-Livestock Program in Florida and Australia

The development and improvement of the beef cattle industry during the twentieth century in subtropical Florida may serve to indicate potentialities in tropical regions.1/ Small adapted cattle, able to survive the harsh nutritional, parasite, disease, and insect stresses, were remnants of Spanish cattle introductions that had crossed with other breeds. During the third to fourth decades, mature cows normally weighed about 550 lbs. and averaged a raised calf about every third year. There were few fences and sparse cattle populations and they grazed natural pastures. One beast averaged ranging over five to twenty acres. The native grasses on the sandy, acid, infertile soils were low in essential macro- and micro-mineral nutrients and low in protein. Broken pelvis and other bones were caused by calcium and phosphorus deficiencies, other nutritional disturbances and insufficient trace minerals, such as copper and cobalt, occurred but at first were the unknown deterrents. Native grasses were very low in protein, since soil nitrogen and organic matter remained low because of the high oxidation on sandy soils. Legumes which fix nitrogen were absent from these natural savannahs. The utilizable energy and protein could in the native grasses remained below daily cattle requirements during much of the year. Burning the range was an excellent practice as this concurrently destroyed some sites and the woody, mature, indigestible grass sods. The young regrowth, improved observations of various investigations by R. E. Blaser during 1937-46 while associated with the University of Florida.
somewhat by the ash after burning, was nutritious for several weeks or months--during this period cattle grew and gained weight rapidly. Young cattle usually encountered severe nutritional stress; many died; others reached breeding condition at an age when today's Florida cattle are grandparents. It was common to sell late weaned calves to butchers because of severe nutritional stresses. Poor herd management, Texas fever, low nutrition, and severe screw fly infestations of unattended cattle caused high mortality. During the third and fourth decades in this century, many cattle died during the winters because of starvation due to the lack of energy and protein or mineral malnutrition on native pastures (quality rather than availability). Mineral supplements on natural pastures gave decided improvements in animal growth and reproduction, but spectacular progress occurred later by changing the soil environment and seeding improved pastures.

Today, Florida is a cattle empire--all problems are not solved (Appendix A). Applying needed nutrients to soils, establishing adapted grasses and legumes to replace native grasses, employing judicious grazing practices, exercising good herd management and hygiene, using better and adapted cattle breeds, better control of pests and supplementing deficient mineral nutrients are all links in this chain of success. The foundation of the Florida animal production program is improved pastures. Improved pastures depend on initial characteristics of soils and their amendments; total and seasonal yield and quality of pasturage; adapted species; available supplies of good seeds; irrigation where practical, and good animal grazing management. Pasture quality has profound effects on yields--research in Florida and Australia shows better calving and animal growth when legumes and grasses occur in pastures as compared to nitrogen fertilized grasses.

With natural unimproved pastures on the sandy acid soils in Florida (savannah vegetation) and poor cattle management during the first decades of this century there was but a 30 per cent calf crop and 5 to 20 lbs. of liveweight gain per acre with 5 to 6 acres required per head. Now with changed soil environments and introduced pasture plants, along with good herd management, calf crops average 80 per cent for the better cases. Stocking rates have increased sharply; realistic liveweight gains per acre for
Adapted species under natural rainfall are around 350 lbs. per acre as compared with 2 to 4 fold increases with nitrogen and irrigation.

The rapid development of the cattle industry in the humid tropics of Queensland, Australia, is similar to Florida developments. Cattle on natural unimproved savannas (grass-tree vegetation) require 5 to 40 acres per beast. Under such nutritional stresses, calf crops average less than 50 per cent and steers are often 5 to 7 years old when they attain suitable fleshiness for marketing.

The dynamic development of the cattle industry now underway in tropical Australia starts with selected areas with favorable rainfall and where soil nutrient deficiencies can be corrected for growing adapted grasses and legumes of good nutritional value. All of the grasses and legumes for the improved pastures are plant introductions from other countries. Introduced species are studied in various environments with and without altering soil environments and promising pasture plants are soon evaluated with cattle. Adapted and semiadapted species are further improved through natural selection pressures from the new environments and by objective plant breeding programs.

Practices directed toward improving the natural savannas per se in the above mentioned tropical and subtropical regions have not resulted in dramatic changes. These natural grasslands, however, made large contributions when used in combination with improved species for developing reliable feed programs. Animal and acre outputs from extensive operations on native vegetation have been improved by mineral supplements and good total management. Indeed, initial improvements in meat production per animal and per acre on extensive operations on the better natural grasslands may be most easily and economically attained by implementing simple managements as fencing and controlled burning, supplementing minerals that are deficient in soils and herbage, urea or urea-protein supplementation at critical periods, and good herd and breeding management.

The very significant natural adaptation of cattle to disease, insect, and nutritional stresses that are common in tropical regions should not be overlooked. The personal observations and communications in Australia.
natural selection pressures that have improved the productivity and adaptation of native cattle have been substantially augmented by introducing new germplasm. For example, crossbreeding with Brahman bulls has aided in developing cattle races that are especially adaptive to tropical environments.

Although the aforementioned improvements in soil-plant-animal interrelationships were slow, the potentials for beef cattle production from improved pastures in the tropics appear excellent. The principles that have been established may stimulate spectacular developments if they are used in adaptive research and directed toward meat production in many undeveloped biological complexes in the tropics. Such adaptive research should not be done to obtain original information for publications; initially, research will serve best where practical experiments and demonstrations furnish information for increased animal production on farms. For example, the research principles established from the studies of a biological complex of infertile sandy acid soils, woody native grasses of low nutritional value, and cattle adapted to pest stresses in humid warm Florida should have application to the Llanos regions of Colombia and Venezuela and to the "Campo cerrado" of Brazil. Research principles for improved species in Australia and other tropical zones may be "transplanted" with some modification to other tropical areas for improved pasture and animal production.

All phases of beef cattle production, from year-around grazing of improved seeded pastures or from well managed combinations of seeded and natural pastures, have been attainable without supplements. The possibilities with dairy cattle without supplements in the tropics have not been fully explored and appear less promising than with beef cattle production.

Situation and Scope of Soil-Pasture-Livestock Program

Land suitable for crops that are consumed directly by humans should not generally be used for livestock production. This is so because the production of nutritious high protein animal products for human consumption is very inefficient as compared with the production of grass and leguminous cereals, fruits, and vegetables for direct human consumption. Grain consuming simple stomached animals (poultry and swine) convert concentrate
feeding into animal products more efficiently than do ruminants. The conversion efficiency of consumed pasture and forage feeds (dry matter) into liveweight gain ranges from 6 to 15 per cent for ruminants; the values for dressed carcass weights are lower, ranging from 4 to 9 per cent. Thus, the production of human foods through ruminants are luxury enterprises unless abundant supplies of low cost feeds are used as efficiently as possible. This low efficiency of energy conversion to usable human foods makes it clear that the economic foundation of ruminant livestock enterprises depends on low cost feeds that are produced on soils not suitable for crops to be used for direct human consumption. Feeds for ruminants must be reasonably high in digestibility and consumed in large quantities to maintain the nutrition requirements above that for maintenance; otherwise, the efficiency of production would be even lower than previously mentioned. On the other hand, ruminants utilize "woody" low protein pastures and feedstuffs that would otherwise be wasted. By supplementing with urea, very fiberous feeds may be converted into high quality protein products for human consumption.

Low cost feed for the production of livestock products can be most economically obtained from pastures in environments with long grazing seasons where there is high soil energy, favorable moisture with good distribution, and favorable temperatures for high rates of dry matter accumulation. In such environments meat, wool, and milk products produced at low costs can be highly competitive commodities in world trade. Examples are the exports of livestock products from ruminants from New Zealand and Australia. The favorable cost-price production relationships in these countries are associated with land values, labor, mechanization, and other low input costs for feed primarily from pastures.

The production of livestock products by ruminants from yearlong grazing seasons using efficient pasture utilization and practices in tropical environments have potential economic advantages. The rapid development of the beef cattle industry in humid tropical Queensland is indicative of potentialities. Many interrelating factors have contributed to the economical production and development of the livestock industry in tropical Aus-
(1) Favorable temperatures - frostfree to light frosts, high rainfall (but distribution is often a problem), high light intensity and favorable photoperiods. (2) Adapted and improved tropical grasses and legumes with high economic dry matter yield potentials reasonably nutritious pasturage. (3) Information on soil and plant management for obtaining economical dry matter yields from plants. (4) Management programs of cattle adapted to the nutritional, disease, parasite, insect, and environmental stresses. (5) Integrated research directed toward judicious manipulating and compromising the soil-plant-animal interrelationships. Nonetheless, the business of producing livestock is and will continue to be faced with unsolved and unexpected temporary deterrents in Australia as well as in other humid tropical regions.

There are potentially serious deterrents for economical production of livestock products from ruminants in the tropics. Most forage and pasture plants are lower in nutritional value than temperate plants. This may retard conversion efficiency to animal products. Intertility of soils affects the nutritional status of pastures and forages. High temperatures may reduce protein content and enhance carbonaceousness of herbage. The incidence of animal diseases, insect and parasite pests is more severe in tropical as compared with temperate environments. Conversion efficiency of fibrous feeds may be influenced by climatic factors such as high temperatures and humidity. Other deterrents are high capitalization and lack of trained farmers and personnel to manage the biological complex. The development of the livestock industry in Florida (tropical and subtropical) during this century encountered these complex problems and hinderances, but the solution of them serves as an exhibit of possibilities in tropical environments. The advancement of knowledge through experiences and research in Florida, Australia, and other tropical areas have established principles that may now be used in adaptive research and demonstrations for rapid progress in similar environments.

There are huge tracts of land in the tropics that appear to be suitable only for economical production of pastures and forages (Appendix B). Large grassland areas are used for the production of forage grasses and legumes alone or in combinations and often
I

16

ith other herbage plants for grazing hay, silage, or greenchop. Acreage in grasslands
ceeds the combined area for wheat, corn, oats, hay, rye, soybean, sugar beets, rice,
lex, peanuts, potatoes, and tobacco - approximately 30% of the land area of the globe
covered by grass. Over 60 per cent of the worlds agricultural land is non-arable and
suitable only for grazing. One survey of 7.7 million square miles in 20 Latin American
ountries classified land use as being 20 per cent grasslands, 5 per cent cultivated
able plus perennial crops), 50 per cent forest (with limited grazing), and 25 per cent
 waste lands

In terms of livestock feed supplies, grasslands furnish over one-half of the total
in many temperate areas and 85 to 90 per cent in tropical regions. Grassland provides
the environment and "grass" is the sustenance of the ruminant. Latin America is endowed
with abundant land resources for pasture and livestock production. Its agricultural land
area approximates that of the United States (511 and 504 million hectares, respectively).
There are almost twice as many livestock units in Latin America as in the United States
and Canada combined (213.7 and 114.7 million head, respectively). Nonetheless, only
about one-half as much meat, one-third as much milk, and one-fourth as many eggs are pro-
duced in Latin America as in North America.

A. Natural Grasslands

Natural grasslands, with various indigenous species and different soil and micro-
environmental conditions, make up most of the grazing areas in the tropics. Of 1,139,
5 thousand km² of land in Colombia, approximately 40 million hectares are covered with naturalized
native grasses and there are only 4 million of improved (sown) pastures and forages.

Estimated hectares of grasslands and per cent classified as "natural" in various countries
in Brazil, 125 million hectares, 93%; Peru, 27,600,000 hectares, 93%; Ecuador, 4,656,000
hectares, 90%; Bolivia, 11.3 million hectares, 90%; Venezuela, 16.7 million hectares, 90%;
and Africa, 696 million hectares, 90% plus.

Animal output from natural grasslands is low; estimates of carrying capacity are not
certain but range from one beast per 5 to 25 hectares. Marked seasonal variations in
Growth and quality of herbage occur because of dry seasons, when the vegetation dries out to form coarse fodder of poor quality for browsing. Scarcity of water often causes poor herbage utilization because stock concentrates and overgrazes the plants near watering places, while pasturage some distance from water may not be utilized. In general, the vast regions of natural grasslands support only a fraction of the cattle in a country - e.g., about 6% of the cattle in Colombia are found in the Orinoco Basin which has 9% of the total grassland (approximately 16.5 million hectares).

Availability and nutritional problems

Utilization of natural grasslands is conditioned by seasonal distribution of herbage caused largely by soil moisture and partially by infertility. An abundance of herbage is generally present during the rainy season as new shoots or new seedlings develop and grow rapidly. Such young, leafy herbage is usually consumed in large amounts and is more digestible as compared to mature plants. The crude protein content of some indigenous grasses may reach 8-10% on a dry matter basis. Bunch-type grasses make up much of the sward and stem elongation and flowering begins before the onset of dry periods. As physiological maturity proceeds, the leaf-stem ratio widens and nutritive value declines. The plants become progressively lower in protein, minerals, palatability and intake, digestibility, and higher in fiber and lignin. The energy and protein utilized by ruminants declines sharply because of intake and digestibility reductions. Tropical grasses are generally lower in minerals, digestibility coefficients, crude protein and energy utilized by ruminants than are temperate grasses. Digestibilities of tropical species seldom reach 65%; values of 50-60% are common (versus 55-78% for temperate climate species). Mature tropical grass may drop to 25% less as compared to 45% for temperate grasses.

In the mature tropical grasses crude protein may fall to a critical level of 5% or

Figures for Bolivia, Venezuela, and Africa are taken from the FAO 1966 Yearbook and represent permanent pastures and meadows and probably do not include all of the natural grasslands; other figures are estimates made by Daves, W.A. 1960. Temperate (Tropical) Grasslands. Proc 8th Int Grass. Congress 1-7.
Lower. Below 7% crude protein, voluntary intake of the poor quality grass is limited so that the requirements of the rumen flora cannot be satisfied. This also has a marked effect on intake by decreasing the rate of digestion. A possible deficiency of certain minerals in the forage may accentuate the problem. For example, a phosphorus or cobalt deficiency has a profound effect of lowering feed intake in ruminants. During dry seasons, the further decreases in digestibility of grasses may occur due to losses of soluble mineral, energy and protein constituents from respiration, leaching and microbial fermenting. With low intake and digestibility, as during drought, cattle go hungry for lengthy periods. Nutritional requirements drop below that needed for maintenance; hence cattle lose weight, may have low and delayed conception, and maturity is prolonged so that slaughter occurs when animals are 6 to 7 years old. Under such nutritional stresses, there are often breaks in breeding cycles so that yearly calving percentages are unduly low, making it difficult to maintain herd replacements and provide cattle for slaughter.

While breeding, control of diseases, and other input factors are important under such conditions, first attention must be given to the problem of adequate nutrition throughout the life of the animal. It is important to examine the problem of a year-round feed supply of an adequate nutrition level so as to support a given livestock enterprise. Provision of supplementary feedstuff might be an expediency; the growing of special crops for silage or green chop, the utilization of plant refuse byproducts, or urea supplements during nutritional stresses are feasible solutions. For instance, feeding supplemental protein to very low protein diets usually increases the rate of digestion and hence intake of low quality roughage. Crude protein and minerals should be supplemented, if deficient. A low level of supplement containing a high urea level would be satisfactory for animals at low production, such as pregnant beef cows. The minerals could be supplied in the protein supplement or by allowing the cows access to a mixture containing the deficient minerals mixed with salt. Under extensive grazing schemes, other alternatives such as providing off-season pasturage from sown species may be implemented. It may be more practical to irrigate sown species for off-season production than to conserve for-
Immature and actively growing pasture plants will more nearly provide the mineral needs of ruminants than mature plants. Plant constituency varies with the mineral content of soils and of pasture species for given stages of growth. A survey of several commonly occurring native grasses and legumes in Colombia showed a prevalence of low phosphorus content in many regions, but calcium was generally adequate. Mineral supplementation (indirectly pasture improvement) may be the initial step toward animal improvement on the low fertility natural grasslands. In fact, data obtained by ICA with salt supplements in the Llanos Orientales of Colombia indicate a yearly per head increase of 1 kg of San Martinero cattle stocked at one beast per 5 hectares.1 Thus, a simple management practice resulted in decided increases in animal outputs and permitted a carrying capacity almost three times that normally used in the region. Other practices such as judicious mowing, controlled burning or a scheme of intensive grazing coupled with resting or rotational grazing might permit further increases in stocking rates. Alternative mentioned earlier in this section should be examined by the Pasture-Animal Program of CIAT. After all, the application of man's knowledge has altered the development and maintenance of grasslands more than any other factor. Most grasslands are unstable vegetative sub-climaxes with dynamic natural shifts of species. The cattleman's aim for many tropical grasslands must be to improve the natural sward by encouraging the development and spread of more valuable species components at low costs and with simple methods. Research must aid in resolving the economic exploitation of this biological complex.

2 Burning influence

Use of fire, ignited by man and lightning, has probably been the most ancient and important influence on vegetation. The morphology and growth patterns of perennial grasses are aids in the resistance to burning injury: perennating organs are close to or protected by the soil, seeds ripen and fall to the soil before the advent of hot and dry season.

Personal communication with Instituto Colombiano Agropecuarias (ICA) Animal Scientists.
Dry weather and only one season's growth is destroyed. The effects of fire are contradictory because of many interacting factors and difficulty of experimentation; hence many conclusions are based on historical evidence without precise measurements. Burning may be deliberately used for bush control, to rid land of coarse, unpalatable herbage and to reduce the encroachment of undesirable species. Burning of mature woody grasses destroys inedible and dead plant refuse and encourages new palatable herbage because of grass light competition. Indiscriminant burning when regrowth will not occur is too often the practice. Without judicious fire management the "harsh" grass species may be favored at the expense of the "soft" species which do not survive when burned (e.g. molasses grass).

Additional research is needed to evaluate burning practices (particularly in Latin America since most of the available data are from the U.S., Africa, and Australia). The effects of grazing and burning are interrelated and must be studied together - e.g. in Queensland, grazing of annually burned pastures promoted the dominance of the undesirable spear grass (Ceteropogon contortus) but in protected areas the preferred kangaroo grass (Themeda australis) predominated. Other factors to be considered include season of the year, amount of inflammable material, frequency of burning, weather condition before and after burning, and resistance of the plant species to fire.

Burning often and at critical times, concurrently with fertilization and grazing, has been an inexpensive method of establishing sown species by attaining reduced competition from natural grassland species.

3. Grasses

A number of ecological surveys show an abundance of grass species in the tropics. More than 1000 have been classified in Mexico, over 800 in Brazil, 600 in Colombia, and 300 in Costa Rica. These surveys are floristic in nature and do not provide information on seasonal distribution, yield, and nutritive value. The CIAT Program should include research to evaluate the contribution of various dominating species in swards with grazing animals. This can be done by seasonal sampling, chemical analyses, in vitro or in vivo digestibility studies, and by grazing trials. Other information could be obtained
Species replacement and succession are important factors in improving natural grasslands for more intensive management (efficient production) and improved nutrition. Thus, introduction, testing, and evaluation of species must be carried out under varying ecological conditions. It has been shown that introduced superior species permit higher grazing intensities than for indigenous plants—e.g., one beast per hectare on unfertilized molasses grass (*Melinis minutiflora*) in the Llanos Orientalis of Colombia, 1.5 - 2.0 head for fertilized hectare of *Brachiaria decumbens* and *Hyparrhenia rufa* vs. one head on 5 to 20 hectares of natural pasture. As rapidly as better pasture species are identified, animal evaluation studies (intake and digestibility trials with later grazing experiments) should follow along with agronomic aspects of establishment, forage production management, and maintenance. In some areas species replacement may be accomplished without tillage, e.g., by grazing, mowing or burning, and sowing seed of *Melinis minutiflora* (molasses), *Hyparrhenia rufa* or *Panicum maximum* (guinea grass) or transplanting vegetative pieces of *Brachiaria decumbens* (pangola), *Brachiaria* spp. or *Axonopus micay*, etc. Combinations of these practices coupled with soil amendments may be an economical way to establish other improved pasture plants.

4. **Legumes**

Legumes are scarce and make no significant contribution to grazing under natural grasslands on acid and low fertility conditions. Assuredly they will become important as improved pasture management practices are adopted. (See Section on Legumes under Sown Pastures)

5. **Fertilization and liming**

Natural pasture species on acid, low fertility soils that have become adapted through principles of the "survival of the fittest" during many years, will rarely give an econo-

Personal communication with ICA Pasture and Forage researchers.
inal response in terms of increased animal products. The ash constituents for lime or fertilizers that have been added would usually increase, but the utilisable energy and protein may be expected to remain low. On the other hand, liming and fertilizing should be implemented concurrently with introduced pasture species evaluations.

Knowledge of soil nutrient status and fertilizer responses become increasingly important as artificial pastures (higher yielding and more nutritious) replace the natural grasslands. (See Fertilizing and Liming under Sown Pastures, Section B-3, below).

3. Sown Pastures

The best possibilities for improving livestock products per animal and per land unit are with sown pastures. Sown tropical pasture and forage species possess potentials for high rates of dry matter accumulation and nutritious herbage as compared with natural grassland species. Nutritious forage from desirable species interacts to reduce the harmful influences from diseases, parasites and other stresses of ruminant animals.

Sown pastures (improved and artificial) comprise only a small percentage of the total land area used for animal production in the tropics. Because of poor grazing management, choosing unadapted or nutritionally poor species, and/or low soil fertility, animal output from seeded pastures may be no better than for natural grasslands. On the other hand, with favorable management of the soil-plant-animal factors, one hectare often supports two or more beasts during wet seasons and about one beast during dry seasons.

Carrying capacity and animal output have been sharply increased by fertilization (particularly with nitrogen and phosphorus), good grazing management, and by irrigation of adapted and nutritious species.

Sown pasture regimes require more capital outlay per unit of land than for natural pastures; thus, the manipulation of the interrelated factors for high outputs are profoundly important. Much technical skill is needed for the management of sown pasture enterprises, but the simplest and least costly operations for obtaining high production per acre and per animal should be the goal.
1. Animal evaluation

Pastures and forages per se are of no value except in terms of animal uses and products. Some improved grasses have been characterized by agronomic studies such as field and persistence. Limited animal performance trials have been conducted for short periods but usually with methods that did not realize the per animal and hectare output potentials. The general lack of progress in animal production in the tropics may be attributed to isolated attitudes and research efforts; the resources already available have not been exploited to advance animal production. Research is especially needed on developing alternative pasture and forage management systems that furnish reliable nutritional feed supplies at low costs for the longest possible part of each year. Ruminants cannot manufacture their food; however, animal breeding cycles should be manipulated and timed to fit the expected flush growth curves and seasonal nutritional undulations.

As soon as feasible, CIAT should sponsor animal evaluation trials to explore nutritional and productive potentialities of grass species. Some of the more important grasses ready for pasture evaluation with ruminants include: guinea (Panicum maximum), paca (P. harmadrazus; syn Brachiaria mutica), puntero or jaragua (Hyparrhenia rufa), pangola (Brachiaria decumbens), molasses (Melinis minutiflora), Brachiaria decumbens and kuzierinka, and elephant (Pennisetum purpureum). As programs develop, other promising species should be investigated with grazing experiments. Initial investigations should be conducted without energy and protein supplements. In grazing trials three critical periods for growth of grasses which reproduce from seed and not vegetatively should be considered: (a) the flowering period, (b) the change from seminal to a coronal rooting system (generally occurring about one month after seedlings emerge), and (c) the period of major transfer of carbohydrates from aerial to storage organs, which usually occurs at the onset of the dry season.

Corollary studies of forage intake and digestibility along with in vivo and in vitro chemical determinations can provide supplemental and substantiating evidence on the value of species, selections, or varieties of grasses and legumes. Investigations should
be made under several soil fertility levels, at different times of the year, and with plants in various stages of growth.

2 Conservation and supplemental feed

Supplies of adequate quality and quantity of feed with year around pastures for dominants should be a target as conservation and supplementing feeds complicate feed production systems. For environments where plants are dormant, woody and of little nutritional value over prolonged periods, however, forage must be conserved during periods of flush growth for feeding to cattle when shortages or low quality of pasturage are problems. Forage conservation demands breadth in management ability and higher costs in additional structures, mechanization, and labor. The feeding value of conserved forages are almost always inferior to freshly grazed forages due to losses in minerals, protein, vitamins, and highly utilizable energy materials. Dry matter is lost by mechanical means, respiration and fermentation. The concurrently high temperatures and humidities in tropical areas may aggravate storage losses of conserved forages.

The lack of year-round plant growth often limits full exploitation of sown pastures and forage crops. Plant growth patterns are cyclic because of available moisture, generally with an excess of forage during the rainy season but a scarcity during the dry period. As plants become mature quality diminishes since they are low in utilizable protein and energy, and are high in fiber. Under these conditions, a grazing scheme can be programmed for a no-call operation, but for effective and efficient animal performance some type of supplementation is required. There is a paucity of information throughout the tropics to provide for alternative feeding systems. Some studies show that timely fertilization with rational herbage utilization extends the grazing period; forage accumulation in situ provides available fodder but is usually of low quality; ensilage, hay making, and irrigation offer a possibility but costs inputs may be prohibitive; annual crops such as forage sorghum and Dolichos lablab and perennials such as kudzu (Pueraria phaseoloides), leucaena leucocephala and Cajanus cajan for greencrop or rational grazing could be used. But management may be too demanding and costs too high, plants may be selected for brow-
ing but little is known of this potentiality.

Waste plant products from fruit, vegetable, and sugar cane industries should be investigated as potential feed supplements, especially with dairy cattle. This is virtually an unexplored area but is one needing attention and a solution could make a tremendous impact on animal production in the tropics.

Fertilization and liming

The best improved sown pastures occur on the river valleys on alluvial soils where soil pH and fertility are rather favorable. As such areas are used for intensive cropping, pastures will be grown on the less fertile more, acid soils.

There is a need for characterizing the differential and potential responses of grasses and legumes alone and in associations when grown on different soils. The fertility status on lateritic soils is a deterrent because of the acidity, phosphate fixation, and unfavorable chemical characteristics for correcting these adverse properties. Available data on some of the more fertile soils show quite high yields and sharp increases in plant growth with added increments of fertilizers.

There is strong evidence that the production of certain grasses is sharply increased by some sort of a symbiotic interplay. Observations in humid Northern Colombia indicated decided improvement in color, possibly protein content, and yields of elephant and other grass strains. This mechanism should be fully explored.

Wide differences occur among grasses in adaptation to the inherent soil nutrient status - e.g., molasses grass (Melinis minutiflora) and Axonopus micay are generally considered low fertility requiring grasses and do not markedly respond to added plant nutrients. Paspalum plicatulum (brown seeded paspalum), which occurs naturally in some areas (Blanco Orientalis) and becomes more prevalent with rudimentary management, remains low in crude protein content, even with elevated doses of nitrogen. Still, it is superior to some other native species. Conversely, many tropical grasses readily respond to applied

Personal observations in Colombia.
Nitrogen, which increases the quantity of herbage and the percentage of crude protein, is present in grasses at the Pamila Experiment Station in the Cauca Valley with no nitrogen, at about 30 tons dry matter per year and contained 6.0% crude protein; but with 90 pounds of nitrogen the yield was about 44 tons of dry matter with up to 16% crude protein. Grasses differ in their requirements and utilization of phosphorus: molasses grass and low and butter grass (Cenchrus ciliaris syn. Pennisetum ciliare) has high requirements. They also differ in their need for potassium; molasses grass has low requirements compared with guinea, pangola, and Rhodes grass (Chloris gryana). These grasses grow well on soils high in sodium which substitutes in part for potassium. All legumes are low in sodium requirements than grasses; hence, grasses low in potassium and high in sodium might be especially compatible with legumes.

Other minor elements may limit growth and persistence in certain localities. Many legumes differ in soil nutrient requirements — e.g. Townsville lucerne (Stylo aborted). Used extensively in the Australian drylands, can thrive on extremely low phosphorus soils (plant tissue may contain less than 0.10% phosphorus which is below the approximate 0.14% minimum needed by grazing animals); whereas perennial soybean (Glycine max) requires a high level of phosphorus. The latter is also sensitive to magnesium shortages. In many areas, especially soils low in lime, molybdenum is needed for legumes.

A corollary to plant-soil nutrient relationships plant mineral constituency should be investigated. This often reflects the nutrient status of the soil, and serves as a guide to needed fertilizer for yield responses. Mineral composition of pasture plant tissue is useful for diagnosing adequate mineral levels for livestock. Lime and plant nutrient requirements will interact with methods of pasture utilization; more fertilization will be required under cultural practices where all herbage is removed compared with grazing. Grazing experiments with fertility levels should be conducted over a period of years to establish production patterns through the dung-urine to soil to

Personal communication with pasture research workers in CSIRO, Australia.
Plant recycling.

Tropical Legumes

Tropical legumes are potentially very important in pasture mixtures for two reasons:

1. Low soil nitrogen in tropical soils limits the growth rate potentials and applying nitrogen is often not economical for producing livestock products because of low conversion efficiency. Tropical legumes are estimated to fix 100 to 350 lbs/N in one year when properly inoculated and cultured. (2) Legumes have decided effects on animal growth, improved feeding percentages and growth rates of calves and larger cattle in Australia. Among success with tropical pasture legumes in different micro-locations has been attributed to adaptive cultural research with many introduced legumes, adequate plant nutrient, *Rhizobium* strains that fix nitrogen efficiently, effective plant breeding for animal utilization and suitable grazing management. Annual legumes are used in "harsh" environments with long periods of drought; whereas, perennial are used in humid rainforest areas. Tropical legume strains also make significant contributions in humid environments in Hawaii.

A number of tropical legume species can be sown pastures in South America – *Vigna*, *pseudohasskii*, *Centrosema*, *Phaseolus*, *Clitoria*, *Calopogonium*, *Tremus*, etc. Generally, legumes in pasture swards appear sporadically and erratically. A number of other legumes appear promising, but have not been fully evaluated: *Glycine javanica*, *Phaseolus chilensis*, *Leucaena leucocephala* (syn. *L. glauca*) *Vigna* spp., etc. The findings in Australia suggest that the culturing of tropical legumes must be re-evaluated in various micro-environments in tropical South America. This could have a very important economic and nutritional influence on cattle production.

In the OAS experiment special attention should be given to legume bacteriology since tropical species have higher degrees of *Rhizobium* specificity than most temperate legumes.

One point of importance is that many of the *Rhizobium* infecting tropical legumes are acid producers and can thus grow in acid soils as contrasted to acid producing bacteria infecting most temperate legumes. Other factors to be considered are: (a) date of sowing...
to avoid high soil nutrient level caused by mineralization of organic matter at the beginning of the rainy season, (b) length of time for establishment - the Australian fact that it requires as long as two years for certain species of tropical legumes to be fully established, (c) defoliation management to permit regeneration - most of the tropical legumes grow from the tips of the stems (terminal growth) and produce some axillary branches, but generally do not regenerate from stolons or crowns as do many temperate legumes, (d) assurance that deficient plant nutrients are provided either through natural soil fertility or by fertilizer amendments and (e) competition from companion grasses.

3. Plant protection and weed control

Weeds including weeds, insects, and diseases are almost untouched investigations in tropical pastures and forages. Suppression of weeds (herbaceous and woody species) is generally done by hand labor and on limited areas; ravages of insects are usually unrecorded but only a few surveys have been made on prevalence and damage by plant diseases. The development of a CIP Pasture-Livestock Program, attention should be given to these disciplines, but in cooperation with the allied scientists.

4. Improved selections of tropical pasture and forage plants

The few improved tropical pasture and forage species have been developed by selections among natural variants from phenotypes which appeared superior in forage yield, color production, leafiness, color, disease tolerance, and persistence. Varietal names have been given to some introduced accessions after limited testing, generally without restriction but mass selection may have been imposed. The more sophisticated breeding procedures have not been employed, nor should they be until natural variation has been adequately sampled. Most of the tropical grasses are highly apomorphic but generally sexual seed reproduction occurs to allow diversity of types among segregating regenerates.

Recently, several clones of imperial grass (Axonopus scaparius) with resistance to "brown spot" (a bacterial disease caused by Xanthomonas axonopodis) were found among na-
At the Palmira Experiment Station in the Cauca Valley, an improved selection of forage sorghum with high yields and tolerance to certain diseases was developed by hybridization and self-segregating generations. A similar improvement program of this species was conducted in Australia.

An extensive tropical legume breeding program in Australia led to the release, multiplication, and seed distribution of Sitatro, created by the hybridization of two introductions of *P. nigrescens* and selection under heavy grazing into the F_2 generation. "greenleaf" (P. intermedium) and "silverleaf" (P. paludosum) were developed through selection among direct introductions; three additional parental soybean species (Glycine javanica) - "Cooper," "Clarence," and "Townsville" - were after several generations of adaptation; Townsville lucerne (Stylosanthes humilis) arose after many years of natural selection in northern Queensland. These improved strains are commercially available in Australia.

Selections and introductions

Cross-legume introduction gardens form a part of the "visitor circuit" on most commercial stations and School of Agronomy campuses in Latin America. In many instances, they have existed for unrecorded years to the degree that origin has been lost with antiquity. Some exchange of material occurs but viable and useful information generally cannot be found, nor is there an organized scheme for coordinated evaluation and subsequent use by farmers. This is not always true, as pangola grass (*Digitaria decumbens*), a vegetatively propagated pasture plant, was introduced into Latin America in the early 1950's and promptly spread over a larger area in a shorter period of time than any other tropical species. In reality, dissemination proceeded too rapidly, as most established excellent stands of guinea grass to establish the "novel" pasture crop. Much to their dismay, it was discovered that pangola required more careful management and a higher soil fertility than many of the presently used species.

For additional information, see the literature on forage and pasture studies.
Introductions and collections of exotic materials often become the instrument for
main pasture and forage improvement. Certainly, diverse germplasm forms the basic
foundation for a breeding program. CSIRO in Australia through its plant introduction or-
ganic has acquired several thousand tropical and subtropical grasses and legumes during
the past thirty years. Screening and assessment involved the close collaboration of several
specialists in different environments. Plants that appeared promising for a partic-
ular environment were allotted to a cooperating group for further testing, commonly
under growth, and for seed production and distribution. Some 18 new grasses and legumes
have been developed to the stage of commercial exploitation by such a cooperative effort
in Australia. A number of these plant introductions came originally from Latin America
and are presently being re-introduced.

A centralized and coordinated forage and pasture plant introduction organization
is needed in Latin America. At present there is no such organization. Beginning in
the late 1950's and with added impetus in the early 1960's the IRI Institute sponsored
a extensive grass-legume collection expedition in Brazil. As a consequence one of the
largest collections of plant materials in South America exists at Matao in Sao Paulo.

Potentially valuable plant material entered into independent exchange programs,
but an adequate evaluation system failed to materialize—largely because of inadequate
plans and a lack of a unified Interamerican Plant Introduction and Testing Program.

It should give purposeful consideration in assuming a leadership role in promoting
such an organization.

A prerequisite to pasture and forage improvement in the tropics will be the accumu-
lation and evaluation of germplasm. Later, plant breeding and genetic investigations
will be critically pursued in developing superior varieties. The role of CIAT may be that
of stimulating and impulsion and supplementation for national programs rather than actual
engagement.

3. Seed production of tropical pastures and forage plants

Seed and planting stocks of tropical grasses and legumes on a commercial basis do
except for a small market in Australia. Multiplication of improved seed
is in this continent is limited and distribution to the outside is generally re-
sults in lower prices (as compared with temperate pri-
ces) and limited with temperate zone grasses and legumes. One small seed plant in Costa
Rica is notable, but few lose processes several grasses but only for local consum-
ption. The ministry of agriculture in most countries provides limited quantities of
seeds or stocks, but for the most part, seed movements are from farm to farm. With
few exceptions, seed goes from an experiment station to the more aggressive cattle-
men and then on to the ranch. For some species, such as guinea grass, molasses grass
and \(\text{Panicum maximum} \), cattlemen use hand labor to collect their own seed. Occa-
sionally the excess seed is marketed locally, but viability and germination, and vitality
of seed is extremely low - e.g., local seed of guinea grass in the Cauca Valley showed
vitality of less than 1.0%.

Technology in producing pure seed of good quality is a complex enterprise - crop
management, seed harvesting, processing, storing, and distributing. A lack of such a
marketing service is a deterrent in the tropics. Seed deteriorates in storage at high humidity and temperatures which encourage microbial activity.

It will be necessary for the CIAT Program to engage in basic research on phenological investigations and other factors that influence crop development and the production of high yields of quality seed.

Novel analysis of livestock production from pastures

It is impossible to find concrete and valid economic information based on
the costs of various input factors and final products. Projections have been made
preliminary, but the basis for their compilation have been derived from rather meager

starting with the labor market.
undoubtedly, any one or more of these could interfere with the estrus cycle, semen quality, conception, implantation, and embryo survival. It is likely that a combination of these factors are involved under present grazing and management procedures in the tropics.

After the cause(s) of the poor reproductive performance is established, preventative measures will be tested. This may include good animal management procedures, nutrient supplementation, use of drugs and medication, and appropriate breeding systems.

3. Disease and parasite control

There has been a complacent attitude by livestock men in tropical environments that most of losses caused by disease and parasites is one over which they have little or no control. Deaths from diseases such as foot and mouth, anaplasmosis, rabies, anthrax, and various infections are very high. Incidious losses from diseases and parasites in the form of unthriftness, low rate of gain, poor milk production, and poor reproductive performance, although less striking, cause tremendous losses in productivity and efficiency. The parasite and disease problem, although serious in beef animals, is accentuated in dairy cattle as a result of more intensified production.

In all the research and demonstrations sound management systems should be followed. Immunization against such diseases as blackleg, anthrax, and anaplasmosis should be a routine procedure.

Research should be conducted concerning the effect of livestock-pasture management on internal parasitism. For example, rotational or strip grazing should be compared to continuous grazing. Also, anthelmintics, such as phenothiazine and thiabendazole, should be tested. The use of various drugs and method of application for controlling external parasites should be tested also.

4. Genetics

Undoubtedly, livestock indigenous to the tropics are more resistant to the para-
Multiplication of improved seed in most countries provides limited quantities of 100 percent pure seed. But for the most part, seed movements are from farm to farm. With demand for elements such as guinea grass seed harvested, processed, stored, and distributed. A lack of such a project planning and marketing service is a deterrent in the tropics. Seed deteriorates under high humidity and temperatures which encourage microbial activity.

Economic research is needed to apply the techniques, methods, and procedures from the temperate regions. The Australians have made a beginning and other seed research organizations in look to them for leadership. The role of CIAT may motivate and stimulate activity. It will be necessary for the CIAT Program to engage in basic research on phenological investigations and other factors that influence development and the production of high yields of quality seed.

7. Basic analysis of livestock production from pastures

It is impossible to find concrete and valid economic information based on studies of various input factors and final products. Projections have been made based on studies of various input factors and final products. Projections have been made based on the basis for their compilation have been derived from rather meager
Initially, research should be directed toward uncovering the cause(s) of the low calving percentage. In other words, is the poor performance due to malnutrition, parasitism, disease, or climate (temperature and humidity)? Undoubtedly, any one or more of these could interfere with the estrus cycle, semen quality, conception, implantation, and embryo survival. It is likely that a combination of these factors are involved under present grazing and management procedures in the tropics.

Once the cause(s) of the poor reproductive performance is established, preventative measures will be tested. This may include good animal management procedures, nutrient supplementation, use of drugs and medication, and appropriate breeding systems.

1. Disease and parasite control

There has been a complacent attitude by livestock men in tropical environments that most of losses caused by disease and parasites is one over which they have little or no control. Deaths from diseases such as foot and mouth, anaplasmosis, rabies, anthrax, and various infections are very high. Incidental losses from diseases and parasites in the form of unthriftness, low rate of gain, poor milk production, and poor reproductive performance, although less striking, cause tremendous losses in productivity and efficiency. The parasite and disease problem, although serious in beef animals, is accentuated in dairy cattle as a result of more intensified production.

In all the research and demonstrations sound management systems should be followed. Inoculation against such diseases as blackleg, anthrax, and anaplasmosis should become routine procedure.

Research should be conducted concerning the effect of livestock-pasture management on internal parasitism. For example, rotational or strip grazing should be compared to continuous grazing. Also, anthelmintics, such as phenothiazine and thiabenzimidazoles, should be tested. The use of various drugs and method of application for controlling external parasites should be tested also.

4. Genetics

Undoubtedly, livestock indigenous to the tropics are more resistant to the para-
In the development of the CIAT Pasture-Animal Program, emphasis is placed on the cooperation with economists so that reliable cost
estimates are provided. As the primary objective of the program is to provide additional animal protein for human consumption by utilizing pasture and forage
resources as low protein feeds. Moreover, and other animal products are needed
and there is a need for better human nutrition, protein deficiency. However,
and efforts may be made electronically.

In livestock production in the humid tropics, raising cattle as the cow is the
most reproductive rate. In some areas, calving percentages are less than 50 per cent. Increasing the percentage to a respectable 80
or more would still mean that the concept production in such areas even if the other
levels remained the same. Underfeeding and poor growth of the offspring
are not the only factors. Many new-born calves do not survive or gain weight
to a statistically acceptable rate that it may require six years for them to reach acceptable
weight as compared to their calves in the United States. High death losses are
inherently reaching 20-40 per cent. Generally, milk production in the tropics
unfortunately is low due to low reproductive rates, underfedness, poor growth, and low
vitamin intake. Low production are due to poor nutriture including malnutrition, internal and external parasitism, disease, poor animal management, and probably temperature and humidity.

To ensure fertility and to attain high rates of animal production from
these pastures with maximum efficiency, research will need to be conducted in ru-
rm nutrition, parasite control, disease prevention and control, reproductive physio-
ology, and genetics.

The CIAT Pasture-Animal Program is not limited to the tropical areas where pastures
and forages thrive, usually maximum economy of pro-
dauction can be obtained by the highest density of them in terms of ruminants. Certain
As the plants mature, the problem becomes critical. Not only will the levels of protein and certain minerals drop, but the rate will increase in crude fiber and hence, lower the energy levels for rumen fill. Therefore, to properly nourish cattle for given levels of production, the nutrient deficiencies will need to be mapped and corrected. Of course, a flexible management tool could be in order to make maximum use of the forages at various seasons with supplementation. For example, dairy cows at peak production, beef cows with lambs, and fattening cattle could be grazed on the lush, young, lealy, high energy forage on the other hand, dry cows, pregnant beef cows, and stocker cattle could eat the middle, low protein, and low energy forages.

It is anticipated that studies would be conducted on nutrient requirements. Nutrient needs are obtainable from accepted feeding standards. Rather, studies related to ascertain the levels of the various nutrients in the forages and how they are utilized. From these studies, supplementary levels can be determined and tested.

In areas of the world with good nutrition, along with disease and parasite control and animal management, certain metabolic disturbances are encountered. Grass tetany, muscular dystrophy, ketosis, milk fever, and tympanites are three. Although the cause(s) of these is not clear in all cases, they can usually be prevented by the use of proper management or supplementation. Initially, precautions should be followed to guard against such possible disturbances. If any of these problems, research will need to be directed to finding the cause(s) and effective remedies.

2. Reproductive physiology

Stress, poor reproductive performance is one of the main problems hampering efficiency of production in the tropics, research will need to be directed in this direction.
Initially, research should be directed toward uncovering the cause(s) of the low calving percentage. In other words, is the poor performance due to malnutrition, parasitism, disease, or climate (temperature and humidity)? Undoubtedly, any one or more of these could interfere with the estrus cycle, semen quality, conception, implantation, and embryo survival. It is likely that a combination of these factors are involved under present grazing and management procedures in the tropics.

After the cause(s) of the poor reproductive performance is established, preventative measures will be tested. This may include good animal management procedures, nutrient supplementation, use of drugs and medication, and appropriate breeding systems.

Disease and parasite control

There has been a complacent attitude by livestock men in tropical environments that most or losses caused by disease and parasites is one over which they have little or no control. Deaths from diseases such as foot and mouth, anaplasmosis, rabies, anthrax, and various infections are very high. Inciduous losses from diseases and parasites in the form of unthriftness, low rate of gain, poor milk production, and poor reproductive performance, although less striking, cause tremendous losses in productivity and efficiency. The parasite and disease problem, although serious in beef animals, is accentuated in dairy cattle as a result of more intensified production.

In all the research and demonstrations sound management systems should be followed. For example, immunization against such diseases as blackleg, anthrax, and anaplasmosis should become routine procedure.

Research should be conducted concerning the effect of livestock-pasture management on internal parasitism. For example, rotational or strip grazing should be compared to continuous grazing. Also, anthelmintics, such as phenothiazine and thiabendazole, should be tested. The use of various drugs and method of application for controlling external parasites should be tested also.

A. Genetics

Undoubtedly, livestock indigenous to the tropics are more resistant to the para-
lated certain diseases prevalent in the areas. These are often not very efficient
in the production of meat or milk, however. Therefore, in order to remove the deterrents to
production and efficiency, it would be desirable to develop breeding plans which
utilize the resistant or adaptive characteristics of the native cattle and improve
the results obtained in Colombia indicate that by certain crosses, the res-
ults of the native cattle and the high milk producing ability of the Holstein can
be combined.

It would be desirable, perhaps, if two different classes of cattle, one for meat
production and one for milk production, would not have to be maintained. There is evi-
dence that Holstein steers are efficient producers of quite desirable carcasses. Thus,
research should be aimed in this direction rather than toward developing separate
raising systems for meat and milk production. Dual purpose cattle for meat and
milk have been efficient for many years in European countries. Holstein feeder steers
have been popular in the United Kingdom. The cow-calf herd, solely for meat production,
will normally be less efficient than milk-meat enterprises.

Clearly it is very important for one or more professionals in the following
fields to be on the CIAT Staff: animal management specialist, veterinarian, nu-
tritionist, reproductive physiologist, and biochemist. This will make it possible to
oversee all possible known controls in management, diseases, parasitism, insects, and
determination to maximize pasture-animal outputs and simultaneously diagnose any limiting
factors. There must also be an opportunity for each investigator to
be independent research.

- Program, Dissemination of information, and Collaboration with National

The success of the Pasture-Livestock Program of CIAT will finally be determined by
the rate of increases in livestock products in countries in tropical environments
favors. Such increases in production must be economically profitable - i.e.

"Arduration, Meaningful success depends on professional and technical skills.
To research pursuits and trained personnel for adult education and technical skills at
the farm level. Excellence restricted to research and development will cause the pro-
cess to stagnate unless extension-promotional programs are encouraged through trained
educators. Programs may fail at the farm level, unless training of technicians and
educational programs are envisioned. CIAT should take leadership in the necessary
training (experience and education) program(s). It is envisioned that CIAT could
develop a training program to advance pasture-animal production patterned after that of
IIT. This training and educational venture could be carried on very effectively within
the restricted method of proceeding as given in this proposal.

The advancement of principles to improve production of livestock commodities de-
puits to the competency of the staff of National Programs. Within the corps of research
workers who occupy positions in the National Programs are individuals with advanced de-
gree, outside the region and others with local training that lack in experience
and/or both. Too often the scope of research does not extend beyond the nation-
ally and projections are limited to a narrow outlook within the confines of a
one isolation. Additional training and experience outside sectional environments
would enrich many of the researchers by up-dating ideas (new principles, methods, tech-
niques, and procedures) and motivating the new "crop" of research personnel.

Ideas from CIAT could form the operating team for coordinated regional activi-
ties. It is anticipated that the CIAT Project Leader(s) will aggressively participate
in the coordination, collaboration, complementation, and supplementation of on-going
train programs. This must be initiated before the products of a training course
materialization. The basis for a continuing and lasting International Pasture-Animal
production program depends on training of future scientists and technicians.

The integrated research approach should be especially suitable for on-the-job
training by research and extension personnel and by technicians trained for servicing
and evaluating practical programs.

A considerable amount of literature exists for the agronomic aspects of this CIAT
published information on pasture-animal investigations is meager. Information occurs in local publications which do not receive wide distribution. A series of loose abstracts reviews many of the lesser known journals but even they do not cover every library in the tropical regions. Productive research and extension may be updated by exchange of ideas and information. This CIAT project, in collaboration with the Library Science Program, should consider means for accumulating and cataloguing pertinent literature.

APPLICATION FOR DEVELOPING AN INTEGRATED PASTURE-LIVESTOCK PROGRAM

The objectives given in Section II suggest that these broad research and training programs must be new production of animal products from pastures, embodying soil, plant, animal and climatic input factors, and their interplay may be developed in stages. Such a complete program. The costs and efforts in research investigations to improve animal production efficiency will be three to six fold more for meat and milk livestock enterprises than for a sound single crop (rice) investigational program. Because of the interplay of soil-plant-animal factors, progress will be slow as compared to a single crop program. Thus, the need to conduct investigations for additional years will add to the costs.

The interactions with animal production are very costly as compared with single crop enterprises because of larger land areas; more facilities; much more professional, technical, and labor personnel for herd management; and attentive animal care during the entire year. For example, the land area needed to evaluate four variables in terms of hair growth gain: (output per animal and land area) would be 1000 to 1500-fold more than that needed to compare the yield and quality of two crop varieties. The four-variable treatment comparisons would not produce very useful data unless two or more variables were imposed concurrently, thereby requiring eight variables to evaluate. Therefore, the hair growth data would apply only in a general way to milk production and animal reproduction. Such land costs make up only a small fraction of the total costs. Other costs include all specialties of single crop cultures plus animals;
... water; facilities for weighing, milking, and carcass evaluations; animal para-

meter, disease, and insect controls and investigations; and the conduct of experiments

for several animal generations in reproduction investigations.

A soil-plant investigational complex with a single crop is much less costly be-

cause investigations and less time is required when compared with a pasture-

stock complex. This is attributed to the many grasses and legumes in seeded pas-

tures and natural grasslands that must be studied within pasture evaluation programs.

Adaptive research, breeding and genetics for improvements, fertility and soils re-

tention, and cultural and management information is scarce as compared with wheat, corn,

and etc. Also, investigations with pasture perennials that are eventually used in

pasture mixtures require more time and space than for annual crops. Finally, such

livestock investigations may be of speculative value unless evaluations are made

in animals.

The success of this project will be measured primarily by the output of livestock

opportunities in subsequent years. To obtain rapid and applicable results, it is most

important to use an integrated approach, involving a team of cooperating specialists,

who are individuals are concerned and dedicated to the task of producing livestock

products through the complex input factors and their interactions. Extreme departmen-

talization, symbolic of many land grant universities and federal projects, is a con-

trast administrative device, but it often deters livestock production because it iso-

lates the specialists from the important interrelated factors. The business of animal

production is not departmentalized, it is a symphony of an ecological interplay of in-

put factors. Thus, the administrative setup for livestock production from pastures

should have a director that encourages individual specialists to contribute to the eco-

nomic symphony. In such a team efforts minds meet on the planning and debating table;

individuality is maintained as minds are not to be amalgamated. Each scientist may

make contributions in a dual manner, i.e. team responsibility and other or individual

wealth. The unit may be small or large, but it should be objectively coordinated.
...ake an impact. Such programs with coordinated efforts of team members for augment-
ing the production of animal products have had tremendous impacts on animal agricul-
ture in New Zealand and Australia.

To use the complete pasture-animal program cannot be initiated at one time, the

roles of pasture or other low-cost feed that is sufficiently nutritious to

supply optimum growth and reproduction rates of ruminants. Other factors such as dis-

eases, immunity responses, but high nutritional standards usually interact to reduce

the "disease" impacts from certain diseases, parasites, conception deterrents, or environ-

ments. The research philosophy for success must be one to utilize the solar flow of

energy in plants and the subsequently elaborated compounds by plants and ruminants as

efficiently as possible in terms of animal products by manipulating soil, plant, and

animal factors.

But are cattle enterprises not now "booming" in the humid tropics? The favorable

conditions all year, along with high light intensities and favorable photoperiods,

to ruminants. The fact that this potential has not been exploited to any

extent is strongly attributed to "fragmented" research that has not

solved the practical interplay of problems of raising livestock. Today

reasons for suboptimum animal performance remain unknown. For example, low calf-

rates may occur because of nutrition, diseases, parasites, physiological, or gener-

al factors. An integrated team effort would pinpoint production deterrents and desig-
A need for special investigations. This is the time for a team of specialists to unite their talents with dedications to attain the primary objective.

With initial costs, development, procurement of personnel, and facilities, much of the pasture-livestock phases may need to be staggered (Section II). Special investigations may be done with steers at low costs when compared to a hard and production investigations. When considering steer performances, the data may be used as a rough index for possibilities with animal herds. A livestock business will be successful without raising calves efficiently. Thus, a beef herd should be born as soon as feasible to study and manipulate the factors that influence conception, calving (per cent raised and rate of growth), longevity and reproductive lifetime histories. A competent animal ecologist should manage the herd. Reviews of principles in beef cattle apply directly to dairy herds. Work with dairy delayed; however, milk production potentials cannot be projected without integrating laws.

Employment of dual purpose herds (meat and milk production) for improved pastures and efficiency may be an important objective in the future. Such programs should obviously be started after a sizeable research program has been developed. Research staffs, data, and soil-plant-animal facilities are necessary for the implementation of various training programs. Location, and physical facilities will depend on the magnitude of the program.

Staff and Facilities

Professional Staff for the Pasture-Animal Program

The following list includes minimum specialization and dual responsibilities are taken in several of the position categories. The professional staff should have training and experience to qualify as associate or as senior research officers and should accept dual responsibilities in research and training agendas. Several specialists will be needed initially in certain categories such as pasture agronomists and plant-animal interrelationships. Some professional categories could be partially
Served through consultancies varying in length of service.

Pasture Agronomist (3)
Soil Chemist (Plant Nutritionist) (1)
Soil and Legume Bacteriologist (1)
Biochemist (1)
Chemist (Organic and Inorganic) (2)
Weed Ecologist (1)
Climatologist (1)
Entomologist (1)

Animal Nutritionist
Rumen Nutritionist
Animal Ecologist
Veterinarian
Animal Physiologist
Reproduction Physiologist
Animal Parasitologist
Animal Pathologist
Animal Breeder
Food Scientist (meat and milk processing)

Plant Physiologist (1)
Soil Physicist (Irrigation) (1)
Plant Breeder (Grass and Legume) (2)
Seed Physiologist (Production) (1)
Plant Pathologist (Nematologist) (2)
Statistician (1) CIAT
Economist (1) CIAT

Agricultural Engineer (Construction, Machinery) (2) CIAT
Electronic Specialist (1) CIAT
Journalist (Editor) (1) CIAT
Plant Ecologist (Consultant)
Geologist (Consultant)
Pedologist (Consultant)

B. Educational and Training Programs for Technicians, Extension and Research Personnel

Objective research for the advancement of practical production of animal products in tropical regions will stagnate at the research level unless farm and industrial technicians and extension personnel are trained to extend research principles. Just as with research in the soil-plant-animal complex, training programs involve many input factors and areas of specialization as compared with a "cash" crop. This will add costs and time to training programs. Advanced training programs that allow for specialization and additional experience, to augment research and teaching proficiencies, should be available opportunities.

1. Initial Personnel
 a. Journalist and editor -- research and education, CIAT
 b. Informational specialists and lecturers -- coordinate educational and training programs, accumulate and arrange information, and handle guests.

C. Physical Facilities - Office, Laboratory, Teaching, Housing

1. Research and Education Programs
 a. Offices and specialized or other laboratories for all professional staff listed (see VI A).
 b. Other physical facilities:
 Secretary offices
 Small offices for in-training scientists
 Seminar rooms -- (small) -- CIAT
 General tea and coffee room -- serve as meeting and discussion area
Auditorium for lecture - CIAT
Central library - CIAT
Accounting office - CIAT
Photographic and duplicating laboratory - CIAT
Housing dormitory for trainees and single CIAT technicians
Central Dining facilities - CIAT
Cottages for resident married technicians that look after animals.

2. Supporting Facilities

Machine and repair shop and storage - CIAT
Woodwork and painting shop and storage - CIAT
Machine storage -- several sheds - CIAT
Electronics shop and storage - CIAT
Environmental control building for seed and animal investigations

Isolation barns -- diseases and parasites
Quarantine building
Dairy research center - open housing, milking parlor, maternity space
Hay driers and storage building
Upright silos (8 x 25 ft.) and bunker silos
Pole barn roof cover for feeding and handling animals to obtain data on digestibility coefficients and nutritive value indices.
Weather recording station and equipment
Feed storage and mixing
Equipment for land preparation, fertilizing, seeding, pasture maintenance, silage and hay making, green chop, weed control

Fencing
Heat drying of small pasture and forage samples.
Equipment for small plot investigations

Pick-ups and tractors
Greenhouse space - CIAT
Phytotron (Controlled chambers) - CIAT
Statistical laboratory - CIAT

VII. REVIEW OF SELECTED INVESTIGATIONS AND SUBSTANTIATING INFORMATION

A. Year-round Pasture and Forage Systems - Animal Evaluation of Pastures and
Supplementary Feeds

Pasture and forage crops research in the initial phases of CIAT should focus on
the development of year-round feeding systems for cattle on sown (improved) pastures.
As cattle numbers are concentrated on the most productive pasture lands the immediate
impact would be an intensification of the better grazing areas (i.e. regions where
more than one beast is carried per hectare — in the four departments of the northern
coastal plains of Colombia: Atlantico, Bolivar, Cordoba, and Magdalena, about 5.85
million hectares of pasture land support 6.86 million head of cattle). These partially
developed grazing lands are readily accessible to urban centers; generally, improved
grasses which are responsive to applied plant nutrients have already been established;
agricultural experiment stations are located within the region and available research
should be directly applicable.

Information exists to show that a number of the tropical grasses are highly re-
sponsive to applied nitrogen. Forage yields increased linearly with additions of ni-
rogen up to 1000 lbs./acre (Appendix C-1, C-2) when grass herbage was removed. Under
grazing it would appear that less nitrogen was needed. Studies in Brazil (Appendix
E-1, E-2, E-3), in Colombia (Appendix E-1, E-2) and in Australia (Appendix E-3) sugges-
ted that from 30 to 50 lbs./acre of nitrogen would be sufficient for high yields when
applied at intervals of 6 to 8 weeks. Timely applications of nitrogen stimulated pas-
ture output. Under rotational grazing nitrogen topdressing were made after each
resting period (Appendix E-1, E-2) or after each second rest period (Appendix E-3).

With continuous grazing a seasonal topdressing generally corresponds to the rhythmic
annual cycle of the grass, rainfall distribution or temperature effects (Appendix D-1,
Fertilized grass is capable of producing more than 2000 pounds of liveweight gain per acre as shown by data from Colombia (Appendix E-1, E-2), and Australia (Appendix E-3). In Brazil (Appendix D-1) cattle on fertilized grass could be marketed at 2 to 3 years of age as compared to 4 to 6 years under normal range conditions; nitrogen at 200 kg./hect. more than doubled yield over no nitrogen in terms of Total Digestible Nutrients/hect., steers/hect. and liveweight gain/hect., but did not affect age of finish; use of 200 kg./hect. of nitrogen, 100 kg of P₂O₅ and 60 kg. of S gave an annual net return of about $45 (U.S.) over the no fertilizer control. In Puerto Rico (Appendix E-4) use of 1800 lbs./acre of 14-14-10 fertilizer as compared to 600 lbs. increased yearly beef gains from 570 to 1072 lbs./acre; carrying capacity was almost doubled from 1.4 to 2.2 600 pound steers/acre; the forage protein was increased from 8.1 to 15.9 per cent.

These results reflect the animal performance potential which may be expected with tropical grasses. They do not adequately characterize the differences among grasses or pastures nor is there sufficient information to compare different management systems of selected pasture plants. The cost returns are based on present prices of nitrogen fertilizer. It is anticipated that nitrogen costs will decline, as has occurred in the United States, thus reducing pasture production costs. Since tropical soils are generally low in nitrogen content and favorably respond to amendments, the practical potentials might reach sizeable magnitude.

Animal trials should be designed to provide knowledge of feeding (pasturing) systems, stocking rates, and forage conservation (or supplementation) practices. Type of design depends to a great extent on the purpose of the pasture, whether it is the main or sole source of feed throughout the year or is to provide feed for only a season of the year. In the former instance, the off-season becomes critical and may determine the overall stocking rate; alternatively, conservation of feed (or provision of supplementation) during scarce pasturage is required. In the latter cases maximum grazing
Intensity consistent with plant survival and sound pasture management can be used.

In view of the present need to improve the animal nutritional status in the tropics the first priority is to measure the performance of grasses (in pure stand and later as mixtures) throughout the year and then evaluate potential animal performance. Grazing (feeding) systems cannot be judged alone but must be considered in relation to farm management as a whole.

Productivity of grazing animals in the tropics is limited by the low feeding value of the pasture. Tropical grasses are strikingly less digestible at all stages of growth than the cool season grasses (Appendix F-1). Studies in southeast Queensland and data from the United Kingdom showed that the maximum dry matter digestibility of orchard grass was 76%, perennial ryegrass 80%, *Paspalum commersonii* (a common Australian grass) 74% and *Uracloa pullulans* (also Australian) 57%; minimum digestibilities dropped to 48, 60, 31, and 34 percents, respectively.

As plants mature animal intakes for most tropical grasses are reduced (Appendix F-2). e.g. with immature buffel grass (30 days of age) the daily intake reached 70 gm. dry weight of forage per kg. 0.73 of animal liveweight, but when more mature (250 days of age) dropped to 22 gm. Intake of pangola grass declined from 67 gm. at 30 days to 24 gm. at 150 days. Physiological condition of the forage plant also affects intake.

Cutting and feeding *Paspalum plicatum* (Appendix F-3) in the early seeding stage, but lush plant growth, gave a daily dry matter intake of 916 gm. per head with sheep; with frosted leaves, but succulent stems, intake declined to 677 gm.; with leaves and some frosted stems it dropped to 582 gms.; when the entire plant was severely frosted it decreased to 359 gm.

Differences in voluntary intake appear to be related with rumen distension which depends to a great extent on feedstuff break-down and how long the undigested material remains in the rumen (Appendix F-4). In Venezuela elephant grass harvested after 30 days of regrowth required 45 hours to pass through the ruminant digestive tract and then cut after 70 days of regrowth, 65 hours.
Results with temperate grasses suggests that rumen bacterial activity may be depressed if the percentage of crude protein drops below 8.5. For tropical grasses intake declines markedly when the crude protein percentage falls below 7. This indicates that the low feeding values of many mature tropical grasses are due to low concentration caused by suboptimum crude protein for the rumen flora. To improve animal production when eating such forage (especially during the dry seasons) it is necessary to increase the amount of feed ingested. Since soil moisture usually limits plant growth, other management practices must be investigated. Irrigation, forage conservation, supplementation of urea and energy feeds or the growing of special arable crops will furnish good quality feed when pasturage is unavailable or of low quality. Such information is not generally available nor is it put into practical use.

Inferences can be drawn from present knowledge that suggest more intensive studies: Feeding values of legumes do not decline rapidly with maturity (Appendix F-2).

Daily animal intake (gm. dry matter/kg. 0.73 liveweight) for perennial soybean (Glycine japonica) remained at 80 and 92 gm. when plants were 150 and 250 days old; for Siratro (Rhazolus atropurpureus) it was 72 and 75 gm., respectively. Thus, forage quality may be realized by accumulation in situ such legumes as Pueraria phaseoloides (tropical red), Dolichos lablab, Cajanus cajan, Desmodium spp., Leucaena leucocephala, etc.

Accumulated growth of legumes would be utilized by rational grazing. Forage sorghums and sugarcasses perenniate in the tropics and with adequate soil moisture and plant nutrients they can be harvested at intervals of 6 wks., yielding 40-60 tons of fresh material per hectare per year. They could be ensiled, fed as greenchop forage, or frozen. A host of other crops such as maize, elephant grass, etc. can also be ensiled. Pasturage may be accumulated in situ by restricting grazing or by timely cutting then combined with fertilizer application. Irrigation stimulates plant growth during dry seasons, but its potential use and economic value in the tropics awaits investigation. Feed supplements such as molasses and other byproducts may enhance intake of low quality forage. Urea supplementation of low protein grasses has notable
1. Tropical Legumes Re-evaluated

Plants thrive when nitrogen is available. It is supplied through the decomposition of organic matter (particularly the mineralization of nitrogen with the onset of the rains after dry periods in the tropics), through release from N captured by associated legumes, through N-bearing fertilizers, and a small amount by lightening and rainfall. Tropical legumes can provide the cheapest source of nitrogen but their use has generally been disappointing because of short plant duration. Success with legumes in the tropics begins with the concept that they are tropical in origin. Introduction into the temperate regions resulted from the differentiation and progressive changes in genotypes. Experimentation with these modified types led to erroneous ideas about growing legumes in the tropics. Legume bacteriology may be the key to success in the re-examination of tropical legumes. Calcium supply influences the formation and functioning of nodules, but Australian work shows that bacteria are not calcium-sensitive. They require calcium in trace amounts only and it is the host legume plant which requires quantities of this element. Tropical legumes are capable of extracting calcium under acid soil conditions where there is low calcium availability, as contrasted to temperate legumes. Also, tropical legumes and nodulating Rhizobia are more tolerant of soluble aluminium and manganese in acid soils than are temperate legumes. Furthermore, many tropical Rhizobia produce alkali buffers to counterbalance acid soil situations. Lime responses may be attributed to the release of molybdenum, which is required in the nitrogen fixing function of nodules, rather than changes in al calcium supplies. Investigation in Australia showed that other elements such as sulphur and cobalt may be influencing factors but such information is lacking for Latin America and most of the other tropical regions.

The specificity of bacteria-host legume relationship is very important. Many tropical legumes nodulate successfully without inoculation but nitrogen-fixation may be ineffective or even parasitic. For example, Lotoronitis hainesii reached a height
of about 6 inches in Colombian trials and never flourished; it responded similarly in Australia until a strain of *Rhizobium* found among introductions from Africa proved to be specific and exceptionally efficient in symbiotic nitrogen fixation. As a consequence this tropical legume is becoming of commercial significance and may obtain as great importance as some temperate legumes. In Australian plot trials and under field conditions the plants grew luxuriantly, provided excellent ground cover and produced a third 30-36 inches in height. The legume is compatible when mixed with pangola, guineo, and other grasses and plants have begun escaping into adjacent roadsides and waste places.1/

Tropical legumes generally produce few crown regenerative shoots but grow from the tips and axillary branches. Many are trailing and vine like and do not readily root at the nodes. Thus, grazing management differs from that of temperate legumes. Most tropical legumes develop enlarged tap roots but secondary roots arise further below the soil surface as compared to temperate species. This suggests a modified scheme for maintenance fertilization. Seedling aggressiveness of many species is poor, thus the establishment period is prolonged and faster growing grasses may predominate. Tropical legume species differ in water requirements, plant culture, soil requirements, etc. The investigations with tropical legumes in Latin America are meager and special *Rhizobium* strains have not been considered. Most of the available information came from introduction garden observations, where management regimes similar to those for grasses and temperate zone legumes were used. Re-evaluations must include recent cultural information and agronomic and animal uses may be studied concurrently, first in pure stand and later in combination with grasses. Programming experiments with tropical legumes will require the collaboration of a "team" with representatives from several disciplines.

Not only do legume species provide nitrogen for an associated grass but their presence in a pasture swart usually sustains the nutritive value of the pasturage.

1/ Personal communications with ICA and CSTRO forage research workers.
limited research shows that the ingestion of tropical legume plants does not decline with maturity as with grasses (Appendix F-2). Furthermore, digestibility remains at a high level and may increase with those which produce large amounts of high protein seeds.

Addition of a legume to available feedstuffs improves the unit area carrying capacity, increases liveweight gain per animal, and enhances calving percentage (Appendix G). Overseeding native (natural) grasslands in Australia with Townsville lucerne (Stylosanthes humilis) and using 100 cwt. of superphosphate per acre dramatically changed carrying capacity from one animal per 15 to 25 acres to one animal per 1.5 to 3.0 acres. Furthermore, steers gained as much as 300 lbs./head/year, maintained body weight during the dry season and weighed 950 pounds at 2 3/4 years of age. At this same location pastures of Kangaroo grass (Themeda australis) and spear grass (Heteropogon contortus) never gave gains of more than 100 lbs./head/year; much of this was lost during the dry season; cattle were marketed at 6 to 8 years with a carcass weight of 550 lbs. It is significant to note that grazing one steer per acre of Townsville lucerne was equivalent to feeding 2.0 lbs./head/day of a high protein supplement. Also, brood cows on native pasture had a calving rate of less than 45% as compared to 68% and more when grazed on Townsville lucerne.1/

Townsville lucerne is an annual legume that produces 6000 lbs./acre or more of dry matter, plus a seed crop of nearly 1000 lbs./acre during a 3-month rainy period in northern Australia. It is grazed in situ during the remainder of the year and seeds are actually licked from the soil. This legume has helped to revolutionize the cattle raising industry in Australia. It came originally from Brazil. This suggests the unexploited potential of other legumes found in the tropics.

C. Improvement of Natural Grasslands

Pasture and forage research with natural (native) grasslands in the tropics is essentially unexplored. If the projected animal protein needs (as based on expected

1/ Personal communication with M.J.T. Norman, Division of Land Research, CSIRO, data from the Katherine Experiment Station, Northern Territory.
I population increases) can be accepted as a target (Appendix H) parts of these immense
areas must be more effectively utilized. Their development will be slow and arduous
but strides have been made and man's quest for expansion pushes still forward and fur-
ther into the hinterland (See Appendix I for locations and descriptions of the natural
grasslands in Latin America). Cattle numbers in Latin America have increased in re-
cent years (Appendix B), and even greater numbers are projected for the future, as
shown by the anticipated 1975 estimate in Colombia (Appendix J).

Problems encountered in pasture and forage improvement in the partially developed
regions (e.g. Bolivar savannahs of Colombia and Costa Rica) can be compounded for the
more remote and undeveloped areas. Research should lead the way and several develop-
ment's suggest that improved production is feasible. At the "La Libertad" Experiment
Station divisions into smaller grazing blocks, control of brush, and occasional mov-
ing increased the carrying capacity - approximately 2.0 hectares per beast as compared
to 1.0. The modified pasture and grazing management caused some of the more desir-
able grass species to increase and eliminated some taller growing, less consumed types.
Increasing the stocking rate alone may not always give significant improvement as demon-
strated by work in the Northern Territory of Australia. Replacement of native (natural-
ized) species with more nutritive grasses (still rustic but productive on the low
fertility soils - e.g. molasses grass (Melinis minutiflora), Axonopus micay, Hyparrhenia
will increase the carrying capacity and elevate pasture output. At the "El Pinal"
ranch near Orucue in the Llanos Orientalis, a molasses grass pasture supported one 300
beef steer per hectare and gave a liveweight gain of 150 kg in 10 months. Normal stock-
the on this ranch was 10 hectares per animal. An example of the possibilities has
also been demonstrated on a ranch in the Lake Maracaibo region 10° north of the equa-
tor - one without irrigation but on improved and well-managed pastures, 1800 cattle
were carried on 2,000 hectares.

Improvement of natural grasslands should proceed along an evolutionary pattern
from simple to more intensive management practices. During the process improvements
such as the following should be considered: introduction of more productive and nutritive grasses and legumes, use of fertilizers (Appendix K), improved grazing management and use of supplemental feedstuffs.

A study of dry matter digestibility of natural pasture forage in Australia was considerably lower than introduced (improved) grasses (Appendix F-3). The reduced dry matter intake was striking, being about 1/3 that of the improved grass.

Studies in North Queensland, Australia illustrated some of the improvements which can be made with native pastures (Appendix I-1). An undeveloped native range carried one animal on 50 acres with a yearly output of 2.0 lbs. dressed meat. Clearing and developing the area with sown pastures lowered the stocking rate to 3.0 acres per animal, giving yearly gain of 189 lbs. or 63.0 lbs./acre/year. There was a cost of $13.00 per acre (Australian) for clearing, fencing, seeding, fertilizing, establishing facilities for water, dipping and animal handling. At the current price of $20.00 (Australian) per 100 lbs. of meat expenses were defrayed during the first year of operation (Appendix I-2). Such phenomenal results are not to be expected with all underdeveloped grassland areas, but they do suggest tremendous potentials.

D. Pasture and Forage Crops Introductions and Regional Testing

In the development of a Pasture and Forage Program one must take inventory of the present situation which suggests the evaluation and utilization of those grasses and legumes currently in use. Introductions and assessments of pasture and forage crops are continually done by research workers at the experimental stations and Colleges of Agriculture and by ranchers but additional knowledge is needed. Species and varietal trials have been conducted in a number of locations in Colombia since 1955. Information is available to indicate adaptation, forage yield, and response to fertilizer. Similar evaluations are available from other countries, but not always conveniently found in published form.

Considering the extreme climatic, edaphical, and ecological conditions in Latin America a regional screening and testing program should be instituted in colla-
Information is needed about 1) adaptation, 2) seasonal production, 3) quantity of herbage on a seasonal basis, 4) quality - nutritive value at various times of the year, 5) flowering and seeding, 6) prevalence of diseases, insects and other pests, and 7) persistency. Agronomic evaluation should be carried out under at least two levels of fertility. Such trials can be handled similarly to the international Cereals Uniformity Tests. These testing sites should not be "show places" but designed to evaluate the species under conditions comparable to those under which they will be used (Appendix M). Since seed and propagating materials are not generally available, CIAT headquarters can serve as a focal point for early screening, maintaining, and distributing of materials, and in the accumulating and disseminating of information.

1. Laboratory Techniques for Nutritive Value

After the initial screening of forage and pasture crops, preliminary evaluation of their nutritive value and ingestion with animals becomes imminent. It should be kept in mind that ecological factors may influence nutritive value. Intake and digestibility data for most pasture and forage crops have been obtained by cutting and feeding to individually penned cattle or sheep. Descriptions of these techniques may be found in the literature. The quantity of forage needed to measure intake and digestibility with steers and with sheep (approximately 2.0 tons and 250 pounds of dry hay, respectively) preclude the use of these methods to screen the many tropical grasses and legumes. Suitable laboratory techniques can be used to advantage: 1) Small herbivorous animals, such as the rabbit (which is not suitable because of low digestive efficiency for roughage) and the small marsupial Setonix brachyurus which has a ruminant-like digestion. 2) Chemical analyses for determinations of protein and crude fiber, but relationships with digestibility are highly variable; soluble sugars which are related to digestibility and perhaps to intake; silica which is positively associated with crude fiber and negatively related to protein, sugar, moisture, and digestibility; and moisture which is related to intake and digestibility. 3) In vitro digestion in which samples of feedstuffs are incubated with rumen liquor
and a proteolytic enzyme (pepsin). 4) Nylon bag dry-matter digestibility in which samples of forage are submerged in the rumen of a fistulated animal. The latter two techniques are simple, rapid, inexpensive to conduct, reproducible under controlled conditions and require small samples of forage (Appendix N). Several studies have shown that they are comparable to results obtained by *in vivo* trials.

These methods cannot reproduce the effects of selective grazing in the field where forage quality is measured and described in terms of animal performance. Animal evaluation trials provide information for the forage agronomist and the animal scientist and they must be collaboratively carried out.

I. Pasture and Forage Crop Improvement through Breeding and Genetics

Little work has been done on breeding and genetical research aimed at pasture and forage crop improvement in the tropics. Most of the plant breeding effort in the tropical regions is directed toward crops such as corn, rice, oil seed, pulses, cotton, cocoa, coffee, etc. as shown by the FAO World List of Plant Breeders. Grass and legume breeding in the tropics and subtropics remains in the pioneering stage where work is done mainly in Australia and in the U.S.A. - Georgia, Texas and Florida. Simple mass selection has been carried out at Kitale, Kenya and specific hybridization (mainly with elephant grass) was accomplished in India. Most of the improvement has been achieved by selection among naturally occurring types. A wealth of material exists in the tropics and the array of diversity is generally unknown. In most tropical countries a vast storehouse of native grasses and legumes await genetical investigation. Only a fraction of the available gene pool has been assembled. Invasion of agricultural enterprises into uncleared regions may result in the loss of valuable material needed for continued progress in pasture and forage plant improvement.

The characteristics sought in the selection and breeding of tropical grasses and legumes are as follows: increased and prolonged herbage production, high quality forage which implies leafiness and high nutritive value, high palatability (especially in grasses - a medium level of legume acceptability could be an advantage for persistence), rapid regeneration after defoliation, tolerance of pests and diseases, com-
parability with other species, uniformity of flowering, adequate seed formation, ease of establishment, and efficient Rhizobium symbiosis for legumes. This broad spectrum cannot be explored concurrently. Investigation has shown that improvement can be attained with many of the characteristics: bermuda grasses (Cynodon dactylon) have been bred for increased forage yield, a higher percentage of leafiness, extended period of vegetative growth, improved animal acceptability and recently, using the nylon bag technique to measure digestibility, a variety was developed with superior nutritive value. Rhodes grass (Chloris gayana) selections were made for the following: leafiness during the summer (rainy season), uniform seeding in the autumn (cool, dry season), drought tolerance, improved stoloniferous habit, and more dense swards. Variation in palatability has been encountered among types of Setaria sphacelata. Differences occur in crude protein values of guinea (Panicum maximum) and Paspalum plicatulum. Increased persistency was noted among types of Sorghum albulum. Increased forage production, intensified stoloniferous habit, improved persistency under dry conditions and less seed pod shattering developed with Siratro, a variety of Phaseolus atropurpureus. Differences in such characters as time of maturity, rate of growth, forage yield, stolon development, size and shape of leaf were found among varieties of perennial soybean (Glycine javanica). Studies have shown that nutritive differences occurred among selections of Paspalum plicatulum (Appendix O).

Mode of reproduction in a species determines the extent of variability in its plant populations. Diversity is wide in cross-pollinated types but little or none exists within closely self-pollinated ecotypes. Phenotypic and genotypic differences do occur among species found in different regions. Apomictic strains usually have some degree of sexuality and variability. The manner of reproduction is known for many tropical and subtropical pasture and forage species but certain processes may be altered by environmental conditions - e.g. more than 50% crossing may occur in forage sorghums in the tropics as compared to 6% in the temperate regions; guinea grasses (and others) may flower rhythmically in areas with distinct wet and dry sea-
sions but throughout the year in localities with intermittent rains. Before launching a breeding program a detailed knowledge of floral biology is needed, such as the factors influencing flower initiation, season of year when flowering occurs, time of anthesis, interval for pollen tube development and rate of growth down the stigma to the ovule, and mode of embryo development where apomixis is suspected.

It is possible that CIAT will not initiate breeding programs with a host of species (or even one) because of the vast array of pasture and forage crops available. The role of CIAT might be that of coordinating and supplementing work of the National Programs. Some of the more basic investigation with floral biology and genetical studies might be conducted at the CIAT headquarters.

G. Seed Production and Distribution

An improved variety or selection has no commercial value without an effective scheme for seed increase and marketing - this does not exist in Latin America nor in Africa. A substantial improvement in seed production technology must develop in the tropics so seed of useful tropical pasture and forage species flow freely in national and international trade channels as occurs for the temperate species. The system used in temperate regions embodies an immense reservoir of production and merchandising resources and skills. Through years of development, seed production and mechanization has become highly specialized enterprise in temperate zones. Somehow a pasture seed industry must be developed rapidly in the tropics. It will require the mobilization of knowledge from the temperate zone and adaptive research in the tropics and subtropics. Determined ingenuity, persistence and capital will be required to produce large supplies of quality seed of tropical grasses and legumes. Tropical species are often bulky vines, towering tussocks and woody shrubs with low seed set and have readily shattering pods and/or inflorescences with non-uniformity in seed maturity. Hot and humid environments heap added problems onto the task of harvesting, sorting and producing high quality seed. Thus, scarcity of seed of good germination, purity and viability is a critical problem.
In the early 1960's the state departments of agriculture in New South Wales and Queensland, the Universities of the two states, the Division of Plant Industry, the Division of Tropical Pastures, and several private seed companies launched a coordinated program to devise means for seed multiplication, processing, and distribution of tropical grasses and legumes in Australia. By application of available knowledge and through modifications of techniques and procedures, seeds of named varieties of several species are produced commercially - "Silverleaf Desmodium" (Desmodium uncinatum), "Greenleaf Desmodium" (D. intortum), "Cooper" and "Clarence Glycine" (G javanica), "Nandi" and "Kazungula" Setaria (S. sphacelata), "Rodds Bay" and "Hartleys" Paspalum (P. plicatum), "Colonial" and "Green Panic" guinea grasses (Fimicium maximum), "Siratro" (Phaseolus atropurpureus) "Miles Lottononis" (L. bainesii), "Oxley" and "Schofield" Stylo (Stylosanthes guanensis: syn. S. gracilis), "Townsville" lucerne (Stylosanthes humilis). It has been demonstrated that seeds can be mechanically harvested from grasses heretofore never considered - e.g. in North Queensland 1.0 ton of para grass seed was direct combined from 100 acres and 100-300 pounds per acre from Brachiaria ruziziensis.

Development of a seed industry is an immense task with many unknowns thus it is recommended that CIAT consider employing a Seed Specialist (production and processing) to coordinate efforts in this discipline.

1/ Personal communication with Bela Grof, Tropical Agricultural Research Station, South Johnstone, Australia.
VIII. CENTERS OF RESEARCH AND WORK IN PROGRESS

Colombia

1. Palmira, Cauca Valley
 a. Staff - 2 pasture agronomists, animal scientists.
 b. Areas of research -
 1) Introduction and testing, species and varietal evaluation.
 2) Advanced testing with selected species using animals as integral part
 of evaluation.
 a) Crop rotations with pastures and forage crops.
 3) Animal evaluation of chosen species - some investigation conducted in
 past and more projected.
 a) Digestibility studies of pasture and forage species.
 4) Breeding of forage sorghum and Desmodium species.

 a. Staff - 1 pasture agronomist, animal scientists.
 b. Areas of research -
 1) Research in various aspects of introduction and strain testing, fer-
 tility trials, limited animal evaluation of pasture species.
 2) Regional testing projected, using animals.

 a. Staff - 1 pasture agronomist, animal scientists.
 b. Areas of research -
 1) Introduction and species testing, agronomic studies at "La Libertad"
 station and in Regional tests at Orecue and San Martin,
 2) Limited aspects of animal evaluation of pastures at "La Libertad" and
 projected at Orecue and San Martin.

4. "Naitaima", El Espinal, Tolima Valley;
 a. Staff - 1 pasture agronomist (part time) supervision and direction from
ICA headquarters at "Tibaitata", Savannah of Bogota.

b. Areas of research -

1) Introductions and species testing and some agronomic evaluations of pasture species, crop rotations with pastures and forage plants.

b. "El Nus", near Medellin

a. Staff - 1 pasture agronomist (part time), animal scientists.

b. Areas of research - Limited introductions, agronomic and animal trials.

Note: For the immediate future it would appear that ICA would offer the greatest opportunity as a collaborating institution within the near future. Throughout the country there are 12 pasture agronomists, three of whom have Ph.D's in plant breeding, pasture management and crop ecology, plant and soil nutrition; one has a M.S. in pasture management and animal nutrition and another in pasture management; several will be obtaining advanced degrees in the near future.

Ecuador

1. Instituto Nacional de Investigaciones Agropecuarias (INIAP), Pichilingue.

a. Staff - 1 pasture agronomist, animal scientist.

b. Areas of research -

1) Introduction gardens and species testing.

2) Limited trials of agronomic evaluations.

3) Projected aspects of animal studies with pasture plants.

4) Limited multiplication and distribution of seed (largely vegetative).

2. INIAP, Santo Domingo.

a. Staff - 1 pasture agronomist.

b. Areas of research -

1) Introductions, limited agronomic evaluations of species.

Note: Immediate collaboration could begin with INIAP, moving into animal grazing trials at the Pichilingue Station and expansion of agronomic studies (including, re-evaluation of legume work) at Santo Domingo.
Peru

1. Estacion Experimental Agricola de La Molina, Lima.
 a. Staff - 1 pasture agronomist.
 b. Area of research -
 1) Introduction garden, limited species evaluation and agronomic studies.

2. Universidad Agraria Facultad de Agronomia, La Molina, Peru.
 a. Staff - 3 pasture agronomists (teaching and research), animal scientists.
 b. Areas of research -
 1) Introductions and species evaluations, limited agronomic studies.
 2) Limited breeding (selection) with alfalfa.

3. Estacion Experimental de Tingo Maria.
 a. Staff - ?
 b. Areas of research -
 1) Introductions and aspects, agronomic evaluations; preliminary species trials under grazing some 10 years ago; limited to the former two at present.

4. Universidad de la Amazonia - Iquitos.
 a. Staff - 2 pasture agronomists (teaching and research).
 b. Area of research - Introductions and species testing.

Note: With the discontinuous guidance from the North Carolina Project up to 10 or 12 people have been trained in pasture and forage crops development and management. Presently most of them are dispersed into other disciplines. A recent move by North Carolina to establish Commodity Programs should create a favorable environment for cooperation among the experimental stations and Schools of Agronomy. It is anticipated that three N.C. employees will staff the Pasture and Forage Commodity Program. Since those who hold pasture and forage positions in the Schools of Agronomy were formerly associated with SIPA,
Venezuela

1. Centro de Investigaciones Agronomicas, Maracay (Facultad de Agronomía also situated at Maracay)
 a. Staff - ?
 b. Areas of research -
 1) introductions and species testing, limited aspects of agronomic and animal evaluations with pasture species; in late 50's and early 60's digestibility studies with native pastures.
2. Estacion Experimental de Calabozo (situated in the Llanos), reported work with introductions, agronomic and animal trials with pasture species.
3. Estacion Experimental de Aracue - reported observations of grasses and legumes in collection and grain sorghum breeding.
5. Estacion Experimental del Zuila (Facultad de Agronomía also at Zuila) - collection of grasses and legumes.

Note: Most of the above information came from the literature so it would be advisable to survey the work underway and explore possibilities of collaboration.

Bolivia

1. Estacion Experimental Agricola "Los Llanos", General Saavedra, 65 km. from Norte de Santa Cruz ().
 a. Staff - 1 pasture agronomist.
 b. Areas of research - reported grass-legume collection and 22 experiments with forages in 1966.
 1) Collaboration with USAID and British Mission.

Note: The Bolivian tropics according to reports of those who have collected and worked there have an untapped potential in regard to pasture and forage species and undoubtedly animal development.
Puerto Rico

1. College of Agriculture, Mayaguez.
 a. Staff - 1 part time grass ecologist.
 b. Area of research - grass collection (of significant size).

2. Agricultural Experiment Station, Rio Piedras.
 a. Staff - 1 pasture agronomist full time, 2 soil agronomists (USDA) part time.
 b. Area of research -
 1) introductions and species testing.
 2) Agronomic and animal trials (limited but excellent work) on a private farm near Guaynabo, 30 km. from San Juan; economic evaluations.

3. Corozal Experiment Station.
 a. Staff - 1 pasture agronomist (part time) and 1 forage crops breeder (part time), animal scientist.
 b. Areas of research - introductions, some agronomic studies, limited animal trials, preliminary breeding of Digitaria (collaboration with Schank of Florida).

4. Gurabo Experiment Station.
 a. Staff - 1 pasture agronomist (part time), animal scientist.
 b. Area of research - Small pasture and forage collection, limited agronomic and animal trials (Animal Science Department).

5. Isabela Experiment Station.
 a. Staff - 1 forage breeder (part time), animal scientist.
 b. Research - Breeding of pigeon pea and limited animal evaluation of pastures and forages (Animal Husbandry Section).

6. Las Lajas Experiment Station.
 a. Staff - 1 pasture agronomist, animal scientist.
 b. Research - Limited introductions and agronomic studies.
Note: Animal evaluation trials with associated economic analysis on improved grasses have contributed significantly to the advance of pasture development and should have application in Latin America. It is suggested that a feasibility study be made to survey the possibility of locating a Latin American Pasture and Forage Crops Introduction Station in Puerto Rico (perhaps as a consortium of the USDA, CIAT, several U.S. Universities and other institutions).

Brazil

1. Departamento de Pesquisas e Experimentacao Agropecuarias (DPEA), Ministerio da Agricultura, Rio de Janeiro - Regional Experimental stations as follows:
 a. Instituto Pesquisas Experimentacao Agropecuarias (IPEA) do Norte, Belém, Para.
 b. IPEA do Nordest, Recife, Pernambuco.
 c. IPEA do Leste, Cruz das Almas, Bahia.
 d. IPEA do Centro-Oeste, Sete Lagoas, Minas Gerais.
 e. IPEA do Centro-Sul, Km. 47, Campo Grande (near Rio de Janeiro).

Note: The regional centers are being developed by the Ministry of Agriculture in collaboration with the IRI Institute. At each of the above named 5 sites plus the experiment station being established near Brazilia, introductions, agronomic and pasture trials are underway or projected. Undoubtedly, these centers represent sites where cooperative research could be done but further details are needed. In addition, there are a number of state experiment stations where limited research in pastures and forages is carried out. It is recommended, however, that the feasibility of regional collaboration be explored through DPEA.

2. IRI Institute Research Station, Matao, Sao Paulo.
 a. Staff - 2 pasture agronomists, with additional staff located in Campinas and Rio de Janeiro.
 b. Areas of research - Introductions and various aspects of agronomic and animal evaluations of pasture species; legume bacteriology.
Note: The most productive and significant pasture and forage research for the "campos" region has been done by the IRI Institute at Matao and other sites (on ranches) in Sao Paulo. Results from these trials are directly applicable and are being moved into the IPEA programs.

Costa Rica

1. Interamerican Institute of Agricultural Sciences (IICA), Turrialba.
 a. Staff - 2 pasture agronomists, animal scientists.
 b. Area of research - Introductions and limited aspects of agronomic and animal trials.

Note: Pasture and forage investigation at Turrialba has been erratic and sporadic during the past decade, lacking orientation in the use of animals to evaluate pasture plants.

Trinidad

1. Imperial College of Agriculture, Trinidad.

Some rather significant and informative papers have been published on investigation conducted in Trinidad. Much of it should have application to parts of the tropics. There apparently has been a lack of continuous orientation in the overall program.

Jamaica

1. Grove Place Agricultural Station, Jamaica.

Investigation has been reported in areas of introductions, agronomic and animal studies.

Note: Before collaboration is anticipated in Costa Rica, Trinidad, and Jamaica a survey should be made of present work, facilities and staff.
IX. APPENDIX

A. The Range Cattle Industry in Florida

Quotations from Dr. W. G. Kirk, animal scientist, on the development of the cattle industry and the importance of pastures along with good herd management are pertinent.

"The native cow gradually developed the characteristics that enabled her to exist and reproduce under extremely hard conditions. Starvation rations, mineral deficiencies, Texas fever, severe weather and complete freedom to roam weeds out all animals that had any inherent weakness. The result was an extremely hardy animal that has been the mainstay of the Florida cattle industry in the past and is today the foundation stock of the state's commercial herds.

"Purebred and grade cattle brought into the state by the settlers usually did not last long but the few calves sired by these importations and out of native cows were an improvement over their dams and a gradual upbuilding took place. The one permanent factor, however, was the Native cow. When it was proved that the failure of the imported animals was due to insufficient feed, deficiency diseases and ticks, and further demonstrated that these difficulties could be overcome by dipping, a continual alert for ticks, supplying phosphorus, copper, cobalt and iron, along with better feed, the situation began to improve and the native cow like the imported cattle, responded with a faster growth rate, greater size, more calves, and higher quality meat.

"One of the easiest ways to start cattle improvement was to provide cattle with the essential minerals deficient in the native pasture. Mineral boxes in most pastures were a novelty before 1935 but by 1940 there were few pastures that did not have one or more. Cattle at the Range Cattle Station on native range ate an average of 41.3 pounds complete mineral per year during a three-year period, beginning in

1948, while those on improved pasture ate an average of 11.8 pounds. Earlier records at the Station show that cows living entirely off native pasture have consumed an average of 94 pounds of complete mineral in a year.

"Cattlemen thought that most of their troubles were over with the disappearance of the Texas fever tick and the corrections of the mineral deficiencies of the feed. Purebred bulls of several beef breeds mated to the native cow gave considerable response in growthy calves, with the Brahman sires excelling in this respect. However, better cattle cost more and needed more attention than the native cow and it was this cost plus care that brought to light other requirements. It was not until the necessity for furnishing a more adequate feed supply throughout the year was recognized that there was rapid and continued improvement in the quality of beef cattle produced.

"It is estimated that over one-half of the land area of Florida is used for pasture. This land ranges from rolling sandy pine land to muck and marsh area with many intermediate types. Over 1,500,000 acres have been used for the establishment of improved pasture. The work "Improved" is a misnomer in many instances since with poor preparation before planting and little or no maintenance afterwards the results were disappointing, even though better types of grasses were planted.

"Overstocking pastures has always been and still is too prevalent. This practice has resulted in small cattle, lowered production and heavy losses under any severe conditions. It is estimated that on many ranches and farms disposal of from 10 to 25 per cent of the herd would result in greater total production with a lower cost per unit of production. Management of herds and pastures did not receive much attention until the lower cattle prices forced cattlemen to consider these factors if they were to remain in business.

"Cattle production is limited by the amount and quality of available feed. With improved pastures there has been a steady increase in beef cattle numbers until on January 1, 1954, there were 1,500,000 head. The average weight of the range cow 25
years ago was about 550 pounds while today it is 800 pounds, 250 pounds more. In addition to increased numbers and greater size, there are more calves which grow off faster. Improved feed, higher quality cattle, and changed management practices have been responsible for the tremendous increase in beef production and the potential of Florida pastures is just being discovered.

"A question in everyone's mind is the productivity of Florida pastures. Factors which affect the amount and quality of pasture have received much attention at the Range Cattle Station since it was established in 1941. Good pastures and good cattle cannot be separated.

"Grade cows having an average of 13.3 acres of native pasture per cow in a 5-year period produced 268 pounds calf gains per year which is 20 pounds per acre of pasture. These cows had a 65 per cent calf crop and the calves averaged 400 pounds when weaned at seven months with U.S. Low Good grade as slaughter animals. Another group of cows on the same kind of pasture and supplemented with 10 pounds grapefruit daily for 120 days during the winter produced 304 pounds calf gains per year and 23 pounds gain per acre of pasture. These results were obtained during winters when feed conditions on the range were good.

"Cows on a combination of one acre of improved pasture and 4.5 acres of native range per animal produced an average of 340 pounds calf gains per cow yearly. This is an estimated gain of 20 pounds per acre of native range and 218 pounds per acre of improved pasture. There was an 80 per cent calf crop, the calves averaged 425 pounds at weaning and graded U.S. Good. These cows obtained all of their feed from the pasture. Controlled and deferred grazing was practiced on the improved area but the cows had access to the native range at all times.

"A herd of 62 cows having 75 acres of pasture made up of one-third Pangola-White clover and two-thirds Pangola grass had 310 pounds calf gain per acre of pasture and 375 pounds per cow. The calf crop was 80 per cent, the calves weighed 450 pounds at weaning and graded U.S. High Good.

"There is a lack of personnel with training and experience to manage an intensive cattle production program."
Appendix B: Land Use, Human and Cattle Numbers, Animal Output, Energy and Protein per Caput

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>936,339</td>
<td>185,152</td>
<td>255,214</td>
<td>194,572</td>
<td>27,108,862</td>
<td>35,33,158</td>
<td>265</td>
<td>3665</td>
<td>665</td>
<td>91</td>
<td>390</td>
</tr>
<tr>
<td>Bolivia</td>
<td>109,858</td>
<td>3,091</td>
<td>11,323</td>
<td>4,114</td>
<td>36</td>
<td>2,317</td>
<td>87</td>
<td>192</td>
<td>220</td>
<td>-</td>
<td>954</td>
</tr>
<tr>
<td>Brazil</td>
<td>851,196</td>
<td>29,760</td>
<td>107,274</td>
<td>81,451</td>
<td>56</td>
<td>90,692</td>
<td>76</td>
<td>7,843</td>
<td>191</td>
<td>430</td>
<td>1121</td>
</tr>
<tr>
<td>Colombia</td>
<td>113,834</td>
<td>5,047</td>
<td>14,606</td>
<td>18,068</td>
<td>60</td>
<td>17,078</td>
<td>15</td>
<td>2,021</td>
<td>208</td>
<td>270</td>
<td>761</td>
</tr>
<tr>
<td>Ecuador</td>
<td>27,067</td>
<td>2,894</td>
<td>2,200</td>
<td>5,164</td>
<td>58</td>
<td>1,600</td>
<td>45</td>
<td>278</td>
<td>270</td>
<td>155</td>
<td>500</td>
</tr>
<tr>
<td>Peru</td>
<td>128,522</td>
<td>2,618</td>
<td>27,823</td>
<td>11,750</td>
<td>65</td>
<td>3,500</td>
<td>11</td>
<td>-</td>
<td>-</td>
<td>680</td>
<td>843</td>
</tr>
<tr>
<td>Venezuela</td>
<td>91,205</td>
<td>5,219</td>
<td>16,706</td>
<td>8,752</td>
<td>73</td>
<td>6,755</td>
<td>17</td>
<td>915</td>
<td>176</td>
<td>670</td>
<td>774</td>
</tr>
</tbody>
</table>

2/ No. of milking cows = U.S. 15,987,000, Colombia - 1,837,000, Venezuela - 3,300,000.
Appendix C. Increased Production of Dry Forage of Tropical Grasses with Added Increments of Nitrogen Fertilizer (Crowder, et al - Colombia)

1. Influence of rate and time of N application on forage yields of pangola grass.

<table>
<thead>
<tr>
<th>Time of N Application</th>
<th>0</th>
<th>150</th>
<th>300</th>
<th>600</th>
<th>900</th>
<th>1200</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 1/4 after 1st harvest</td>
<td>1.40</td>
<td>2.85</td>
<td>6.15</td>
<td>14.95</td>
<td>20.80</td>
<td>24.20</td>
</tr>
<tr>
<td>2) 1/3 every 3rd harvest</td>
<td>1.45</td>
<td>3.60</td>
<td>7.05</td>
<td>13.75</td>
<td>18.80</td>
<td>22.60</td>
</tr>
<tr>
<td>3) 1/2 every 3rd harvest</td>
<td>1.45</td>
<td>4.15</td>
<td>9.50</td>
<td>12.35</td>
<td>17.90</td>
<td>21.00</td>
</tr>
</tbody>
</table>

Data for dry forage yields are averages of 3 cycles (6 cuts per cycle) for a 3-year period; total N applied for a cycle of 6 harvests.

2. The effect of nitrogen fertilization on yields of five grasses harvested by cutting every 60 days (numbers show pounds of dry forage per pound of increment of N) (Vicente-Chandler, Puerto Rico)
Effect of Nitrogen Fertilizer Applied to Grass Pastures on Cattle Output

Comparison of N rates on Colonial gained grass pastures.

<table>
<thead>
<tr>
<th>Nitrogen Treatment (kg/ha)</th>
<th>Liveweight Gain (kg)</th>
<th>N-0</th>
<th>N-100</th>
<th>N-200</th>
</tr>
</thead>
<tbody>
<tr>
<td>N-0</td>
<td>289(2.39)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-100</td>
<td>430(3.77)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-200</td>
<td>612(6.12)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Liveweight gain - kg/ha, and stocking rate - steers/ha. ()

Colonial Grass Pastures:

1. Cattle kept far longer at 2-3 years of age as compared to 4-6 under range conditions in Brazil.

2. For 200 kg/ha N more than doubled yield over N-0 in terms of TDN/ha, steers per ha. and liveweight gain/ha., but did not affect age of finish.

3. Response and residual in winter-dry season applied N greater than summer-wet season applied N.

4. Response to S appeared during the second summer season.

The treatment of 200 kg/ha. of N, 100 kg P₂O₅ and 60 kg S gave an annual net return of about 545 over the no. fertilizer control pasture.
Liveweight gains, stocking rates and protein contents of fertilized and unfertilized pastures during 168-day summer season - November 7, 1961 to April 24, 1962 (São Paulo, Brazil)

<table>
<thead>
<tr>
<th>November 7, 1961 to April 24, 1962</th>
<th>Live wt. gain/steer</th>
<th>Crude protein rate in grass</th>
<th>Stocking Live weight gain/ha.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>total kg.</td>
<td>daily gm.</td>
<td>%</td>
</tr>
<tr>
<td>1. Cerrado</td>
<td>Fertilized 122.8</td>
<td>731</td>
<td>10.10</td>
</tr>
<tr>
<td></td>
<td>Unfertilized 129.1</td>
<td>768</td>
<td>9.47</td>
</tr>
<tr>
<td>2. Pampas</td>
<td>Fertilized 136.5</td>
<td>813</td>
<td>8.73</td>
</tr>
<tr>
<td></td>
<td>Unfertilized 135.0</td>
<td>804</td>
<td>6.26</td>
</tr>
<tr>
<td>3. Caating</td>
<td>Fertilized 95.8</td>
<td>570</td>
<td>8.37</td>
</tr>
<tr>
<td></td>
<td>Unfertilized 98.7</td>
<td>588</td>
<td>6.38</td>
</tr>
<tr>
<td>4. Caating</td>
<td>Fertilized 117.3</td>
<td>698</td>
<td>10.65</td>
</tr>
<tr>
<td></td>
<td>Unfertilized 100.8</td>
<td>600</td>
<td>8.68</td>
</tr>
<tr>
<td>5. Cenista grass</td>
<td>Fertilized 123.1</td>
<td>733</td>
<td>10.21</td>
</tr>
<tr>
<td></td>
<td>Unfertilized 73.7</td>
<td>877</td>
<td>8.11</td>
</tr>
<tr>
<td>6. Coastal Bermuda</td>
<td>Fertilized 110.4</td>
<td>657</td>
<td>9.41</td>
</tr>
<tr>
<td></td>
<td>Unfertilized 102.3</td>
<td>609</td>
<td>8.22</td>
</tr>
</tbody>
</table>

1. Fertilized 2 and 3 samples.
2. Unfertilized for first 64 days of summer.
3. Liveweight gains, stocking rates and protein contents of fertilized and unfertilized pastures during 112-day winter season - July 18 to November 7, 1961 (Gann, et al., 1961)

<table>
<thead>
<tr>
<th>Species and Treatments</th>
<th>July 18 to November 7, 1961</th>
<th>Live wt. gain/steer</th>
<th>Crude protein in grass</th>
<th>Stocking rate steers/ha</th>
<th>Live weight gain/ha. kg.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total kg.</td>
<td>Daily gm.</td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>Helminthodactylus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Massiema</td>
<td>Fertilized</td>
<td>18.8</td>
<td>168</td>
<td>6.33</td>
<td>2.06</td>
</tr>
<tr>
<td></td>
<td>Unfertilized</td>
<td>4</td>
<td>4</td>
<td>5.41</td>
<td>2.23</td>
</tr>
<tr>
<td>Hyperarrhena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertilized</td>
<td>14.8</td>
<td>132</td>
<td>4.67</td>
<td>1.75</td>
</tr>
<tr>
<td></td>
<td>Unfertilized</td>
<td>5</td>
<td>4</td>
<td>3.67</td>
<td>1.75</td>
</tr>
<tr>
<td>Hyparrhena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertilized</td>
<td>19.6</td>
<td>175</td>
<td>4.72</td>
<td>2.63</td>
</tr>
<tr>
<td></td>
<td>Unfertilized</td>
<td>2.6</td>
<td>23</td>
<td>3.69</td>
<td>2.60</td>
</tr>
<tr>
<td>Hyparrhena</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fertilized</td>
<td>8.4</td>
<td>77</td>
<td>6.94</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td>Unfertilized</td>
<td>4.5</td>
<td>40</td>
<td>5.06</td>
<td>1.13</td>
</tr>
<tr>
<td>Lippiaiss grass</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melinis</td>
<td>Fertilized</td>
<td>-1.9</td>
<td>-17</td>
<td>5.23</td>
<td>1.61</td>
</tr>
<tr>
<td>Chondrilla</td>
<td>Unfertilized</td>
<td>4.2</td>
<td>38</td>
<td>4.43</td>
<td>1.61</td>
</tr>
<tr>
<td>Coastal Bermuda</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypnodon</td>
<td>Fertilized</td>
<td>-2.8</td>
<td>-25</td>
<td>5.57</td>
<td>1.98</td>
</tr>
<tr>
<td>Hypnolyon</td>
<td>Unfertilized</td>
<td>-23.5</td>
<td>-210</td>
<td>5.45</td>
<td>1.75</td>
</tr>
</tbody>
</table>

1) Average of 8 samplings.
Appendix E. Increased Animal Performance with Added Nitrogen Fertilizer

1. Case History 1 (1963 data from Dr. R. Astralaga - Abonos Colombiano, S.A.) -

 1. Location - Cauca Valley, Colombia - "La Chica" Ranch owned by Alfonso Jaramillo Alange.

 2. Pasture and Grazing Scheme - 2 fanegadas (2/3 hect.) of pangola grass divided into 4 paddocks for rotational grazing (10 days pasturing and 30 days rest).

 3. Fertilizer and Irrigation - 100 kg. of N/hect. first grazing period and 50 kg. thereafter; supplemental irrigation when needed.

 4. Cattle and Liveweight Gain - 6 Cebu steers of approximately 2 yrs. age per fanegada (corresponds to 9.375 per hectare); daily livewt. gain 0.775 kg. per animal x 9.37 = 7.26 kg. per hect. or 2,652 kg. per year (estimated).

 5. Cost inputs and return per hectare* -

 a. Interest on value of 9.37 animals
 b. Land investment (8% interest)
 c. Value of N (urea)
 d. Irrigation equipment (5 yr. amortization)
 e. Interest on irrigation equipment (5 yrs.)
 f. Irrigation cost

 Total 3257.50

 Gross return (2,652.45 kg. x $2.40 pesos/kg.) 6365.80

 Net 3108.30

* Pasture was already established - from 800 to 1500 pesos establishment cost.
2. Case History 2 (1963 data from Dr. R. Astralaga - Colombia) -

1. Location - Cauca Valley, Colombia - Caucañia Ranch owned by Luis E. Sardi.

2. Pasture size and grazing schedule - 75 fanegadas of para grass divided into 12 paddocks for rotational grazing (9 days pasturing and 27 days rest).

3. Fertilizer and irrigation (as above).

4. Cattle and liveweight gains (Cebu with results similar to the above).

5. Case History 3, (1967 data from Mr. John Evans) -

1. Location - Parada Research Station, Mareeba, Queensland, Australia.

2. Pasture and grazing scheme - 1/3 acre paddocks for rotational grazing - on 2 weeks and off 4 weeks, with disking after each second grazing period to distribute droppings. (Protein peak of grass reached 25 days after applying N, yearly range from 10-20% on a dry weight basis).

3. Fertilizer and irrigation - 300 lbs./A of N (6 appl./yr.), 200 lbs. superphosphate (22% P₂O₅), 100 lbs. K₂O; supplemental irrigation as needed.

4. Cattle and liveweight gains - 3 steers (18-20 mo.) per acre, 5 groups turned-off per acre over 2 yr. period, approximately 1100 lbs./A/yr. dressed beef; average daily gain 1.85 lb./head/day.

5. Cost inputs and return per hectare - Initial outlay of $250/A on cattle; pasture cost of $93/A/yr. (includes interest on land, $43 fertilizer cost, $4/A feet of water at $3.50/A ft. and $25/A labor); return of about $125/A from established pasture (approximately $50/A establishment cost) as compared to about $450/A from tobacco (grown in the same region.)

Note: Dr. J. Gref, Tropical Agricultural Research Station, South Johnstone, Queensland reported that 70 acres of Pangola grass, receiving 1000 lbs./A/yr. of ammonium sulphate, supports 3 steers per acre with total animal gains of about 2000 lbs. per acre²/.

²/ Personal communication and visit.
Grass pastures in Puerto Rico responded strongly to an increase in fertilization from 600 to 1800 lbs./A yearly of 14-4-10. Beef production increased from 570 to 1,072 lbs./A yearly and total digestible nutrients from 4,300 to 6,700 while carrying capacity was almost doubled, from 1.4 to 2.2 600 pound steers per acre. Forage consumed by the cattle increased from 8,900 to 13,400 pounds of dry matter per acre yearly; its protein content from 8.1 to 15.9 per cent, which approaches that of legume herbage.

It was profitable to increase fertilization up to 1800 lbs./A yearly. The additional 500 pounds of liveweight produced was worth $110 compared with increased fertilizer costs of about $48 including application.

The effect of 3 fertilizer levels on the productivity of elephant grass pastures

<table>
<thead>
<tr>
<th>Fertilizer Level</th>
<th>Weight Gain per Acre lbs.</th>
<th>Carrying Capacity 600 lb. Steer no.</th>
<th>Dry Forage Consumed per Acre lbs.</th>
<th>T.D.N. Consumed per Acre</th>
<th>Protein Content of Forage %</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-4-10 yearly</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>600 lbs.</td>
<td>570</td>
<td>1.4</td>
<td>8,900</td>
<td>4,300</td>
<td>8.1</td>
</tr>
<tr>
<td>1,800 lbs.</td>
<td>1,072</td>
<td>2.2</td>
<td>13,400</td>
<td>6,700</td>
<td>15.9</td>
</tr>
<tr>
<td>3,000 lbs.</td>
<td>1,190</td>
<td>2.5</td>
<td>13,600</td>
<td>8,100</td>
<td>17.6</td>
</tr>
</tbody>
</table>

a/ Difference in forage harvested from paired strips cut before and after grazing.

b/ Calculated from body weights, days of grazing and gains - weight.
Appendix F. Feeding Value of Tropical Pastures

1. Maximum and minimum dry-matter digestibility of tropical and temperate pasture plants (Milford and Minson - Australia)

<table>
<thead>
<tr>
<th>Pasture or species</th>
<th>Country</th>
<th>Maximum digestibility</th>
<th>Minimum digestibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Paspalum commersonii</td>
<td>Australia</td>
<td>74</td>
<td>31</td>
</tr>
<tr>
<td>2. Brochelis pullulans</td>
<td>Australia</td>
<td>57</td>
<td>34</td>
</tr>
<tr>
<td>3. Bothriochloa insulata</td>
<td>Kenya</td>
<td>67</td>
<td>45</td>
</tr>
<tr>
<td>4. Orchard grass - var. S37</td>
<td>UK</td>
<td>76</td>
<td>48</td>
</tr>
<tr>
<td>5. Perennial ryegrass - var. S24</td>
<td>UK</td>
<td>80</td>
<td>60</td>
</tr>
</tbody>
</table>

2. Daily animal intake (gm/kg liveweight 0.73) of subtropical pasture plants when grown in S.E. Queensland in 1962-63. (Milford and Minson - Australia).

<table>
<thead>
<tr>
<th>Grasses</th>
<th>Age of grass in days</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
</tr>
<tr>
<td>1. Buffel - var. Molopo</td>
<td>79</td>
</tr>
<tr>
<td>2. Sorghum alkalum - var. Crooble</td>
<td>78</td>
</tr>
<tr>
<td>3. Rhodes - var. Samford</td>
<td>42</td>
</tr>
<tr>
<td>4. Rhodes - var. Callide</td>
<td>64</td>
</tr>
<tr>
<td>5. Pangola</td>
<td>63</td>
</tr>
<tr>
<td>6. Glycine javanica - var. Cooper</td>
<td>80</td>
</tr>
<tr>
<td>7. Phaseolus atropurpureus - var. Siratro</td>
<td>72</td>
</tr>
</tbody>
</table>
3. Differences in nutritional values of 3 subtropical grasses when fed to sheep (Milford - Australia).

<table>
<thead>
<tr>
<th>Start of 10-day cutting period</th>
<th>Grass</th>
<th>D.M. digest.</th>
<th>D.M. intake g/hd/day</th>
<th>Crude protein content %</th>
<th>Crude protein digestibility %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.4.57</td>
<td>1. Cenchrus ciliaris L. (Buffel grass West. Aust. var.)</td>
<td>48</td>
<td>1032</td>
<td>7.4</td>
<td>57</td>
<td>Full bloom, leafy.</td>
</tr>
<tr>
<td></td>
<td>2. Paspalum plicatum (C.P.I. 2741)</td>
<td>45</td>
<td>916</td>
<td>4.0</td>
<td>11</td>
<td>Ear. seeding, leaves drying.</td>
</tr>
<tr>
<td></td>
<td>3. Natural pasture dominantly Rehriochloa intermedia</td>
<td>41</td>
<td>456</td>
<td>5.5</td>
<td>17</td>
<td>Mature, very dry.</td>
</tr>
<tr>
<td>13.5.57</td>
<td>4. C. ciliaris</td>
<td>44</td>
<td>769</td>
<td>8.0</td>
<td>43</td>
<td>Mature, leaves drying.</td>
</tr>
<tr>
<td></td>
<td>5. P. plicatum</td>
<td>43</td>
<td>677</td>
<td>3.4</td>
<td>10</td>
<td>Stems succulent leaves frosted.</td>
</tr>
<tr>
<td></td>
<td>6. Natural pasture</td>
<td>35</td>
<td>333</td>
<td>2.5</td>
<td>-118</td>
<td>Mature, very dry.</td>
</tr>
<tr>
<td>10.6.57</td>
<td>7. C. ciliaris</td>
<td>44</td>
<td>910</td>
<td>7.2</td>
<td>44</td>
<td>Mature, badly frosted.</td>
</tr>
<tr>
<td></td>
<td>8. P. plicatum</td>
<td>40</td>
<td>582</td>
<td>3.5</td>
<td>-9</td>
<td>Leaves and some stems frosted.</td>
</tr>
<tr>
<td></td>
<td>9. Natural pasture</td>
<td>28</td>
<td>315</td>
<td>2.6</td>
<td>-98</td>
<td>Dry and stammy.</td>
</tr>
<tr>
<td>9.8.57</td>
<td>10. C. ciliaris</td>
<td>35</td>
<td>740</td>
<td>7.1</td>
<td>29</td>
<td>Frosted, very dry.</td>
</tr>
<tr>
<td></td>
<td>11. P. plicatum</td>
<td>38</td>
<td>359</td>
<td>3.4</td>
<td>-4</td>
<td>Severely frosted</td>
</tr>
<tr>
<td></td>
<td>12. Natural pasture</td>
<td>32</td>
<td>149</td>
<td>2.2</td>
<td>-11</td>
<td>Dry and stammy.</td>
</tr>
</tbody>
</table>
1. Nutritive value of elephant grass cut at various stages of growth (Butterworth and Arias - Venezuela)

<table>
<thead>
<tr>
<th>Age of plants days</th>
<th>Dry matter %</th>
<th>Crude protein %</th>
<th>Crude fiber %</th>
<th>D.M. digest. %</th>
<th>D.M. intake gm/kg 0.75</th>
<th>Rate of passage hrs.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>12</td>
<td>21</td>
<td>28</td>
<td>65</td>
<td>67</td>
<td>45</td>
</tr>
<tr>
<td>50</td>
<td>18</td>
<td>7</td>
<td>32</td>
<td>60</td>
<td>65</td>
<td>53</td>
</tr>
<tr>
<td>70</td>
<td>29</td>
<td>5</td>
<td>38</td>
<td>58</td>
<td>70</td>
<td>65</td>
</tr>
</tbody>
</table>
Appendix G. Effect of Pasture Forage on Reproductive Performance of Cross-bred Cows
(1935-57) (A.C. Warnick - Florida)

<table>
<thead>
<tr>
<th>Stocking rate, acres/cow</th>
<th>Grass</th>
<th>White Clover-grass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.00</td>
<td>1.25</td>
</tr>
<tr>
<td>Percentage pregnancy, lactating cows</td>
<td>47.00</td>
<td>79.00</td>
</tr>
<tr>
<td>Percentage pregnancy, nonlactating cows</td>
<td>95.00</td>
<td>100.00</td>
</tr>
<tr>
<td>Percentage weaning, all cows</td>
<td>64.00</td>
<td>83.00</td>
</tr>
</tbody>
</table>
Appendix H. Projected World Human Population and Animal Protein Need

1. Estimated human population and anticipated animal protein per person based on "low" population projections.\(^1\)

<table>
<thead>
<tr>
<th>Region</th>
<th>Range</th>
<th>People 000,000</th>
<th>Protein gm/day</th>
<th>People 000,000</th>
<th>Protein gm/day</th>
</tr>
</thead>
<tbody>
<tr>
<td>World(^2)</td>
<td>Low</td>
<td>3,162</td>
<td>23.5</td>
<td>4,071</td>
<td>20.9</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>North America</td>
<td>Low</td>
<td>208</td>
<td>63.7</td>
<td>248</td>
<td>66.2</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td>76.7</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>97.1</td>
</tr>
<tr>
<td>Latin America</td>
<td>Low</td>
<td>229</td>
<td>25.6</td>
<td>352</td>
<td>21.2</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td>24.0</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>31.8</td>
</tr>
<tr>
<td>Africa</td>
<td>Low</td>
<td>248</td>
<td>11.6</td>
<td>367</td>
<td>9.9</td>
</tr>
<tr>
<td></td>
<td>Medium</td>
<td></td>
<td></td>
<td></td>
<td>11.3</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td></td>
<td></td>
<td></td>
<td>15.0</td>
</tr>
</tbody>
</table>

\(^1\) The World Food Problem - A Report of the President's Advisory Committee, May 1967, Pages 263-264.

\(^2\) Excluding Russia and China.
Appendix I. Locations and Descriptions of Natural Grasslands in Latin America

(Roseveare - England)

1. Savannahs of Hot Climates.
 a. Orinoco Flood Plains or Llanos of Venezuela and Colombia.

 i. The Venezuelan Llanos lie to the north of the Orinoco River (2,580 km. in length) and occupies an area approximately 1,000 km. long and 325 km. wide. Roughly it forms a semicircle from the Guaviare River in Colombia (a tributary of the Orinoco) to the Atlantic coast of Venezuela. A gradual slope reaches from the base of the Andes, which extends into Venezuela, towards the Orinoco but altitude seldom exceeds 180 to 220 meters above sea level.

 (a) The temperature curve at Cuidad Bolivar (eastern part of the Llanos) closely parallels that of Port of Spain, Trinidad. Variation in temperature during the course of the year is far from being uniform over the vast region, even at equal altitudes. At Calabazo in the central Llanos are found the widest monthly variations recorded in Venezuela.

 (b) Mean annual rainfall fluctuates from 800 to 1,800 mm. and days of rainfall from 75 to 150. There are two seasons -- a rainy period which begins in April, reaches a maximum in June or July; continuing until October with occasional showers into November and December, and a dry period during January to March in which there is no rain. The rainy season is always accompanied by inundation of vast tracts of land, especially in the vicinity of the Orinoco.

 ii. East of the Andean range and transecting Colombia from north to south lies the Colombian Llanos. It is divided by a western projection of the Guiana Highlands from the great Amazon Plains further south.

 (a) In climatic and other environmental conditions the Colombian Llanos resemble that of Venezuela and indeed being continuation of them. Mean temperatures to about 500 m above sea level, range from 27 to 30°C.
(b) North of the Guaviare River and from the base of the Andes precipitation ranges from 1200 to 5600 mm. and occurs in 70 to 240 days. It is unevenly distributed, being interrupted twice during the year with one period during January – March being quite dry.

6. "Campos" of Central Brazil. The central grasslands region comprise parts of the states of Sao Paulo, Rio de Janeiro, Guanabara, Espirito Santos, Minas Gerais, Goias, Mato Grosso and the Federal District. Climatic conditions are variable but this huge region has a common pattern of rainfall distribution: frequent and heavy in the summer and very little in the winter – an annual range of 1,000 - 2,000 mm. Average annual temperatures fluctuate between 19° and 25°C.

1. The "campos cerrados" are mixed formations of trees, shrubs and underneath grasses which occupy extensive areas on the central plateau of the states of Sao Paulo, Minas Gerais, Goias and Mato Grosso.

2. The "campos limpos" are open bunch grass formations with no trees. Both types extend into the northern region of Brazil and occupy parts of Amapa, Maranhao, and Rio Branco of the State of Maranhao.

It is estimated that there are some 160 million hectares of vegetation of these types in Brazil.

7. Savannahs of Bolivia and the Gran Chaco.

1. Bolivia - The eastern Llanos or savannas of the Department of Santa Cruz and part of the Department of Cochabamba form a part of the large area known as the Gran Chaco, which is shared by Bolivia, Paraguay, Brazil and Argentina.

The "wet savannahs", Llanos of Yacuma and Mojos, lie in the northern, riverine lands and remain inundated for much of the year.

2. Gran Chaco - a region of scrub forest interspersed with patches of savannah, extending northward from about 30° latitude into Paraguay, eastern Bolivia.
and western Brazil - a lowland plain with few interruptions. Some of the highest temperatures recorded in any part of South America occur in the Chaco. During the summer rainy season vast areas are under water.

d. Savannahs of the Amazon Basin and the Guianas.

1. The great Amazon forest is generally regarded as one vast forest, but numerous grassy savannahs interrupt the thick cover of trees. The most important savannahs are situated in the northeast on the Rio Branco (towards the frontier of the Guianas and in the lower Amazon between the Rio Negro and Rio Xingu tributaries. Flooded savannahs are found along the littoral and in the lower Amazon, with little or no woody vegetation but a lush herbaceous cover in which grasses predominate. A non-flooded type is comprised of grass and legume species, dicotyledons of other families and interspersed with shrubs or small trees ("Campos cerrados" and "limpos").

One series of these "Campos" follows the Atlantic Coast (including the isle of Marajo - one of the most developed zones for cattle production); another lies along the course of the Lower Amazon in the State of Para; another is situated on the upper extremities of the rivers Branco, Trombetas and Jari; a fourth extends into the basin of the southern affluents of the Amazon, in the extreme south of the States of Para and Amazonas.

(a) Temperatures in the Amazon region are not excessively high, around 25°C with a low annual range. Rainfall for the whole region is abundant, in some instances over 3,000 mm. and a high degree of relative humidity. There is a so-called dry season or summer, July to December, in which there may be partial or entire absence of rain.

ii. Upland savannahs occupy an extensive area in southwestern Guiana and continue to the east in broken form into Surinam and French Guiana. With an elevation of 100-150 meters they have an undulating surface, broken with granite masses which are sometimes heavily forested. Rainfall does not exceed 1500 mm. annually and generally occurs within a four month period.
1. Bolivar Savannahs of Colombia and Lowland Savannahs of Costa Rica. These regions occupy an unusual position among the grassy savannahs of Latin America in that they contain areas of improved pasturelands which are of vital importance in supplying the meat requirements of their countries.

The Bolivar savannahs stretch along the Magdalena River, covering a vast lowland that seldom exceeds 200 meters, and extend over the coastal region where elevations may reach 350 meters. Annual temperatures range from 27 to 30 °C with comparatively small fluctuations. Rainfall is irregular and unevenly distributed, averaging 300 to 4350 mm. in 22 to 145 days. One period of drought lasts from 3 to 5 months.

The savannahs of the Pacific lowlands of Costa Rica rise to 750 meters in the province of Guanacaste (which provides a high proportion of the country's beef). Tropical temperatures prevail but are of less significance than the two seasons: winter or wet, lasting from May to November, and the summer or dry from December to April. Annual precipitation ranges from 1040 to 3050 mm.

2. Semi-arid Grazing.

Northeastern Brazil is hot and mostly semi-arid. It includes the states of Bahia, Sergipe, Alagoas, Pernambuco, Paraíba, Rio Grande do Norte, Ceará and Piauí and the Territory of Fernando de Noronha. An equatorial climate prevail in about 65 per cent of the region and subtropical in the remainder. An average maxima of 35 °C and a minima of 18.6° has been recorded. Two well-defined seasons - rainy and dry - are generally recognized. About 8 per cent of the region receives no more than 255 mm. of rain annually, about 25 per cent 255 to 635 mm. and the remainder over 635 mm. With regular or defined distribution the latter quantities would be satisfactory for pasture development but the entire monthly amount may occur during violent storms of short duration. In some localities there may be rain in December and January but none afterwards; in some years none may fall be-
between January and the end of March with downpours in April and May; and occasionally an entire year may pass without rainfall. In the typical dry zone called "Sertão", which makes up the greatest part of the region, extensive cattle raising is practiced, using local breeds of small size and low productivity.
Appendix I. Projected Increase in Cattle Numbers for Colombia.a/

<table>
<thead>
<tr>
<th>Year</th>
<th>Base</th>
<th>Projection A b/</th>
<th>Projection B b/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1958-60</td>
<td>1965</td>
<td>1975</td>
</tr>
<tr>
<td></td>
<td>14,402</td>
<td>16,667</td>
<td>22,994</td>
</tr>
<tr>
<td>% Increase</td>
<td>16</td>
<td>60</td>
<td>13</td>
</tr>
</tbody>
</table>

a/ Based on a study made by Harold M. Riley, 1962.

b/ Projection A - 1.2% annual increase in per capita consumption and a 2.5% increase in per capita income.

Projection B - Same level of consumption continued as in 1958-60.

Note: The 1957 estimate is 17,078,000.
Appendix E. Productivity of Introduced Grasses in the Improvement of Natural Grasslands

... influence of fertilizer on the forage yield of introduced grasses.

<table>
<thead>
<tr>
<th>Grass</th>
<th>Tons dry matter per hectare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No fertilizer</td>
</tr>
<tr>
<td>Ammopras scoparius</td>
<td>0.9</td>
</tr>
<tr>
<td>Digitaria decumbens</td>
<td>1.0</td>
</tr>
<tr>
<td>Echinochloa frumentacea</td>
<td>1.3</td>
</tr>
<tr>
<td>Axonopus micay</td>
<td>3.2</td>
</tr>
<tr>
<td>Digitaria decumbens</td>
<td>3.4</td>
</tr>
<tr>
<td>Brachiaria decumbens<sup>b/</sup></td>
<td>3.5</td>
</tr>
<tr>
<td>Pennisetum purpureum</td>
<td>4.8</td>
</tr>
</tbody>
</table>

^{a/} Data from La Libertad Experiment Station, Llanos Orientalis, Colombia.

^{b/} Kg/hect. - N, 150 at establishment and 50 after each harvest; P₂O₅, 150; K₂O, 25.
Appendix L. Cattle Production from Native and Sown Pasture in the Fitzroy Basin
Brigalow Region of North Queensland, Australia (Coaldrake and Smith -
Australia)

1. Stocking rates and beef gains with native and improved pastures.

<table>
<thead>
<tr>
<th>Experiment</th>
<th>Stocking rate acres/head</th>
<th>Dressed wt. of meat per head lbs/yr.</th>
<th>Dressed wt. of meat per acre lbs/yr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1 (undeveloped)</td>
<td>50</td>
<td>100</td>
<td>2.0</td>
</tr>
<tr>
<td>Stage 2 (cleared & developed to sown pastures)</td>
<td>3</td>
<td>189</td>
<td>63.0</td>
</tr>
<tr>
<td>Stage 3 (20% of area cultivated for winter fattening)</td>
<td>1.5</td>
<td>210</td>
<td>140</td>
</tr>
<tr>
<td>Sorghum alnum/green panic (Panicum maximum) pasture</td>
<td>2.0</td>
<td>240</td>
<td>120</td>
</tr>
</tbody>
</table>

2/ it is estimated that where experimental production is held at 1-2 acres per head an average good farmer will run 1.5-3 acres and the poor farmer 2-4.

2. Cost of clearing and establishing pastures in the Brigalow Region of Australia (1,000 acre unit) 2/:

1. Clearing - pulling forest with chain and cable drawn between two crawler tractors per acre $3.00
2. Seed (mixture of Green panic, Rhodes and Sorghum alnum and alfalfa) 4.50
3. Seeding into ash from aircraft .50
4. Fencing: 3 barb suspension fence built by contract at $300/mile for 640 acre units 1.50
5. Water: Farm dam or bore plus reticulation 2.50
6. Cattle yards and dipping facility 1.00

Cost of pasture ready for use $13.00

3/ Add cost of house, farm shed and purchase of rental of land, plus interest, etc.
Note: Excerpt of letter from J. E. Coald rake, Division of Tropical Pastures, who supplied the above information.

"If we take the figure of 60 lb. of meat/acre/year at the current price of $20.00 per 100 lb., then the gross return of $12.00 per acre per year allows a wide margin against which to charge interest, purchase price of store cattle or cost of breeding, etc. This is why there are up to 200 applicants for each new block of brigalow land that the government releases for development.

In the case of brigalow land regrowth of the leguminous tree often becomes a problem. If this is treated by aerial spraying with 2, 4, 5T in the first season, the cost is now $4.00 per acre for hormone and flying. If allowed to grow on past the first year then ploughing is, at present, the only sure control. This shallow ploughing currently costs $1.50 to $2.00 per acre per time. Two ploughings are generally needed to prepare for a crop such as forage oats. This gives a return of 300 lb. liveweight per acre (or upwards if rains are good) for the crop, i.e. roughly 200 lb. meat per acre per year. Ploughing plus cropping to eliminate regrowth can be a highly profitable business in brigalow country."
Appendix M. Adaptation and Yields of Some Tropical Legumes and Grasses in Hawaii

<table>
<thead>
<tr>
<th>1. Tropical legumes</th>
<th>Rainfall inches</th>
<th>Elevation feet (plus)</th>
<th>Soil fertility</th>
<th>Green yield, tons/acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Desmodium canum</td>
<td>60 - 150</td>
<td>3000</td>
<td>v. low</td>
<td>-</td>
</tr>
<tr>
<td>b. Desmodium intortum</td>
<td>60 plus</td>
<td>2500</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>c. Leucaena leucocephala</td>
<td>20 - 60</td>
<td>1000</td>
<td>P</td>
<td>35 5-35 100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2. Tropical grasses</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a. Echinochloa mutica</td>
<td>moist</td>
<td>2000</td>
<td>heavy</td>
<td>60</td>
</tr>
<tr>
<td>b. Digitaria decumbens</td>
<td></td>
<td>4000</td>
<td>mod.</td>
<td>80</td>
</tr>
<tr>
<td>c. Pennisetum clandestinum</td>
<td>35 plus</td>
<td>6000</td>
<td>mod.</td>
<td>4-100</td>
</tr>
<tr>
<td>d. Panicum maximum</td>
<td>25-80</td>
<td>2000</td>
<td>mod.</td>
<td>100+ 5-35</td>
</tr>
<tr>
<td>e. Panicum maximum</td>
<td>20-45</td>
<td>2500</td>
<td>mod.</td>
<td>4-8</td>
</tr>
<tr>
<td>f. Cynodon dactylon</td>
<td>15-80</td>
<td>3000</td>
<td>heavy</td>
<td>40</td>
</tr>
</tbody>
</table>

* Data from Crop. Exp. Sta. Univ. of Hawai'i, Leaflets 101 through 107 and 110, 111 and 114.
Appendix N: Forage Needed and Precision of Methods Used to Estimate Forage Quality of Bermudagrass at Tifton, Georgia (Burton, et al)

<table>
<thead>
<tr>
<th>Method</th>
<th>Forage Needed</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Daily gain of steers</td>
<td>14,500 kg</td>
<td>12.9 - 31.3</td>
</tr>
<tr>
<td>2. Dry matter intake of steers</td>
<td>2,700 kg</td>
<td>6.7 - 16.9</td>
</tr>
<tr>
<td>3. Dry matter digestibility (fed steers)</td>
<td>1,450 kg</td>
<td>2.5 - 3.2</td>
</tr>
<tr>
<td>4. Dry matter digestibility (nylon bag)</td>
<td>40 gm</td>
<td>1.7 - 3.1</td>
</tr>
<tr>
<td>5. Dry matter percentage</td>
<td>60 gm</td>
<td>4.5 - 6.4</td>
</tr>
<tr>
<td>6. True protein content</td>
<td>10 gm</td>
<td>5.0 - 5.4</td>
</tr>
<tr>
<td>Percent leaves (dry basis)</td>
<td>20 gm</td>
<td>6.7 - 13.0</td>
</tr>
<tr>
<td>7. True fiber content</td>
<td>10 gm</td>
<td>3.3 - 5.3</td>
</tr>
</tbody>
</table>

Forage needed for digestibility studies

<table>
<thead>
<tr>
<th>Method</th>
<th>Forage Needed</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>8. Dry matter digestibility (fed to sheep)</td>
<td>100 kg</td>
<td>-</td>
</tr>
<tr>
<td>9. Dry matter digestibility (in vitro)</td>
<td>8 gm</td>
<td>-</td>
</tr>
</tbody>
</table>

Personal communication from forage research workers Cornell University.
Appendix O. Differences in Nutritional Values of Two Varieties of *Paspalum plicatum* when Fed to Sheep

(Milford - Australia)

<table>
<thead>
<tr>
<th>Start of 10-day cutting period</th>
<th>Variety</th>
<th>D.M. digest. %</th>
<th>D.M. intake g/ha/day</th>
<th>Crude protein content %</th>
<th>Crude protein digestibility %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 21.11.55</td>
<td>a. C.P.I. 2741</td>
<td>57</td>
<td>1333</td>
<td>9.5</td>
<td>48</td>
<td>Young, leafy</td>
</tr>
<tr>
<td></td>
<td>b. C.P.I. 11826</td>
<td>56</td>
<td>1509</td>
<td>10.3</td>
<td>60</td>
<td>Young, leafy</td>
</tr>
<tr>
<td>2. 28.5.56</td>
<td>a. C.P.I. 2741</td>
<td>42</td>
<td>521</td>
<td>3.0</td>
<td>-10</td>
<td>Mature, stemmy, leaf dry.</td>
</tr>
<tr>
<td></td>
<td>b. C.P.I. 11826</td>
<td>44</td>
<td>1019</td>
<td>5.3</td>
<td>39</td>
<td>Mature, some green leaf.</td>
</tr>
<tr>
<td>3. 9.9.57</td>
<td>a. C.P.I. 2741</td>
<td>40</td>
<td>437</td>
<td>3.8</td>
<td>9.2</td>
<td>Mature, leaves frosted, some stems green at base.</td>
</tr>
<tr>
<td></td>
<td>b. C.P.I. 11826</td>
<td>50</td>
<td>818</td>
<td>4.4</td>
<td>20</td>
<td>Mature, leaves frosted, some stems green at base.</td>
</tr>
</tbody>
</table>
A. SELECTED REFERENCES

Alber, F. E.

Andrew, C. S. and Nuttis, D. O.

Andrew, C. S. and Henzell, E. F.

Andrew, C. S.

Arino R., B. and Teamassen, H.
1963. Comparative study of meat production from five tropical grasses. (Span.) Tech. pbl. No. 5, 15-19, bibl. 6, illus., Eng. s. (C.N.I.P., Cotaxtla, Veracruz, Mexico).

Astalapo M. S., R.
1962. (Rational management of fertilized grasslands.) (Spanish) Agric. trop. 18, No. 11, 645-9.

Baird, C. G. et al.

Bernard, C.

Blaxter, R. E., and N. C. Brady.

Bum, A. V.
Kotlet, E. and Burguen, F.

Brady, N. O.

Bryant, H. T., R. E. Blaser, R. C. Hammers, Jr.

Buresh, R. et al.

Butler, G. W. and Hart, R. H.

Butterworth, H. and Arias, P. J.

Carrasco, A. F. DE.

Carras, M. G. and Ferrer, F. M.

Carranza, H. and Lotero, J.
1965. (Forages and livestock (in Colombia.).) (Span.) Agric. trop. 21, No. 11, 711-2, bibl. 16, illus. (Cent. Nac. Invest. Agropec., Tibaitata, Bogota, Colombia)

Carranza, H. and Lotero, J.

Cleland, E. and Smith, C. A.

Cole, J. K.

Colman, R. L., Holder, J. M. and Swain, F. G.

Cooker, I. W.
Crowder, L. V.

Crowder, L. V., et al.

Crowder, L. V.

Copp, T. J., and Pace, J. E., Editors.

Dawes, W.

Dávila, J. G.

Dobereiner, Johana

Dobereiner, Johana

Dugand, A.

Foreign Agricultural Service.

Grasslands.
1959. Symposium presented at the New York meeting of the American Association for the Advancement of Science.

Grassland Research Institute, Hurley.

Grossman, J., Aronovich, S., Campello, E. do C. B.
... and essential in Australian dairying. C.S.I.R.O. Jour. of Australian Institute of Agric., 113: 184.

I was unable to provide a natural text representation as the content is not legible in the image provided.

Roter, Peter P., and Ukio Urata.

Roter, Peter P., Soon Jai Park, Amara Bromdep, and Ukio Urata.

Roter, Peter P., and Ukio Urata.

Schraulhausen, R. V.
1965. Weight increase of Zebu cattle grazing on the legumes *Dolichos lablab* and *Calanthe indica*. Paper presented at the 9th Int. Grassl. Congr., Sao Paulo, Brazil, pp. 5, bibl. 19, Port. s., mimeo. (Fazenda Esta. Val de Palmas, Sao, Sao Paulo State, Brazil).

Schole, J. A. et al.

Schole, J. A.

Schole, J. A.

Schole, J. A., International Laboratory, C.S.I.R.O.
1966-67 Annual Report, Division of Tropical Pastures. C.S.I.R.O.

5. For use of one- or two-year grass trials for pasture evaluation in the tropics. An "area" latin-square design. Jour. of British Grassland Soc. 21(1): 55.

6. T. H., and Ripperton, A. D. R.

8. Manufacturers' Association (of Jamaica) Ltd.

14. Ruppert, A., and Berry, P. A.

References

1. **Bates, S. H. and Moore, I. A.**

2. **Bates, S. H.**

3. **Bates, S. H. and Jones, L. H. P.**

4. **Bates, S. H. and Wine, R. H.**

5. **Beare, T. R.**

7. **Beter, L. C. and Wilson, P. K.**

8. **Bottom, Mark**

9. **Brown, R. L.**

10. **Brown, R. A.**

11. **Cary, R. J.**
 - *Milk production in developing countries*. London, Faber and Faber Ltd., 2nd ed. Tables, graphs, map, refs.

13. **Carr, L. J., Phunchare, D. B., and Ronan, Peter P.**

14. **Chen, W. S. and Phunchare, D. B.**
ACKNOWLEDGEMENTS

In the consuming review of research in progress, for patient discussions of scientific endeavors and philosophies, for stimulating ideas and worthwhile suggestions, and for transportation the following people are to be recognized:

Colombia - Dr. Herman Chavetta and associates in the Pastures and Forage Crops Division at the Instituto Colombiano Agropecuario.

Australia - Drs. J. C. Davies and H. M. Hutton and their associates who staff the Division of Tropical Pastures at the Cunningham, Samford, Cooper and Townsville Laboratories.

- Dr. E. Crow and others of the Queensland Department of Agriculture.
- Dr. N. J. T. Norman and staff of the Division of Land Research, CSIRO.
- Dr. F. H. W. Morrey and staff of the Division of Plant Industry, CSIRO.
- Dr. G. L. McClymont and staff of the University of New South Wales.
- Dr. W. M. Willoughby and staff of the Pastoral Laboratory at Armidale, CSIRO.

New Zealand - Dr. L. R. Wallace and staff of the Plant and Animal Research Center at Ruakura.

Hawaii - Drs. D. L. Plucknett and P. Rotar of the University of Hawaii.

Puerto Rico - Mr. Jose Vicente-Chandler and associates of the Cooperative ARS Research Project located at Rio Piedras, and Dr. G. L. Spain of the Agricultural Experiment Station at Rio Piedras.

Grateful appreciation is extended to the following:

- Dr. I. F. Fontenot, Professor of Animal Nutrition and Biochemistry, Virginia Polytechnic Institute for a critical review of the proposal and help in preparing Section IV-C.
- Dr. I. Taylor, Animal Production Department, Grasslands Research Insti-
site at Silley, England for a review and critique of the manuscript.

Dr. N. S. Klein, a soil scientist with the Rockefeller Foundation for their exchange of ideas and fruitful suggestions while traveling in Colombia, Australia, New Zealand and Hawaii.

1. An initial orientation, which provided a tentative objective and a practical approach for preparing this proposal, acknowledgement is made to the following:

1. Staff of the Rockefeller Foundation:

 Dr. L. H. Roberts, Assoc. Director for Agriculture.

 Dr. U. J. Grant, Director of CIAT.

 Dr. H. A. Rodenhiser, Consultant.

 Dr. E. C. Stakman, Consultant.

 Dr. R. Cummings, Assoc. Director for Agriculture.

2. Others:

 Dr. G. W. Burton, Principle Geneticist, USDA, Tifton, Georgia.

 Dr. A. A. Hanson, Section Head, Pastures and Forage, USDA, Beltsville Maryland.