
Pierre Nyabyenda - RESAPAC

CIAT African
Occasional Publications Series No. 16
LES RECHERCHES MULTIENVIRONNEMENTALES EFFECTUEES SUR HARICOTS NAINS AU RWANDA DE 1980 A 1990

Par Dr Nyabyenda Pierre
RESAPAC
PUBLICATIONS OF THE NETWORK ON BEAN RESEARCH IN AFRICA

Workshop Series


No. 6. Proceedings of First SADCC Regional Bean Research Workshop, Mbabane, Swaziland, 4-7 October 1989.


No. 27. Third SADC/CIAT Bean Research Workshop, Mbabane, Swaziland, 5-7 October 1992.

No. 29. SADC Working Group Meeting of Bean Breeders, Lilongwe, Malawi, 26-29 September 1994.


Occasional Publications Series

No. 1. Agromyzid Pests of Tropical Food Legumes: a Bibliography.

No. 2. CIAT Training in Africa.


No. 4. Assessment of Yield Loss caused by Biotic Stress on Beans in Africa.

No. 5. Interpretation of Foliar Nutrient Analysis in Bean - the Diagnosis and Recommendation Integrated System.

No. 6. The Banana-Bean Intercropping System in Kagera Region of Tanzania - Results of a Diagnostic Survey.


No. 9. A Training Manual for Bean Research.

No. 10. Bean Germplasm Conservation based on Seed Drying with Silica Gel and Low Moisture Storage.
No. 11. African Bean Production Environments: Their Definition, Characteristics and Constraints.


Reprint Series


No. 7. Bean sieving, a possible control measure for the dried bean beetles, Acanthoscelides obtectus (Say) (Coleoptera: Bruchidae). M.S. Nahdy. J. Stored Prod. Res. 30:65-69. 1994; and


No. 11. Overcoming bean production constraints in the Great Lakes region of Africa: integrating pest management strategies with genetic diversity of traditional varietal mixtures. A set of the following seven reprints:


LES RECHERCHES MULTIENVIRONNEMENTALES EFFECTUEES SUR HARICOTS NAINS AU RWANDA DE 1980 A 1990

Par Dr Nyabyenda Pierre
RESAPAC
PREFACE

This publication is part of a synthesis of many years of research on bean varietal selection across environments in Rwanda. The results presented here come from multiple locations for beans of bush or restricted growth habits during the period 1980 to 1990, and complement two earlier publications: one on climbing beans (Nyabyenda, 1992) and the other on bush and semi-climbing types (Nyabyenda, 1995). A detailed treatment of results for the period 1990 to 1993 is in preparation.

While the emphasis here is on multilocational research, aspects addressed more briefly include the stages of bean research in Rwanda, the collection of local varieties, introductions of exotic materials from the international centres and national agricultural research organisations, germplasm improvement, varietal selection and complementary research. Attention is drawn to certain similarities with results from elsewhere in the Great Lakes region and from Eastern Africa.

It is hoped that this publication, coming after the recent tragic events in Rwanda and the region, will prove useful to all those concerned with bean research there. It is intended to serve as a reference for plant breeders and agronomists working with the same varieties and environments, as well as for those concerned with the dissemination or transfer of Rwanda's bean technology; for that reason it will be published in both French and English. These results also show the outcome of the many materials which were introduced to Rwanda from CIAT (Centro Internacional de Agricultura Tropical) over a period of a dozen years or more.

This publication is an activity of the network for bean improvement in central Africa (RESAPAC), which is one of three sub-regional bean networks that collaborate to disseminate research results through this publication series. The RESAPAC network has now joined with East African Bean Research Network. This publication is made possible thanks to the support of the Swiss Agency for Development and Cooperation (SDC). However, the opinions expressed herein are those of the author and do not necessarily reflect the views of contributing donor organisations.

Further information on regional research activities on beans in Africa is available from:

Coordinator, Eastern and Central Africa Bean Research Network, P.O. Box 2704, Arusha, Tanzania

Coordinator, SADC Bean Network, P.O. Box 2704, Arusha, Tanzania

Pan-Africa Coordinator, CIAT, P.O. Box 6247, Kampala, Uganda
SOMMAIRE

PREFACE ........................................................................................................... 5

RESUME ............................................................................................................. 7

1. INTRODUCTION ......................................................................................... 8

2. MATERIEL ET METHODES ................................................................. 8
   2.1. Matériel ............................................................................................... 8
   2.1.1. Les variétés ..................................................................................... 8
   2.1.2. Les sites expérimentaux ............................................................... 11
   2.2. Méthodes ............................................................................................ 13
   2.2.1. Dispositif expérimental et exécution des essais ......................... 13
   2.2.2. Suivi des essais et collecte des données .................................... 13
   2.2.3. Analyse statistique des données ................................................ 14

3. RESULTATS ................................................................................................. 15
   3.1. Essai Comparatif Multilocal 1985 .................................................... 15
   3.1.1. Les rendements ............................................................................... 15
   3.1.2. La réaction des variétés aux maladies ...................................... 16
   3.2. Essai Comparatif Multilocal 1986 .................................................... 17
   3.2.1. Les rendements ............................................................................... 17
   3.2.2. La réaction des variétés aux maladies ...................................... 18
   3.2.3. Comportement des variétés dans les conditions marginales ............. 19
   3.3. Essai Comparatif Multilocal 1987-1988 .............................................. 19
   3.3.1. Les rendements ............................................................................... 20
   3.3.2. La réaction des variétés aux maladies ...................................... 20
   3.3.3. Comportement des variétés dans les conditions marginales .......... 21
   3.4. Essai Comparatif Multilocal 1988-1989 .............................................. 21
   3.4.1. Les rendements ............................................................................... 22
   3.4.2. La réaction des variétés aux maladies ...................................... 22
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.5.</td>
<td>Essai Comparatif Multilocal 1989-1990</td>
<td>23</td>
</tr>
<tr>
<td>3.5.1.</td>
<td>Les rendements</td>
<td>23</td>
</tr>
<tr>
<td>3.5.2.</td>
<td>La réaction des variétés aux maladies</td>
<td>24</td>
</tr>
<tr>
<td>3.5.3.</td>
<td>Comportement des variétés dans les conditions marginales</td>
<td>25</td>
</tr>
<tr>
<td>4.</td>
<td>DISCUSSIONS</td>
<td>26</td>
</tr>
<tr>
<td>5.</td>
<td>CONCLUSIONS</td>
<td>28</td>
</tr>
<tr>
<td>6.</td>
<td>BIBLIOGRAPHIE</td>
<td>30</td>
</tr>
<tr>
<td>7.</td>
<td>ANNEXES</td>
<td>31</td>
</tr>
<tr>
<td>7.1.</td>
<td>Tableaux des résultats de l'ECM 85</td>
<td>32</td>
</tr>
<tr>
<td>7.2.</td>
<td>Tableaux des résultats de l'ECM 86</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>A. Résultats de l'ECM 86 (BA - MA)</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>B. Résultats de l'ECM 86 (MA - HA)</td>
<td>63</td>
</tr>
<tr>
<td>7.3.</td>
<td>Tableaux des résultats de l'ECM 87</td>
<td>74</td>
</tr>
<tr>
<td>7.4.</td>
<td>Tableaux des résultats de l'ECM 88-89</td>
<td>94</td>
</tr>
<tr>
<td>7.5.</td>
<td>Tableaux des résultats de l'ECM 89-90</td>
<td>113</td>
</tr>
<tr>
<td>7.6.</td>
<td>Abréviations utilisées</td>
<td>131</td>
</tr>
</tbody>
</table>
PREFACE

Ce document qui est publié avec les fonds de la coopération suisse (fonds du RESAPAC) est le résultat d'un travail de 6 années de recherche sur haricot dans le cadre du Programme Légumineuses de l'ISAR qui collabore avec le Projet CIAT dans la Région des Grands Lacs depuis 1983. Les recherches sur haricot dans le domaine de la sélection variérale ayant été faits simultanément sur haricots nains, semi-volubiles et volubiles, le présent document relate les résultats sur haricots nains et semi-volubiles, après que ceux sur haricots volubiles aient été publiés dans un autre document paru antérieurement.

Ces résultats sont le fruit d'un long processus de recherche qui commence par la collecte des variétés du milieu rural, l'introduction des variétés exotiques de l'étranger (centres internationaux et institutions nationales de recherche agricole) et la sélection généalogique en passant par les essais de rendement dans les stations de recherche.

Ce document, dont la parution a été retardée par les événements malheureux survenus particulièrement au Rwanda et dans la région en général reste valable et utile pour tous ceux qui sont concernés par la recherche sur haricot dans la région aussi bien des Grands Lacs que de l'Afrique de l'Est et Australe et en particulier ceux du Rwanda où les essais ont été conduits. Ainsi ce document devrait ainsi servir de référence pour tous les sélectionneurs qui travaillent avec les mêmes variétés et dans les mêmes conditions pour qu'ils ne doivent pas recommencer le même travail plutôt que de chercher comment mettre en pratique les résultats. Cette publication devrait également servir de référence pour tous ceux qui sont concernés par la vulgarisation des technologies de recherche sur haricot et en particulier ceux du Rwanda.
REMERCIEMENTS

Je tiens à remercier sincèrement tous ceux qui de près ou de loin ont collaboré à la réalisation et à la publication de ce document et du travail effectué sur terrain.

Mes sincères remerciements s'adressent tout d'abord au Comité Directeur du RESAPAC qui autorisé la publication de ce document avec les fonds du Réseau, au CIAT et à la Coopération suisse qui ont financé et réalisé cette publication.

Je remercie également tous les projets de développement agricole qui ont collaboré à l'installation et au suivi des essais exécutés dans leurs zones.

Mes remerciements vont également à tous les chercheurs et techniciens de l'ISAR qui ont beaucoup contribué dans l'exécution et le suivi des essais et notamment Madame Mukankubana D. Dr Ukiriho B. et Messieurs Rubaduka E., Cishahayo D. et E. Murwanashyaka. Je ne manquerai pas de remercier également Madame Mukankubana D. et Monsieur Gatera G. qui ont aidé dans la saisie et l'analyse des données.

Mes vifs remerciements vont également à Dr Buruchara R., Dr W. Graf, Dr I. Butare et Dr M. Ngendahayo qui ont lu le document et fait des commentaires très enrichissants.
RESUME

Beaucoup d'essais comparatifs variétaux multilocaux ont été exécutés dans différentes régions agricoles de basse, moyenne et haute altitude du Rwanda pendant les années 1985 à 1990. Les essais ont été installés aussi bien en stations de recherche de l'ISAR que dans différents projets de développement opérant dans différentes régions agricoles du pays.

Tous les essais ont été installés suivant le dispositif de blocs randomisés ou suivant le lattice 5 x 5 balancé. L'analyse globale des résultats et l'analyse par site, par région et par zone ont été faites suivant le "Duncan Multiple Range Test".

Les résultats des essais de 1985 ont confirmé en général la supériorité de la variété Rubona 5 qui était déjà diffusée depuis quelques temps. Ils ont montré également les bonnes performances des variétés A 197 en général et en particulier en basse et moyenne altitude tandis que les variétés Kilyumukwe et Ikinimba étaient aussi bonnes en moyenne et haute altitude respectivement.

Quant aux essais multilocaux de 1986, ils ont confirmé les bonnes performances des variétés A 197 et Kilyumukwe en régions de basse et moyenne altitude en général et celles des variétés G 13671 et G 2816 en zone de basse altitude tandis que les variétés Rubona 5, Kilyumukwe et G 12470 se montrèrent bonnes en moyenne altitude.

Les essais multilocaux de 1987-1988 ont démontré les performances particulières des variétés RWR 221, Kibuga et RWR 222 qui se sont montrées les meilleures en général pour toutes les régions; la variété RWR 221 était particulièrement très bonne en haute altitude, Kibuga était bonne en haute et moyenne altitude, tandis que les variétés RWR 222 et G 04391 étaient les meilleures en basse altitude.

Pour l'ECM 1988-1989, ce sont les variétés Nain de Kyondo et Kilyumukwe qui se sont montrées les meilleures en général pour l'ensemble du pays.

Les résultats de l'ECM 1989-1990 ont mis en évidence les bonnes performances de la variété 1378/4 qui s'est montrée de loin la meilleure au niveau national et en basse altitude en particulier; alors que la variété 1364/1 s'est montrée, quant à elle, la meilleure en zone de haute altitude.
1. INTRODUCTION

La culture du haricot revêt une très grande importance dans la production alimentaire au Rwanda. Avec une production de 265 920 tonnes sur une superficie de 325 524 ha cultivée annuellement, le haricot occupe la première place en terrain emblavé en cultures vivrières (MINAGRI, 1989). Le haricot contribue pour 65% à l’apport protéique et pour 32% à l’apport calorifique dans le régime alimentaire rwandais (CGIAR, 1994).

L’importance du haricot nain dans la production du haricot a également été déjà soulignée à plusieurs reprises dans le passé, bien que, suivant la stratégie alimentaire du Ministère du Plan on prévoit un remplacement progressif des haricots nains et semi-volubiles par les variétés volubiles (MINIPLAN, 1984).

Pour lever les contraintes qui s’opposent à la culture du haricot au Rwanda, un programme de recherche sur haricots incluant la sélection, les techniques culturales et les tests des nouvelles technologies chez les agriculteurs a été mis sur pied à l’ISAR depuis les débuts des années 80. Ce programme a mis un accent particulier sur les essais multilocaux et les essais d’adaptation en milieu réel pour déterminer les meilleures variétés adaptées aux différentes conditions de culture du milieu rural dans les différentes régions agricoles et zones agro-écologiques du pays, lesquelles variétés sont résistantes ou tolérantes aux maladies les plus importantes au Rwanda et dans la région.


2. MATERIEL ET METHODES

2.1. MATERIEL

2.1.1. Les variétés

De 1985 à 1990, 75 variétés naines et semi-volubiles ont été testées en essais comparatifs variétaux multilocaux dont 33 en provenance du Rwanda (16 du milieu rural et 17 de la sélection généalogique), 35 en provenance du CIAT, 2 du Burundi, 2 de l’Uganda, 1 du Zaïre, 1 de Hollande et une du Pérou (Tableau 1). Ces différentes variétés étaient obtenues suivant le schéma de sélection variétale appliquée à l’ISAR et provenaient en général directement des essais comparatifs variétaux menés en stations de recherche (figure 1).
Les variétés étaient sélectionnées suivant les critères suivants:
- rendement;
- résistance ou tolérance aux maladies les plus importantes au Rwanda pour les haricots nains: Anthracnose (Colletotrichum lindemuthianum (Sacc. & Magn.), Tâches anguleuses (Phaeoisariopsis griseola Sacc.) Ferraris, Ascochytose (Ascochyta phaseolorus Sacc.), Virose commune, bactériose (Xanthomonas campestris pv. phaseoli (E.F.Sm.)Dye et bactériose à halo (Pseudomonas syringae pv. syringae van Hall) (ALLEN, 1995),
- cycle végétatif;
- adaptabilité aux différentes régions agro-écologiques
- couleur du grain.

Chaque essai comparait 16 variétés dont le mélange local était pris comme témoin; les anciennes variétés élites des essais antérieurs comme Rubona 5 Ikinimba et Kilyumukwe étaient souvent répétées comme variétés anciennement sélectionnées pendant plusieurs années. Pendant les premières années les essais étaient constitués surtout des variétés introduites ou collectées du milieu rural alors que à la fin les lignées provenant de la sélection généalogique étaient devenues prédominantes (tableau 1).
<table>
<thead>
<tr>
<th>Variétés</th>
<th>Origine</th>
<th>Période d'expérimentation</th>
<th>Type de plant 1/</th>
<th>Couleur et grosseur du grain 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rubona 5</td>
<td>CIAT</td>
<td>85-88</td>
<td>I</td>
<td>6,1/ M</td>
</tr>
<tr>
<td>2. A 197</td>
<td>CIAT</td>
<td>85-86</td>
<td>I</td>
<td>2/ G</td>
</tr>
<tr>
<td>3. Kilyumukwe</td>
<td>Rwanda</td>
<td>85-90</td>
<td>II</td>
<td>7/ G</td>
</tr>
<tr>
<td>4. Ikinimba</td>
<td>Rwanda</td>
<td>86</td>
<td>III</td>
<td>8/ M</td>
</tr>
<tr>
<td>5. Umukutiki</td>
<td>Rwanda</td>
<td>85</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>6. Kirundo</td>
<td>Burundi</td>
<td>85</td>
<td>II</td>
<td>3/ G</td>
</tr>
<tr>
<td>7. Calma</td>
<td>CIAT</td>
<td>85</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>8. Tostado</td>
<td>Pérou</td>
<td>85</td>
<td>I</td>
<td>3/ G</td>
</tr>
<tr>
<td>9. Shikashike</td>
<td>Rwanda</td>
<td>85</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>10. Ubusosera</td>
<td>Rwanda</td>
<td>85</td>
<td>III</td>
<td>4/ M</td>
</tr>
<tr>
<td>11. Naizebushonje</td>
<td>Rwanda</td>
<td>85</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>12. Bataaf</td>
<td>Hollande</td>
<td>85</td>
<td>I</td>
<td>3/ M</td>
</tr>
<tr>
<td>13. Var.1/2</td>
<td>Uganda</td>
<td>85</td>
<td>I</td>
<td>2/ M</td>
</tr>
<tr>
<td>14. Inyumba</td>
<td>Rwanda</td>
<td>85-86</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>15. M. ISAR 85</td>
<td>Rwanda</td>
<td>85</td>
<td>I à III</td>
<td></td>
</tr>
<tr>
<td>16. M. local</td>
<td>Rwanda</td>
<td>85-90</td>
<td>I à III</td>
<td></td>
</tr>
<tr>
<td>17. G 13671</td>
<td>CIAT</td>
<td>86</td>
<td>III</td>
<td>2,8/ G</td>
</tr>
<tr>
<td>18. G 2816</td>
<td>CIAT</td>
<td>86</td>
<td>I</td>
<td>4/ G</td>
</tr>
<tr>
<td>19. M. ISAR 86</td>
<td>Rwanda</td>
<td>86</td>
<td>I à III</td>
<td></td>
</tr>
<tr>
<td>20. BAC 76</td>
<td>CIAT</td>
<td>86</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>21. A 483</td>
<td>CIAT</td>
<td>86</td>
<td>I</td>
<td>2/ P</td>
</tr>
<tr>
<td>22. A 484</td>
<td>CIAT</td>
<td>86</td>
<td>I</td>
<td>7,1/ G</td>
</tr>
<tr>
<td>23. A 490</td>
<td>CIAT</td>
<td>86</td>
<td>I</td>
<td>7,1/ G</td>
</tr>
<tr>
<td>24. PVA 1272</td>
<td>CIAT</td>
<td>86</td>
<td>I</td>
<td>1/ M</td>
</tr>
<tr>
<td>25. PVA 555</td>
<td>CIAT</td>
<td>86</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>26. PVA 563</td>
<td>CIAT</td>
<td>86</td>
<td>I</td>
<td>1,6/ G</td>
</tr>
<tr>
<td>27. Bayitunigirubwiza</td>
<td>Rwanda</td>
<td>86</td>
<td>IIIb</td>
<td>4/ M</td>
</tr>
<tr>
<td>28. G 11060</td>
<td>CIAT</td>
<td>86</td>
<td>IIIa</td>
<td>4/ P</td>
</tr>
<tr>
<td>29. Ntekerabasilimu</td>
<td>Rwanda</td>
<td>86</td>
<td>IIIa</td>
<td>4/ P</td>
</tr>
<tr>
<td>30. A 370</td>
<td>CIAT</td>
<td>86</td>
<td>III</td>
<td>4/ P</td>
</tr>
<tr>
<td>31. Kibobobo</td>
<td>Rwanda</td>
<td>86</td>
<td>IIIa</td>
<td>1,8/ M</td>
</tr>
<tr>
<td>32. Urubonobono</td>
<td>Burundi</td>
<td>86</td>
<td>IIIa</td>
<td></td>
</tr>
<tr>
<td>33. Mbararumisize</td>
<td>Rwanda</td>
<td>86</td>
<td>IIIa</td>
<td></td>
</tr>
<tr>
<td>34. RWR 221</td>
<td>SG</td>
<td>87-88</td>
<td>IIIa</td>
<td>5/ P</td>
</tr>
<tr>
<td>35. RWR 222</td>
<td>SG</td>
<td>87-88</td>
<td>IIIa</td>
<td>5/ M</td>
</tr>
<tr>
<td>36. Kibuga</td>
<td>Rwanda</td>
<td>87-88</td>
<td>IIIa</td>
<td></td>
</tr>
<tr>
<td>37. G 04391</td>
<td>CIAT</td>
<td>87-88</td>
<td>IIIa</td>
<td></td>
</tr>
<tr>
<td>38. Kinyugwe</td>
<td>Rwanda</td>
<td>87-88</td>
<td>IIIa</td>
<td></td>
</tr>
<tr>
<td>39. Amashongoshwa</td>
<td>Rwanda</td>
<td>87-88</td>
<td>IIIa</td>
<td>7/ G</td>
</tr>
<tr>
<td>40. RWR 217</td>
<td>SG</td>
<td>87-88</td>
<td>I</td>
<td>3/ G</td>
</tr>
</tbody>
</table>
Tableau 1 (Cont.): Variétés naines et semi-volubiles utilisées en essais comparatifs multilocaux de 1985 à 1990.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Origine</th>
<th>Période d'expérimentation</th>
<th>Type de plant 1/</th>
<th>Couleur et grosseur du grain 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td>41. RWR 229</td>
<td>SG</td>
<td>87-88</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>42. PVA 1438</td>
<td>CIAT</td>
<td>87-88</td>
<td>I</td>
<td>6,3/ G</td>
</tr>
<tr>
<td>43. PVA 772</td>
<td>CIAT</td>
<td>87-88</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>44. PVA 1216</td>
<td>CIAT</td>
<td>87-88</td>
<td>I</td>
<td>1,6/ G</td>
</tr>
<tr>
<td>45. PVA 880</td>
<td>CIAT</td>
<td>87-88</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>46. PVA 374</td>
<td>CIAT</td>
<td>87-88</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>47. G 11516</td>
<td>CIAT</td>
<td>87-88</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>48. Nain de kyondo</td>
<td>Zaïre</td>
<td>88-89</td>
<td>IIIb</td>
<td>1/ P</td>
</tr>
<tr>
<td>49. PVA 774</td>
<td>CIAT</td>
<td>88-89</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>50. PVA 782</td>
<td>CIAT</td>
<td>88-89</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>51. PVA 705</td>
<td>CIAT</td>
<td>88-89</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>52. PVA 46</td>
<td>CIAT</td>
<td>88-89</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>53. PVA 15</td>
<td>CIAT</td>
<td>88-89</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>54. K-20</td>
<td>Uganda</td>
<td>88-89</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>55. ZAA 84086</td>
<td>CIAT</td>
<td>88-89</td>
<td>I</td>
<td>6,1/ G</td>
</tr>
<tr>
<td>56. Kabanima</td>
<td>CIAT</td>
<td>88-89</td>
<td>I</td>
<td>2/6/ G</td>
</tr>
<tr>
<td>57. RWR 45</td>
<td>SG</td>
<td>88-89</td>
<td>I</td>
<td>2,1/ G</td>
</tr>
<tr>
<td>58. RWR 52</td>
<td>SG</td>
<td>88-89</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>59. RWR 14</td>
<td>SG</td>
<td>88-89</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>60. G 11515</td>
<td>CIAT</td>
<td>88-88</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>61. Hatuey 23</td>
<td>CIAT</td>
<td>88-89</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>62. 1378/4</td>
<td>SG</td>
<td>89-90</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>63. 1364/1</td>
<td>SG</td>
<td>89-90</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>64. 1364/5</td>
<td>SG</td>
<td>89-90</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>65. Kerme 20</td>
<td>CIAT</td>
<td>89-90</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>66. RWR 222A</td>
<td>SG</td>
<td>89-90</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>67. RWR 222B</td>
<td>SG</td>
<td>89-90</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>68. APR 8</td>
<td>CIAT</td>
<td>89-90</td>
<td>III</td>
<td>6/ P</td>
</tr>
<tr>
<td>69. APR 13</td>
<td>CIAT</td>
<td>89-90</td>
<td>III</td>
<td>6/ P</td>
</tr>
<tr>
<td>70. SSBD 13MK</td>
<td>SG</td>
<td>89-90</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>71. SMK 1015</td>
<td>SG</td>
<td>89-90</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>72. SMK 1004</td>
<td>SG</td>
<td>89-90</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>73. PVA 781</td>
<td>CIAT</td>
<td>89-90</td>
<td>II</td>
<td>6,1/ M</td>
</tr>
<tr>
<td>74. XAN 194</td>
<td>CIAT</td>
<td>89-90</td>
<td>II</td>
<td>6/ P</td>
</tr>
<tr>
<td>75. RWR 104</td>
<td>SG</td>
<td>89-90</td>
<td>II</td>
<td></td>
</tr>
</tbody>
</table>

LEGENDE:

1/ Types de croissance de plants d'après CIAT (1992): I: port déterminé; II = port nain non déterminé avec tige et branches dressées; III: port nain non déterminé avec tige et branches faibles et couchées


2.1.2. Les sites expérimentaux

Les sites expérimentaux étaient choisis dans les différentes régions agricoles des zones de basse (>1500 m), moyenne (1500-1800 m) et haute altitude (>1800 m) et spécialement dans les régions où étaient implantés les Projets agricoles et les stations de l’ISAR.
Le tableau 2 montre les emplacements (région et zone) des différents sites expérimentaux et leur altitude ainsi que les institutions et Projets collaborateurs. Quant au tableau 3 il donne les caractéristiques générales des différentes régions agricoles où sont localisés les différents sites d'essais.

Le collaborateur choisissait lui-même le terrain d'emplACEMENT de l'essai et il lui était loisible de choisir un sol riche ou fumé, un sol de fertilité moyenne ou pauvre.

Tableau 2: Altitude, Région et Zone des sites utilisés pour les différents essais multilocaux sur haricots nains de 1995 à 1990 ainsi que les Institutions et Projets collaborateurs.

<table>
<thead>
<tr>
<th>Sites</th>
<th>Altitude (m)</th>
<th>Région</th>
<th>Zone 1/</th>
<th>Collaborateurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Karama (colluvion)</td>
<td>1350</td>
<td>Bugesera</td>
<td>BA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Karama (transition)</td>
<td>1350</td>
<td>Bugesera</td>
<td>BA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Karama (plateau)</td>
<td>1400</td>
<td>Bugesera</td>
<td>BA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Gashora</td>
<td>1350</td>
<td>Bugesera</td>
<td>BA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Mututu</td>
<td>1350</td>
<td>Mayaga</td>
<td>BA</td>
<td>SSS</td>
</tr>
<tr>
<td>Kibayi</td>
<td>1450</td>
<td>Mayaga</td>
<td>BA</td>
<td>DGB</td>
</tr>
<tr>
<td>SEHMS</td>
<td>1350</td>
<td>Savane de l'Est</td>
<td>BA</td>
<td>Dervam</td>
</tr>
<tr>
<td>Muyumbu</td>
<td>1350</td>
<td>Plateau de l'Est</td>
<td>BA</td>
<td>SSS</td>
</tr>
<tr>
<td>Masaka</td>
<td>1450</td>
<td>Plateau de l'Est</td>
<td>BA</td>
<td>PIKE</td>
</tr>
<tr>
<td>Buganya</td>
<td>1450</td>
<td>Plateau de l'Est</td>
<td>MA</td>
<td>ANRUBY</td>
</tr>
<tr>
<td>Kamembe</td>
<td>1500</td>
<td>Impala</td>
<td>MA</td>
<td>PCCV</td>
</tr>
<tr>
<td>Rubungo</td>
<td>1500</td>
<td>Plateau de l'Est</td>
<td>MA</td>
<td>SSS</td>
</tr>
<tr>
<td>Tubungo</td>
<td>1515</td>
<td>Plateau central</td>
<td>MA</td>
<td>APA</td>
</tr>
<tr>
<td>Mubago</td>
<td>1570</td>
<td>Plateau de l'Est</td>
<td>MA</td>
<td>BGM</td>
</tr>
<tr>
<td>Kinazi</td>
<td>1600</td>
<td>Dorsale Granitique</td>
<td>MA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Rubona</td>
<td>1650</td>
<td>Plateau Central</td>
<td>MA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Musau</td>
<td>1650</td>
<td>Plateau Central</td>
<td>MA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Gikirambwa</td>
<td>1650</td>
<td>Plateau Central</td>
<td>MA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Mara</td>
<td>1650</td>
<td>Plateau Central</td>
<td>MA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Gahororo</td>
<td>1650</td>
<td>Plateau de l'Est</td>
<td>MA</td>
<td>Kib.II</td>
</tr>
<tr>
<td>Rwogo</td>
<td>1650</td>
<td>Plateau Central</td>
<td>MA</td>
<td>SSA</td>
</tr>
<tr>
<td>Nyagende</td>
<td>1650</td>
<td>Dorsale Granitique</td>
<td>MA</td>
<td>PKN</td>
</tr>
<tr>
<td>Kigoma</td>
<td>1670</td>
<td>Dorsale Granitique</td>
<td>MA</td>
<td>PAG</td>
</tr>
<tr>
<td>Gihisii</td>
<td>1700</td>
<td>Plateau Central</td>
<td>MA</td>
<td>PAP</td>
</tr>
<tr>
<td>Rusatira</td>
<td>1700</td>
<td>Plateau Central</td>
<td>MA</td>
<td>ISAR/C</td>
</tr>
<tr>
<td>Kabitare</td>
<td>1700</td>
<td>Plateau central</td>
<td>MA</td>
<td>EAVK</td>
</tr>
<tr>
<td>Kabuga</td>
<td>1700</td>
<td>Bords du Lac Kivu</td>
<td>MA</td>
<td>PAK</td>
</tr>
<tr>
<td>Gahama</td>
<td>1720</td>
<td>Dorsale Granitique</td>
<td>MA</td>
<td>ISAR/C</td>
</tr>
<tr>
<td>Busasamana</td>
<td>1800</td>
<td>Terres de Laves</td>
<td>HA</td>
<td>GBK</td>
</tr>
<tr>
<td>Mudende</td>
<td>2300</td>
<td>Terres de Laves</td>
<td>HA</td>
<td>GBK</td>
</tr>
<tr>
<td>PNAP (Ruhengeri)</td>
<td>1860</td>
<td>Terres de Laves</td>
<td>HA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Rutare</td>
<td>2000</td>
<td>Buberuka</td>
<td>HA</td>
<td>ANRUBY</td>
</tr>
<tr>
<td>Rwerere</td>
<td>2060</td>
<td>Buberuka</td>
<td>HA</td>
<td>ISAR</td>
</tr>
<tr>
<td>Gakubo</td>
<td>2150</td>
<td>Buberuka</td>
<td>HA</td>
<td>DRB</td>
</tr>
<tr>
<td>Nyabimata</td>
<td>2200</td>
<td>CZN</td>
<td>HA</td>
<td>DANK</td>
</tr>
<tr>
<td>Jomba</td>
<td>2300</td>
<td>CZN</td>
<td>HA</td>
<td>IPV</td>
</tr>
</tbody>
</table>
Tableau 3: Caractéristiques des différentes régions agricoles au Rwanda.

<table>
<thead>
<tr>
<th>Région</th>
<th>Altitude</th>
<th>Pluviosité</th>
<th>Soie</th>
<th>Valeur agricole</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. INYALA</td>
<td>1400-1700</td>
<td>1300-1600</td>
<td>Soi rouges lourdés désirés de basaltine</td>
<td>Bonne</td>
</tr>
<tr>
<td>2. NORDS DU LAC KIVU</td>
<td>1400-1500</td>
<td>1150-1200</td>
<td>Soi limon-argileux superficiel</td>
<td>Excellent</td>
</tr>
<tr>
<td>3. TERRES DE LAVE</td>
<td>1600-2500</td>
<td>1300-1500</td>
<td>Soi volcanique</td>
<td>Excellent</td>
</tr>
<tr>
<td>4. CENTE SAINT-BIL</td>
<td>1500-2100</td>
<td>1200-1600</td>
<td>Sois, humifères azides</td>
<td>Moyenne</td>
</tr>
<tr>
<td>5. BUKESERA</td>
<td>1500-2100</td>
<td>1150-1300</td>
<td>Sois, humifères divers</td>
<td>Bonne</td>
</tr>
<tr>
<td>6. PLATEAU CENTRAL</td>
<td>1500-1700</td>
<td>1300-1500</td>
<td>Sois, humifères d'altitude</td>
<td>Moyenne</td>
</tr>
<tr>
<td>7. DORSALE GRANITIQUE</td>
<td>1600-1800</td>
<td>1050-1100</td>
<td>Soi légers, graviers</td>
<td>Très bonne</td>
</tr>
<tr>
<td>8. NAYAKA</td>
<td>1320-1550</td>
<td>1200-1250</td>
<td>Soi argileux dérivé de schistes</td>
<td>Très bonne</td>
</tr>
<tr>
<td>9. BUKESERA</td>
<td>1300-1400</td>
<td>950-950 -1000</td>
<td>Soi argileux fortement altérés</td>
<td>Fausse</td>
</tr>
<tr>
<td>10. PLATEAU DE L'EST</td>
<td>1400-1500</td>
<td>950-950 -1000</td>
<td>Soi latérits</td>
<td>Moyenne en Nord, fausse en Sud</td>
</tr>
<tr>
<td>11. SAVANES DE L'EST</td>
<td>1250-1400</td>
<td>850-950 -900</td>
<td>Vierves soi de texture variable</td>
<td>Très fausse</td>
</tr>
</tbody>
</table>

SOURCES: Delapierre, 1973

2.2. MÉTHODES

2.2.1. Dispositif expérimental et exécution des essais

Les essais comparatifs multilocaux de 1985 et 1986 ont été menés pendant deux saisons chacun tandis que les essais multilocaux 87-88, 88-89 et 89-90 ont été exécutés pendant 4 saisons. Les essais de 1985 et 1986 ont été installés suivant le dispositif des blocs randomisés à 4 répétitions tandis que les autres ont été installés suivant le lattice balancé 5 x 5. Dans les deux cas la parcelle élémentaire était de 4 x 1m et la superficie récoltée de 4 m².

Pour l'homogénéité des essais et du matériel utilisé, tous les protocoles et toutes les semences étaient préparés à la station de recherche de Rubona et envoyés aux différents projets et institutions collaborateurs qui se chargeaient de l'installation, de l'entretien et de la récolte des essais. Deux plans d'installation étaient proposés et le collaborateur avait le libre choix du Plan qui convenait à la configuration de son terrain.

2.2.2. Suivi des essais et collecte des données.

Une à deux visites par saison étaient effectuées à chaque site pour observer la conformité de l'installation de l'essai suivant le protocole et le comportement des différentes variétés pendant la végétation.
Dans les projets on ne se faisait que des observations sur le rendement, alors que dans les stations de l'ISAR des observations étaient faites aussi bien sur le rendement que sur les maladies, le type de plants et leur vigueur. La cotation des maladies (anthracnose, taches anguleuses, ascochytose, virose et black root, bactériose commune et bactériose à halo) était faite suivant l'échelle standard de 1 à 9 du CIAT.

Après la récolte et la pesée, les résultats étaient inscrits sur un formulaire préalablement préparé et joint au protocole. Ces résultats étaient envoyés ou collectés au passage dans les projets et les stations.

2.2.3. Analyse statistique des données.

L'analyse statistique des données a été faite sur les rendements parcellaires extrapolés à l'hectare pour comparer les différentes variétés par sites, par région agricole, par zone agro-climatique et au niveau de tout le pays en général.

Le modèle de l'analyse utilisé était l'analyse de la variance suivie du DMRT (Duncan Multiple Range Test) et pour chaque analyse, la moyenne générale de l'essai, le coefficient de variation (cv %) et le F calculé ont été considérés pour juger de la validité des essais et des résultats.
3. RESULTATS

3.1. ESSAI COMPARATIF MULTILOCAL 1985

L'essai comparatif variétal multilocal de 1985 a été effectué dans différentes régions agricoles et notamment dans la région agricole de Bugesera (2 sites) et la région de Mayaga (2 sites), la région de Savane de l'Est et la région du Plateau de l'Est(B) (1 site) en zone de basse altitude; dans la région du Plateau de l'Est (M) (2 sites), la région du Plateau Central (3 sites) en zone de moyenne altitude; ainsi que dans la région du Buberuka (3 sites) et la région des Terres de lave (1 site) en zone de haute altitude.

Les résultats détaillés sur les rendements de l'essai au niveau national, par zone, par région et par site ainsi que sur la réaction des variétés vis-à-vis des maladies sont repris dans les annexes 1.1 à 1.16.

3.1.1. Les rendements

La synthèse globale des rendements.

L'analyse globale des résultats a montré que c'étaient les variétés Rubona 5 et A 197 qui avaient des rendements statistiquement différents et supérieurs au mélange local (Annexe 1.1).

Les rendements par zones écologiques

Regroupés par zone agro-climatique les résultats montrent encore une fois que la variété A 197 a eu le meilleur rendement en basse et moyenne altitude et la variété Rubona 5 la meilleure production en haute altitude, sans toutefois qu'il y ait une différence statistiquement significative entre les rendements de ces variétés et celui du mélange local pris comme témoin (annexe 1.2 et 1.4).

Les rendements par régions agricoles

Si l'on considère les résultats dans les différentes régions agricoles, les meilleures variétés avec des rendements statistiquement différents du mélange local étaient respectivement:

- Plateau de l'Est (MA): A 197, Mélange ISAR 85, Rubona 5, Kilyumukwe et Umutikili.

On remarque que la variété A 197 est la plus plastique par ce qu'elle a eu le meilleur rendement ou occupé la seconde place dans 6 des 8 régions agricoles où l'essai a été conduit. Elle s'est montrée particulièrement très bonne dans toutes les régions de basse et moyenne altitude.
Les rendements par sites

Pour ce qui concerne les résultats des différentes variétés par sites, les rendements sont détaillés dans les annexes 1.13 à 1.15. Les rendements vont de 2885 kg/ha pour la variété A 197 sur le sol riche du Mutara (SEMS) au rendement nul pour les variétés Shikashike, Var 1/2 et Kirundo sur les sols pauvres et acides de haute altitude de Gakubo (2200m) dans la préfecture de Byumba et à Rwerere (2300 m) dans la préfecture de Ruhengeri.

3.1.2. La réaction des variétés aux maladies.

Le tableau 1.16 montre la sensibilité des différentes variétés de l’ECM 85 aux maladies les plus importantes en zone de moyenne altitude (Rubona). Bien que la pression des maladies n’était pas assez forte, les données reprises dans ce tableau donnent une idée sur la sensibilité des différents variétés dans la zone de moyenne altitude, sans pour autant que cela soit vrai pour les hautes altitudes où la pression des maladies, surtout fongiques, est beaucoup plus forte.

Ainsi donnés des observation sur chaque maladie montrent que la variétés Rubona 5 qui s’était montrée très intéressante antérieurement au point de vue rendement, a commencé à se montrer sensible à l’Anthracose. Les variétés Calima, Kirundo, Tostado et Bataaf se sont montrées également sensibles à l’anthracnose (annexe 1.16).

La variété A 197, qui a eu le meilleur rendement en zone de moyenne altitude, était avec la variété Ikinimba, parmi les variétés les moins attaquées par l’anthracnose, mais elle était parmi les variétés les plus attaquées par l’ascochytose et la maladie des taches anguleuses.

Les variétés Kilyumukwe, qui est également parmi les meilleures variétés en production en région de moyenne altitude, et la variété Kirundo se sont montrées les plus susceptibles à la bactériose à halo.

Quant aux variétés Ikinimba et Ubusosera qui sont parmi les meilleures variétés au point de vue rendement en zone de haute altitude, se sont montrées sensibles à la rouille.
3.2. ESSAI COMPARATIF MULTILOCAL 1986

L'Essai Comparatif Multilocal 1986 a été subdivisé en deux parties et notamment l'ECM 19986 (BA - MA) qui regroupait les variétés sélectionnées en basse (Karama) et moyenne (Rubona) altitude d'une part et l'ECM 1996 (MA - HA) qui comprenait les variétés sélectionnées en moyenne (Rubona) et haute (Rwerere) altitude.

Pour les deux essais c'est le mélange ISAR 86 qui a été utilisé comme témoin. Les variétés A 197, Rubona 5, Kilyumukwe et Ikinimba ont été reprises dans l'ECM 86 (BA - MA) tandis que les variétés Rubona 5, Ikinimba et Inyumba ont été reprises dans l'ECM 86 (MA - HA).

Les ECM 86 ont été effectué pendant deux saisons dans les régions agricoles du Bugesera (3 sites), la région de Plateau de l'Est(B) (2 sites), la région du Mayaga (2 sites), et la région de Savane de l'Est (1 site) en zone de basse altitude; dans la région de Plateau central (4 sites), la région de plateau de l'Est (MA) (3 sites) et la région de la Dorsale granitique (1 site) en zone de moyenne altitude; ainsi que dans la région du Buberuka (1 site), la région de Terres de lave (3 sites) et la région de la Crête Zaire-Nil (1 site) en zone de haute altitude.

Les résultats détaillés des ECM 86 sont repris dans les annexes 2.a.1 à 2.a.12 pour les basses et moyennes altitudes et dans les annexes 2.b.1. à 2.b.10 pour les hautes altitudes.

3.2.1. Les rendements

Les rendements par zones écologiques

L'analyse globale des rendements et par zones écologiques montre que en basse altitude ce sont les variétés G 13671 et G 2816 qui y sont les meilleures avec un rendement de 111 et 110% du témoin respectivement, suivies de A 197 et Kilyumukwe (annexe 2.a.2.).

En moyenne altitude les variétés Rubona 5, Kilyumukwe, G 12470 et A 197 rivalisent entre elles pour l'ECM conduit en basse et moyenne altitude (annexe 2.a.3.), alors que la variété Kirundo s'est montrée la meilleure en pour l'essai exécuté en haute et moyenne altitude (annexe 2.b.2.).

En zone de haute les rendements de l'ECM 86 (MA - HA) ont montré que les variétés G 11060 et Ntekerabasilimu étaient meilleures par rapport au mélange ISAR 86 (annexe 2.b.3.).
Concernant les résultats par région agricole, les meilleures variétés en production étaient les suivantes dans les différentes régions:

- Bugesera: G 2816
- Mayaga: G 13671
- Savane de l’Est: A 484 et A 197
- Plateau de l’Est (BA): A 197, Kilyumukwe, G 12470 et Bac 76
- Plateau de l’Est (MA): Bac 76
- Plateau Central: Ikinimba, Kilyumukwe, A 197, et Rubona 5
- Dorsale granitique: G 12470
- Buberuka: Ikinimba, G 11060
- Terres de lave: G 11060, Ntekerabasilimu
- CZN : PVA 1272, PVA 555

Dans les régions agricoles de haute altitude, il y a certaines variétés qui se sont montrées statistiquement différentes et supérieures à celui du mélange ISAR 86 utilisé comme témoin et notamment les variétés Ikinimba et G 11060 dans les régions agricoles du Buberuka, les variétés PVA 1272 et PVA 555 dans la région de la Crête Zaire-Nil ainsi que les variétés G 11060 et Ntekerabasilimu en région des Terres de lave.

Les résultats par sites

Pour ce qui concerne les résultats par sites (annexes 2.a.11, 2.a.12, 2.b.8 et 2.b.9), on peut remarquer que les meilleurs rendements ont été obtenus sur les sols fertilisés à Mubago (4200 kg/ha) et les sols riches de la région des Terres de lave à Busasamana avec la variété G 13671 (3142 kg/ha) et à Ruhengeri avec la variété G 11060 (2750 kg/ha) tandis que les rendements les moins élevés furent obtenus sur les sols pauvres de plateau de Karama (Bugesera) avec la variété Bayitungirubwiza (annexe 2.a.11) et sur les sols acides de la Crête Zaire-Nil à Jomba avec les variétés G 2816 (94 kg/ha) et A 370 (200 kg/ha) (annexe 2.b.9). Les variétés G 11060 et Ntekerabasilimu étaient de loin les meilleures variétés sur les sols acides de Gakubo avec des rendements allant jusqu’à 219 et 181% du témoin respectivement. Le meilleur rendement moyen (3346 kg/ha) a été obtenu au site de Mubago dans la préfecture de Kibungo.

3.2.2 La réaction aux maladies

Comme le montre le l’annexe 2.b.10, les variétés G 11060, Ntekerabasilimu et A 370 et Inyumba ont montré une grande tolérance à la plupart des maladies fongiques en haute en haute altitude tandis alors que les variétés Rubona 5, G 2816, Kibobo y étaient plus sensibles à l’anthracnose et ascocytose. Les variétés Ikinimba et PVA 1272 se sont montrées les plus sensibles à la rouille.
Bien que les données n'apparaissent pas ici pour des raisons évoquées plus haut, la variété Kirundo s'est montrée très sensible à la bactériose à halo alors que les variétés PVA 555 et PVA 563 étaient susceptibles à la bactériose commune et principalement en basse altitude.

Pour ce qui concerne la sensibilité à la virose, les variétés Mbagarumbise, Inyumba et A 370 étaient les plus sensibles à la virose alors que les variétés Rubona 5, Kirundo et PVA 1272 étaient les moins attaquées par cette maladie.

3.2.3 Comportement des variétés dans les conditions marginales

Les résultats de 1986 en MA et HA ont permis de déceler deux nouvelles variétés prometteuses en zone de haute altitude et spécialement dans des conditions marginales de culture (< 1100 kg/ha de production moyenne de l'essai): il s'agit des variétés Ntekerabasilimu et G 11060 qui ont eu des rendements de 136 et 127 % du témoin mélange ISAR en mauvaises conditions de culture (tableau 4).

Tableau 4: Les variétés de l'ECM 86 (MA-HA) les plus performantes sur sols pauvres (< 1100 kg/ha) et sur sols riches (>1500 kg/ha).

<table>
<thead>
<tr>
<th>Variété</th>
<th>Conditions marginales de culture (&lt;1100 kg/ha)</th>
<th>Très bonnes conditions de culture (&gt;1500kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rdt/ha</td>
<td>% t</td>
</tr>
<tr>
<td>G 11060</td>
<td>936</td>
<td>127</td>
</tr>
<tr>
<td>Ntekerabasilimu</td>
<td>999</td>
<td>136</td>
</tr>
<tr>
<td>G 13671</td>
<td>650</td>
<td>89</td>
</tr>
<tr>
<td>Ikinimba</td>
<td>705</td>
<td>96</td>
</tr>
<tr>
<td>Rubona 5</td>
<td>766</td>
<td>104</td>
</tr>
<tr>
<td>M. ISAR 86</td>
<td>737</td>
<td>100</td>
</tr>
</tbody>
</table>

3.3. ESSAI COMPARATIF MULTILOCAL 87 - 88

L'essai comparatif multilocal 87-88 (ECM 87- 88) a été effectué pendant 4 saisons (87A,87B,88A et 88B) dans les régions agricoles de Bugesera (3 sites), du Mayaga (2 sites), de la Savane de l'Est (1 site) et de Plateau de l'EST(B) (2 sites) en zone de basse altitude; dans les régions de Plateau de l'Est(M) (2 sites), de Plateau Central (4 sites), de la Dorsale granitique (2 sites) et de l'Impala (1 site) en zone de moyenne altitude; ainsi que dans les régions des Terres de lave (2 sites), du Buberuka (1 site) et de la Crête Zaire-Nil (2 sites) en zone de haute altitude.

Les résultats détaillés sur les rendements de l'essai au niveau national, par zone, par région et par site ainsi que sur la réaction des variétés vis-à-vis des maladies sont repris dans les annexes 3.1 à 3.16.
3.3.1. Les rendements

L’analyse globale des rendements

L’analyse globale des résultats (annexe 3.1) montre que en général ce sont les variétés RWR 221, Kibuga et RWR 222 qui ont donné des rendements statistiquement différents et supérieurs à celui du mélange local.

Les rendements par zones écologiques

C’est surtout en zone de haute altitude que les meilleures variétés (RWR 221 et Kibuga) ont donné des rendements de très loin supérieurs et statistiquement différents du mélange local (annexe 3.1); par contre, en zone de moyenne altitude la variété Kibuga était la plus productive avec un rendement de 119% du témoin, suivie de loin par les deux variétés RWR 221 et RWR 222 qui ont eu également des rendements statistiquement différents et supérieurs à celui du mélange local, tandis que dans la zone de basse altitude ce sont les variétés RWR 222 et G 04391 qui ont donné les meilleurs rendements et statistiquement différents du mélange local.

Les rendements par régions agricoles

La variété RWR 221 était de loin la meilleure dans toutes les régions agricoles de haute altitude ainsi que dans la région agricole de l’IMPALA, de la Dorsale granitique et du Mayaga. La variété Kibuga était meilleure surtout dans les régions de moyenne altitude.

Les variétés qui se sont mieux comportées et sont statistiquement différentes du mélange local dans les différentes régions agricoles sont respectivement:

- Terres de laves: RWR 221, Kibuga, RWR 222, PVA 1438, Amashongoshwa, Rubona 5, Kinyugwe et RWR 217
- Buberuka: RWR 221
- Crête Zaire-NIL: RWR 221
- Plateau central: Kibuga
- Dorsale granitique: RWR 221, Kibuga
- Plateau de l’Est (MA): Kibuga
- Impala: RWR 221, G 04391
- Bugesera: G 04391.
- Mayaga: RWR 221, RWR 222, Kibuga et G 04391.
- Plateau de l’Est (BA): RWR 222, Kibuga, RWR 229 et RWR 217

3.3.2. Réaction des variétés aux maladies

La réaction des différentes variétés de l’ECM 87-88, particulièrement en haute altitude, est montrée dans le tableau 3.19.

Les variétés RWR 221, RWR 222, et Kibuga qui sont parmi les meilleures variétés au point de vue production dans toutes les
zones écologiques sont parmi les plus attaquées par la virose commune; toutefois ces 3 variétés étaient parmi les moins attaquées par l’anthracnose et la bactériose à halo.

Les variétés Rubona 5 et RWR 229 se sont montrées très sensibles à l’anthracnose et les plus attaquées par les taches anguleuses, alors que la variété RWR 217 qui s’est montrée très peu attaquée par l’anthracnose dans les basses et moyennes altitudes, était également attaquée par l’anthracnose en haute altitude.

A part les variétés RWR 221 et Kibuga qui étaient peu attaquées par l’ascochytose, toutes les autres variétés se sont montrées sensibles à cette maladie.

Les variétés Kinyugwe et Amashongoshwa étaient les plus sensibles à la bactériose à halo.

3.3.3. Comportement de variétés dans les conditions marginales

Bien qu’elle souffre de la virose surtout dans les conditions de basse et moyenne altitude, la variété RWR 221 qui produit aussi bien dans les bonnes que dans les mauvaises conditions de culture, s’est montrée particulièrement très intéressante sur sols pauvres contrairement aux variétés Kibuga et RWR 222 qui se sont montrées très bonnes sur sols riches surtout (tableau 5).

<table>
<thead>
<tr>
<th>Variété</th>
<th>Conditions marginales de culture (&lt;1100 kg/ha)</th>
<th>Bonnes conditions de culture (&gt;1500 kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rdt/ha</td>
<td>% T</td>
</tr>
<tr>
<td>RWR 221</td>
<td>1436</td>
<td>146</td>
</tr>
<tr>
<td>Kibuga</td>
<td>1168</td>
<td>120</td>
</tr>
<tr>
<td>RWR 222</td>
<td>1082</td>
<td>111</td>
</tr>
<tr>
<td>G 04391</td>
<td>1135</td>
<td>116</td>
</tr>
<tr>
<td>M. local</td>
<td>977</td>
<td>100</td>
</tr>
</tbody>
</table>

3.4. ESSAI COMPARATIF MULTILocal 88 - 89

L’Essai comparatif multilocal 88-89 (ECM 88 - 89) a été installé pendant 4 saisons (88A, 88B, 89A et 89B) dans les régions agricoles de Bugesera (3 sites), du Mayaga (1 site), de la Savane de l’Est (1 site) et du Plateau de l’Est(B) (1 site) en zone de basse altitude; dans les régions de Plateau de
l’Est(M) (3 sites), de Plateau Central (5 sites), de la Dorsale granitique (1 site) et des Bords du Lac Kivu (1 site) en zone de moyenne altitude; ainsi que dans les régions des Terres de lave (1 site) et du Buberuka (1 site) en zone de haute altitude.

Les résultats détaillés sur les rendements de l’essai au niveau national, par zone, par région et par site ainsi que sur la réaction des variétés vis à vis des maladies sont repris dans les annexes 4.1 à 4.16.

3.4.1. Les rendements

Les rendements au niveau national et par zones écologiques

L’analyse globale et l’analyse par zones écologiques des résultats n’ont pas montré de différence statistiquement significative entre les meilleures variétés et le mélange local utilisé comme témoin; toutefois ce sont les variétés Nain de Kyondo, Kilyumukwe et PVA 774 qui ont eu les rendements les plus élevés en général et dans les trois zones écologiques considérées séparément.

Les rendements par régions agricoles

Par contre, si on considère les résultats par différentes régions agricoles séparément, on constate qu’il y a quelques variétés qui ont donné des rendements statistiquement différents et supérieurs à celui du mélange local et notamment la variété Nain de Kyondo dans les régions agricoles du Plateau de l’Est(BA) et des Terres de lave; ainsi que les variétés PVA 774 dans la région du Plateau de l’Est(BA) et Kilyumukwe dans la région des Terres de lave.

Les rendements par sites

A part le rendement le plus élevé qui a été obtenu avec la variété Nain de Kyondo qui est une variété de tendance volubile et qui avait été tuteurée au site de Mwogo, ce sont les variétés Kilyumukwe, RWR 52 qui ont donné les meilleurs rendements s’élevant à plus de 2600 kg/ha sur les sols riches du Mutara (SEMS) tandis que les plus bas rendements ont été obtenus avec les variétés G 11525 et PVA 46 sur les sols pauvres de plateau de Karama. La variété Nain de Kyondo était particulièrement très bonne à Ruhengeri avec une production de 138% du mélange local.

3.4.2. Réaction des variétés aux maladies


La variété Nain de Kyondo qui a eu les meilleurs rendements dans la région des Terres de lave et dans celle du Plateau de l’Est montrée malheureusement très sensible à la virose surtout

22
en basse et moyenne altitude, toutefois elle est moins attaquée par cette maladie en haute altitude. (annexe 4.16).

La variété Nain de Kyondo qui était très bonne Ruhengeri s’est montrée malheureusement très sensible à la virose en basse et moyenne altitude (annexe 4.16).

La variété PVA 774, qui est parmi les 3 variétés de l’Essai au point de vue production, s’est montrée, tolérante à la plupart des maladies.

La variété Kilyumukwe, qui est également l’une des meilleures variétés des 3 meilleures variétés de l’Essai, était la plus attaquée par la bactériose à halo, mais tolérante aux autres maladies.

3.5. ESSAI COMPARATIF MULTILOCAL 89 - 90

L’ECM 89 - 90 a été effectué pendant les saisons 89A, 89B, 90A et 90B dans les régions agricoles de Bugesera (3 sites), du Mayaga (1 site), de la Savane de l’Est (1 site) et du Plateau de l’Est (B) (1 site) en zone de basse altitude; dans les régions de Plateau de l’Est (M) (2 sites), de la Dorsale Granitique (1 site) et du Plateau Central (4 sites) en zone de moyenne altitude; ainsi que dans les régions des Terres de lave (1 site) et du Buberuka (1 site) en zone de haute altitude.

Les résultats détaillés sur les rendements de l’essai au niveau national, par zone, par région et par site ainsi que sur la réaction des variétés vis-à-vis des maladies sont repris dans les annexes 5.1 à 5.16.

3.5.1. Les rendements

L'analyse globale des rendements

Le tableau de l’annexe 5.1 qui reprend la synthèse globale des résultats, montre que quatre variétés 1378/4, Kerme 20, RWR 222A et RWR 222 B ont donné des rendements statistiquement différents et supérieurs à celui du mélange local; toutefois c’est la variété 1378/4 qui était de loin la variété la plus productive avec un rendement de 121% du témoin.

Les rendements par zones écologiques

En zone de moyenne altitude c’était encore une fois les trois meilleures variétés en général (1378/4, RWR 222 A et RWR 222 B) qui ont eu les meilleurs rendements. Par contre, en zone de basse altitude la variété 1378/4 était la plus productive avec un rendement de 136% du témoin, suivie des deux variétés SSBD 13 MK et Kerme 20 qui ont eu également des rendements statistiquement différents et supérieurs à celui du mélange local. Dans la zone de haute altitude aucune variété n'était statistiquement supérieure au mélange local en rendement.

23
Les rendements par régions agricoles

Pour ce qui concerne les rendements dans les différentes régions agricoles, la variété 1378/4 était la meilleure variété dans les régions du Bugesera, de la Savane de l'Est et du Plateau de l'Est (BA). Elle s'est classée parmi les trois meilleures variétés dans toutes les autres régions agricoles à part dans la région de la Dorsale granitique. Quant à la variété Kerme 20, elle s'est montrée également la meilleure dans les régions agricoles du Mayaga et du Plateau de l'Est (BA); elle s'est classée aussi parmi les trois meilleures dans les régions du Bugesera, Plateau central et de la Dorsale granitique. Quant à la variété SSBD 13 MK, elle s'est classée parmi les 3 meilleures variétés dans toutes les régions de basse altitude. En région des Terres de lave c'était la variété 1364/1 qui était de loin la meilleure et avait un rendement statistiquement différent de celui du mélange local, suivie des variétés 1364/5 et 1378/4. Les variétés qui se sont mieux comportées et sont statistiquement différentes du mélange local dans les différentes régions agricoles sont respectivement:

- Bugesera: 1378/4
- Mayaga: Kerme 20, SSBD 13 MK, 1378/4, RWR 222A ,RWR 222B
- Plateau de l'Est (MA): 1378/4
- Plateau central: RWR 222A
- Dorsale granitique: RWR 222A, RWR 222B
- Terres de lave: 1364/1

Les rendements par sites

En considérant de près les rendements obtenus sur les différents sites qui sont repris en détail dans les tableaux des annexes 5.14 à 5.17, on remarque que ce sont les variétés 1378/4 et RWR 222A qui ont eu les meilleurs rendements dans presque tous les sites et notamment sur les sols riches du Mutara et sol fertilisé à Rubona. La variété AFR 13, de tendance volubile, et les variétés 1364/1 et 1364/5 adaptées surtout aux haute altitudes avaient des problèmes d'adaptation sur les sites de basse altitudes.

3.5.2. Réaction des variétés aux maladies

Les données d'observation sur les maladies pour l'ECM 89-90 recueillies à Rwerere sont reprises dans le tableau 5.17. Ces données montrent que la variété AFR 13 est très sensible à la virose, mais résistante à l'anthracnose et à la bactériose et tolérante à toute les autres maladies.

La variété 1378/1 qui était la meilleure au point de vue production et était également tolérante à la plupart des maladies en général.
Les variétés Kerme 20, RWR 222A et RWR 222B qui sont également parmi les meilleures au point de vue production, se sont montrées également tolérantes à la plupart des maladies.

Les variétés SMK 1004 et RWR 104 se sont montrées les plus sensibles de l'Essai aux maladies fongiques.

### 3.5.3. Comportement de variétés dans les conditions marginales

Si on compare les résultats dans les mauvaises conditions de culture (<1100 kg/ha) avec les résultats dans les très bonnes conditions de culture (>1500 kg/ha), on remarque que la variété 1378/4 était plus intéressante dans les meilleures conditions de culture que dans les conditions marginales (tableau 6); que par contre les variétés Kerme 20 et RWR 222A produisaient mieux que le mélange local aussi bien dans les bonnes conditions de culture que dans des conditions marginales, tandis que la variété RWR 222 B était beaucoup plus performante que le mélange local dans les conditions marginales de culture.

**Tableau 6:** Les variétés de l'ECM 89-90 les plus performantes sur sols pauvres (<1100 kg/ha) et sur sols riches (>1500 kg/ha).

<table>
<thead>
<tr>
<th>Variété</th>
<th>Conditions marginales de sol et de climat (&lt;1100 kg/ha)</th>
<th>Bonnes conditions de culture (&gt;1500kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rdt/ha % t</td>
<td>Rdt/ha % T</td>
</tr>
<tr>
<td>1378/4</td>
<td>739 115</td>
<td>1988 130</td>
</tr>
<tr>
<td>Kerme 20</td>
<td>810 126</td>
<td>1955 128</td>
</tr>
<tr>
<td>RWR 222 B</td>
<td>806 126</td>
<td>1808 118</td>
</tr>
<tr>
<td>RWR 222 A</td>
<td>789 123</td>
<td>1892 124</td>
</tr>
<tr>
<td>SSBD 13 MK</td>
<td>496 77</td>
<td>1649 108</td>
</tr>
<tr>
<td>M. local</td>
<td>641 100</td>
<td>1529 100</td>
</tr>
</tbody>
</table>

25
Les résultats des recherches multienvironnementales sur haricots nains entreprises depuis l'année 1985, ont montré de bonnes performances pour la variété A 197 dans les zones de basse et moyenne altitude et de Kilyumukwe en moyenne altitude et ont confirmé la bonne productivité des variétés Rubona 5 et Ikinimba dans la zone de haute altitude (tableau 7). Toutefois la variété Rubona 5 a commencé à se montrer sensible à l'Anthracnose (annexe 1.16). La variété Ubusosera s'est montrée également bonne en haute altitude.

**Tableau 7:** Variétés de l'ECM 85 avec les 3 meilleurs rendements en général et dans les différentes zones écologiques.

<table>
<thead>
<tr>
<th>Variété</th>
<th>BA</th>
<th></th>
<th>MA</th>
<th></th>
<th>HA</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rdt % T</td>
<td>Rdt % T</td>
<td>Rdt % T</td>
<td>Rdt % T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rubona 5</td>
<td>1393 109</td>
<td>1308 104</td>
<td>1632 127</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A 197</td>
<td>1517 118</td>
<td>1520 120</td>
<td>1160 90</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.ISAR 85</td>
<td>1410 110</td>
<td>1408 111</td>
<td>1335 104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kilyumukwe</td>
<td>1383 108</td>
<td>1480 117</td>
<td>1209 94</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ikinimba</td>
<td>1206 94</td>
<td>1209 96</td>
<td>1533 119</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ubusosera</td>
<td>1091 86</td>
<td>983 78</td>
<td>1432 111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.local</td>
<td>1281 100</td>
<td>1263 100</td>
<td>1287 100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Les résultats de 1986 en zone de basse et moyenne altitude ont confirmé en partie les résultats de l’ECM 85 pour ce qui concerne les variétés A 197 et Kilyumukwe. Par ailleurs, les résultats de 1986 en MA et HA ont permis de déceler deux nouvelles variétés prometteuses en zone de haute altitude et spécialement dans des conditions marginales de culture: il s’agit des variétés Ntekerabasilimu et G 11060 qui ont eu des rendements de 136 et 127 % du témoin mélange ISAR en mauvaises conditions de culture (tableau 4).

Comme le montre le tableau 8 qui reprend les meilleures variétés de l’ECM 87-88 dans les différentes zones éco-climatiqques et le tableau 5 qui compare la performance de ces variétés dans les bonnes et les mauvaises conditions de culture, de nouvelles variétés très intéressantes dans des conditions particulières ont pu être identifiées.

La variété RWR 221 et Kibuga se sont montrées très bonnes en zone de haute altitude avec un rendement de 142 et 135 % du témoin respectivement.

La variété RWR 221 qui produit aussi bien dans les bonnes que dans les mauvaises conditions de culture, s’est montrée particulièrement très intéressante sur sols pauvres contrairement aux variétés Kibuga et RWR 222 qui se sont montrées très bonnes sur sols riches surtout (tableau 5).
Toutefois il faut mentionner que la variété RWR 221 souffre beaucoup de la virose commune dans les régions de basse et moyenne altitude où les conditions sont très favorables pour cette maladie.

Tableau 8: Variétés de l'ECM 87-88 avec les 3 meilleurs rendements en général et dans les différentes zones écologiques.

<table>
<thead>
<tr>
<th>Variété</th>
<th>BA</th>
<th>MA</th>
<th>HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rdt</td>
<td>% T</td>
<td>Rdt</td>
</tr>
<tr>
<td>RWR 221</td>
<td>1646</td>
<td>111</td>
<td>1855</td>
</tr>
<tr>
<td>Kibuga</td>
<td>1639</td>
<td>109</td>
<td>1970</td>
</tr>
<tr>
<td>RWR 222</td>
<td>1773</td>
<td>117</td>
<td>1824</td>
</tr>
<tr>
<td>G 04391</td>
<td>1757</td>
<td>116</td>
<td>1662</td>
</tr>
<tr>
<td>M.local</td>
<td>1515</td>
<td>100</td>
<td>1657</td>
</tr>
</tbody>
</table>

Le tableau 9 qui reprend les variétés de l'ECM 89-90 qui se sont montrées les meilleures en général et dans les différentes zones éco-climatiques, montre que la variété 1378/4 était de loin la meilleure en général et dans la zone de basse altitude alors qu'elle s'est classée également parmi les meilleures en moyenne altitude. De même, les variétés Kerme 20 et SSBD 13 MK se sont montrées très intéressantes en zone de basse altitude. La variété SSBD 13 MK s'est montrée spécifique aux basses altitudes alors que la variété 1364/1 l'était dans la zone de haute altitude et particulièrement dans la région des Terres de lave. Par ailleurs, la variété 1378/4 s'est montrée plus intéressante dans les meilleures conditions de culture que dans les conditions marginales (tableau 6); par contre les variétés Kerme 20 et RWR 222A produisent aussi bien dans les bonnes conditions de culture que dans les conditions marginales, tandis que la variété RwR 222 B était beaucoup plus performante dans les conditions marginales de culture (tableau 6).

Tableau 9: Variété de l'ECM 89-90 avec les 3 meilleurs rendements en général et dans les différentes zones écologiques.

<table>
<thead>
<tr>
<th>Variété</th>
<th>MG</th>
<th>BA</th>
<th>MA</th>
<th>HA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rdt</td>
<td>% T</td>
<td>Rdt</td>
<td>% T</td>
</tr>
<tr>
<td>1378/4</td>
<td>1643</td>
<td>121</td>
<td>1730</td>
<td>136</td>
</tr>
<tr>
<td>Kerme 20</td>
<td>1505</td>
<td>111</td>
<td>1552</td>
<td>123</td>
</tr>
<tr>
<td>RWR 222A</td>
<td>1476</td>
<td>109</td>
<td>1387</td>
<td>109</td>
</tr>
<tr>
<td>RWR 222B</td>
<td>1426</td>
<td>105</td>
<td>1368</td>
<td>108</td>
</tr>
<tr>
<td>SSBD 13 MK</td>
<td>1345</td>
<td>99</td>
<td>1566</td>
<td>123</td>
</tr>
<tr>
<td>1364/1</td>
<td>1228</td>
<td>91</td>
<td>1011</td>
<td>80</td>
</tr>
<tr>
<td>M.local</td>
<td>1354</td>
<td>100</td>
<td>1269</td>
<td>100</td>
</tr>
</tbody>
</table>

27
5. CONCLUSION

Après les essais comparatifs multilocaux des années 1985 et 1986 la variété Rubona 5 qui avait été proposée à la diffusion après les essais comparatifs multilocaux des années antérieures (1981-1982) s’est montrée susceptible à l’Anthracnose et elle a été retirée officiellement de la circulation pour être d’abord améliorée par rétrocroisement.

La variété A 197 a été diffusée surtout dans certaines régions de Byumba.

La variété Kilyumukwe a été proposée également à la diffusion suite à son bon comportement en moyenne altitude et à son grain rouge foncé et gros apprécié par la population. Elle a été particulièrement très appréciée dans les régions de moyenne altitude du Plateau de l’Est.

Suite aux résultats de l’ECM 87-88, plusieurs nouvelles variétés se sont avérées également intéressantes. Les variétés RWR 221 et Kibuga se sont avérées très performantes au niveau production et tolérance aux maladies fongiques surtout en haute altitude.

La variété RWR 221 s’est montrée très tolérante aux sols pauvres, mais susceptible à la virose commune en basse et moyenne altitude.

La variété Kibuga, malgré sa bonne performance au point de vue production (surtout sur bons sols et en moyenne altitude) et sa tolérance aux maladies, elle n’est pas très appréciée par la population à cause de sa couleur du grain noirâtre, de son port plus ou moins rampant et de son cycle végétatif un peu plus long pour haricots nains.

A la fin de l’ECM 89-90 la variété 1378/1 a été diffusée suite à sa bonne performance au point de vue production et tolérance aux maladies et à cause de son grain très semblable à celui de la variété Rubona 5 quant à la couleur et à la grosseur en vue du remplacement de ce dernier.

Grâce aux essais multilocaux menés de 1985 à 1990, les variétés suivantes ont pu être proposées à la diffusion sous les noms vernaculaires suivants:

- Kilyumukwe surtout à cause de sa grosse graine de couleur rouge foncée et de son cycle végétatif assez court;

- RWR 221 (Rwandarugali) à cause de sa productivité assez élevée et de sa haute tolérance aux sols pauvres;

- PVA 1438 (PEVEYA 8) à cause de sa grosse graine de couleur rouge tachetée de blanc;
1378/4 (Urugezi) à cause de sa bonne productivité, de la couleur de son grain et de sa potentialité de remplacement de la variété Rubona 5 qui venait d'être retirée de la diffusion suite à sa susceptibilité à l'anthracnose.

En plus de ces variétés proposées à la diffusion à grande échelle, on peut recommander les variétés suivantes spécifiquement pour les différentes altitudes:

- BA : G 04391, SSBD 13 MK, Kerme 20
- MA : Kibuga, RWR 222A
- HA : G 11060, Ntekerabasilimu, Kibuga, 1364/1

Pour ce qui concerne les mauvaises conditions de culture de sols et de climat, la variété RWR tolère le mieux les conditions de sols pauvres en général, les variétés Kerme 20, RWR 222B et RWR 222A supportent mieux les conditions marginales de culture surtout en basse et moyenne altitude, tandis que Ntekerabasilimu et G 11060 s'adaptent mieux à ces conditions en haute altitude.
6. BIBLIOGRAPHIE


DELEPIERRE, et B. PREFOC., (1973: Disponibilité et utilisation des terres au Rwanda. Note technique, ISAR.


7. ANNEXES

7.1. Tableaux des résultats de l’ECM 85

7.2. Tableaux des résultats de l’ECM 86
   A. Résultats de l’ECM 86 (BA - MA)
   B. Résultats de l’ECM 86 (MA - HA)

7.3. Tableaux des résultats de l’ECM 87

7.4. Tableaux des résultats de l’ECM 88-89

7.5. Tableaux des résultats de l’ECM 89-90

7.6. Abréviations utilisées
7.1. TABLEAUX DES RESULTATS DE L’ECM 85
Annexe 1.1.: Rendements des variétés de l'ECM 85 sur haricots nains: ANALYSE GLOBALE.

Sites: Rubona, Kibayi, Musasu, Mututu, Muyumbu, Karama (colluvion), Gashora, Buganya, Mubago, SEMS, PNAP (Ruhengeri), Rwerere, Rutare, Gakubo

Saisons: 85A, 85B

Nombre d'essais: 28

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rubona 5</td>
<td>1527</td>
<td>a</td>
<td>114</td>
</tr>
<tr>
<td>2. A 197</td>
<td>1504</td>
<td>a</td>
<td>113</td>
</tr>
<tr>
<td>3. Mélange ISAR 85 N</td>
<td>1463</td>
<td>ab</td>
<td>110</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>1436</td>
<td>abc</td>
<td>108</td>
</tr>
<tr>
<td>5. Ikinimba</td>
<td>1365</td>
<td>a-d</td>
<td>102</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1335</td>
<td>a-d</td>
<td>100</td>
</tr>
<tr>
<td>7. Umutikili</td>
<td>1266</td>
<td>bcd</td>
<td>95</td>
</tr>
<tr>
<td>8. Kirundo</td>
<td>1257</td>
<td>bcd</td>
<td>94</td>
</tr>
<tr>
<td>9. Calima</td>
<td>1253</td>
<td>bcd</td>
<td>94</td>
</tr>
<tr>
<td>10. Tostado</td>
<td>1242</td>
<td>bcd</td>
<td>93</td>
</tr>
<tr>
<td>11. Shikashike</td>
<td>1231</td>
<td>cd</td>
<td>91</td>
</tr>
<tr>
<td>12. Ubusosera</td>
<td>1214</td>
<td>cd</td>
<td>90</td>
</tr>
<tr>
<td>13. Nsizeshashonje</td>
<td>1206</td>
<td>cd</td>
<td>90</td>
</tr>
<tr>
<td>14. Inyumba</td>
<td>1201</td>
<td>e</td>
<td>90</td>
</tr>
<tr>
<td>15. Var. 1/2</td>
<td>1196</td>
<td>e</td>
<td>86</td>
</tr>
<tr>
<td>16. Bataaf</td>
<td>1145</td>
<td>e</td>
<td>86</td>
</tr>
</tbody>
</table>

Moyenne générale: 1304

CV %: 51.3

F calc.: 3.05**2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité

2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.2: Rendements des variétés de l'ECM 8 sur haricots nains en Zone de BASSE ALTITUDE.

Altitude: < 1500 m  
Sites: Karama (colluvion), Karama (plateau), Gashora, Mututu, Kibayi, Muyumbu, SEMS  
Saisons: 85B, 85B  
Nombre d'essais: 12

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. A 197</td>
<td>1517</td>
</tr>
<tr>
<td>2. Mélange ISAR 85 N</td>
<td>1410</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>1393</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>1383</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>1281</td>
</tr>
<tr>
<td>6. Umutikili</td>
<td>1229</td>
</tr>
<tr>
<td>7. Nsizebashonje</td>
<td>1214</td>
</tr>
<tr>
<td>8. Ikinimba</td>
<td>1206</td>
</tr>
<tr>
<td>9. Calima</td>
<td>1206</td>
</tr>
<tr>
<td>10. Shikashike</td>
<td>1192</td>
</tr>
<tr>
<td>11. Bataaf</td>
<td>1143</td>
</tr>
<tr>
<td>12. Var. 1/2</td>
<td>1105</td>
</tr>
<tr>
<td>13. Kirundo</td>
<td>1104</td>
</tr>
<tr>
<td>14. Tostado</td>
<td>1099</td>
</tr>
<tr>
<td>15. Ubusosera</td>
<td>1091</td>
</tr>
<tr>
<td>16. Inyumba</td>
<td>1063</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1227</td>
</tr>
<tr>
<td>CV %</td>
<td>60,5</td>
</tr>
<tr>
<td>F calc.</td>
<td>NS 1/</td>
</tr>
</tbody>
</table>

1/ NS: Non significatif
Annexe 1.3: Rendements des variétés de l' ECM 85 sur haricots nains en Zone de MOYENNE ALTITUDE.

Altitude: 1500-1800 m  
Sites : Rubona, Musasu, Gikirambwa, Buganya, Mubago  
Saisons: 85A, 85B  
Nombre d'essais: 7

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A 197</td>
<td>1520</td>
<td>a</td>
<td>120</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1480</td>
<td>ab</td>
<td>117</td>
</tr>
<tr>
<td>3. Mélange ISAR 85 N</td>
<td>1408</td>
<td>abc</td>
<td>111</td>
</tr>
<tr>
<td>4. Tostado</td>
<td>1327</td>
<td>a-d</td>
<td>105</td>
</tr>
<tr>
<td>5. Kirundo</td>
<td>1322</td>
<td>a-d</td>
<td>105</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>1308</td>
<td>a-d</td>
<td>104</td>
</tr>
<tr>
<td>7. Umutikili</td>
<td>1291</td>
<td>a-d</td>
<td>102</td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>1263</td>
<td>a-d</td>
<td>100</td>
</tr>
<tr>
<td>9. Ikinimba</td>
<td>1209</td>
<td>a-d</td>
<td>96</td>
</tr>
<tr>
<td>10. Calima</td>
<td>1139</td>
<td>bcd</td>
<td>90</td>
</tr>
<tr>
<td>11. Inyumba</td>
<td>1120</td>
<td>bcd</td>
<td>89</td>
</tr>
<tr>
<td>12. Var. 1/2</td>
<td>1087</td>
<td>cd</td>
<td>86</td>
</tr>
<tr>
<td>13. Nsizeshonje</td>
<td>1029</td>
<td>cd</td>
<td>81</td>
</tr>
<tr>
<td>14. Shikashike</td>
<td>1025</td>
<td>d</td>
<td>81</td>
</tr>
<tr>
<td>15. Bataaf</td>
<td>1000</td>
<td>d</td>
<td>79</td>
</tr>
<tr>
<td>16. Ubusosera</td>
<td>983</td>
<td>d</td>
<td>78</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1219</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>47,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>2,51 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.4: Rendements des variétés de l'ECM 85 sur haricots nains en Zone de HAUTE ALTITUDE.

Altitude : > 1800 m  
Sites: Rwerere, PNAP (Ruhengeri), Rutare, Gakubo  
Saisons: 85A, 85B  
Nombre d'essais: 7

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>1. Rubona 5</td>
<td>1632</td>
</tr>
<tr>
<td>2. Ikinimba</td>
<td>1533</td>
</tr>
<tr>
<td>3. Ubusosera</td>
<td>1432</td>
</tr>
<tr>
<td>4. Mélange ISAR N</td>
<td>1335</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>1287</td>
</tr>
<tr>
<td>6. Inyumb 5</td>
<td>1281</td>
</tr>
<tr>
<td>7. Kilyumukwe</td>
<td>1209</td>
</tr>
<tr>
<td>8. Calima</td>
<td>1184</td>
</tr>
<tr>
<td>9. A 197</td>
<td>1160</td>
</tr>
<tr>
<td>10. Nsizebashonje</td>
<td>1156</td>
</tr>
<tr>
<td>11. Tostado</td>
<td>1129</td>
</tr>
<tr>
<td>12. Bataaf</td>
<td>1070</td>
</tr>
<tr>
<td>13. Umutikili</td>
<td>1039</td>
</tr>
<tr>
<td>14. Var. 1/2</td>
<td>863</td>
</tr>
<tr>
<td>15. Kirundo</td>
<td>701</td>
</tr>
<tr>
<td>16. Shikashike</td>
<td>437</td>
</tr>
</tbody>
</table>

Moyenne générale 1153  
CV % 55,1  
F calc. 6,22 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ ** : Différences significatives au niveau de 1 % de probabilité
Annexe 1.5: Rendements des variétés de l’ECM 85 sur haricots nains dans la région de BUGESERA.

Altitude : 1300 - 1500 m
Zone: BA
Sites : Karama (colluvion), Gashora
Saisons: 85A, 85B
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
</tr>
<tr>
<td>1. 197</td>
<td>1530</td>
<td>113</td>
</tr>
<tr>
<td>2. Mélange ISAR 85 N</td>
<td>1494</td>
<td>110</td>
</tr>
<tr>
<td>3. Kilyumukwe</td>
<td>1469</td>
<td>108</td>
</tr>
<tr>
<td>4. Nsizebashonje</td>
<td>1403</td>
<td>103</td>
</tr>
<tr>
<td>5. Rubona 5</td>
<td>1376</td>
<td>101</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1359</td>
<td>100</td>
</tr>
<tr>
<td>7. Ikinimba</td>
<td>1315</td>
<td>97</td>
</tr>
<tr>
<td>8. Shikashike</td>
<td>1279</td>
<td>94</td>
</tr>
<tr>
<td>9. Bataaf</td>
<td>1228</td>
<td>90</td>
</tr>
<tr>
<td>10. Umutikili</td>
<td>1213</td>
<td>90</td>
</tr>
<tr>
<td>11. Var. 1/2</td>
<td>1214</td>
<td>89</td>
</tr>
<tr>
<td>12. Ubusosera</td>
<td>1204</td>
<td>89</td>
</tr>
<tr>
<td>13. Calima</td>
<td>1173</td>
<td>86</td>
</tr>
<tr>
<td>14. Inyumba</td>
<td>1132</td>
<td>83</td>
</tr>
<tr>
<td>15. Kirundo</td>
<td>1073</td>
<td>79</td>
</tr>
<tr>
<td>16. Tostado</td>
<td>953</td>
<td>70</td>
</tr>
</tbody>
</table>

Moyenne générale 1276
CV % 42,7
F calc. NS 1/

1/ NS: Non significatif
Annexe 1.6: Rendements des variétés de l’ECM 85 sur haricots nains dans la région du MAYAGA.

Altitude: 1350-1500 m  
Zone: BA  
Sites: Mututu, Kibayi  
Saisons: 85A, 85B  
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement kg/ha</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kilyumukwe</td>
<td>1228</td>
<td>150</td>
</tr>
<tr>
<td>2. A 197</td>
<td>1202</td>
<td>147</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>1119</td>
<td>137</td>
</tr>
<tr>
<td>4. Mélange ISAR 85 N</td>
<td>1098</td>
<td>134</td>
</tr>
<tr>
<td>5. Kirundo</td>
<td>1074</td>
<td>131</td>
</tr>
<tr>
<td>6. Tostado</td>
<td>1012</td>
<td>124</td>
</tr>
<tr>
<td>7. Nsizebashonje</td>
<td>1006</td>
<td>123</td>
</tr>
<tr>
<td>8. Inyumba</td>
<td>991</td>
<td>121</td>
</tr>
<tr>
<td>9. Shikashike</td>
<td>988</td>
<td>121</td>
</tr>
<tr>
<td>10. Var. 1/2</td>
<td>985</td>
<td>120</td>
</tr>
<tr>
<td>11. Ikinimba</td>
<td>959</td>
<td>117</td>
</tr>
<tr>
<td>12. Bataaf</td>
<td>921</td>
<td>112</td>
</tr>
<tr>
<td>13. Ubusosera</td>
<td>913</td>
<td>111</td>
</tr>
<tr>
<td>14. Calima</td>
<td>854</td>
<td>104</td>
</tr>
<tr>
<td>15. Umutikili</td>
<td>854</td>
<td>104</td>
</tr>
<tr>
<td>16. Mélange local (T)</td>
<td>819</td>
<td>100</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1001</td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>58.3</td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>NS</td>
<td></td>
</tr>
</tbody>
</table>

1/ NS : Non significatif
Annexe 1.7: Rendements des variétés de l’ECM 85 sur haricots nains dans la région de SAVANE DE L’EST.

Altitude: 1250 - 1600 m  
Zone: BA  
Sites : SEMS  
Saisons: 85A, 85B  
Nombre d’essais: 2

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. A 197</td>
<td>2855</td>
<td>a</td>
<td>103</td>
</tr>
<tr>
<td>2. Mélange local (T)</td>
<td>2774</td>
<td>ab</td>
<td>100</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>2612</td>
<td>abc</td>
<td>94</td>
</tr>
<tr>
<td>4. Umutikili</td>
<td>2545</td>
<td>a-d</td>
<td>92</td>
</tr>
<tr>
<td>5. Mélange ISAR 85 N</td>
<td>2523</td>
<td>a-d</td>
<td>91</td>
</tr>
<tr>
<td>6. Shikashike</td>
<td>2427</td>
<td>a-d</td>
<td>87</td>
</tr>
<tr>
<td>7. Ikinimba</td>
<td>2365</td>
<td>a-d</td>
<td>85</td>
</tr>
<tr>
<td>8. Ubusosera</td>
<td>2328</td>
<td>a-d</td>
<td>84</td>
</tr>
<tr>
<td>9. Calima</td>
<td>2284</td>
<td>a-d</td>
<td>82</td>
</tr>
<tr>
<td>10. Bataaf</td>
<td>2228</td>
<td>a-d</td>
<td>80</td>
</tr>
<tr>
<td>11. Tostado</td>
<td>2120</td>
<td>bcd</td>
<td>76</td>
</tr>
<tr>
<td>12. Nsizebashonje</td>
<td>2058</td>
<td>cd</td>
<td>74</td>
</tr>
<tr>
<td>13. Kilyumukwe</td>
<td>2035</td>
<td>cd</td>
<td>73</td>
</tr>
<tr>
<td>14. Kirundo</td>
<td>1899</td>
<td>d</td>
<td>68</td>
</tr>
<tr>
<td>15. Var. 1/2</td>
<td>1864</td>
<td>d</td>
<td>67</td>
</tr>
<tr>
<td>16. Inyumba</td>
<td>1848</td>
<td>d</td>
<td>67</td>
</tr>
</tbody>
</table>

| Mayenne générale               | 2299      |          |     |
| CV %                           | 26,0      |          |     |
| F calc.                        | 2,22 ** 2/|

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.8: Rendements des variétés de l’ECM 85 sur haricots nains dans la région du PLATEAU de l’EST (BA).

Altitude: 1400 - 1500 m  
Zone: BA  
Sites: Muyumbu  
Saisons: 85A, 85B  
Nombre d’essais: 2

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kilyumukwe</td>
<td>1356</td>
<td>a</td>
<td>162</td>
</tr>
<tr>
<td>2. A 197</td>
<td>1331</td>
<td>a</td>
<td>159</td>
</tr>
<tr>
<td>3. Calima</td>
<td>1239</td>
<td>a</td>
<td>148</td>
</tr>
<tr>
<td>4. Rubona 5</td>
<td>1238</td>
<td>a</td>
<td>148</td>
</tr>
<tr>
<td>5. Mélange ISAR 85 N</td>
<td>1109</td>
<td>ab</td>
<td>133</td>
</tr>
<tr>
<td>6. Umutikili</td>
<td>1086</td>
<td>abc</td>
<td>130</td>
</tr>
<tr>
<td>7. Tostado</td>
<td>851</td>
<td>bcd</td>
<td>102</td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>836</td>
<td>bcd</td>
<td>100</td>
</tr>
<tr>
<td>9. Var. 1/2</td>
<td>817</td>
<td>bcd</td>
<td>98</td>
</tr>
<tr>
<td>10. Bataaf</td>
<td>799</td>
<td>bcd</td>
<td>96</td>
</tr>
<tr>
<td>11. Nsizebashonje</td>
<td>720</td>
<td>bcd</td>
<td>86</td>
</tr>
<tr>
<td>12. Kirundo</td>
<td>686</td>
<td>cde</td>
<td>82</td>
</tr>
<tr>
<td>13. Ikinimba</td>
<td>671</td>
<td>de</td>
<td>80</td>
</tr>
<tr>
<td>14. Inyumba</td>
<td>616</td>
<td>de</td>
<td>74</td>
</tr>
<tr>
<td>15. Shikashike</td>
<td>517</td>
<td>de</td>
<td>62</td>
</tr>
<tr>
<td>16. Ubusosera</td>
<td>324</td>
<td>e</td>
<td>39</td>
</tr>
</tbody>
</table>

| Moyenne générale   | 887       | 39,6    |
| CV %               |           |         |
| F calc.            | 6,09 **    |         |

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.9: Rendements des variétés de l’ECM 85 sur haricots nains dans la région du PLATEAU DE L’EST (MA).

Altitude: 1500 - 1800 m
Zone : MA
Sites: Mubago, Buganya
Saisons: 85A, 85B
Nombre d’essais: 2

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 197</td>
<td>2019</td>
<td>a</td>
<td>207</td>
</tr>
<tr>
<td>2. M. ISAR 85 N</td>
<td>2016</td>
<td>a</td>
<td>207</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>1846</td>
<td>ab</td>
<td>184</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>1832</td>
<td>abc</td>
<td>188</td>
</tr>
<tr>
<td>5. Umutikili</td>
<td>1660</td>
<td>a-d</td>
<td>170</td>
</tr>
<tr>
<td>6. Kirundo</td>
<td>1612</td>
<td>a-d</td>
<td>165</td>
</tr>
<tr>
<td>7. Calima</td>
<td>1537</td>
<td>a-d</td>
<td>157</td>
</tr>
<tr>
<td>8. Ikinimba</td>
<td>1534</td>
<td>a-d</td>
<td>157</td>
</tr>
<tr>
<td>9. Tostado</td>
<td>1456</td>
<td>a-d</td>
<td>149</td>
</tr>
<tr>
<td>10. Var. 1/2</td>
<td>1326</td>
<td>bcd</td>
<td>136</td>
</tr>
<tr>
<td>11. Inyumba</td>
<td>1307</td>
<td>bcd</td>
<td>134</td>
</tr>
<tr>
<td>12. Nsizebashonje</td>
<td>1251</td>
<td>bcd</td>
<td>128</td>
</tr>
<tr>
<td>13. Ubusosera</td>
<td>1240</td>
<td>bcd</td>
<td>127</td>
</tr>
<tr>
<td>14. Bataaf</td>
<td>1097</td>
<td>cd</td>
<td>112</td>
</tr>
<tr>
<td>15. Shikashike</td>
<td>1072</td>
<td>cd</td>
<td>110</td>
</tr>
<tr>
<td>16. Mélange local (T)</td>
<td>976</td>
<td>d</td>
<td>100</td>
</tr>
</tbody>
</table>

Moyenne générale: 1487
CV %: 37,1
F calc.: 2,83 ** 2/ 

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.10: Rendements des variétés de l’ECM 85 sur haricots nains dans la région du PLATEAU CENTRAL.

Altitude: 1500 - 1900 m  
Zone: MA  
Sites: Rubona, Musasu, Gikirambwa,  
Saisons: 85A, 85B  
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mélange local (T)</td>
<td></td>
<td>1626</td>
<td>a</td>
<td>100</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td></td>
<td>1558</td>
<td>ab</td>
<td>96</td>
</tr>
<tr>
<td>3. A 197</td>
<td></td>
<td>1541</td>
<td>ab</td>
<td>95</td>
</tr>
<tr>
<td>4. Tostado</td>
<td></td>
<td>1538</td>
<td>abc</td>
<td>95</td>
</tr>
<tr>
<td>5. Kirundo</td>
<td></td>
<td>1402</td>
<td>abc</td>
<td>86</td>
</tr>
<tr>
<td>6. Mélange ISAR 85 N</td>
<td></td>
<td>1395</td>
<td>abc</td>
<td>86</td>
</tr>
<tr>
<td>7. Umutikili</td>
<td></td>
<td>1363</td>
<td>abc</td>
<td>84</td>
</tr>
<tr>
<td>8. Rubona 5</td>
<td></td>
<td>1306</td>
<td>abc</td>
<td>80</td>
</tr>
<tr>
<td>9. Ikinimba</td>
<td></td>
<td>1274</td>
<td>abc</td>
<td>78</td>
</tr>
<tr>
<td>10. Inyumba</td>
<td></td>
<td>1237</td>
<td>abc</td>
<td>76</td>
</tr>
<tr>
<td>11. Calima</td>
<td></td>
<td>1182</td>
<td>bc</td>
<td>73</td>
</tr>
<tr>
<td>12. Var. 1/2</td>
<td></td>
<td>1175</td>
<td>bc</td>
<td>72</td>
</tr>
<tr>
<td>13. Shikashike</td>
<td></td>
<td>1138</td>
<td>c</td>
<td>70</td>
</tr>
<tr>
<td>14. Bataaf</td>
<td></td>
<td>1133</td>
<td>c</td>
<td>70</td>
</tr>
<tr>
<td>15. Nsizebashonje</td>
<td></td>
<td>1104</td>
<td>c</td>
<td>68</td>
</tr>
<tr>
<td>16. Ubusosera</td>
<td></td>
<td>1012</td>
<td>c</td>
<td>62</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1312</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>36,2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>2,44 ** 2/</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.11: Rendements des variétés de l’ECM 85 sur haricots nains dans la région du BUBERUKA.

Altitude: 1900 - 2300 m
Zone: HA
Sites: Rwerere, Rutare, Gakubo
Saisons: 85A, 85B
Nombre d’essais: 5

<table>
<thead>
<tr>
<th>Variétés</th>
<th>kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ikinimba</td>
<td>1464</td>
<td>a</td>
<td>131</td>
</tr>
<tr>
<td>2. Rubona 5</td>
<td>1457</td>
<td>a</td>
<td>131</td>
</tr>
<tr>
<td>3. Shikashike 2/</td>
<td>1370</td>
<td>ab</td>
<td>123</td>
</tr>
<tr>
<td>4. Kirundo 2/</td>
<td>1344</td>
<td>abc</td>
<td>121</td>
</tr>
<tr>
<td>5. Ubusosera</td>
<td>1291</td>
<td>abc</td>
<td>116</td>
</tr>
<tr>
<td>6. Inyumba</td>
<td>1242</td>
<td>abc</td>
<td>111</td>
</tr>
<tr>
<td>7. Mélange ISAR 85 N</td>
<td>1164</td>
<td>abc</td>
<td>104</td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>1114</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>9. Nsizeshonje</td>
<td>1108</td>
<td>abc</td>
<td>99</td>
</tr>
<tr>
<td>10. Tostado</td>
<td>1085</td>
<td>abc</td>
<td>97</td>
</tr>
<tr>
<td>11. Calima</td>
<td>1072</td>
<td>abc</td>
<td>96</td>
</tr>
<tr>
<td>12. A 197</td>
<td>977</td>
<td>bc</td>
<td>88</td>
</tr>
<tr>
<td>13. Kilyumukwe</td>
<td>945</td>
<td>bc</td>
<td>85</td>
</tr>
<tr>
<td>14. Bataaf</td>
<td>915</td>
<td>bc</td>
<td>82</td>
</tr>
<tr>
<td>15. Var. 1/2 2/</td>
<td>889</td>
<td>bc</td>
<td>80</td>
</tr>
<tr>
<td>16. Umutikili</td>
<td>876</td>
<td>c</td>
<td>79</td>
</tr>
</tbody>
</table>

Moyenne générale: 1134
CV %: 48,8
F calc.: 2,21 ** 3/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ Un seul essai pour la variété Shikashike et 3 essais pour Kirundo et Var. 1/2
3/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.12: Rendements des variétés de l'ECM 85 sur haricots nains dans la région des TERRES DE LA VE.

Altitude: 1600 - 2500 M  
Zone: HA  
Sites : PNAP (Ruhengeri)  
Saisons: 85A, 85B  
Nombre d'essais: 2  

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Rubona 5</td>
<td>2070</td>
<td>a</td>
<td>120</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1869</td>
<td>ab</td>
<td>109</td>
</tr>
<tr>
<td>3. Ubusosera</td>
<td>1785</td>
<td>abc</td>
<td>104</td>
</tr>
<tr>
<td>4. Mélange ISAR 85 N</td>
<td>1760</td>
<td>abc</td>
<td>102</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>1719</td>
<td>a-d</td>
<td>100</td>
</tr>
<tr>
<td>6. Ikinimba</td>
<td>1704</td>
<td>a-e</td>
<td>99</td>
</tr>
<tr>
<td>7. Var. 1/2</td>
<td>1676</td>
<td>a-e</td>
<td>97</td>
</tr>
<tr>
<td>8. Shikashike</td>
<td>1618</td>
<td>a-e</td>
<td>94</td>
</tr>
<tr>
<td>9. A 197</td>
<td>1463</td>
<td>b-e</td>
<td>85</td>
</tr>
<tr>
<td>10. Calima</td>
<td>1455</td>
<td>b-e</td>
<td>86</td>
</tr>
<tr>
<td>11. Bataaf</td>
<td>1446</td>
<td>b-e</td>
<td>84</td>
</tr>
<tr>
<td>12. Umutikili</td>
<td>1376</td>
<td>cde</td>
<td>80</td>
</tr>
<tr>
<td>13. Inyumba</td>
<td>1277</td>
<td>de</td>
<td>74</td>
</tr>
<tr>
<td>14. Nsizebashonje</td>
<td>1239</td>
<td>ef</td>
<td>72</td>
</tr>
<tr>
<td>15. Tostado</td>
<td>844</td>
<td>f</td>
<td>49</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1580</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>23,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>3,40 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 1.13: Rendements (kg/ha) des variétés de l’ECM 85 par SITES en BASSÉE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Karama c.(2)</td>
<td>Karama p.(2)</td>
<td>Gashora(2)</td>
<td>Muyumbu(2)</td>
</tr>
<tr>
<td>1. Tostado</td>
<td>2116</td>
<td>334</td>
<td>225 d 2/</td>
<td>851 bcd</td>
</tr>
<tr>
<td>2. A 197</td>
<td>1906</td>
<td>428</td>
<td>775 a</td>
<td>1331 a</td>
</tr>
<tr>
<td>3. M. ISAR 85N</td>
<td>1886</td>
<td>756</td>
<td>710 a</td>
<td>1109 ab</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>1860</td>
<td>521</td>
<td>732 a</td>
<td>1356 a</td>
</tr>
<tr>
<td>5. Nsizebashonje</td>
<td>1837</td>
<td>619</td>
<td>487 a-d</td>
<td>799 bcd</td>
</tr>
<tr>
<td>6. M. local (T)</td>
<td>1790</td>
<td>797</td>
<td>497 a-d</td>
<td>836 bcd</td>
</tr>
<tr>
<td>7. Rubona 5</td>
<td>1757</td>
<td>409</td>
<td>612 ab</td>
<td>1238 a</td>
</tr>
<tr>
<td>8. Ikinimba</td>
<td>1721</td>
<td>469</td>
<td>502 a-d</td>
<td>671 de</td>
</tr>
<tr>
<td>9. Bataaf</td>
<td>1629</td>
<td>453</td>
<td>395 bcd</td>
<td>720 bcd</td>
</tr>
<tr>
<td>10. Var. 1/2</td>
<td>1552</td>
<td>322</td>
<td>385 bcd</td>
<td>817 bcd</td>
</tr>
<tr>
<td>11. Shikashike</td>
<td>1551</td>
<td>619</td>
<td>732 a</td>
<td>517 de</td>
</tr>
<tr>
<td>12. Inyumba</td>
<td>1511</td>
<td>622</td>
<td>292 cd</td>
<td>616 de</td>
</tr>
<tr>
<td>13. Ubusosera</td>
<td>1509</td>
<td>521</td>
<td>590 abc</td>
<td>324 e</td>
</tr>
<tr>
<td>14. Umutikili</td>
<td>1499</td>
<td>415</td>
<td>635 ab</td>
<td>1086 abc</td>
</tr>
<tr>
<td>15. Calima</td>
<td>1499</td>
<td>490</td>
<td>522 a-d</td>
<td>1239 a</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1740</td>
<td>520</td>
<td>523</td>
<td>887</td>
</tr>
<tr>
<td>CV %</td>
<td>60,6</td>
<td>39,6</td>
<td>39,6</td>
<td></td>
</tr>
<tr>
<td>F calc.3/</td>
<td>NS</td>
<td>NS</td>
<td>3,60**</td>
<td>6,09**</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SITES</th>
<th>Mututu (2)</th>
<th>Kibayi (2)</th>
<th>SEMS (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Tostado</td>
<td>873 a</td>
<td>1150 abc</td>
<td>2120 bcd</td>
</tr>
<tr>
<td>2. A 197</td>
<td>1246 ab</td>
<td>1157 abc</td>
<td>2855 a</td>
</tr>
<tr>
<td>3. M. ISAR 85N</td>
<td>1224 abc</td>
<td>971 abc</td>
<td>2533 a-d</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>1293 a</td>
<td>1164 abc</td>
<td>2035 cd</td>
</tr>
<tr>
<td>5. Nsisebashonje</td>
<td>1129 a-d</td>
<td>882 bc</td>
<td>2058 cd</td>
</tr>
<tr>
<td>6. M. local (T)</td>
<td>706 fg</td>
<td>931 abc</td>
<td>2774 ab</td>
</tr>
<tr>
<td>7. Rubona 5</td>
<td>1010 a-f</td>
<td>1228 ab</td>
<td>2512 abc</td>
</tr>
<tr>
<td>8. Ikinimba</td>
<td>974 b-f</td>
<td>944 abc</td>
<td>2365 a-d</td>
</tr>
<tr>
<td>9. Bataaf</td>
<td>918 def</td>
<td>924 abc</td>
<td>2228 a-d</td>
</tr>
<tr>
<td>10. Var. 1/2</td>
<td>1018 a-e</td>
<td>951 abc</td>
<td>1864 d</td>
</tr>
<tr>
<td>11. Shikashike</td>
<td>1007 a-f</td>
<td>970 abc</td>
<td>2427 a-d</td>
</tr>
<tr>
<td>12. Inyumba</td>
<td>794 efg</td>
<td>1187 ab</td>
<td>1848 d</td>
</tr>
<tr>
<td>13. Ubusosera</td>
<td>563 g</td>
<td>1264 ab</td>
<td>2328 a-d</td>
</tr>
<tr>
<td>14. Umutikili</td>
<td>937 c-f</td>
<td>770 cd</td>
<td>2545 a-d</td>
</tr>
<tr>
<td>15. Calima</td>
<td>1263 ab</td>
<td>446 d</td>
<td>2284 a-d</td>
</tr>
<tr>
<td>16. Kirundo</td>
<td>845 d-f</td>
<td>1302 a</td>
<td>1899 d</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>988</td>
<td>1015</td>
<td>2298</td>
</tr>
<tr>
<td>CV %</td>
<td>26,7</td>
<td>34,0</td>
<td>26,0</td>
</tr>
<tr>
<td>F calc. 3/</td>
<td>4,97**</td>
<td>3,17**</td>
<td>2,22**</td>
</tr>
</tbody>
</table>

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité; NS: Non significatif
Annexe 1.14: Rendements (kg/ha) des variétés de l'ECM 85 par SITES en MOYENNE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rubona 1 (2)</th>
<th>Rubona 2 (1)</th>
<th>Musasu (1)</th>
<th>Gikirambo (1)</th>
<th>Mubago (1)</th>
<th>Buganya (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. M. Local (T)</td>
<td>1512 a 2/</td>
<td>1952 a</td>
<td>1525</td>
<td>362 a-d</td>
<td>1042</td>
<td>910 d</td>
</tr>
<tr>
<td>2. Rubona 5</td>
<td>1104 a-d</td>
<td>1645 abc</td>
<td>1375</td>
<td>240 bcd</td>
<td>1602</td>
<td>1707 a-d</td>
</tr>
<tr>
<td>3. A 197</td>
<td>1399 abc</td>
<td>1862 ab</td>
<td>1502</td>
<td>442 ab</td>
<td>1480</td>
<td>2557 ab</td>
</tr>
<tr>
<td>4. M.ISAR 85N</td>
<td>1280 a-d</td>
<td>1647 abc</td>
<td>1372</td>
<td>240 bcd</td>
<td>1582</td>
<td>2450 ab</td>
</tr>
<tr>
<td>5. Kilyumukwe</td>
<td>1462 abc</td>
<td>1900 a</td>
<td>1407</td>
<td>465 ab</td>
<td>1045</td>
<td>2620 a</td>
</tr>
<tr>
<td>6. Ikinnamba</td>
<td>1101 a-d</td>
<td>1502 a-d</td>
<td>1412</td>
<td>295 a-d</td>
<td>1517</td>
<td>1550 bcd</td>
</tr>
<tr>
<td>7. Umutikili</td>
<td>986 cd</td>
<td>1917 a</td>
<td>1562</td>
<td>265 a-d</td>
<td>1135</td>
<td>2185 abc</td>
</tr>
<tr>
<td>8. Kirundo</td>
<td>1485 ab</td>
<td>1242 cd</td>
<td>1397</td>
<td>420 abc</td>
<td>1517</td>
<td>1635 a-d</td>
</tr>
<tr>
<td>9. Calima</td>
<td>1026 bcd</td>
<td>1310 bcd</td>
<td>1365</td>
<td>170 d</td>
<td>985</td>
<td>2090 abc</td>
</tr>
<tr>
<td>10. Tostado</td>
<td>1387 abc</td>
<td>1997 a</td>
<td>1380</td>
<td>225 cd</td>
<td>1237</td>
<td>1675 a-d</td>
</tr>
<tr>
<td>11. Shikashike</td>
<td>949 cd</td>
<td>1607 abc</td>
<td>1047</td>
<td>475 a</td>
<td>1205</td>
<td>940 cd</td>
</tr>
<tr>
<td>12. Ubusosea</td>
<td>840 d</td>
<td>1530 abc</td>
<td>840</td>
<td>350 a-d</td>
<td>1195</td>
<td>1285 cd</td>
</tr>
<tr>
<td>13. Nezbebashonje</td>
<td>965 cd</td>
<td>1532 abc</td>
<td>952</td>
<td>282 a-d</td>
<td>932</td>
<td>1570 a-d</td>
</tr>
<tr>
<td>14. Inyumba</td>
<td>1127 a-d</td>
<td>1500 a-d</td>
<td>1195</td>
<td>275 a-d</td>
<td>980</td>
<td>1635 a-d</td>
</tr>
<tr>
<td>15. Var. 1/2</td>
<td>1065 a-d</td>
<td>1300 cd</td>
<td>1270</td>
<td>255 a-d</td>
<td>1062</td>
<td>1590 a-d</td>
</tr>
<tr>
<td>16. Bataaf</td>
<td>1114 a-d</td>
<td>965 d</td>
<td>1340</td>
<td>275 a-d</td>
<td>1010</td>
<td>1185 cd</td>
</tr>
</tbody>
</table>

Moyenne gén. 1174 1588 1309 316 1221 1752
CV % 33,9 21,1 28,8 42,0 31,7 35,8
F calc.3/ 2,33** 3,03** NS 2,0* NS 2,93**

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ *,**: Essai significatif à 5% et 1% de probabilité; NS: Non significatif
## Annexe 1.15: Rendements (kg/ha) des variétés de l'ECM 85 par SITES en HAUTE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rwerere (2)</th>
<th>Gakubo (1)</th>
<th>Rutare (1)</th>
<th>PNAP(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rubona 5</td>
<td>1967 a 2/</td>
<td>1275 a</td>
<td>800 cde</td>
<td>2070 a</td>
</tr>
<tr>
<td>2. Ikinimba</td>
<td>1871 ab</td>
<td>965 ab</td>
<td>1650 a</td>
<td>1704 a-e</td>
</tr>
<tr>
<td>3. Ubussosera</td>
<td>1712 abc</td>
<td>1075 ab</td>
<td>1137 a-d</td>
<td>844 f</td>
</tr>
<tr>
<td>4. M.ISAR 85N</td>
<td>1706 abc</td>
<td>800 bc</td>
<td>1262 abc</td>
<td>1376 cde</td>
</tr>
<tr>
<td>5. M.local</td>
<td>1637 abc</td>
<td>497 cd</td>
<td>1300 abc</td>
<td>1719 a-d</td>
</tr>
<tr>
<td>6. Inyumba</td>
<td>1583 a-d</td>
<td>800 bc</td>
<td>1210 abc</td>
<td>1785 abc</td>
</tr>
<tr>
<td>7. Kilyumukwe</td>
<td>1479 a-d</td>
<td>325 d</td>
<td>1125 bcd</td>
<td>1760 abc</td>
</tr>
<tr>
<td>8. Calima</td>
<td>1474 a-d</td>
<td>750 bcd</td>
<td>1212 abc</td>
<td>1869 ab</td>
</tr>
<tr>
<td>9. A 197</td>
<td>1324 b-e</td>
<td>775 bc</td>
<td>1085 b-e</td>
<td>1463 b-e</td>
</tr>
<tr>
<td>10. Nsizebashonje</td>
<td>1226 cde</td>
<td>975 ab</td>
<td>1210 abc</td>
<td>1455 b-e</td>
</tr>
<tr>
<td>11. Tostado</td>
<td>-</td>
<td>1380 a</td>
<td>1010 b-e</td>
<td>1277 de</td>
</tr>
<tr>
<td>12. Bataaf</td>
<td>1189 cde</td>
<td>400 cd</td>
<td>1325 ab</td>
<td>1446 b-e</td>
</tr>
<tr>
<td>13. Umutikili</td>
<td>1128 cde</td>
<td>500 cd</td>
<td>1125 bcd</td>
<td>1618 a-e</td>
</tr>
<tr>
<td>14. Var. 1/2</td>
<td>1125 cde</td>
<td>0</td>
<td>675 de</td>
<td>1676 a-e</td>
</tr>
<tr>
<td>15. Kirundo</td>
<td>997 de</td>
<td>0</td>
<td>610 e</td>
<td>1239 ef</td>
</tr>
<tr>
<td>16. Shikashike</td>
<td>828 e</td>
<td>0</td>
<td>1370 ab</td>
<td>1644 a-e</td>
</tr>
</tbody>
</table>

| Moyenne générale          | 1416        | 809        | 1132       | 1579    |
| CV %                      | 36,1        | 48,4       | 27,3       | 23,8    |
| F calc.3/                 | 3,38**      | 5,48**     | 2,88**     | 3,40**  |

1/ Chiffres entre parenthèses ombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Différences significatives à 1% de probabilité
Annexe 1.16: Réaction des différentes variétés en essai ECM 1985 aux maladies en MOYENNE ALTITUDE.

Site:  
- Nom: RUBONA  
- Altitude: 1650 M  
- Saisons: 85A, 85B  
- Région: PLATEAU CENTRAL  
- Zone: MOYENNE ALTITUDE

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Réaction aux maladies (1-9)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anthracose **</td>
</tr>
<tr>
<td>1. Rubona 5</td>
<td>2,00</td>
</tr>
<tr>
<td>2. A 197</td>
<td>1,00</td>
</tr>
<tr>
<td>3. Mélange ISAR 85</td>
<td>1,60</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>1,60</td>
</tr>
<tr>
<td>5. Ikinimba</td>
<td>1,00</td>
</tr>
<tr>
<td>6. Mélange local</td>
<td>1,60</td>
</tr>
<tr>
<td>7. Umustikili</td>
<td>1,70</td>
</tr>
<tr>
<td>8. Kirodo</td>
<td>2,00</td>
</tr>
<tr>
<td>9. Calina</td>
<td>2,50</td>
</tr>
<tr>
<td>10. Tostado</td>
<td>2,00</td>
</tr>
<tr>
<td>11. Shikashike</td>
<td></td>
</tr>
<tr>
<td>12. Ubusosera 6</td>
<td>1,50</td>
</tr>
<tr>
<td>13. Nsisebashonje</td>
<td>1,50</td>
</tr>
<tr>
<td>14. Inyumba</td>
<td>1,80</td>
</tr>
<tr>
<td>15. Var. 1/2</td>
<td>1,60</td>
</tr>
<tr>
<td>16. Batasf</td>
<td>2,00</td>
</tr>
</tbody>
</table>

* Cotation: 1 à 9 (1=résistant; 9=tres sensible)
** Anthracnose cotée en saison 85B seulement
7.2. TABLEAUX DES RESULTATS DE L’ECM 86
7.2.a. TABLEAUX DES RESULTATS DE L’ECM 86 (BA - MA)
Annexe 2.a.1: Rendements des variétés de l'ECM 1986 (BA-MA) sur haricots nains: ANALYSE GLOBALE.

Sites: Rubona, Mubago, Runyinya, SEMS, Kadehero, Muyumbu, Mututu, Karama (colluvion), Karama (transition), Gashora, Gahororo, Mugusa, Rubungo, Kibayi, Gihisi

Saisons: 86A, 86B

Nombre d'essais: 22

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A 197</td>
<td>1450</td>
<td>a</td>
<td>109</td>
<td></td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1441</td>
<td>a</td>
<td>108</td>
<td></td>
</tr>
<tr>
<td>3. G 13671</td>
<td>1418</td>
<td>a</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>4. G 2816</td>
<td>1414</td>
<td>a</td>
<td>106</td>
<td></td>
</tr>
<tr>
<td>5. Rubona 5</td>
<td>1375</td>
<td>a</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>6. Mélange ISAR 86 (T)</td>
<td>1335</td>
<td>a</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7. BAC 76</td>
<td>1327</td>
<td>a</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>8. G 12470</td>
<td>1283</td>
<td>a</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>9. A 484</td>
<td>1268</td>
<td>ab</td>
<td>95</td>
<td></td>
</tr>
<tr>
<td>10. PVA 1272</td>
<td>1249</td>
<td>ab</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td>11. PVA 555</td>
<td>1246</td>
<td>ab</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>12. Bayitungirubwiza</td>
<td>1230</td>
<td>ab</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>13. Ikinimba</td>
<td>1216</td>
<td>ab</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>14. A 490</td>
<td>1212</td>
<td>ab</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>15. PVA 563</td>
<td>1211</td>
<td>ab</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>16. A 483</td>
<td>1060</td>
<td>b</td>
<td>79</td>
<td></td>
</tr>
</tbody>
</table>

Moyenne générale 1296
CV % 52,8
F calc. 2,11 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité

2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.a.2: Rendements des variétés de l’ECM 1986 (DA-KA) sur haricots nains en Zone de BASSE ALTITUDE.

Altitude: < 1500 m  
Sites: SEMS, Kadehero, Muyumbu, Mututu, Karama (colluvion), Karama (transition), Gashora, Mugusa, Kibayi  
Saisons: 86A, 86B  
Nombre d’essais: 15

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. G 13671</td>
<td>1422</td>
</tr>
<tr>
<td>2. G 2816</td>
<td>1403</td>
</tr>
<tr>
<td>3. A 197</td>
<td>1375</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>1357</td>
</tr>
<tr>
<td>5. Mélange ISAR 86 (T)</td>
<td>1277</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>1252</td>
</tr>
<tr>
<td>7. BAC 76</td>
<td>1225</td>
</tr>
<tr>
<td>8. A 484</td>
<td>1204</td>
</tr>
<tr>
<td>9. Ikinimba</td>
<td>1151</td>
</tr>
<tr>
<td>10. G 12470</td>
<td>1128</td>
</tr>
<tr>
<td>11. A 490</td>
<td>1112</td>
</tr>
<tr>
<td>12. PVA 1272</td>
<td>1097</td>
</tr>
<tr>
<td>13. PVA 555</td>
<td>1096</td>
</tr>
<tr>
<td>14. Bayitungirubwiza</td>
<td>1082</td>
</tr>
<tr>
<td>15. PVA 563</td>
<td>1042</td>
</tr>
<tr>
<td>16. A 483</td>
<td>951</td>
</tr>
</tbody>
</table>

Moyenne générale: 1198  
CV %: 45,5  
F calc.: 3,93 ** 2/

1) Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité.  
2) ** Différences significatives au niveau de 1 % de probabilité.
Annexe 2.a.3: Rendements des variétés de l’ECM 1986 (BA-MA) sur haricots nains en Zone de MOYENNE ALTITUDE.

Altitude: < 1500 - 1800 m
Sites: Rubona, Mubago, Runyinya, Gahororo, Rubungo, Gihisi
Saisons: 86A, 86B
Nombre d’essais: 7

| Variétés                    | Rendement
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. Rubona 5</td>
<td>1637</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1621</td>
</tr>
<tr>
<td>3. G 12470</td>
<td>1616</td>
</tr>
<tr>
<td>4. A 197</td>
<td>1609</td>
</tr>
<tr>
<td>5. PVA 1272</td>
<td>1576</td>
</tr>
<tr>
<td>6. PVA 563</td>
<td>1573</td>
</tr>
<tr>
<td>7. PVA 555</td>
<td>1568</td>
</tr>
<tr>
<td>8. Bayitungirubwiza</td>
<td>1546</td>
</tr>
<tr>
<td>9. BAC 76</td>
<td>1545</td>
</tr>
<tr>
<td>10. Mélange ISAR 86 (T)</td>
<td>1461</td>
</tr>
<tr>
<td>11. G 2816</td>
<td>1436</td>
</tr>
<tr>
<td>12. A 490</td>
<td>1426</td>
</tr>
<tr>
<td>13. G 13671</td>
<td>1411</td>
</tr>
<tr>
<td>14. A 484</td>
<td>1404</td>
</tr>
<tr>
<td>15. Ikinimba</td>
<td>1355</td>
</tr>
<tr>
<td>16. A 483</td>
<td>1292</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1505</td>
</tr>
<tr>
<td>CV %</td>
<td>55,4</td>
</tr>
<tr>
<td>F calc.</td>
<td>NS 1/</td>
</tr>
</tbody>
</table>

1/ NS : Non significatif
Annexe 2.a.4: Rendements des variétés de l'ECM 1986 (BA-MA) sur haricots nains dans la région de la DORSALE GRANITIQUE.

Altitude : 1500 - 1700 m  
Zone: MA  
Sites: Gihisi  
Saisons: 86B  
Nombre d'essais: 1

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. G 12470</td>
<td>1451</td>
</tr>
<tr>
<td>2. PVA 555</td>
<td>1287</td>
</tr>
<tr>
<td>3. Bayitungirubwiza</td>
<td>1194</td>
</tr>
<tr>
<td>4. Mélange ISAR 86 (T)</td>
<td>1193</td>
</tr>
<tr>
<td>5. Rubona 5</td>
<td>1112</td>
</tr>
<tr>
<td>6. Ikinimba</td>
<td>1097</td>
</tr>
<tr>
<td>7. PVA 1272</td>
<td>1096</td>
</tr>
<tr>
<td>8. BAC 76</td>
<td>1074</td>
</tr>
<tr>
<td>9. A 197</td>
<td>1071</td>
</tr>
<tr>
<td>10. A 484</td>
<td>1068</td>
</tr>
<tr>
<td>11. A 490</td>
<td>1054</td>
</tr>
<tr>
<td>12. PVA 563</td>
<td>1048</td>
</tr>
<tr>
<td>13. G 2816</td>
<td>1042</td>
</tr>
<tr>
<td>14. G 13671</td>
<td>964</td>
</tr>
<tr>
<td>15. Kilyumukwe</td>
<td>913</td>
</tr>
<tr>
<td>16. A 483</td>
<td>880</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1096</td>
</tr>
<tr>
<td>CV %</td>
<td>22,3</td>
</tr>
<tr>
<td>F calc.</td>
<td>NS 1/</td>
</tr>
</tbody>
</table>

1/ NS: Essai non significatif
Annexe 2.a.5: Rendements des variétés de l'ECM 1986 (BA-MA) sur haricots nains dans la région du PLATEAU CENTRAL.

Altitude: 1500 - 1990 m
Zone: MA
Sites: Rubona, Runyinya
Saisons: 86A, 86B
Nombre d'essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ikinimba</td>
<td>1373</td>
<td>a</td>
<td>156</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1356</td>
<td>a</td>
<td>154</td>
</tr>
<tr>
<td>3. A 197</td>
<td>1345</td>
<td>a</td>
<td>153</td>
</tr>
<tr>
<td>4. Rubona 5</td>
<td>1340</td>
<td>a</td>
<td>152</td>
</tr>
<tr>
<td>5. PVA 563</td>
<td>1233</td>
<td>ab</td>
<td>140</td>
</tr>
<tr>
<td>6. G 12470</td>
<td>1228</td>
<td>ab</td>
<td>139</td>
</tr>
<tr>
<td>7. Bayitungrubwiza</td>
<td>1197</td>
<td>ab</td>
<td>136</td>
</tr>
<tr>
<td>8. PVA 1272</td>
<td>1134</td>
<td>abc</td>
<td>129</td>
</tr>
<tr>
<td>9. PVA 555</td>
<td>1093</td>
<td>abc</td>
<td>124</td>
</tr>
<tr>
<td>10. G 13671</td>
<td>1079</td>
<td>abc</td>
<td>122</td>
</tr>
<tr>
<td>11. A 484</td>
<td>1034</td>
<td>abc</td>
<td>117</td>
</tr>
<tr>
<td>12. A 490</td>
<td>1034</td>
<td>abc</td>
<td>117</td>
</tr>
<tr>
<td>13. BAC 76</td>
<td>977</td>
<td>bc</td>
<td>111</td>
</tr>
<tr>
<td>14. Mélange ISAR 86 (T)</td>
<td>881</td>
<td>bc</td>
<td>100</td>
</tr>
<tr>
<td>15. A 483</td>
<td>835</td>
<td>c</td>
<td>95</td>
</tr>
<tr>
<td>16. G 2816</td>
<td>803</td>
<td>c</td>
<td>91</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>33,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>3,06 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité

Altitude: 1500 - 1800 m
Zone: MA
Sites: Rubungo, Gahororo, Mubago
Saisons: 86A, 86B
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variété</th>
<th>Rendement</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BAC 76</td>
<td>2270</td>
<td>107</td>
</tr>
<tr>
<td>2. G 2816</td>
<td>2201</td>
<td>103</td>
</tr>
<tr>
<td>3. PVA 1272</td>
<td>2179</td>
<td>102</td>
</tr>
<tr>
<td>4. PVA 555</td>
<td>2137</td>
<td>100</td>
</tr>
<tr>
<td>5. Mélange ISAR 86 (T)</td>
<td>2131</td>
<td>100</td>
</tr>
<tr>
<td>6. Kilyumukwe</td>
<td>2121</td>
<td>100</td>
</tr>
<tr>
<td>7. Rubona 5</td>
<td>2108</td>
<td>99</td>
</tr>
<tr>
<td>8. PVA 563</td>
<td>2089</td>
<td>98</td>
</tr>
<tr>
<td>9. G 12470</td>
<td>2059</td>
<td>97</td>
</tr>
<tr>
<td>10. A 197</td>
<td>2053</td>
<td>96</td>
</tr>
<tr>
<td>11. Bayitungirubwiza</td>
<td>2013</td>
<td>94</td>
</tr>
<tr>
<td>12. A 490</td>
<td>1943</td>
<td>91</td>
</tr>
<tr>
<td>13. G 13671</td>
<td>1891</td>
<td>89</td>
</tr>
<tr>
<td>14. A 483</td>
<td>1887</td>
<td>89</td>
</tr>
<tr>
<td>15. A 484</td>
<td>1886</td>
<td>89</td>
</tr>
<tr>
<td>16. Ikinimba</td>
<td>1424</td>
<td>67</td>
</tr>
</tbody>
</table>

Moyenne générale                  | 2025      |     |
CV %                              | 30,5      |     |
F calc.                           | NS 1/     |     |

1/ NS: Non significatif
Annexe 2.a.7: Rendements des variétés de l'ECK 1986 (BA-MA) sur haricots nains dans la région du PLATEAU de L'EST (BA).

Altitude: 1400 - 1500 m  
Zone: BA  
Sites: Muyumbu, Kadehero  
Saisons: 86 A, 86 B  
Nombre d'essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. A 197</td>
<td>1638</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1478</td>
</tr>
<tr>
<td>3. G 12470</td>
<td>1475</td>
</tr>
<tr>
<td>4. BAC 76</td>
<td>1424</td>
</tr>
<tr>
<td>5. G 2816</td>
<td>1289</td>
</tr>
<tr>
<td>6. G 13671</td>
<td>1287</td>
</tr>
<tr>
<td>7. Rubona 5</td>
<td>1248</td>
</tr>
<tr>
<td>8. Bayitungirubwiza</td>
<td>1236</td>
</tr>
<tr>
<td>9. PVA 555</td>
<td>1231</td>
</tr>
<tr>
<td>10. A 490</td>
<td>1192</td>
</tr>
<tr>
<td>11. Mélange ISAR 68 (T)</td>
<td>1179</td>
</tr>
<tr>
<td>12. PVA 1272</td>
<td>1161</td>
</tr>
<tr>
<td>13. PVA 563</td>
<td>1086</td>
</tr>
<tr>
<td>14. A 484</td>
<td>1073</td>
</tr>
<tr>
<td>15. A 483</td>
<td>985</td>
</tr>
<tr>
<td>16. Ikinimba</td>
<td>925</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1244</td>
</tr>
<tr>
<td>CV %</td>
<td>47,0</td>
</tr>
<tr>
<td>F calc.</td>
<td>NS 1/</td>
</tr>
</tbody>
</table>

1/ NS: Non significatif
Annexe 2.a.8: Rendements des variétés de l’ECM 1986 (BA-MA) sur haricots nains dans la région du MAYAGA.

Altitude: 1350 - 1500 m  
Zone: BA  
Sites: Mututu, Mugusa, Kibayi  
Saisons: 86A, 86B  
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. G 13671</td>
<td>1640</td>
<td>a</td>
<td>125</td>
</tr>
<tr>
<td>2. G 2816</td>
<td>1468</td>
<td>ab</td>
<td>112</td>
</tr>
<tr>
<td>3. Kilyumukwe</td>
<td>1432</td>
<td>abc</td>
<td>109</td>
</tr>
<tr>
<td>4. Mélange ISAR 86 (T)</td>
<td>1308</td>
<td>bcd</td>
<td>100</td>
</tr>
<tr>
<td>5. A 197</td>
<td>1300</td>
<td>bcd</td>
<td>99</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>1287</td>
<td>bcd</td>
<td>98</td>
</tr>
<tr>
<td>7. BAC 76</td>
<td>1227</td>
<td>bcd</td>
<td>94</td>
</tr>
<tr>
<td>8. PVA 1272</td>
<td>1221</td>
<td>bcd</td>
<td>93</td>
</tr>
<tr>
<td>9. PVA 563</td>
<td>1137</td>
<td>bcd</td>
<td>87</td>
</tr>
<tr>
<td>10. G 12470</td>
<td>1133</td>
<td>bcd</td>
<td>87</td>
</tr>
<tr>
<td>11. PVA 555</td>
<td>1116</td>
<td>bcd</td>
<td>85</td>
</tr>
<tr>
<td>12. Bayitungirubwiza</td>
<td>1108</td>
<td>cd</td>
<td>85</td>
</tr>
<tr>
<td>13. A 484</td>
<td>1066</td>
<td>d</td>
<td>85</td>
</tr>
<tr>
<td>14. Ikinimba</td>
<td>1007</td>
<td>d</td>
<td>77</td>
</tr>
<tr>
<td>15. A 490</td>
<td>983</td>
<td>d</td>
<td>75</td>
</tr>
<tr>
<td>16. A 483</td>
<td>962</td>
<td>d</td>
<td>74</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1212</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>35,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>3,07 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.a.9: Rendements des variétés de l’ECM 1986 (BA-MA) sur haricots nains dans la région du BUGESERA.

Altitude: 1300 - 1500 m  
Zone: BA  
Sites: Karama (colluvion), Karama (transition), Gashora  
Saisons: 86A, 86B  
Nombre d’essais: 5

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. G 2816</td>
<td>1491</td>
</tr>
<tr>
<td>2. G 13671</td>
<td>1421</td>
</tr>
<tr>
<td>3. Ikinimba</td>
<td>1408</td>
</tr>
<tr>
<td>4. Mélange ISAR 86 (T)</td>
<td>1398</td>
</tr>
<tr>
<td>5. Kilyumukwe</td>
<td>1241</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>1187</td>
</tr>
<tr>
<td>7. BAC 76</td>
<td>1184</td>
</tr>
<tr>
<td>8. A 197</td>
<td>1178</td>
</tr>
<tr>
<td>9. A 484</td>
<td>1154</td>
</tr>
<tr>
<td>10. A 490</td>
<td>1098</td>
</tr>
<tr>
<td>11. PVA 555</td>
<td>1068</td>
</tr>
<tr>
<td>12. PVA 563</td>
<td>1016</td>
</tr>
<tr>
<td>13. PVA 1272</td>
<td>996</td>
</tr>
<tr>
<td>14. G 12470</td>
<td>971</td>
</tr>
<tr>
<td>15. Bayitungirubwiza</td>
<td>927</td>
</tr>
<tr>
<td>16. A 483</td>
<td>913</td>
</tr>
</tbody>
</table>

**Moyenne générale**  
1166  
**CV %**  
33,0  
**F calc.**  
4,62 ** 2/ 

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.a.10: Rendements des variétés de l’ECM 1986 (BA-MA) sur haricots nains dans la région de SAVANE DE L’EST.

Altitude: 1250 - 1600
Zone: BA
Sites: SEMS
Saisons: 86A, 86B
Nombre d’essais: 2

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement kg/ha</th>
<th>DMRT 1/ % T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. A 484</td>
<td>1869 a</td>
<td>167</td>
</tr>
<tr>
<td>2. A 197</td>
<td>1497 b</td>
<td>135</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>1354 bc</td>
<td>122</td>
</tr>
<tr>
<td>4. G 2816</td>
<td>1285 bcd</td>
<td>116</td>
</tr>
<tr>
<td>5. G 13671</td>
<td>1258 b-e</td>
<td>114</td>
</tr>
<tr>
<td>6. Kilyumukwe</td>
<td>1256 b-e</td>
<td>113</td>
</tr>
<tr>
<td>7. Ikinimba</td>
<td>1248 b-e</td>
<td>113</td>
</tr>
<tr>
<td>8. A 490</td>
<td>1243 b-e</td>
<td>112</td>
</tr>
<tr>
<td>9. Bayitungirubwiza</td>
<td>1114 c-f</td>
<td>101</td>
</tr>
<tr>
<td>10. Mélange ISAR 86 (T)</td>
<td>1108 c-f</td>
<td>100</td>
</tr>
<tr>
<td>11. PVA 1272</td>
<td>967 def</td>
<td>87</td>
</tr>
<tr>
<td>12. A 483</td>
<td>948 def</td>
<td>86</td>
</tr>
<tr>
<td>13. BAC 76</td>
<td>926 ef</td>
<td>84</td>
</tr>
<tr>
<td>14. PVA 555</td>
<td>854 f</td>
<td>77</td>
</tr>
<tr>
<td>15. PVA 563</td>
<td>854 f</td>
<td>77</td>
</tr>
<tr>
<td>16. G 12470</td>
<td>830 f</td>
<td>74</td>
</tr>
</tbody>
</table>

Moyenne générale | 1161 |
CV % | 25,7 |
F calc. | 6,95 ** 2/ |

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.a.11: Rendements (kg/ha) des variétés de l’ECM 86 (BA-MA) par SITES en BA.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
<th>SITES 2/</th>
<th>SEMS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Karama 0(1)</td>
<td>Karama 1(1)</td>
<td></td>
</tr>
<tr>
<td>1. Kilyumukwe</td>
<td>1218 a 2/</td>
<td>1421 abc</td>
<td>428</td>
</tr>
<tr>
<td>2. Rubone 5</td>
<td>957 a-d</td>
<td>1562 a</td>
<td>529</td>
</tr>
<tr>
<td>3. PVA 563</td>
<td>736 de</td>
<td>1375 abc</td>
<td>535</td>
</tr>
<tr>
<td>4. A 197</td>
<td>992 a-d</td>
<td>1407 abc</td>
<td>465</td>
</tr>
<tr>
<td>5. PVA 1272</td>
<td>771 de</td>
<td>1259 abc</td>
<td>520</td>
</tr>
<tr>
<td>6. PVA 555</td>
<td>643 e</td>
<td>1462 abc</td>
<td>393</td>
</tr>
<tr>
<td>7. A 484</td>
<td>832 cde</td>
<td>1440 abc</td>
<td>284</td>
</tr>
<tr>
<td>8. G 12470</td>
<td>702 de</td>
<td>946 bc</td>
<td>440</td>
</tr>
<tr>
<td>9. Kikinbe</td>
<td>1096 abc</td>
<td>1559 a</td>
<td>806</td>
</tr>
<tr>
<td>10. Beyitungirubwiza</td>
<td>851 cde</td>
<td>990 abc</td>
<td>265</td>
</tr>
<tr>
<td>11. M. ISAR 86 (2)</td>
<td>1156 ab</td>
<td>1362 abc</td>
<td>703</td>
</tr>
<tr>
<td>12. G 13671</td>
<td>876 cde</td>
<td>1140 abc</td>
<td>924</td>
</tr>
<tr>
<td>13. A 490</td>
<td>1014 a-d</td>
<td>956 bc</td>
<td>350</td>
</tr>
<tr>
<td>14. G 2816</td>
<td>1095 abc</td>
<td>1509 ab</td>
<td>293</td>
</tr>
<tr>
<td>15. BAC 76</td>
<td>926 bcd</td>
<td>896 c</td>
<td>724</td>
</tr>
<tr>
<td>16. A 483</td>
<td>876 cde</td>
<td>952 bc</td>
<td>415</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>930</td>
<td>1270</td>
<td>506</td>
</tr>
<tr>
<td>Cv %</td>
<td>25.3</td>
<td>27.9</td>
<td>73.0</td>
</tr>
<tr>
<td>F calc. 3/</td>
<td>3.67**</td>
<td>2.02*</td>
<td>NS</td>
</tr>
</tbody>
</table>

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ *,**, Essai significatif à 5% et 1% de probabilité; NS: Non significatif
Annexe 2.a.12: Rendements (kg/ha) des variétés de l’ECM 86 (BA - MA) par SITES en MA.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
<th>Rubona (2)</th>
<th>Gihisi (1)</th>
<th>Runyinya (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rubona 5</td>
<td>1210 a 2/</td>
<td>1112 ab</td>
<td>1600 bc</td>
<td></td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1192 a</td>
<td>913 b</td>
<td>1684 bc</td>
<td></td>
</tr>
<tr>
<td>3. PVA 563</td>
<td>1192 a</td>
<td>1048 ab</td>
<td>1315 cde</td>
<td></td>
</tr>
<tr>
<td>4. A 197</td>
<td>1157 a</td>
<td>1071 ab</td>
<td>1717 bc</td>
<td></td>
</tr>
<tr>
<td>5. PVA 1272</td>
<td>1154 a</td>
<td>1096 ab</td>
<td>1094 ef</td>
<td></td>
</tr>
<tr>
<td>6. PVA 555</td>
<td>983 ab</td>
<td>1287 ab</td>
<td>1312 cde</td>
<td></td>
</tr>
<tr>
<td>7. A 484</td>
<td>970 ab</td>
<td>1068 ab</td>
<td>1162 def</td>
<td></td>
</tr>
<tr>
<td>8. G 12470</td>
<td>951 ab</td>
<td>1451 a</td>
<td>1782 b</td>
<td></td>
</tr>
<tr>
<td>9. Ikimimba</td>
<td>927 abc</td>
<td>1097 ab</td>
<td>2266 a</td>
<td></td>
</tr>
<tr>
<td>10. Bayitungirubwiza</td>
<td>892 abc</td>
<td>1194 ab</td>
<td>1806 b</td>
<td></td>
</tr>
<tr>
<td>11. M. ISAR 86 (T)</td>
<td>887 abc</td>
<td>1193 ab</td>
<td>868 f</td>
<td></td>
</tr>
<tr>
<td>12. G 13671</td>
<td>886 abc</td>
<td>962 b</td>
<td>1464 b-e</td>
<td></td>
</tr>
<tr>
<td>13. A 490</td>
<td>802 bc</td>
<td>1094 ab</td>
<td>1497 bcd</td>
<td></td>
</tr>
<tr>
<td>14. G 2816</td>
<td>785 bc</td>
<td>1042 ab</td>
<td>838 f</td>
<td></td>
</tr>
<tr>
<td>15. BAC 76</td>
<td>607 c</td>
<td>1074 ab</td>
<td>1684 bc</td>
<td></td>
</tr>
<tr>
<td>16. A 483</td>
<td>589 c</td>
<td>880 b</td>
<td>1328 cde</td>
<td></td>
</tr>
</tbody>
</table>

Moyenne générale | 949 | 1096 | 1466 |

Cv % | 31,0 | 22,3 | 16,7 |

F calc.3/ | 3,55** | NS | 9,29** |

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES</th>
<th>Rubungo (1)</th>
<th>Mubago (2)</th>
<th>Gahororo (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Rubona 5</td>
<td>1420 a-d</td>
<td>3593</td>
<td>1312 c</td>
<td></td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1606 ab</td>
<td>3195</td>
<td>1562 bc</td>
<td></td>
</tr>
<tr>
<td>3. PVA 563</td>
<td>1464 a-d</td>
<td>3241</td>
<td>1563 bc</td>
<td></td>
</tr>
<tr>
<td>4. A 197</td>
<td>1458 a-d</td>
<td>3047</td>
<td>1625 bc</td>
<td></td>
</tr>
<tr>
<td>5. PVA 1272</td>
<td>1367 a-d</td>
<td>3484</td>
<td>1687 bc</td>
<td></td>
</tr>
<tr>
<td>6. PVA 555</td>
<td>1522 abc</td>
<td>3421</td>
<td>1468 bc</td>
<td></td>
</tr>
<tr>
<td>7. A 484</td>
<td>1017 de</td>
<td>2890</td>
<td>1593 bc</td>
<td></td>
</tr>
<tr>
<td>8. G 12470</td>
<td>1349 a-d</td>
<td>3422</td>
<td>1406 bc</td>
<td></td>
</tr>
<tr>
<td>9. Ikimimba</td>
<td>1348 b-e</td>
<td>2750</td>
<td>375 d</td>
<td></td>
</tr>
<tr>
<td>10. Bayitungirubwiza</td>
<td>1094 cde</td>
<td>3445</td>
<td>1500 bc</td>
<td></td>
</tr>
<tr>
<td>11. M. ISAR 86 (T)</td>
<td>1385 a-d</td>
<td>3663</td>
<td>1343 c</td>
<td></td>
</tr>
<tr>
<td>12. G 13671</td>
<td>1456 a-d</td>
<td>3625</td>
<td>593 d</td>
<td></td>
</tr>
<tr>
<td>13. A 490</td>
<td>1066 cde</td>
<td>3265</td>
<td>1500 bc</td>
<td></td>
</tr>
<tr>
<td>14. G 2816</td>
<td>1759 a</td>
<td>4219</td>
<td>625 d</td>
<td></td>
</tr>
<tr>
<td>15. BAC 76</td>
<td>1305 b-e</td>
<td>3195</td>
<td>2312 a</td>
<td></td>
</tr>
<tr>
<td>16. A 483</td>
<td>865 e</td>
<td>2890</td>
<td>1906 ab</td>
<td></td>
</tr>
</tbody>
</table>

Moyenne générale | 1330 | 3346 | 1398 |

Cv % | 21,5 | 27,0 | 23,3 |

F calc.3/ | 2.70** | NS | 9.13** |

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité; NS: Non significatif
7.2.b. TABLEAUX DES RESULTATS DE L’ECM 86 (MA - HA)
Annexe 2.b.1: Rendements des variétés de l’ECM 1986 (MA-HA) sur haricots nains: ANALYSE GLOBALE.

Sites: Rubona, Musasu, Rwerere, Jomba, PNAP (Ruhengeri), Mudende, Busasamana
Saisons: 86A, 86B
Nombre d’essais: 10

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. G 11060</td>
<td>1782</td>
<td>a</td>
<td>112</td>
</tr>
<tr>
<td>2. Ntskerabasilimu 2/</td>
<td>1687</td>
<td>ab</td>
<td>106</td>
</tr>
<tr>
<td>3. Mélange ISAR 86 (T)</td>
<td>1594</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>4. G 13671</td>
<td>1526</td>
<td>a-d</td>
<td>96</td>
</tr>
<tr>
<td>5. Ikinimba</td>
<td>1463</td>
<td>a-e</td>
<td>91</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>1458</td>
<td>a-e</td>
<td>91</td>
</tr>
<tr>
<td>7. A 370</td>
<td>1379</td>
<td>b-e</td>
<td>86</td>
</tr>
<tr>
<td>8. Kibobo</td>
<td>1370</td>
<td>b-e</td>
<td>86</td>
</tr>
<tr>
<td>9. Urubonobono</td>
<td>1357</td>
<td>b-e</td>
<td>85</td>
</tr>
<tr>
<td>10. PVA 1272</td>
<td>1309</td>
<td>cde</td>
<td>82</td>
</tr>
<tr>
<td>11. Inyumba</td>
<td>1287</td>
<td>cde</td>
<td>81</td>
</tr>
<tr>
<td>12. G 2816 2/</td>
<td>1286</td>
<td>cde</td>
<td>81</td>
</tr>
<tr>
<td>13. Kirundo</td>
<td>1279</td>
<td>cde</td>
<td>80</td>
</tr>
<tr>
<td>14. PVA 563</td>
<td>1197</td>
<td>de</td>
<td>75</td>
</tr>
<tr>
<td>15. PVA 555</td>
<td>1187</td>
<td>de</td>
<td>74</td>
</tr>
<tr>
<td>16. Mbagarumbise</td>
<td>1139</td>
<td>e</td>
<td>71</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1392</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>51,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>2,54 ** 3/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ 9 Essais seulement
3/ **: Différences significatives au niveau de 1% de probabilité
Annexe 2.b.2: Rendements des variétés de l’ECM 1986 (MA-Ha) sur haricots nains en Zone de MOYENNE ALTITUDE.

Altitude: 1500 -1900 m
Sites: Rubona, Musasu
Saisons: 86A, 86B
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. Kirundo</td>
<td>1549</td>
</tr>
<tr>
<td>2. Rubona 5</td>
<td>1502</td>
</tr>
<tr>
<td>3. G 11060</td>
<td>1501</td>
</tr>
<tr>
<td>4. G 13671</td>
<td>1475</td>
</tr>
<tr>
<td>5. Mélange ISAR 86 (T)</td>
<td>1464</td>
</tr>
<tr>
<td>6. Ntekerabasilimu</td>
<td>1374</td>
</tr>
<tr>
<td>7. PVA 1272</td>
<td>1348</td>
</tr>
<tr>
<td>8. Urubonobono</td>
<td>1278</td>
</tr>
<tr>
<td>9. G 2816</td>
<td>1249</td>
</tr>
<tr>
<td>10. A 370</td>
<td>1158</td>
</tr>
<tr>
<td>11. Inyumba</td>
<td>1157</td>
</tr>
<tr>
<td>12. Ikinimba</td>
<td>1115</td>
</tr>
<tr>
<td>13. PVA 555</td>
<td>1085</td>
</tr>
<tr>
<td>14. Mbagarumbise</td>
<td>1080</td>
</tr>
<tr>
<td>15. Kibobo</td>
<td>1063</td>
</tr>
<tr>
<td>16. PVA 563</td>
<td>1004</td>
</tr>
</tbody>
</table>

Moyenne générale | 127
CV %            | 29,5
F calc.         | 2,91 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.b.3: Rendements des variétés de l’ECM 1986 (MA-HA) sur haricots nains en Zone de HAUTE ALTITUDE.

Altitude: > 1800 m  
Sites: Rwerere, Jomba, PNAP (Ruhengeri), Mudende, Busasamana  
Saisons: 86A, 86B  
Nombre d’essais: 7

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. G 11060</td>
<td>1903</td>
<td>a</td>
<td>115</td>
</tr>
<tr>
<td>2. Mtekerabasilimu 2/</td>
<td>1844</td>
<td>ab</td>
<td>112</td>
</tr>
<tr>
<td>3. Mélange ISAR 86 (T)</td>
<td>1649</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>4. Ikinimba</td>
<td>1616</td>
<td>abc</td>
<td>98</td>
</tr>
<tr>
<td>5. g 13671</td>
<td>1548</td>
<td>abc</td>
<td>94</td>
</tr>
<tr>
<td>6. Kibobo</td>
<td>1502</td>
<td>abc</td>
<td>91</td>
</tr>
<tr>
<td>7. A 370</td>
<td>1474</td>
<td>abc</td>
<td>89</td>
</tr>
<tr>
<td>8. Rubona 5</td>
<td>1440</td>
<td>abc</td>
<td>87</td>
</tr>
<tr>
<td>9. Urubonobono</td>
<td>1391</td>
<td>bc</td>
<td>84</td>
</tr>
<tr>
<td>10. Inyumba</td>
<td>1342</td>
<td>c</td>
<td>81</td>
</tr>
<tr>
<td>11. G 2816</td>
<td>1302</td>
<td>c</td>
<td>79</td>
</tr>
<tr>
<td>12. PVA 1272</td>
<td>1293</td>
<td>c</td>
<td>78</td>
</tr>
<tr>
<td>13. PVA 563</td>
<td>1280</td>
<td>c</td>
<td>78</td>
</tr>
<tr>
<td>14. PVA 555</td>
<td>1231</td>
<td>c</td>
<td>75</td>
</tr>
<tr>
<td>15. Mbagarumbise</td>
<td>1164</td>
<td>c</td>
<td>71</td>
</tr>
<tr>
<td>16. Kirundo</td>
<td>1163</td>
<td>c</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>1442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1442</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>53,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>2,28 ** 3/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2) 6 essais seulement  
3/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.b.4: Rendements des variétés de l’ECM 1986 (MA-HA) sur haricots nains dans la région du PLATEAU CENTRAL.

Altitude: 1500 -1900 m
Zone: MA
Sites: Rubona, Musasu
Saisons: 86A, 86B
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kirundo</td>
<td>1549</td>
<td>a</td>
<td>106</td>
</tr>
<tr>
<td>2. Rubona 5</td>
<td>1502</td>
<td>ab</td>
<td>103</td>
</tr>
<tr>
<td>3. G 11060</td>
<td>1501</td>
<td>ab</td>
<td>103</td>
</tr>
<tr>
<td>4. G 13671</td>
<td>1475</td>
<td>ab</td>
<td>101</td>
</tr>
<tr>
<td>5. Mélange ISAR 86 (T)</td>
<td>1464</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>6. Ntekerabasilimu</td>
<td>1374</td>
<td>a-d</td>
<td>94</td>
</tr>
<tr>
<td>7. PVA 1272</td>
<td>1348</td>
<td>a-e</td>
<td>92</td>
</tr>
<tr>
<td>8. Urubonobono</td>
<td>1278</td>
<td>a-e</td>
<td>87</td>
</tr>
<tr>
<td>9. G 2816</td>
<td>1249</td>
<td>a-e</td>
<td>85</td>
</tr>
<tr>
<td>10. A 370</td>
<td>1158</td>
<td>b-e</td>
<td>79</td>
</tr>
<tr>
<td>11. Inyumba</td>
<td>1157</td>
<td>b-e</td>
<td>79</td>
</tr>
<tr>
<td>12. Ikinimba</td>
<td>1115</td>
<td>cde</td>
<td>76</td>
</tr>
<tr>
<td>13. PVA 555</td>
<td>1085</td>
<td>de</td>
<td>74</td>
</tr>
<tr>
<td>14. Mbagarumbise</td>
<td>1080</td>
<td>de</td>
<td>74</td>
</tr>
<tr>
<td>15. Kibobo</td>
<td>1063</td>
<td>de</td>
<td>73</td>
</tr>
<tr>
<td>16. PVA 563</td>
<td>1004</td>
<td>e</td>
<td>69</td>
</tr>
</tbody>
</table>

Moyenne générale: 1275
CV %: 29.5
F calc.: 2.91 ** 2/

1) Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2) **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.b.5: Rendements des variétés de l’ECM 1986 (MA-HA) sur haricots nains dans la région du BUBERUKA.

Altitude: 1900 - 2500 m  
Zone: HA  
Sites: Rwerere  
Saisons: 86A, 86b  
Nombre d'essais: 2

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Ikinimba</td>
<td>1612</td>
<td>a</td>
<td>138</td>
</tr>
<tr>
<td>2. G 11060</td>
<td>1570</td>
<td>ab</td>
<td>134</td>
</tr>
<tr>
<td>3. Ntekerabasilimu</td>
<td>1526</td>
<td>abc</td>
<td>131</td>
</tr>
<tr>
<td>4. Inyumba</td>
<td>1239</td>
<td>bcd</td>
<td>106</td>
</tr>
<tr>
<td>5. Kirundo</td>
<td>1200</td>
<td>cde</td>
<td>103</td>
</tr>
<tr>
<td>6. G 13671</td>
<td>1198</td>
<td>cde</td>
<td>103</td>
</tr>
<tr>
<td>7. Urubonobono</td>
<td>1193</td>
<td>cde</td>
<td>102</td>
</tr>
<tr>
<td>8. Mélange ISAR 86 (T)</td>
<td>1168</td>
<td>cde</td>
<td>100</td>
</tr>
<tr>
<td>9. Kibobo</td>
<td>1156</td>
<td>cde</td>
<td>99</td>
</tr>
<tr>
<td>10. A 370</td>
<td>1084</td>
<td>de</td>
<td>93</td>
</tr>
<tr>
<td>11. Rubona 5</td>
<td>1047</td>
<td>de</td>
<td>90</td>
</tr>
<tr>
<td>12. Mbagarumbise</td>
<td>1004</td>
<td>de</td>
<td>86</td>
</tr>
<tr>
<td>13. PVA 1272</td>
<td>995</td>
<td>de</td>
<td>85</td>
</tr>
<tr>
<td>14. PVA 563</td>
<td>929</td>
<td>de</td>
<td>80</td>
</tr>
<tr>
<td>15. G 2816</td>
<td>832</td>
<td>e</td>
<td>71</td>
</tr>
<tr>
<td>16. PVA 555</td>
<td>809</td>
<td>e</td>
<td>69</td>
</tr>
</tbody>
</table>

Moyenne générale               | 1163      | 28,3    | 68  |
CV %                           |           | 4,23 ** |
F calc.                        |           | 2/      |

1) Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2) **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.b.6: Rendements des variétés de l’ECM 1986 (MA-HA) sur haricots nains dans la région de la CRETE ZAIRE-NIL.

Altitude: 1900 - 2500 m  
Zone: HA  
Sites: Jomba  
Saisons: 86 B  
Nombre d’essais: 1

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. PVA 1272</td>
<td>1418</td>
<td>a</td>
<td>124</td>
</tr>
<tr>
<td>2. PVA 555</td>
<td>1356</td>
<td>a</td>
<td>118</td>
</tr>
<tr>
<td>3. PVA 563</td>
<td>1156</td>
<td>ab</td>
<td>101</td>
</tr>
<tr>
<td>4. Mélange ISAR 86 (T)</td>
<td>1146</td>
<td>ab</td>
<td>100</td>
</tr>
<tr>
<td>5. Inyumba</td>
<td>1106</td>
<td>abc</td>
<td>97</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>815</td>
<td>bcd</td>
<td>71</td>
</tr>
<tr>
<td>7. G 13671</td>
<td>800</td>
<td>cde</td>
<td>70</td>
</tr>
<tr>
<td>8. Ntekerabasilimu</td>
<td>734</td>
<td>def</td>
<td>64</td>
</tr>
<tr>
<td>9. Kibobo</td>
<td>590</td>
<td>d-g</td>
<td>51</td>
</tr>
<tr>
<td>10. Mbagarumbise</td>
<td>502</td>
<td>d-h</td>
<td>44</td>
</tr>
<tr>
<td>11. Ikinimba</td>
<td>450</td>
<td>e-i</td>
<td>39</td>
</tr>
<tr>
<td>12. Kirundo</td>
<td>403</td>
<td>f-i</td>
<td>35</td>
</tr>
<tr>
<td>13. Urubonobono</td>
<td>306</td>
<td>ghi</td>
<td>27</td>
</tr>
<tr>
<td>14. G 11060</td>
<td>284</td>
<td>ghi</td>
<td>25</td>
</tr>
<tr>
<td>15. A 370</td>
<td>200</td>
<td>hi</td>
<td>17</td>
</tr>
<tr>
<td>16. G 2816</td>
<td>93</td>
<td>i</td>
<td>8</td>
</tr>
</tbody>
</table>

Moyenne générale 710  
CV % 31,4  
F calc. 14,36 ** 2/  

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 2.b.7: Rendements des variétés de l'ECK 1986 (HA-HA) sur haricots nains dans la région des TERRES DE LAVE.

Altitude: 1600 - 2500 m
Zone: HA
Sites: PNAP (Ruhengeri), Mudende, Busasamana
Saisons: 86a, 86B
Nombre d'essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. G 11060</td>
<td>2475</td>
<td>a</td>
<td>123</td>
</tr>
<tr>
<td>2. Ntakarabasilimu</td>
<td>2427</td>
<td>ab</td>
<td>120</td>
</tr>
<tr>
<td>3. Mélange ISAR 86 (T)</td>
<td>2015</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>5. G 13671</td>
<td>1910</td>
<td>bcd</td>
<td>95</td>
</tr>
<tr>
<td>6. Kibobo</td>
<td>1903</td>
<td>bcd</td>
<td>94</td>
</tr>
<tr>
<td>7. Ikinimba</td>
<td>1902</td>
<td>bcd</td>
<td>94</td>
</tr>
<tr>
<td>8. g 2816</td>
<td>1810</td>
<td>cde</td>
<td>90</td>
</tr>
<tr>
<td>9. Rubona 5</td>
<td>1793</td>
<td>cde</td>
<td>89</td>
</tr>
<tr>
<td>10. Urubonobono</td>
<td>1761</td>
<td>cde</td>
<td>87</td>
</tr>
<tr>
<td>11. PVA 563</td>
<td>1487</td>
<td>cde</td>
<td>84</td>
</tr>
<tr>
<td>12. Inyumba</td>
<td>1453</td>
<td>cde</td>
<td>72</td>
</tr>
<tr>
<td>13. PVA 555</td>
<td>1411</td>
<td>de</td>
<td>70</td>
</tr>
<tr>
<td>14. PVA 1272</td>
<td>1410</td>
<td>de</td>
<td>70</td>
</tr>
<tr>
<td>15. Mbagarumbise</td>
<td>1410</td>
<td>de</td>
<td>70</td>
</tr>
<tr>
<td>16. Kirundo</td>
<td>1336</td>
<td>de</td>
<td>66</td>
</tr>
</tbody>
</table>

Moyenne générale 1770
CV % 37,9
F calc. 4,50 ** 2/

1) Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5% de probabilité
2/ **: Différences significatives au niveau de 1% de probabilité
Annexe 2.b.8: Rendements (xg/ha) des variétés de l'ECM 86 par sites en MOYENNE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rubona(2)</td>
<td>Musasu(1)</td>
<td>Mara(1)</td>
<td>Rusatira(1)</td>
</tr>
<tr>
<td>1. Kirundo</td>
<td>1479 a 2/</td>
<td>1687</td>
<td>404</td>
<td>792</td>
</tr>
<tr>
<td>2. Ikinimba</td>
<td>957 c-g</td>
<td>1431</td>
<td>498</td>
<td>884</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>1281 a-e</td>
<td>1944</td>
<td>467</td>
<td>1251</td>
</tr>
<tr>
<td>4. PVA 555</td>
<td>881 efg</td>
<td>1494</td>
<td>443</td>
<td>817</td>
</tr>
<tr>
<td>5. Ntekerabasilimu</td>
<td>1396 ab</td>
<td>1331</td>
<td>443</td>
<td>1029</td>
</tr>
<tr>
<td>6. G 2816</td>
<td>1071 b-g</td>
<td>1606</td>
<td>526</td>
<td>1139</td>
</tr>
<tr>
<td>7. Kibobo</td>
<td>851 g</td>
<td>1487</td>
<td>386</td>
<td>721</td>
</tr>
<tr>
<td>8. A 370</td>
<td>944 d-g</td>
<td>1587</td>
<td>386</td>
<td>970</td>
</tr>
<tr>
<td>9. G 11060</td>
<td>1352 abc</td>
<td>1800</td>
<td>372</td>
<td>722</td>
</tr>
<tr>
<td>10. G 13671</td>
<td>1329 a-d</td>
<td>1769</td>
<td>359</td>
<td>709</td>
</tr>
<tr>
<td>11. Urubonobono</td>
<td>1039 b-g</td>
<td>1756</td>
<td>353</td>
<td>997</td>
</tr>
<tr>
<td>12. PVA 1272</td>
<td>1256 a-f</td>
<td>1531</td>
<td>324</td>
<td>897</td>
</tr>
<tr>
<td>13. M. ISAR 86 (T)</td>
<td>1272 a-f</td>
<td>1850</td>
<td>307</td>
<td>863</td>
</tr>
<tr>
<td>14. Mbagarumbise</td>
<td>748 g</td>
<td>1744</td>
<td>267</td>
<td>1075</td>
</tr>
<tr>
<td>15. PVA 563</td>
<td>872 fg</td>
<td>1269</td>
<td>262</td>
<td>1067</td>
</tr>
<tr>
<td>16. Inyumba</td>
<td>1054 b-g</td>
<td>1362</td>
<td>260</td>
<td>829</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1111</td>
<td>1603</td>
<td>381</td>
<td>933</td>
</tr>
<tr>
<td>CV %</td>
<td>31,0</td>
<td>24,5</td>
<td>40,5</td>
<td>30,0</td>
</tr>
<tr>
<td>F calc.3/</td>
<td>3,45**</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

1/ Chiffres entre parenthèses = Nombre de saisons
2) Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité; NS: Non significatif
### Annexe 2.b.9: Rendements (kg/ha) des variétés de l'ECH 86 par sites en HAUTE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES (suite) 1/</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rwerere(2)</td>
<td>Gakubo(1)</td>
<td>Rutare(1)</td>
<td>Jomba(1)</td>
</tr>
<tr>
<td>1. Kirundo</td>
<td>1200 cde 2/</td>
<td>531</td>
<td>820</td>
<td>403 g-i</td>
</tr>
<tr>
<td>2. Ikinimba</td>
<td>1512 a</td>
<td>719</td>
<td>679</td>
<td>450 e-l</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>1047 de</td>
<td>562</td>
<td>782</td>
<td>816 bcd</td>
</tr>
<tr>
<td>4. PVA 555</td>
<td>809 e</td>
<td>437</td>
<td>842</td>
<td>1356 a</td>
</tr>
<tr>
<td>5. Ntekerabasilimu</td>
<td>1527 abc</td>
<td>906</td>
<td>632</td>
<td>734 def</td>
</tr>
<tr>
<td>6. G 2815</td>
<td>832 e</td>
<td>344</td>
<td>1015</td>
<td>94 i</td>
</tr>
<tr>
<td>7. Kibobo</td>
<td>1156 cde</td>
<td>781</td>
<td>659</td>
<td>591 d-g</td>
</tr>
<tr>
<td>8. A 370</td>
<td>1084 de</td>
<td>500</td>
<td>762</td>
<td>200 h-l</td>
</tr>
<tr>
<td>9. G 11060</td>
<td>1570 ab</td>
<td>1094</td>
<td>924</td>
<td>284 ghi</td>
</tr>
<tr>
<td>10. G 13671</td>
<td>1198 cde</td>
<td>781</td>
<td>497</td>
<td>800 cde</td>
</tr>
<tr>
<td>11. Urubonobono</td>
<td>1194 cde</td>
<td>656</td>
<td>674</td>
<td>306 ghi</td>
</tr>
<tr>
<td>12. PVA 1272</td>
<td>995 de</td>
<td>656</td>
<td>757</td>
<td>1419 a</td>
</tr>
<tr>
<td>13. M.ISAR 86 (T)</td>
<td>1169 cde</td>
<td>500</td>
<td>888</td>
<td>1147 ab</td>
</tr>
<tr>
<td>14. Mbagarumbise</td>
<td>1005 de</td>
<td>594</td>
<td>760</td>
<td>502 d-h</td>
</tr>
<tr>
<td>15. PVA 563</td>
<td>930 de</td>
<td>719</td>
<td>642</td>
<td>1156 ab</td>
</tr>
<tr>
<td>16. Inyumba</td>
<td>1239 bcd</td>
<td>656</td>
<td>951</td>
<td>1106 abc</td>
</tr>
</tbody>
</table>

| Moyenne générale          | 1163            | 652              | 768              | 710              |
| CV %                      | 28,3            | 41,6             | 36,3             | 31,4             |
| F calc.3/                 | 4,23**          | NS               | NS               | 14,38**          |

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PNAP (2)</td>
<td>Mudende (1)</td>
<td>Busasamana (1)</td>
</tr>
<tr>
<td>1. Kirundo</td>
<td>2359 abc</td>
<td>462 bcd</td>
<td>2061 bc</td>
</tr>
<tr>
<td>2. Ikinimba</td>
<td>2297 bc</td>
<td>1000 bc</td>
<td>2016 bc</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>2234 b-e</td>
<td>719 bcd</td>
<td>1984 bc</td>
</tr>
<tr>
<td>4. PVA 555</td>
<td>1859 de</td>
<td>253 d</td>
<td>1675 cde</td>
</tr>
<tr>
<td>5. Ntekerabasilimu</td>
<td>2516 ab</td>
<td>2250 a</td>
<td>-</td>
</tr>
<tr>
<td>6. G 2815</td>
<td>2047 cde</td>
<td>375 cd</td>
<td>875 f</td>
</tr>
<tr>
<td>7. Kibobo</td>
<td>2297 bc</td>
<td>687 bcd</td>
<td>2332 b</td>
</tr>
<tr>
<td>8. A 370</td>
<td>2500 ab</td>
<td>1094 b</td>
<td>1859 bcd</td>
</tr>
<tr>
<td>9. G 11060</td>
<td>2750 a</td>
<td>2219 a</td>
<td>2181 bc</td>
</tr>
<tr>
<td>10. G 13671</td>
<td>1843 de</td>
<td>812 bcd</td>
<td>3142 a</td>
</tr>
<tr>
<td>11. Urubonobono</td>
<td>2541 ab</td>
<td>594 bcd</td>
<td>1170 ef</td>
</tr>
<tr>
<td>12. PVA 1272</td>
<td>1812 e</td>
<td>781 bcd</td>
<td>1234 ef</td>
</tr>
<tr>
<td>13. M.ISAR 86 (T)</td>
<td>2594 ab</td>
<td>719 bcd</td>
<td>2154 bc</td>
</tr>
<tr>
<td>14. Mbagarumbise</td>
<td>1828 de</td>
<td>781 bcd</td>
<td>1203 ef</td>
</tr>
<tr>
<td>15. PVA 563</td>
<td>1828 de</td>
<td>906 bcd</td>
<td>1387 def</td>
</tr>
<tr>
<td>16. Inyumba</td>
<td>2250 bcd</td>
<td>375 cd</td>
<td>937 f</td>
</tr>
</tbody>
</table>

| Moyenne générale.         | 2228           | 877              | 1747             |
| CV %                      | 16,9           | 44,7             | 21,1             |
| F calc.3/                 | 5,84**         | 8,85**           | 11,11**          |

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité; NS: Non significatif

- Site: Rwerere
- Altitude: 2060 m
- Saisons: 86A
- Région: Buberuka
- Zone: HA

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Réaction aux maladies (1-9) *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anthracose</td>
</tr>
<tr>
<td>1. G 11060</td>
<td>1,6</td>
</tr>
<tr>
<td>2. Ntekerabasilimu</td>
<td>1,5</td>
</tr>
<tr>
<td>3. Mélange ISAR 86</td>
<td>2,3</td>
</tr>
<tr>
<td>4. G 13671</td>
<td>1,6</td>
</tr>
<tr>
<td>5. Ikinimba</td>
<td>2,2</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>2,3</td>
</tr>
<tr>
<td>7. A 370</td>
<td>1,8</td>
</tr>
<tr>
<td>8. Kibobo</td>
<td>2,3</td>
</tr>
<tr>
<td>9. Urubonobono</td>
<td>2,2</td>
</tr>
<tr>
<td>10. PVA 1272</td>
<td>1,8</td>
</tr>
<tr>
<td>11. Inyumba</td>
<td>1,5</td>
</tr>
<tr>
<td>12. G 2816</td>
<td>3,0</td>
</tr>
<tr>
<td>13. Kirundo</td>
<td>2,0</td>
</tr>
<tr>
<td>14. PVA 563</td>
<td>2,2</td>
</tr>
<tr>
<td>15. PVA 555</td>
<td>1,7</td>
</tr>
<tr>
<td>16. Mbagarumbise</td>
<td>1,5</td>
</tr>
</tbody>
</table>
7.3. TABLEAU DES RESULTATS DE L’ECM 87-88
Annexe 3.1: Rendements des variétés de l’ECM 87-88 sur haricots nains: ANALYSE GLOBALE.

Sites: Rubona, Rusatira, Ndora, Kibayi, Mututu, Kabutare, Kamembe, Kigoma, Rubungo, Kadehero, Muyumbu, Gahororo, Mubago, Karama colluvion, Karama transition, Gashora, SEMS, Gahana, Jomba, Rwerere, PNAP (Ruhengeri), Nyabimata

Saisons: 87A, 87B, 88A, 88B

Nombre d’essais: 62

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement kg/ha</th>
<th>DMRT 1/)</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RWR 221</td>
<td>1777</td>
<td>a</td>
<td>115</td>
</tr>
<tr>
<td>2. Kibuga</td>
<td>1773</td>
<td>a</td>
<td>115</td>
</tr>
<tr>
<td>3. RWR 222</td>
<td>1738</td>
<td>ab</td>
<td>112</td>
</tr>
<tr>
<td>4. G 04391</td>
<td>1629</td>
<td>bc</td>
<td>105</td>
</tr>
<tr>
<td>5. Kinyugwe</td>
<td>1574</td>
<td>cd</td>
<td>102</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1547</td>
<td>cd</td>
<td>100</td>
</tr>
<tr>
<td>7. RWR 217</td>
<td>1541</td>
<td>cde</td>
<td>100</td>
</tr>
<tr>
<td>8. PVA 1438</td>
<td>1535</td>
<td>cde</td>
<td>99</td>
</tr>
<tr>
<td>9. Amashongoshwa</td>
<td>1528</td>
<td>cde</td>
<td>99</td>
</tr>
<tr>
<td>10. RWR 229</td>
<td>1525</td>
<td>cde</td>
<td>99</td>
</tr>
<tr>
<td>11. PVA 772</td>
<td>1521</td>
<td>cde</td>
<td>98</td>
</tr>
<tr>
<td>12. Rubona 5</td>
<td>1486</td>
<td>def</td>
<td>96</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1413</td>
<td>efg</td>
<td>95</td>
</tr>
<tr>
<td>14. PVA 880</td>
<td>1374</td>
<td>fg</td>
<td>89</td>
</tr>
<tr>
<td>15. PVA 374</td>
<td>1366</td>
<td>fg</td>
<td>88</td>
</tr>
<tr>
<td>16. G 11516</td>
<td>1349</td>
<td>g</td>
<td>87</td>
</tr>
</tbody>
</table>

Moyenne générale 1542
CV % 45,3
F calc. 11,52 ** 2/
Annexe 3.2: Rendements des variétés de l’ECM 87-88 sur haricots nains en Zona du BASSE ALTITUDE.

Altitude: < 1500 m
Sites: Karama (colluvion), Karama (transition), Gashora, Mututu, Kibayi, Muyumbu, Kadehero, SEMS
Saisons: 87A, 87B, 88A, 88B
Nombre d’essais: 27

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RWR 222</td>
<td>1773</td>
<td>a</td>
<td>117</td>
</tr>
<tr>
<td>2. G 04391</td>
<td>1757</td>
<td>a</td>
<td>116</td>
</tr>
<tr>
<td>3. RWR 221</td>
<td>1646</td>
<td>ab</td>
<td>111</td>
</tr>
<tr>
<td>4. Kibuga</td>
<td>1639</td>
<td>abc</td>
<td>109</td>
</tr>
<tr>
<td>5. RWR 229</td>
<td>1609</td>
<td>a-d</td>
<td>106</td>
</tr>
<tr>
<td>6. Kinyugwe</td>
<td>1587</td>
<td>a-d</td>
<td>105</td>
</tr>
<tr>
<td>7. RWR 217</td>
<td>1534</td>
<td>b-e</td>
<td>101</td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>1515</td>
<td>b-e</td>
<td>100</td>
</tr>
<tr>
<td>9. Rubona 5</td>
<td>1515</td>
<td>b-e</td>
<td>100</td>
</tr>
<tr>
<td>10. amashongoshwa</td>
<td>1506</td>
<td>b-e</td>
<td>99</td>
</tr>
<tr>
<td>11. PVA 1438</td>
<td>1490</td>
<td>b-e</td>
<td>98</td>
</tr>
<tr>
<td>12. PVA 772</td>
<td>1459</td>
<td>b-f</td>
<td>86</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1415</td>
<td>c-f</td>
<td>93</td>
</tr>
<tr>
<td>14. PVA 880</td>
<td>1399</td>
<td>def</td>
<td>92</td>
</tr>
<tr>
<td>15. PVA 374</td>
<td>1324</td>
<td>ef</td>
<td>87</td>
</tr>
<tr>
<td>16. G 11516</td>
<td>1270</td>
<td>f</td>
<td>84</td>
</tr>
</tbody>
</table>

Moyenne générale 1527
CV % 51,8
F calc. 4,20 ** 2/1

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.3: Rendements des variétés de l'ECM 87-88 sur haricots nains en zone de MOYENNE ALTITUDE.

Altitude: 1500-1800 m  
Sites: Rubona, Rusatira, Kabutare, Ndora, Kigoma, Rubungo, Gahororo, Mubago,  
Saisons: 87A, 87B, 88A, 88B  
Nombre d'essais: 25

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kibuga</td>
<td>1790</td>
<td>a</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>2. RWR 221</td>
<td>1855</td>
<td>ab</td>
<td>112</td>
<td></td>
</tr>
<tr>
<td>3. RWR 222</td>
<td>1824</td>
<td>ab</td>
<td>110</td>
<td></td>
</tr>
<tr>
<td>4. PVA 772</td>
<td>1705</td>
<td>bc</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>5. Kinyugwe</td>
<td>1662</td>
<td>cd</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>6. G 04391</td>
<td>1662</td>
<td>cd</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>7. RWR 217</td>
<td>1661</td>
<td>cd</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>1657</td>
<td>cd</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>9. Amashongoshwa</td>
<td>1646</td>
<td>cd</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>10. PVA 1438</td>
<td>1633</td>
<td>cd</td>
<td>99</td>
<td></td>
</tr>
<tr>
<td>11. Rubona 5</td>
<td>1604</td>
<td>cd</td>
<td>97</td>
<td></td>
</tr>
<tr>
<td>12. RWR 229</td>
<td>1586</td>
<td>cd</td>
<td>96</td>
<td></td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1526</td>
<td>d</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>14. G 11516</td>
<td>1523</td>
<td>d</td>
<td>92</td>
<td></td>
</tr>
<tr>
<td>15. PVA 880</td>
<td>1500</td>
<td>d</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>1498</td>
<td>d</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1657</td>
<td></td>
<td>34,9</td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td></td>
<td></td>
<td>6,50 ** 2/</td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
## Annexe 3.4: Rendements des variétés de l’ECM 87-88 sur haricots nains en Zone de HAUTE ALTITUDE.

Altitude: > 1800 m  
Sites: Rwerere, PNAP (Ruhengeri), Jomba, Nyabimata  
Saisons: 87A, 87B, 88A, 88B  
Nombre d’essais: 10

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. RWR 221</td>
<td>1935</td>
</tr>
<tr>
<td>2. Kibuga</td>
<td>1844</td>
</tr>
<tr>
<td>3. RWR 222</td>
<td>1431</td>
</tr>
<tr>
<td>4. PVA 1438</td>
<td>1412</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>1361</td>
</tr>
<tr>
<td>6. Kinyugwe</td>
<td>1320</td>
</tr>
<tr>
<td>7. Amashongoshwa</td>
<td>1290</td>
</tr>
<tr>
<td>8. RWR 217</td>
<td>1258</td>
</tr>
<tr>
<td>9. PVA 772</td>
<td>1231</td>
</tr>
<tr>
<td>10. G 04391</td>
<td>1203</td>
</tr>
<tr>
<td>11. PVA 374</td>
<td>1152</td>
</tr>
<tr>
<td>12. RWR 229</td>
<td>1144</td>
</tr>
<tr>
<td>13. G 11516</td>
<td>1131</td>
</tr>
<tr>
<td>14. PVA 1216</td>
<td>1125</td>
</tr>
<tr>
<td>15. Rubona 5</td>
<td>1115</td>
</tr>
<tr>
<td>16. PVA 880</td>
<td>992</td>
</tr>
<tr>
<td><strong>Moyenne générale</strong></td>
<td>1296</td>
</tr>
<tr>
<td><strong>CV %</strong></td>
<td>36,1</td>
</tr>
<tr>
<td><strong>F calc.</strong></td>
<td>12,21 **2/</td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5% de probabilité  
2/ **: Différences significatives au niveau de 1% de probabilité
Annexe 3.5: Rendements des variétés de l'ECM 87-88 sur haricots nains dans la région du BUGESERA.

Altitude: 1300 -1500 m  
Zone: BA  
Sites: Gashora, Karama (colluvion), Karama (transition)  
Saisons: 87a, 87B, 88A, 88B  
Nombre d'essais: 12

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td>DMRT 1/</td>
<td>% T</td>
</tr>
<tr>
<td>1. G 04391</td>
<td>1753</td>
<td>a</td>
<td>122</td>
</tr>
<tr>
<td>2. RWR 229</td>
<td>1603</td>
<td>ab</td>
<td>112</td>
</tr>
<tr>
<td>3. Rubona 5</td>
<td>1565</td>
<td>ab</td>
<td>109</td>
</tr>
<tr>
<td>4. RWR 222</td>
<td>1541</td>
<td>ab</td>
<td>107</td>
</tr>
<tr>
<td>5. Kinyugwe</td>
<td>1527</td>
<td>bc</td>
<td>106</td>
</tr>
<tr>
<td>6. RWR 217</td>
<td>1484</td>
<td>bc</td>
<td>103</td>
</tr>
<tr>
<td>7. RWR 221</td>
<td>1448</td>
<td>bc</td>
<td>101</td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>1436</td>
<td>bc</td>
<td>100</td>
</tr>
<tr>
<td>9. Amashongoshwa</td>
<td>1422</td>
<td>bc</td>
<td>99</td>
</tr>
<tr>
<td>10. PVA 772</td>
<td>1415</td>
<td>bc</td>
<td>99</td>
</tr>
<tr>
<td>11. PVA 1438</td>
<td>1413</td>
<td>bc</td>
<td>98</td>
</tr>
<tr>
<td>12. PVA 880</td>
<td>1391</td>
<td>bcd</td>
<td>97</td>
</tr>
<tr>
<td>13. Kibuga</td>
<td>1383</td>
<td>bcd</td>
<td>96</td>
</tr>
<tr>
<td>14. PVA 1216</td>
<td>1300</td>
<td>cd</td>
<td>91</td>
</tr>
<tr>
<td>15. PVA 374</td>
<td>1189</td>
<td>de</td>
<td>83</td>
</tr>
<tr>
<td>16. G 11516</td>
<td>1075</td>
<td>e</td>
<td>75</td>
</tr>
</tbody>
</table>

Moyenne générale: 1434  
CV %: 38,0  
F calc.: 5,14 ** 2/ 

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.6: Rendements des variétés de l'ECM 87-88 sur haricots nains dans la région du MAYAGA.

Altitude: 1350 - 1500 m  
Zone: BA  
Sites: Mututu, Kibayi  
Saisons: 87A, 87B, 88A, 88B  
Nombre d'essais: 7

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td>DMRT 1/</td>
<td>% T</td>
</tr>
<tr>
<td>1. RWR 221</td>
<td>1737</td>
<td>a</td>
<td>139</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>1711</td>
<td>a</td>
<td>137</td>
</tr>
<tr>
<td>3. Kibuga</td>
<td>1711</td>
<td>a</td>
<td>137</td>
</tr>
<tr>
<td>4. G 04391</td>
<td>1601</td>
<td>a</td>
<td>128</td>
</tr>
<tr>
<td>5. Kinyugwe</td>
<td>1264</td>
<td>b</td>
<td>101</td>
</tr>
<tr>
<td>6. RWR 217</td>
<td>1262</td>
<td>b</td>
<td>101</td>
</tr>
<tr>
<td>7. Mélange local (T)</td>
<td>1246</td>
<td>bc</td>
<td>100</td>
</tr>
<tr>
<td>8. Amashongosha</td>
<td>1215</td>
<td>bc</td>
<td>98</td>
</tr>
<tr>
<td>9. G 11516</td>
<td>1200</td>
<td>bc</td>
<td>94</td>
</tr>
<tr>
<td>10. PVA 1438</td>
<td>1148</td>
<td>bc</td>
<td>92</td>
</tr>
<tr>
<td>11. PVA 772</td>
<td>1122</td>
<td>bc</td>
<td>90</td>
</tr>
<tr>
<td>12. PVA 880</td>
<td>1034</td>
<td>bc</td>
<td>83</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1010</td>
<td>bc</td>
<td>81</td>
</tr>
<tr>
<td>14. Rubona 5</td>
<td>999</td>
<td>bc</td>
<td>80</td>
</tr>
<tr>
<td>15. RWR 229</td>
<td>972</td>
<td>bc</td>
<td>78</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>936</td>
<td>c</td>
<td>75</td>
</tr>
</tbody>
</table>

Moyenne générale: 1261  
CV %: 44,6  
F calc.: 8,51 **2/  

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.7: Rendements des variétés de l’ECM 87-88 sur haricots nains dans la région de SAVANE DE L’EST.

Altitude: 1250 - 1600 m
Zone: BA
Site: SEMS
Saisons: 87B, 88A, 88B
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RWR 229</td>
<td>3261</td>
<td>a</td>
<td>110</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>3148</td>
<td>ab</td>
<td>106</td>
</tr>
<tr>
<td>3. PVA 1216</td>
<td>3132</td>
<td>ab</td>
<td>106</td>
</tr>
<tr>
<td>4. G 04391</td>
<td>3067</td>
<td>ab</td>
<td>103</td>
</tr>
<tr>
<td>5. Kinyugwe</td>
<td>2983</td>
<td>abc</td>
<td>101</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>2964</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>7. PVA 374</td>
<td>2954</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>8. Rubona 5</td>
<td>2918</td>
<td>a-d</td>
<td>98</td>
</tr>
<tr>
<td>9. Amashongoshwa</td>
<td>2886</td>
<td>a-d</td>
<td>97</td>
</tr>
<tr>
<td>10. PVA 1438</td>
<td>2753</td>
<td>bcd</td>
<td>93</td>
</tr>
<tr>
<td>11. Kibuga</td>
<td>2679</td>
<td>bcd</td>
<td>90</td>
</tr>
<tr>
<td>12. RWR 221</td>
<td>2564</td>
<td>cde</td>
<td>87</td>
</tr>
<tr>
<td>13. PVA 772</td>
<td>2554</td>
<td>cde</td>
<td>86</td>
</tr>
<tr>
<td>14. PVA 880</td>
<td>2502</td>
<td>cde</td>
<td>84</td>
</tr>
<tr>
<td>15. RWR 217</td>
<td>2448</td>
<td>de</td>
<td>83</td>
</tr>
<tr>
<td>16. G 11516</td>
<td>2108</td>
<td>e</td>
<td>71</td>
</tr>
</tbody>
</table>

Moisée générale: 2807
CV %: 20,3
F calc.: 4,40 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.8: Rendements des variétés de l’ECM 87-88 sur haricots nains dans la région du PLATEAU DE L’EST (BA).

Altitude: 1400-1500 m  
zone: BA  
Site: Muyumbu, Kadehero  
Saisons: 87A, 87B, 88A, 88B  
Nombre d’essais: 5

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. RWR 222</td>
<td>1591</td>
</tr>
<tr>
<td>2. Kibuga</td>
<td>1529</td>
</tr>
<tr>
<td>3. RWR 229</td>
<td>1528</td>
</tr>
<tr>
<td>4. RWR 217</td>
<td>1488</td>
</tr>
<tr>
<td>5. RWR 221</td>
<td>1441</td>
</tr>
<tr>
<td>6. PVA 1438</td>
<td>1396</td>
</tr>
<tr>
<td>7. PVA 772</td>
<td>1379</td>
</tr>
<tr>
<td>8. Kinyugwe</td>
<td>1346</td>
</tr>
<tr>
<td>9. G 11516</td>
<td>1334</td>
</tr>
<tr>
<td>10. Amashongoshwa</td>
<td>1290</td>
</tr>
<tr>
<td>11. Rubona 5</td>
<td>1278</td>
</tr>
<tr>
<td>12. PVA 880</td>
<td>1267</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1228</td>
</tr>
<tr>
<td>14. PVA 374</td>
<td>1216</td>
</tr>
<tr>
<td>15. Mélange local (T)</td>
<td>1213</td>
</tr>
<tr>
<td>16. G 04391</td>
<td>1198</td>
</tr>
</tbody>
</table>

Moyenne générale:  1358  
CV %: 25,4  
F calc. 3,39 **

1) Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2) **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.9: Rendements des variétés de l’ECM 87-88 sur haricots nains dans la région du PLATEAU DE L’EST (MA).

Altitude: 1500 - 1800 m  
Zone: MA  
Sites: Rubungo, Gahororo, Mubago  
Saisons: 87A, 87B, 88A, 88B  
Nombre d’essais: 9

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kibuga</td>
<td>2049</td>
<td>a</td>
<td>118</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>1951</td>
<td>ab</td>
<td>112</td>
</tr>
<tr>
<td>3. RWR 221</td>
<td>1889</td>
<td>abc</td>
<td>109</td>
</tr>
<tr>
<td>4. Rubona 5</td>
<td>1818</td>
<td>a-d</td>
<td>105</td>
</tr>
<tr>
<td>5. RWR 229</td>
<td>1814</td>
<td>a-d</td>
<td>104</td>
</tr>
<tr>
<td>6. PVA 772</td>
<td>1781</td>
<td>a-d</td>
<td>102</td>
</tr>
<tr>
<td>7. Kinyugwe</td>
<td>1746</td>
<td>bcd</td>
<td>101</td>
</tr>
<tr>
<td>8. RWR 217</td>
<td>1745</td>
<td>bcd</td>
<td>101</td>
</tr>
<tr>
<td>9. Mélange local (T)</td>
<td>1736</td>
<td>bcd</td>
<td>100</td>
</tr>
<tr>
<td>10. Amashongoshwa</td>
<td>1657</td>
<td>bcd</td>
<td>95</td>
</tr>
<tr>
<td>11. G 04391</td>
<td>1641</td>
<td>cd</td>
<td>95</td>
</tr>
<tr>
<td>12. PVA 1438</td>
<td>1633</td>
<td>cd</td>
<td>94</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1612</td>
<td>cd</td>
<td>93</td>
</tr>
<tr>
<td>14. PVA 374</td>
<td>1567</td>
<td>d</td>
<td>90</td>
</tr>
<tr>
<td>15. PVA 880</td>
<td>1549</td>
<td>d</td>
<td>89</td>
</tr>
<tr>
<td>16. G 11516</td>
<td>1535</td>
<td>d</td>
<td>88</td>
</tr>
<tr>
<td><strong>Moyenne générale</strong></td>
<td>1733</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>35,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td><strong>2,55</strong></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
### Annexe 3.10: Rendements des variétés de l’ECM 87-88 sur haricots nains dans la région du PLATEAU CENTRAL.

**Altitude:** 1500 - 1900 m  
**Zone:** MA  
**Sites:** Rubona, Rusatira, Kabutare, Ndora  
**Saisons:** 87A, 87B, 88A, 88B  
**Nombre d’essais:** 11

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kibuga</td>
<td>2077</td>
<td>a</td>
<td>118</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>1886</td>
<td>ab</td>
<td>108</td>
</tr>
<tr>
<td>3. PVA 1438</td>
<td>1833</td>
<td>bc</td>
<td>105</td>
</tr>
<tr>
<td>4. RWR 221</td>
<td>1831</td>
<td>bc</td>
<td>105</td>
</tr>
<tr>
<td>5. Amashongoshwa</td>
<td>1811</td>
<td>bc</td>
<td>103</td>
</tr>
<tr>
<td>6. PVA 772</td>
<td>1796</td>
<td>bc</td>
<td>103</td>
</tr>
<tr>
<td>7. RWR 217</td>
<td>1793</td>
<td>bc</td>
<td>102</td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>1752</td>
<td>bc</td>
<td>100</td>
</tr>
<tr>
<td>9. Kinyugwe</td>
<td>1734</td>
<td>bc</td>
<td>99</td>
</tr>
<tr>
<td>10. G 11516</td>
<td>1690</td>
<td>bc</td>
<td>96</td>
</tr>
<tr>
<td>11. G 04391</td>
<td>1664</td>
<td>bc</td>
<td>95</td>
</tr>
<tr>
<td>12. Rubona 5</td>
<td>1651</td>
<td>bc</td>
<td>94</td>
</tr>
<tr>
<td>13. PVA 374</td>
<td>1644</td>
<td>bc</td>
<td>94</td>
</tr>
<tr>
<td>14. PVA 880</td>
<td>1637</td>
<td>c</td>
<td>93</td>
</tr>
<tr>
<td>15. RWR 229</td>
<td>1618</td>
<td>c</td>
<td>92</td>
</tr>
<tr>
<td>16. PVA 1216</td>
<td>1597</td>
<td>c</td>
<td>91</td>
</tr>
<tr>
<td><strong>Moyenne générale</strong></td>
<td>1751</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>CV %</strong></td>
<td>31,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>F calc.</strong></td>
<td>2,88 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **:** Différences significatives au niveau de 1 % de probabilité
Annexe 3.11: Rendements des variétés de l'ECM 87-88 sur haricots nains dans la région de la DORSALE GRANITIQUE.

Altitude: 1400 - 1700 m
Zone MA
Sites: Kigoma, Gahana
Saisons: 87A, 87B
Nombre d'essais: 2

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. RWR 221</td>
<td>2081</td>
<td>a</td>
<td>134</td>
</tr>
<tr>
<td>2. Kibuga</td>
<td>2009</td>
<td>ab</td>
<td>129</td>
</tr>
<tr>
<td>3. Kinyuqwe</td>
<td>1928</td>
<td>abc</td>
<td>124</td>
</tr>
<tr>
<td>4. Amashongoshwa</td>
<td>1894</td>
<td>a-d</td>
<td>122</td>
</tr>
<tr>
<td>5. RWR 222</td>
<td>1810</td>
<td>a-e</td>
<td>117</td>
</tr>
<tr>
<td>6. G 04391</td>
<td>1762</td>
<td>a-e</td>
<td>113</td>
</tr>
<tr>
<td>7. PVA 1438</td>
<td>1642</td>
<td>b-e</td>
<td>106</td>
</tr>
<tr>
<td>8. PVA 1216</td>
<td>1607</td>
<td>cde</td>
<td>104</td>
</tr>
<tr>
<td>9. RWR 217</td>
<td>1599</td>
<td>cde</td>
<td>103</td>
</tr>
<tr>
<td>10. G 11516</td>
<td>1590</td>
<td>cde</td>
<td>102</td>
</tr>
<tr>
<td>11. Rubona 5</td>
<td>1583</td>
<td>cde</td>
<td>102</td>
</tr>
<tr>
<td>12. PVA 772</td>
<td>1564</td>
<td>cde</td>
<td>101</td>
</tr>
<tr>
<td>13. Mélange local (T)</td>
<td>1552</td>
<td>cde</td>
<td>100</td>
</tr>
<tr>
<td>14. RWR 229</td>
<td>1528</td>
<td>de</td>
<td>98</td>
</tr>
<tr>
<td>15. PVA 880</td>
<td>1481</td>
<td>e</td>
<td>95</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>1453</td>
<td>e</td>
<td>94</td>
</tr>
<tr>
<td><strong>Moyenne générale</strong></td>
<td>1693</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>21,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>2,82 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.12: Rendements des variétés de l’ECM 87-88 sur haricots nains dans la région de l’IMPALA.

Altitude: 1400 - 1900 m
Zone: MA
Sites: Kamembe
Saisons: 87B, 88A, 88B
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. RWR 221</td>
<td>1693</td>
<td>a</td>
<td>148</td>
</tr>
<tr>
<td>2. G 04391</td>
<td>1650</td>
<td>a</td>
<td>144</td>
</tr>
<tr>
<td>3. Kibuga</td>
<td>1316</td>
<td>b</td>
<td>115</td>
</tr>
<tr>
<td>4. PVA 772</td>
<td>1237</td>
<td>bc</td>
<td>108</td>
</tr>
<tr>
<td>5. RWR 222</td>
<td>1225</td>
<td>bcd</td>
<td>107</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1142</td>
<td>b-e</td>
<td>100</td>
</tr>
<tr>
<td>7. RWR 217</td>
<td>968</td>
<td>c-e</td>
<td>85</td>
</tr>
<tr>
<td>8. Kinyugwe</td>
<td>967</td>
<td>b-e</td>
<td>85</td>
</tr>
<tr>
<td>9. PVA 1216</td>
<td>954</td>
<td>cde</td>
<td>84</td>
</tr>
<tr>
<td>10. PVA 1438</td>
<td>892</td>
<td>cde</td>
<td>78</td>
</tr>
<tr>
<td>11. PVA 880</td>
<td>858</td>
<td>de</td>
<td>75</td>
</tr>
<tr>
<td>12. amashongoshwa</td>
<td>846</td>
<td>e</td>
<td>74</td>
</tr>
<tr>
<td>13. G 11516</td>
<td>829</td>
<td>e</td>
<td>73</td>
</tr>
<tr>
<td>14. RWR 229</td>
<td>825</td>
<td>e</td>
<td>72</td>
</tr>
<tr>
<td>15. Rubona 5</td>
<td>804</td>
<td>e</td>
<td>70</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>783</td>
<td>e</td>
<td>69</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1051</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>21,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>4,40 **</td>
<td></td>
<td>2/</td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.13: Rendements des variétés de l’ECM 87-88 sur haricots nains dans la région des TERRES DE LAVE.

Altitude: 1600 - 2500 m  
Zone: HA  
Sites: PNAP (Ruhengeri)  
Saisons: 87A, 87B, 88A, 88B  
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. RWR 221</td>
<td>2564</td>
<td>a</td>
<td>186</td>
</tr>
<tr>
<td>2. Kibuga</td>
<td>2353</td>
<td>ab</td>
<td>171</td>
</tr>
<tr>
<td>3. RWR 222</td>
<td>2057</td>
<td>bc</td>
<td>149</td>
</tr>
<tr>
<td>4. PVA 1438</td>
<td>2021</td>
<td>bcd</td>
<td>147</td>
</tr>
<tr>
<td>5. Amashongoshwa</td>
<td>1977</td>
<td>bcd</td>
<td>143</td>
</tr>
<tr>
<td>6. Rubona 5</td>
<td>1913</td>
<td>bcd</td>
<td>139</td>
</tr>
<tr>
<td>7. Kinyugwe</td>
<td>1881</td>
<td>cd</td>
<td>136</td>
</tr>
<tr>
<td>8. RWR 217</td>
<td>1858</td>
<td>cd</td>
<td>135</td>
</tr>
<tr>
<td>9. RWR 229</td>
<td>1822</td>
<td>cde</td>
<td>132</td>
</tr>
<tr>
<td>10. G 11516</td>
<td>1822</td>
<td>cde</td>
<td>132</td>
</tr>
<tr>
<td>11. PVA 772</td>
<td>1749</td>
<td>cde</td>
<td>127</td>
</tr>
<tr>
<td>12. PVA 1216</td>
<td>1746</td>
<td>cde</td>
<td>127</td>
</tr>
<tr>
<td>13. G 04391</td>
<td>1620</td>
<td>c-e</td>
<td>117</td>
</tr>
<tr>
<td>14. PVA 880</td>
<td>1602</td>
<td>cde</td>
<td>116</td>
</tr>
<tr>
<td>15. PVA 374</td>
<td>1575</td>
<td>de</td>
<td>114</td>
</tr>
<tr>
<td>16. Mélanges local (T)</td>
<td>1379</td>
<td>e</td>
<td>100</td>
</tr>
</tbody>
</table>

Moyenne générale: 1871  
CV %: 29,9  
F calc.: 3,28 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5% de probabilité  
2/ **: Différences significatives au niveau de 1% de probabilité
Annexe 3.14: Rendements des variétés de l’ECH 87-88 sur haricots nains dans la région du BUBERUKA.

Altitude: 1900 - 2300 m
Zone: HA
Sites: Rwerere
Saisons: 87A, 87B, 88A, 88B
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RWR 221</td>
<td></td>
<td>1758</td>
<td>a</td>
<td>121</td>
</tr>
<tr>
<td>2. Kibuga</td>
<td></td>
<td>1515</td>
<td>b</td>
<td>104</td>
</tr>
<tr>
<td>3. Mélange local (T)</td>
<td></td>
<td>1458</td>
<td>b</td>
<td>100</td>
</tr>
<tr>
<td>4. PVA 1438</td>
<td></td>
<td>1399</td>
<td>bc</td>
<td>96</td>
</tr>
<tr>
<td>5. RWR 222</td>
<td></td>
<td>1342</td>
<td>bcd</td>
<td>92</td>
</tr>
<tr>
<td>6. PVA 772</td>
<td></td>
<td>1182</td>
<td>cde</td>
<td>81</td>
</tr>
<tr>
<td>7. Kinyugwe</td>
<td></td>
<td>1180</td>
<td>cde</td>
<td>81</td>
</tr>
<tr>
<td>8. PVA 374</td>
<td></td>
<td>1165</td>
<td>cde</td>
<td>80</td>
</tr>
<tr>
<td>9. Amashongoshwa</td>
<td></td>
<td>1147</td>
<td>de</td>
<td>79</td>
</tr>
<tr>
<td>10. G 04391</td>
<td></td>
<td>1134</td>
<td>de</td>
<td>78</td>
</tr>
<tr>
<td>11. RWR 217</td>
<td></td>
<td>1088</td>
<td>ef</td>
<td>75</td>
</tr>
<tr>
<td>12. PVA 1216</td>
<td></td>
<td>948</td>
<td>efg</td>
<td>65</td>
</tr>
<tr>
<td>13. RWR 229</td>
<td></td>
<td>893</td>
<td>fg</td>
<td>61</td>
</tr>
<tr>
<td>14. G 11516</td>
<td></td>
<td>883</td>
<td>g</td>
<td>61</td>
</tr>
<tr>
<td>15. Rubona 5</td>
<td></td>
<td>828</td>
<td>g</td>
<td>57</td>
</tr>
<tr>
<td>16. PVA 880</td>
<td></td>
<td>807</td>
<td>g</td>
<td>55</td>
</tr>
<tr>
<td><strong>Moyenne générale</strong></td>
<td></td>
<td>1170</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>CV %</strong></td>
<td></td>
<td>29,6</td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>F calc.</strong></td>
<td></td>
<td>12,11 **2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.15: Rendements des variétés de l’ECM 87-88 sur haricots nains dans la région de la CRETE ZAIRE-NIL.

Altitude: 1900 - 2500 m  
Zone: HA  
Sites: Jomba, Nyabimata  
Saisons: 87A, 87B  
Nombre d’essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. RWR 221</td>
<td>1544</td>
<td>a</td>
<td>127</td>
</tr>
<tr>
<td>2. Mélange local (T)</td>
<td>1213</td>
<td>b</td>
<td>100</td>
</tr>
<tr>
<td>3. Kibuga</td>
<td>1108</td>
<td>bc</td>
<td>91</td>
</tr>
<tr>
<td>4. Kinyugwe</td>
<td>947</td>
<td>cd</td>
<td>76</td>
</tr>
<tr>
<td>5. RWR 222</td>
<td>922</td>
<td>cde</td>
<td>73</td>
</tr>
<tr>
<td>6. RWR 217</td>
<td>884</td>
<td>cde</td>
<td>68</td>
</tr>
<tr>
<td>7. G 04391</td>
<td>878</td>
<td>cde</td>
<td>67</td>
</tr>
<tr>
<td>8. PVA 1438</td>
<td>821</td>
<td>de</td>
<td>67</td>
</tr>
<tr>
<td>9. RWR 229</td>
<td>802</td>
<td>de</td>
<td>65</td>
</tr>
<tr>
<td>10. Amashongoshwa</td>
<td>794</td>
<td>de</td>
<td>63</td>
</tr>
<tr>
<td>11. PVA 772</td>
<td>777</td>
<td>de</td>
<td>63</td>
</tr>
<tr>
<td>12. G 11516</td>
<td>770</td>
<td>de</td>
<td>58</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>739</td>
<td>de</td>
<td>58</td>
</tr>
<tr>
<td>14. PVA 374</td>
<td>712</td>
<td>de</td>
<td>57</td>
</tr>
<tr>
<td>15. Rubona 5</td>
<td>700</td>
<td>de</td>
<td>56</td>
</tr>
<tr>
<td>16. PVA 880</td>
<td>629</td>
<td>e</td>
<td>23</td>
</tr>
</tbody>
</table>

Moyenne générale                  | 890       |         |     |
CV %                              | 39,0      |         |     |
F calc.                           | 6,55 **    |         |     |

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 3.16: Rendements (kg/ha) des variétés de l’ECM 87-88 par SITES en BASSE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Karama c.(4)</td>
</tr>
<tr>
<td>1. G 04391</td>
<td>1710 a 2/</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>1425 bc</td>
</tr>
<tr>
<td>3. Amashongoshwa</td>
<td>1340 b-e</td>
</tr>
<tr>
<td>4. PVA 1438</td>
<td>1344 b-e</td>
</tr>
<tr>
<td>5. Kibuga</td>
<td>1428 bc</td>
</tr>
<tr>
<td>6. RWR 221</td>
<td>1412 bc</td>
</tr>
<tr>
<td>7. M.local</td>
<td>1304 b-e</td>
</tr>
<tr>
<td>8. Kinyugwe</td>
<td>1325 b-e</td>
</tr>
<tr>
<td>9. PVA 772</td>
<td>1498 a</td>
</tr>
<tr>
<td>10. RWR 217</td>
<td>1463 b</td>
</tr>
<tr>
<td>11. PVA 880</td>
<td>1194 cde</td>
</tr>
<tr>
<td>12. RWR 229</td>
<td>1531 b</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1281 b-e</td>
</tr>
<tr>
<td>14. Rubona 5</td>
<td>1380 bcd</td>
</tr>
<tr>
<td>15. G 11516</td>
<td>1146 de</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>1100 e</td>
</tr>
</tbody>
</table>

| Moyenne générale | 1369        | 1621        | 1389        | 2807     |
| CV %             | 24,6        | 24,8        | 35,5        | 20,3     |
| F calc. 3/       | 4,63**      | 7,50**      | 2,45**      | 4,40**   |

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mututu(4)</td>
</tr>
<tr>
<td>1. G 04391</td>
<td>1885 b</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>2049 ab</td>
</tr>
<tr>
<td>3. Amashongoshwa</td>
<td>1467 cd</td>
</tr>
<tr>
<td>4. PVA 1438</td>
<td>1335 cde</td>
</tr>
<tr>
<td>5. Kibuga</td>
<td>2193 a</td>
</tr>
<tr>
<td>6. RWR 221</td>
<td>1969 ab</td>
</tr>
<tr>
<td>7. M.local</td>
<td>1376 cde</td>
</tr>
<tr>
<td>8. Kinyugwe</td>
<td>1575 c</td>
</tr>
<tr>
<td>9. PVA 772</td>
<td>1277 cde</td>
</tr>
<tr>
<td>10. RWR 217</td>
<td>1534 c</td>
</tr>
<tr>
<td>11. PVA 880</td>
<td>1207 de</td>
</tr>
<tr>
<td>12. RWR 229</td>
<td>1365 cde</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1128 e</td>
</tr>
<tr>
<td>14. Rubona 5</td>
<td>1373 cde</td>
</tr>
<tr>
<td>15. G 11516</td>
<td>1454 cd</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>1085 e</td>
</tr>
</tbody>
</table>

| MG                | 1517        | 918       | 1494       | 792     |
| CV %              | 27,0        | 35,7      | 23,4       | 35,9    |
| F c. 3/           | 13,32**     | 9,02**    | 3,38**     | 2,18**  |

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **,**: Essai significatif à 5% et 1% de probabilité.
Annexe 3.17: Rendements (kg/ha) des variétés de l'ECM 87-88 par SITES en MOYENNE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
<th>SITES 2/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rubungo (4)</td>
<td>Buganya (4)</td>
</tr>
<tr>
<td>1. Kibuga</td>
<td>2537 a</td>
<td>2348</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>2405 ab</td>
<td>2287</td>
</tr>
<tr>
<td>3. Amashongoshwa</td>
<td>2174 a-d</td>
<td>2580</td>
</tr>
<tr>
<td>4. PVA 1438</td>
<td>1902 cd</td>
<td>2666</td>
</tr>
<tr>
<td>5. G O4391</td>
<td>1928 cd</td>
<td>2138</td>
</tr>
<tr>
<td>6. RWR 221</td>
<td>2344 abc</td>
<td>2333</td>
</tr>
<tr>
<td>7. M.Local</td>
<td>2103 a-d</td>
<td>-</td>
</tr>
<tr>
<td>8. Kinyugwe</td>
<td>2119 a-d</td>
<td>2244</td>
</tr>
<tr>
<td>9. PVA 772</td>
<td>2361 abc</td>
<td>2602</td>
</tr>
<tr>
<td>10. RWR 217</td>
<td>2067 bcd</td>
<td>2563</td>
</tr>
<tr>
<td>11. PVA 880</td>
<td>1853 d</td>
<td>2712</td>
</tr>
<tr>
<td>12. RWR 229</td>
<td>2236 a-d</td>
<td>2701</td>
</tr>
<tr>
<td>13. RWR 1216</td>
<td>1903 cd</td>
<td>2739</td>
</tr>
<tr>
<td>14. Rubona 5</td>
<td>2071 bcd</td>
<td>2534</td>
</tr>
<tr>
<td>15. G 11516</td>
<td>1780 d</td>
<td>2310</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>1978 bcd</td>
<td>2517</td>
</tr>
</tbody>
</table>

| M.G.                | 2111      | 2331     | 1008       | 1580       | 1525         | 1756       |
| CV %                | 25,0      | 24,3     | 49,7       | 23,5       | 36,6         | 16,7       |
| F calc.3/           | 2,55**    | NS       | NS         | 1,83*      | NS           | NS         |

**M.G.** 1629 1938 1741 2330 1102 1061

**CV %** 24,79 25,0 23,4 49,7 23,5 16,7

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ *, **: Essai significatif à 5% et 1% de probabilité; NS: Non significatif.

<table>
<thead>
<tr>
<th>SITES</th>
<th>Rubungo (4)</th>
<th>Rusatira (3)</th>
<th>Kabutare (1)</th>
<th>Ndora (3)</th>
<th>Kamembe (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kigoma (2)</td>
<td>2248 ab</td>
<td>2439 a</td>
<td>1983 a</td>
<td>2865 a</td>
<td>1144 a-d</td>
</tr>
<tr>
<td>1. 1785 bcd</td>
<td>2060 b</td>
<td>1924 ab</td>
<td>2395 abc</td>
<td>1226 a-d</td>
<td>1316 b</td>
</tr>
<tr>
<td>3. 1772 bcd</td>
<td>2042 b</td>
<td>1702 a-e</td>
<td>2315 abc</td>
<td>1315 ab</td>
<td>892 cde</td>
</tr>
<tr>
<td>4. 1448 cd</td>
<td>2006 b</td>
<td>1828 abc</td>
<td>2810 ab</td>
<td>1010 cde</td>
<td>1380 a</td>
</tr>
<tr>
<td>5. 1634 cd</td>
<td>2002 b</td>
<td>1462 e</td>
<td>1685 c</td>
<td>1380 e</td>
<td>892 cde</td>
</tr>
<tr>
<td>6. 2359 a</td>
<td>1990 b</td>
<td>1963 a</td>
<td>2430 abc</td>
<td>950 de</td>
<td>1693 a</td>
</tr>
<tr>
<td>7. 1442 cd</td>
<td>1974 b</td>
<td>1743 a-d</td>
<td>1855 bc</td>
<td>1276 abc</td>
<td>1142 b-e</td>
</tr>
<tr>
<td>8. 1846 abc</td>
<td>1929 b</td>
<td>1722 a-e</td>
<td>2295 abc</td>
<td>1088 bcd</td>
<td>967 b-e</td>
</tr>
<tr>
<td>9. 1533 cd</td>
<td>1918 b</td>
<td>1719 a-e</td>
<td>3000 a</td>
<td>1102 bcd</td>
<td>1237 bc</td>
</tr>
<tr>
<td>10. 1640 cd</td>
<td>1889 b</td>
<td>1877 ab</td>
<td>2625 abc</td>
<td>1015 cde</td>
<td>968 b-e</td>
</tr>
<tr>
<td>11. 1194 d</td>
<td>1839 b</td>
<td>1741 a-d</td>
<td>2100 abc</td>
<td>795 e</td>
<td>858 de</td>
</tr>
<tr>
<td>12. 1379 cd</td>
<td>1816 b</td>
<td>1583 b-e</td>
<td>2290 abc</td>
<td>958 de</td>
<td>825 e</td>
</tr>
<tr>
<td>13. 1393 cd</td>
<td>1797 b</td>
<td>1667 b-e</td>
<td>1695 c</td>
<td>1007 cde</td>
<td>954 b-e</td>
</tr>
<tr>
<td>14. 1578 cd</td>
<td>1780 b</td>
<td>1535 de</td>
<td>2590 abc</td>
<td>1154 a-d</td>
<td>804 e</td>
</tr>
<tr>
<td>15. 1478 cd</td>
<td>1776 b</td>
<td>1754 a-d</td>
<td>2320 abc</td>
<td>1072 bcd</td>
<td>829 e</td>
</tr>
<tr>
<td>16. 1339 cd</td>
<td>1748 b</td>
<td>1648 b-e</td>
<td>2055 abc</td>
<td>1221 a-d</td>
<td>783 e</td>
</tr>
</tbody>
</table>

| MG             | 1629       | 1938       | 1741       | 2330       | 1102        | 1061       |
| CV %           | 24,79      | 25,0       | 23,4       | 49,7       | 23,5        | 16,7       |
| F calc.3/      | 2,55**     | NS         | NS         | 1,83*      | NS          | NS         |

| C.             | 3,08**     | 1,82*      | 3,09**     | 1,83**     | 3,27**      | 6,41**     |
Annexe 3.18: Rendements (kg/ha) des variétés de l'ECM 87-88 par SITES en HAUTE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rwerere (4)</td>
</tr>
<tr>
<td>1. RWR 221</td>
<td>1758 a</td>
</tr>
<tr>
<td>2. RWR 222</td>
<td>1643 ab</td>
</tr>
<tr>
<td>3. Amashongoshwa</td>
<td>1325 cd</td>
</tr>
<tr>
<td>4. PVA 1438</td>
<td>1135 bcd</td>
</tr>
<tr>
<td>5. G 04391</td>
<td>361 e</td>
</tr>
<tr>
<td>6. Kibuga</td>
<td>1834 a</td>
</tr>
<tr>
<td>7. M.local</td>
<td>502 de</td>
</tr>
<tr>
<td>8. Kinyugwe</td>
<td>1287 bcd</td>
</tr>
<tr>
<td>9. PVA 772</td>
<td>1224 cd</td>
</tr>
<tr>
<td>10. RWR 217</td>
<td>1317 bcd</td>
</tr>
<tr>
<td>11. PVA 880</td>
<td>1054 cde</td>
</tr>
<tr>
<td>12. RWR 229</td>
<td>1436 bcd</td>
</tr>
<tr>
<td>13. PVA 1216</td>
<td>1039 cde</td>
</tr>
<tr>
<td>14. Rubona5</td>
<td>1321 bcd</td>
</tr>
<tr>
<td>15. G 11516</td>
<td>1353 bcd</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>1155 cd</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1170</td>
</tr>
<tr>
<td>Cv %</td>
<td>29,6</td>
</tr>
<tr>
<td>F calc.3/</td>
<td>12,11**</td>
</tr>
</tbody>
</table>

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité.

92

Site: - Nom: Rwerere  
- Altitude: 2060 m  
- Saisons: 87A, 87B, 88B  
- Région: Buberuka  
- Zone: HA

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Réaction aux maladies *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Virose</td>
</tr>
<tr>
<td>1. RWR 222</td>
<td>2,27</td>
</tr>
<tr>
<td>2. Kinyugwe</td>
<td>1,40</td>
</tr>
<tr>
<td>3. PVA 880</td>
<td>1,27</td>
</tr>
<tr>
<td>4. Mélange local</td>
<td>3,07</td>
</tr>
<tr>
<td>5. Amashongoshwa</td>
<td>1,20</td>
</tr>
<tr>
<td>6. RWR 221</td>
<td>2,07</td>
</tr>
<tr>
<td>7. G 11516</td>
<td>1,27</td>
</tr>
<tr>
<td>8. PVA 772</td>
<td>1,20</td>
</tr>
<tr>
<td>9. PVA 1438</td>
<td>1,20</td>
</tr>
<tr>
<td>10. RWR 229</td>
<td>1,33</td>
</tr>
<tr>
<td>11. PVA 1216</td>
<td>1,53</td>
</tr>
<tr>
<td>12. RWR 217</td>
<td>1,73</td>
</tr>
<tr>
<td>13. G 04391</td>
<td>2,13</td>
</tr>
<tr>
<td>14. Rubons 5</td>
<td>2,00</td>
</tr>
<tr>
<td>15. Kibuga</td>
<td>2,03</td>
</tr>
<tr>
<td>16. PVA 374</td>
<td>1,20</td>
</tr>
</tbody>
</table>

* Cotation: 1 à 9 (1=résistant; 9=tres sensible)  
** Anthracnose cotée en saisons 87B et 88B seulement
7.4. TABLEAUX DES RESULTATS DE L’ECM 88-89
Annexe 4.1: Rendements des variétés de l’ECM 88-89 sur haricots nains: ANALYSE GLOBALE.

Sites: Rubona, Kigoma, Kabutare, Mwogo, Karama (PAG), Kabuga, Mututu, Mubago, Karama (colluvion), Karama (plateau), Nyiragatugu, Kadehero, SEMS, Rwerere, PNAP (Ruhengeri)

Saisons: 88A, 88B, 89A, 89B

Nombre d’essais: 51

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement Kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nain de Kyondo</td>
<td>1292</td>
<td>a</td>
<td>108</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1275</td>
<td>a</td>
<td>106</td>
</tr>
<tr>
<td>3. PVA 774</td>
<td>1263</td>
<td>a</td>
<td>105</td>
</tr>
<tr>
<td>4. Mélange local (T)</td>
<td>1199</td>
<td>ab</td>
<td>100</td>
</tr>
<tr>
<td>5. RWR 45</td>
<td>1173</td>
<td>a-c</td>
<td>98</td>
</tr>
<tr>
<td>6. RWR 52</td>
<td>1116</td>
<td>b-d</td>
<td>93</td>
</tr>
<tr>
<td>7. PVA 15</td>
<td>1087</td>
<td>b-e</td>
<td>91</td>
</tr>
<tr>
<td>8. K-20</td>
<td>1082</td>
<td>b-e</td>
<td>90</td>
</tr>
<tr>
<td>9. PVA 782</td>
<td>1081</td>
<td>b-e</td>
<td>90</td>
</tr>
<tr>
<td>10. ZAA 840086</td>
<td>1074</td>
<td>b-e</td>
<td>90</td>
</tr>
<tr>
<td>11. Kabanima</td>
<td>1072</td>
<td>b-e</td>
<td>89</td>
</tr>
<tr>
<td>12. Hatuey 23</td>
<td>1030</td>
<td>c-e</td>
<td>86</td>
</tr>
<tr>
<td>13. PVA 705</td>
<td>1029</td>
<td>c-e</td>
<td>86</td>
</tr>
<tr>
<td>14. PVA 46</td>
<td>971</td>
<td>de</td>
<td>81</td>
</tr>
<tr>
<td>15. RWR 14</td>
<td>968</td>
<td>de</td>
<td>81</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>944</td>
<td>e</td>
<td>79</td>
</tr>
<tr>
<td><strong>Mayenne générale</strong></td>
<td>1103</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>67,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>5,44 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.2: Rendements des variétés de l’ECM 88-89 sur haricots nains en Zone de BASSE ALTITUDE.

Altitude: 970-1500 m  
Sites: Karama (colluvion), Karama (plateau), Gashora, Mututu, Kadehero, SEMS  
Saisons: 88A, 88B, 89A, 89B  
Nombre d’essais: 22

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kg/ha</td>
</tr>
<tr>
<td>1. PVA 774</td>
<td>1366</td>
</tr>
<tr>
<td>2. Nain de Kyondo</td>
<td>1359</td>
</tr>
<tr>
<td>3. Kilyumukwe</td>
<td>1303</td>
</tr>
<tr>
<td>4. Mélange local (T)</td>
<td>1276</td>
</tr>
<tr>
<td>5. RWR 52</td>
<td>1257</td>
</tr>
<tr>
<td>6. RWR 45</td>
<td>1218</td>
</tr>
<tr>
<td>7. K 20</td>
<td>1212</td>
</tr>
<tr>
<td>8. PVA 782</td>
<td>1203</td>
</tr>
<tr>
<td>9. Kabanima</td>
<td>1191</td>
</tr>
<tr>
<td>10. PVA 15</td>
<td>1145</td>
</tr>
<tr>
<td>11. ZAA 84086</td>
<td>1142</td>
</tr>
<tr>
<td>12. RWR 14</td>
<td>1137</td>
</tr>
<tr>
<td>13. Hatuey 23</td>
<td>1064</td>
</tr>
<tr>
<td>14. PVA 46</td>
<td>1050</td>
</tr>
<tr>
<td>15. PVA 705</td>
<td>1014</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>972</td>
</tr>
</tbody>
</table>

Moyenne générale 1181  
CV % 68,0  
F calc. 2,33 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité.  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.3: Rendements des variétés de l’ECM 88-89 sur haricots nains en Zone de MOYENNE ALTITUDE.

Altitude: 1500-1800 m  
Sites: Rubona, Kigoma, Buganya, Mubago, Karama (PAG), Mwogo, Kabuga, Kabutare  
Saisons: 88A, 88B, 89A, 89B  
Nombre d’essais: 21

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement Kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nain de Kyondo</td>
<td>1132</td>
<td>a</td>
<td>109</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1123</td>
<td>ab</td>
<td>109</td>
</tr>
<tr>
<td>3. PVA 774</td>
<td>1088</td>
<td>a-c</td>
<td>105</td>
</tr>
<tr>
<td>4. RWR 45</td>
<td>1035</td>
<td>a-d</td>
<td>100</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>1034</td>
<td>a-d</td>
<td>100</td>
</tr>
<tr>
<td>6. PVA 15</td>
<td>997</td>
<td>a-d</td>
<td>96</td>
</tr>
<tr>
<td>7. RWR 52</td>
<td>962</td>
<td>a-d</td>
<td>93</td>
</tr>
<tr>
<td>8. PVA 705</td>
<td>956</td>
<td>b-d</td>
<td>92</td>
</tr>
<tr>
<td>9. K 20</td>
<td>931</td>
<td>cd</td>
<td>90</td>
</tr>
<tr>
<td>10. ZAA 84086</td>
<td>930</td>
<td>cd</td>
<td>90</td>
</tr>
<tr>
<td>11. Kabanima</td>
<td>923</td>
<td>cd</td>
<td>89</td>
</tr>
<tr>
<td>12. Hatuey 23</td>
<td>912</td>
<td>d</td>
<td>88</td>
</tr>
<tr>
<td>13. PVA 782</td>
<td>896</td>
<td>d</td>
<td>87</td>
</tr>
<tr>
<td>14. G 11525</td>
<td>874</td>
<td>d</td>
<td>85</td>
</tr>
<tr>
<td>15. RWR 14</td>
<td>860</td>
<td>d</td>
<td>83</td>
</tr>
<tr>
<td>16. PVA 46</td>
<td>858</td>
<td>d</td>
<td>83</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>969</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>55,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>2.89 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité.  
2/ **: Différences significatives au niveau de 1 % de probabilité
### Annexe 4.4: Rendements des variétés de l’ECM 88-89 sur haricots nains en Zone de HAUTE ALTITUDE.

**Altitude:** 1800-2500m  
**Sites:** Rwerere, PNAP (Ruhengeri)  
**Saisons:** 88A, 88B, 89A, 89B  
**Nombre d’essais:** 8

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kilyumukwe</td>
<td>1596</td>
<td>a</td>
<td>112</td>
</tr>
<tr>
<td>2. Nain de Kyondo</td>
<td>1528</td>
<td>a</td>
<td>108</td>
</tr>
<tr>
<td>3. PVA 774</td>
<td>1436</td>
<td>ab</td>
<td>101</td>
</tr>
<tr>
<td>4. Mélange local (T)</td>
<td>1420</td>
<td>ab</td>
<td>100</td>
</tr>
<tr>
<td>5. RWR 45</td>
<td>1414</td>
<td>ab</td>
<td>100</td>
</tr>
<tr>
<td>6. ZAA 84086</td>
<td>1263</td>
<td>bc</td>
<td>89</td>
</tr>
<tr>
<td>7. PVA 705</td>
<td>1261</td>
<td>bc</td>
<td>89</td>
</tr>
<tr>
<td>8. Hatuey 23</td>
<td>1245</td>
<td>bc</td>
<td>88</td>
</tr>
<tr>
<td>9. PVA 782</td>
<td>1228</td>
<td>bc</td>
<td>86</td>
</tr>
<tr>
<td>10. PVA 15</td>
<td>1164</td>
<td>c</td>
<td>82</td>
</tr>
<tr>
<td>11. Kabanima</td>
<td>1136</td>
<td>c</td>
<td>80</td>
</tr>
<tr>
<td>12. RWR 52</td>
<td>1132</td>
<td>c</td>
<td>80</td>
</tr>
<tr>
<td>13. K 20</td>
<td>1122</td>
<td>c</td>
<td>79</td>
</tr>
<tr>
<td>14. G 11525</td>
<td>1052</td>
<td>c</td>
<td>74</td>
</tr>
<tr>
<td>15. PVA 46</td>
<td>1051</td>
<td>c</td>
<td>74</td>
</tr>
<tr>
<td>16. RWR 14</td>
<td>784</td>
<td>d</td>
<td>55</td>
</tr>
</tbody>
</table>

**Moyenne générale**  
1239  
**CV %**  
40,0  
**F calc.**  
6,86 **2/**

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **:** Différences significatives au niveau de 1 % de probabilité
Annexe 4.5: Rendements des variétés de l'ECM 88-89 sur haricots nains dans la région du BUGESERA.

Altitude: 1300-1550 m
Zone: BA
Sites: Karama (colluvion), Karama (transition), Gashora,
Saisons: 88A, 88B, 89A, 89B
Nombre d'essais: 11

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. PVA 774</td>
<td>1187</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1162</td>
</tr>
<tr>
<td>3. RWR 45</td>
<td>1148</td>
</tr>
<tr>
<td>4. RWR 14</td>
<td>1128</td>
</tr>
<tr>
<td>5. RWR 52</td>
<td>1127</td>
</tr>
<tr>
<td>6. Mélange local(T)</td>
<td>1119</td>
</tr>
<tr>
<td>7. K 20</td>
<td>1117</td>
</tr>
<tr>
<td>8. Kabanima</td>
<td>1096</td>
</tr>
<tr>
<td>9. Nain de Kyondo</td>
<td>1095</td>
</tr>
<tr>
<td>10. PVA 15</td>
<td>1065</td>
</tr>
<tr>
<td>11. PVA 782</td>
<td>1030</td>
</tr>
<tr>
<td>12. Natuey 23</td>
<td>1012</td>
</tr>
<tr>
<td>13. ZAA 84086</td>
<td>1009</td>
</tr>
<tr>
<td>14. PVA 46</td>
<td>970</td>
</tr>
<tr>
<td>15. PVA 705</td>
<td>944</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>874</td>
</tr>
</tbody>
</table>

Moyenne générale | 1067
CV % | 43,6
F calc. | 1,93 * 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité.
2/ *: Différences significatives au niveau de 5 % de probabilité.
Annexe 4.6: Rendements des variétés de l'ECM 88-89 sur haricots nains dans la région de MAYAGA.

Altitude : 1350-1500m  
Zone : BA  
Sites: Mututu  
Saisons: 88A, 88B, 89A, 89B  
Nombre d'essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Nain de Kyondo</td>
<td>1219 a</td>
<td>a</td>
<td>112</td>
</tr>
<tr>
<td>2. PVA 774</td>
<td>1154 ab</td>
<td>b-d</td>
<td>106</td>
</tr>
<tr>
<td>3. K 20</td>
<td>1116 ab</td>
<td>a-c</td>
<td>103</td>
</tr>
<tr>
<td>4. PVA 782</td>
<td>1111 ab</td>
<td>a-d</td>
<td>102</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>1084 a-c</td>
<td>a-d</td>
<td>100</td>
</tr>
<tr>
<td>6. Kabanima</td>
<td>1023 a-d</td>
<td>a-d</td>
<td>94</td>
</tr>
<tr>
<td>7. Kilyumukwe</td>
<td>1022 a-d</td>
<td>a-d</td>
<td>94</td>
</tr>
<tr>
<td>8. RWR 52</td>
<td>1007 b-d</td>
<td>b-d</td>
<td>93</td>
</tr>
<tr>
<td>9. PVA 15</td>
<td>983 b-d</td>
<td>b-d</td>
<td>91</td>
</tr>
<tr>
<td>10. RWR 14</td>
<td>975 b-d</td>
<td>b-d</td>
<td>90</td>
</tr>
<tr>
<td>11. Hatuey</td>
<td>965 b-d</td>
<td>b-d</td>
<td>89</td>
</tr>
<tr>
<td>12. ZAA 84086</td>
<td>945 b-d</td>
<td>b-d</td>
<td>87</td>
</tr>
<tr>
<td>13. RWR 45</td>
<td>938 b-d</td>
<td>b-d</td>
<td>87</td>
</tr>
<tr>
<td>14. PVA 705</td>
<td>870 cd</td>
<td>cd</td>
<td>80</td>
</tr>
<tr>
<td>15. PVA 46</td>
<td>856 de</td>
<td>de</td>
<td>79</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>675 e</td>
<td>e</td>
<td>62</td>
</tr>
</tbody>
</table>

**Moyenne générale**  
CV % 29,0  
F calc. 4,12 **

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.7: Rendement des variétés de l'ECK 88-89 sur haricots nains dans la région de SAVANE DE L'EST.

Altitude: 1250-1600 m  
Zone: BA  
Sites: SEMS  
Saisons: 88A, 88B, 89A, 89B  
Nombre d'essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kilyumukwe</td>
<td>2628</td>
<td>a</td>
<td>106</td>
</tr>
<tr>
<td>2. RWR 52</td>
<td>2614</td>
<td>a</td>
<td>105</td>
</tr>
<tr>
<td>3. Nain de kyondo</td>
<td>2603</td>
<td>ab</td>
<td>105</td>
</tr>
<tr>
<td>4. PVA 774</td>
<td>2584</td>
<td>ab</td>
<td>104</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>2480</td>
<td>a-c</td>
<td>100</td>
</tr>
<tr>
<td>6. PVA 782</td>
<td>2324</td>
<td>a-d</td>
<td>94</td>
</tr>
<tr>
<td>7. ZAA 84086</td>
<td>2206</td>
<td>a-d</td>
<td>89</td>
</tr>
<tr>
<td>8. PVA 15</td>
<td>2199</td>
<td>a-d</td>
<td>89</td>
</tr>
<tr>
<td>9. K-20</td>
<td>2124</td>
<td>a-d</td>
<td>86</td>
</tr>
<tr>
<td>10. Kabanima</td>
<td>2115</td>
<td>a-d</td>
<td>85</td>
</tr>
<tr>
<td>11. RWR 45</td>
<td>2042</td>
<td>a-d</td>
<td>82</td>
</tr>
<tr>
<td>12. RWR 14</td>
<td>1969</td>
<td>c-e</td>
<td>79</td>
</tr>
<tr>
<td>13. PVA 46</td>
<td>1825</td>
<td>d-e</td>
<td>74</td>
</tr>
<tr>
<td>14. G 11525</td>
<td>1819</td>
<td>d-e</td>
<td>73</td>
</tr>
<tr>
<td>15. PVA 705</td>
<td>1769</td>
<td>d-e</td>
<td>71</td>
</tr>
<tr>
<td>16. HATUEY 23</td>
<td>1457</td>
<td>e</td>
<td>59</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>2172</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>30,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>4,27 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité

2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.8: Rendement des variétés de l’ECM 88-89 sur haricots nains dans la région du PLATEAU DE L’EST (BA).

Altitude: 1400-1500 m  
Zone: BA  
Sites: Kadehero  
Saisons: 88A, 88B, 89A, 89B  
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td>DMRT 1/</td>
<td>% T</td>
</tr>
<tr>
<td>1. Nain de kyondo</td>
<td>1291</td>
<td>a</td>
<td>129</td>
</tr>
<tr>
<td>2. PVA 774</td>
<td>1155</td>
<td>ab</td>
<td>116</td>
</tr>
<tr>
<td>3. RWR 45</td>
<td>1069</td>
<td>a-c</td>
<td>107</td>
</tr>
<tr>
<td>4. Hatuey 23</td>
<td>1012</td>
<td>b-d</td>
<td>101</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>999</td>
<td>b-e</td>
<td>100</td>
</tr>
<tr>
<td>6. Kilyumukwe</td>
<td>978</td>
<td>b-e</td>
<td>98</td>
</tr>
<tr>
<td>7. PVA 782</td>
<td>930</td>
<td>b-f</td>
<td>93</td>
</tr>
<tr>
<td>8. Kabanima</td>
<td>928</td>
<td>b-f</td>
<td>93</td>
</tr>
<tr>
<td>9. ZAA 84086</td>
<td>909</td>
<td>b-f</td>
<td>91</td>
</tr>
<tr>
<td>10. G 11525</td>
<td>903</td>
<td>b-f</td>
<td>90</td>
</tr>
<tr>
<td>11. K-20</td>
<td>887</td>
<td>c-f</td>
<td>89</td>
</tr>
<tr>
<td>12. PVA 46</td>
<td>885</td>
<td>c-f</td>
<td>89</td>
</tr>
<tr>
<td>13. RWR 52</td>
<td>844</td>
<td>c-f</td>
<td>84</td>
</tr>
<tr>
<td>14. PVA 705</td>
<td>785</td>
<td>d-f</td>
<td>79</td>
</tr>
<tr>
<td>15. PVA 15</td>
<td>734</td>
<td>ef</td>
<td>73</td>
</tr>
<tr>
<td>16. RWR 14</td>
<td>699</td>
<td>f</td>
<td>70</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>938</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>37,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>3,57 **</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.9: Rendement des variétés de l'ECM 88-89 sur haricots nains dans la région du PLATEAU DE L'EST (M).

Altitude: 1400-1800 m  
Zone: MA  
Sites: Buganya, Mubago  
Saisons: 88A, 88B, 89A, 89B  
Nombre d'essais: 7

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. RWR 45</td>
<td>966</td>
<td>a</td>
<td>127</td>
</tr>
<tr>
<td>2. PVA 774</td>
<td>842</td>
<td>ab</td>
<td>110</td>
</tr>
<tr>
<td>3. PVA 705</td>
<td>782</td>
<td>abc</td>
<td>102</td>
</tr>
<tr>
<td>4. ZAA 84086</td>
<td>773</td>
<td>abc</td>
<td>101</td>
</tr>
<tr>
<td>5. Kabanima</td>
<td>773</td>
<td>abc</td>
<td>101</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>763</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>7. Kilyumukwe</td>
<td>747</td>
<td>bc</td>
<td>98</td>
</tr>
<tr>
<td>8. K-20</td>
<td>712</td>
<td>bc</td>
<td>93</td>
</tr>
<tr>
<td>9. Hatuey 23</td>
<td>710</td>
<td>bc</td>
<td>93</td>
</tr>
<tr>
<td>10. RWR 14</td>
<td>683</td>
<td>bc</td>
<td>90</td>
</tr>
<tr>
<td>11. Nain de Kyondo</td>
<td>674</td>
<td>bc</td>
<td>88</td>
</tr>
<tr>
<td>12. RWR 52</td>
<td>674</td>
<td>bc</td>
<td>88</td>
</tr>
<tr>
<td>13. PVA 15</td>
<td>674</td>
<td>bc</td>
<td>88</td>
</tr>
<tr>
<td>14. PVA 782</td>
<td>672</td>
<td>bc</td>
<td>88</td>
</tr>
<tr>
<td>15. G 11525</td>
<td>630</td>
<td>bc</td>
<td>83</td>
</tr>
<tr>
<td>16. PVA 46</td>
<td>619</td>
<td>c</td>
<td>81</td>
</tr>
</tbody>
</table>

Moyenne générale 731  
CV % 52,4  
F calc. 1,81 * 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ *: Différences significatives au niveau de 5 % de probabilité
Annexe 4.10: Rendement des variétés de l’ECH 88-89 sur haricots nains dans la région du PLATEAU CENTRAL.

Altitude: 1500-1900 m  
Zone: MA  
Sites: Rubona, Karama, Mwogo, Kabutare  
Saisons: 88A, 88B, 89A, 89b  
Nombre d’essais: 13

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Nain de Kyondo</td>
<td>1386</td>
<td>a</td>
<td>117</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1323</td>
<td>ab</td>
<td>112</td>
</tr>
<tr>
<td>3. PVA 774</td>
<td>1223</td>
<td>a-c</td>
<td>103</td>
</tr>
<tr>
<td>4. Mélange local (T)</td>
<td>1182</td>
<td>a-d</td>
<td>100</td>
</tr>
<tr>
<td>5. PVA 15</td>
<td>1155</td>
<td>b-c</td>
<td>98</td>
</tr>
<tr>
<td>6. RWR 52</td>
<td>1110</td>
<td>b-e</td>
<td>94</td>
</tr>
<tr>
<td>7. RWR 45</td>
<td>1076</td>
<td>c-e</td>
<td>91</td>
</tr>
<tr>
<td>8. K-20</td>
<td>1050</td>
<td>c-e</td>
<td>89</td>
</tr>
<tr>
<td>9. PVA 705</td>
<td>1032</td>
<td>c-e</td>
<td>87</td>
</tr>
<tr>
<td>10. Hatuey 23</td>
<td>1016</td>
<td>c-e</td>
<td>86</td>
</tr>
<tr>
<td>11. Kabanima</td>
<td>1015</td>
<td>c-e</td>
<td>86</td>
</tr>
<tr>
<td>12. PVA 782</td>
<td>1009</td>
<td>c-e</td>
<td>85</td>
</tr>
<tr>
<td>13. ZAA 84086</td>
<td>996</td>
<td>c-e</td>
<td>84</td>
</tr>
<tr>
<td>14. G 11525</td>
<td>989</td>
<td>de</td>
<td>84</td>
</tr>
<tr>
<td>15. PVA 46</td>
<td>986</td>
<td>de</td>
<td>83</td>
</tr>
<tr>
<td>16. RWR 14</td>
<td>930</td>
<td>e</td>
<td>79</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1092</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>49,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>3,64 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.11: Rendement des variétés de l'ECM 88-89 sur haricots nains dans la région de la DORSALE GRANITIQUE.

Altitude: 1400-1700 m  
Zone: MA  
Sites: Kigoma  
Saisons: 88A, 88B, 89A  
Nombre d'essais: 3

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. PVA 46</td>
<td>961</td>
<td>a</td>
<td>141</td>
</tr>
<tr>
<td>2. PVA 15</td>
<td>954</td>
<td>a</td>
<td>140</td>
</tr>
<tr>
<td>3. Hatuey 23</td>
<td>938</td>
<td>ab</td>
<td>137</td>
</tr>
<tr>
<td>4. Kilyumukwe</td>
<td>915</td>
<td>abc</td>
<td>134</td>
</tr>
<tr>
<td>5. Nain de kyondo</td>
<td>897</td>
<td>abc</td>
<td>131</td>
</tr>
<tr>
<td>6. PVA 774</td>
<td>892</td>
<td>abc</td>
<td>131</td>
</tr>
<tr>
<td>7. Kabanima</td>
<td>880</td>
<td>abc</td>
<td>129</td>
</tr>
<tr>
<td>8. RWR 52</td>
<td>827</td>
<td>abc</td>
<td>121</td>
</tr>
<tr>
<td>9. ZAA 84086</td>
<td>826</td>
<td>abc</td>
<td>121</td>
</tr>
<tr>
<td>10. RWR 14</td>
<td>820</td>
<td>abc</td>
<td>120</td>
</tr>
<tr>
<td>11. PVA 782</td>
<td>819</td>
<td>abc</td>
<td>120</td>
</tr>
<tr>
<td>12. RWR 45</td>
<td>785</td>
<td>abc</td>
<td>115</td>
</tr>
<tr>
<td>13. K 20</td>
<td>766</td>
<td>abc</td>
<td>112</td>
</tr>
<tr>
<td>14. PVA 705</td>
<td>703</td>
<td>bc</td>
<td>103</td>
</tr>
<tr>
<td>15. G 11525</td>
<td>691</td>
<td>c</td>
<td>101</td>
</tr>
<tr>
<td>16. Mélange local (T)</td>
<td>683</td>
<td>c</td>
<td>100</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>835</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>33,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>NS 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ NS: non significatif
Annexe 4.12: Rendement des variétés de l’ECM 88-89 sur haricots nains dans la région de BORDS du LAC KIVU.

Altitude: 1460-1900 m  
Zone: MA  
Sites: Kabuga  
Saisons: 89B  
Nombre d’essais: 1

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. PVA 15</td>
<td>1196</td>
</tr>
<tr>
<td>2. RWR 14</td>
<td>1187</td>
</tr>
<tr>
<td>3. ZAA 84086</td>
<td>1157</td>
</tr>
<tr>
<td>4. PVA 705</td>
<td>1152</td>
</tr>
<tr>
<td>5. Kilyumukwe</td>
<td>1151</td>
</tr>
<tr>
<td>6. G 11525</td>
<td>1080</td>
</tr>
<tr>
<td>7. PVA 774</td>
<td>1064</td>
</tr>
<tr>
<td>8. RWR 52</td>
<td>1053</td>
</tr>
<tr>
<td>9. Nain de Kyondo</td>
<td>1035</td>
</tr>
<tr>
<td>10. Mélange local (T)</td>
<td>1008</td>
</tr>
<tr>
<td>11. PVA 782</td>
<td>994</td>
</tr>
<tr>
<td>12. Hatuey 23</td>
<td>975</td>
</tr>
<tr>
<td>13. RWR 45</td>
<td>969</td>
</tr>
<tr>
<td>14. K-20</td>
<td>913</td>
</tr>
<tr>
<td>15. PVA 46</td>
<td>862</td>
</tr>
<tr>
<td>16. Kabanima</td>
<td>783</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1036</td>
</tr>
<tr>
<td>CV %</td>
<td>25,4</td>
</tr>
<tr>
<td>F calc.</td>
<td>NS</td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité.  
2/ NS: non significatif
Annexe 4.13: Rendement des variétés de l’ECM 88-89 sur haricots nains dans la région des TERRES DE LAVE.

Altitude: 1600-2500 m  
Zone: MA  
Sites: PNAP (Ruhengeri)  
Saisons: 88A, 88B, 89A, 89b  
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Nain de kyondo</td>
<td>1854</td>
<td>a</td>
<td>139</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1663</td>
<td>ab</td>
<td>124</td>
</tr>
<tr>
<td>3. PVA 774</td>
<td>1464</td>
<td>bc</td>
<td>110</td>
</tr>
<tr>
<td>4. RWR 45</td>
<td>1411</td>
<td>bcd</td>
<td>106</td>
</tr>
<tr>
<td>5. PVA 782</td>
<td>1389</td>
<td>bcd</td>
<td>104</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1336</td>
<td>cd</td>
<td>100</td>
</tr>
<tr>
<td>7. PVA 15</td>
<td>1319</td>
<td>cd</td>
<td>99</td>
</tr>
<tr>
<td>8. PVA 705</td>
<td>1312</td>
<td>cd</td>
<td>98</td>
</tr>
<tr>
<td>9. ZAA 84086</td>
<td>1284</td>
<td>cd</td>
<td>96</td>
</tr>
<tr>
<td>10. RWR 52</td>
<td>1253</td>
<td>cd</td>
<td>94</td>
</tr>
<tr>
<td>11. PVA 46</td>
<td>1247</td>
<td>cd</td>
<td>93</td>
</tr>
<tr>
<td>12. Hatuey 23</td>
<td>1228</td>
<td>cd</td>
<td>92</td>
</tr>
<tr>
<td>13. G 11525</td>
<td>1200</td>
<td>cd</td>
<td>90</td>
</tr>
<tr>
<td>14. Kabanima</td>
<td>1185</td>
<td>cd</td>
<td>89</td>
</tr>
<tr>
<td>15. RWR 14</td>
<td>1113</td>
<td>d</td>
<td>83</td>
</tr>
<tr>
<td>16. K-20</td>
<td>1107</td>
<td>d</td>
<td>83</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1335</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>33,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>3,93 **</td>
<td>2/</td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.14: Rendement des variétés de l’ECM 88-89 sur haricots nains dans la région de BUBERUKA.

Altitude: 1900-2300 m  
Zone: HA  
Sites: Rwerere  
Saisons: 88A, 88B, 89A, 89B  
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Kilyumukwe</td>
<td>1529</td>
<td>a</td>
<td>102</td>
</tr>
<tr>
<td>2. Mélange local (T)</td>
<td>1504</td>
<td>a</td>
<td>100</td>
</tr>
<tr>
<td>3. RWR 45</td>
<td>1417</td>
<td>ab</td>
<td>94</td>
</tr>
<tr>
<td>4. PVA 774</td>
<td>1407</td>
<td>ab</td>
<td>94</td>
</tr>
<tr>
<td>5. Hatuey 23</td>
<td>1262</td>
<td>abc</td>
<td>94</td>
</tr>
<tr>
<td>6. ZAA 84086</td>
<td>1243</td>
<td>bcd</td>
<td>84</td>
</tr>
<tr>
<td>7. PVA 705</td>
<td>1211</td>
<td>bcd</td>
<td>81</td>
</tr>
<tr>
<td>8. Nain de kyondo</td>
<td>1201</td>
<td>bcd</td>
<td>80</td>
</tr>
<tr>
<td>9. K-20</td>
<td>1137</td>
<td>cd</td>
<td>76</td>
</tr>
<tr>
<td>10. Kabanima</td>
<td>1087</td>
<td>cde</td>
<td>72</td>
</tr>
<tr>
<td>11. PVA 782</td>
<td>1067</td>
<td>cde</td>
<td>71</td>
</tr>
<tr>
<td>12. RWR 52</td>
<td>1011</td>
<td>de</td>
<td>67</td>
</tr>
<tr>
<td>13. PVA 15</td>
<td>1009</td>
<td>de</td>
<td>67</td>
</tr>
<tr>
<td>14. G 11525</td>
<td>903</td>
<td>e</td>
<td>60</td>
</tr>
<tr>
<td>15. PVA 46</td>
<td>856</td>
<td>e</td>
<td>57</td>
</tr>
<tr>
<td>16. RWR 14</td>
<td>456</td>
<td>f</td>
<td>30</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1143</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>28,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>13,9 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 4.15: Rendements (kg/ha) des variétés de l'ECK 88-89 par SITES en BASSE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Karama c.(4)</th>
<th>Karama p.(3)</th>
<th>Gashora(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PVA 774</td>
<td>1353 a 2/</td>
<td>529 ab</td>
<td>1515 a</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1336 ab</td>
<td>382 bcd</td>
<td>1574 a</td>
</tr>
<tr>
<td>3. M.local</td>
<td>1322 ab</td>
<td>459 a-d</td>
<td>1411 a-d</td>
</tr>
<tr>
<td>4. RWR 52</td>
<td>1303 abc</td>
<td>475 a-d</td>
<td>1441 abc</td>
</tr>
<tr>
<td>5. PVA 15</td>
<td>1286 abc</td>
<td>414 bcd</td>
<td>1333 b-e</td>
</tr>
<tr>
<td>6. RWR 45</td>
<td>1271 a-e</td>
<td>520 abc</td>
<td>1497 ab</td>
</tr>
<tr>
<td>7. RWR 14</td>
<td>1221 a-e</td>
<td>586 a</td>
<td>1442 abc</td>
</tr>
<tr>
<td>8. Nain de Kyondo</td>
<td>1214 a-e</td>
<td>397 bcd</td>
<td>1500 ab</td>
</tr>
<tr>
<td>9. K 20</td>
<td>1208 a-e</td>
<td>520 abc</td>
<td>1472 ab</td>
</tr>
<tr>
<td>10. Kabanima</td>
<td>1191 a-e</td>
<td>575 a</td>
<td>1393 a-d</td>
</tr>
<tr>
<td>11. PVA 46</td>
<td>1182 a-e</td>
<td>338 d</td>
<td>1231 cde</td>
</tr>
<tr>
<td>12. ZAA 84086</td>
<td>1152 b-e</td>
<td>372 bcd</td>
<td>1344 a-d</td>
</tr>
<tr>
<td>13. Hatuey 23</td>
<td>1136 b-e</td>
<td>353 cd</td>
<td>1382 a-d</td>
</tr>
<tr>
<td>14. PVA 782</td>
<td>1104 cde</td>
<td>378 bcd</td>
<td>1446 abc</td>
</tr>
<tr>
<td>15. PVA 705</td>
<td>1083 de</td>
<td>401 bcd</td>
<td>1211 de</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>1024 e</td>
<td>327 d</td>
<td>1133 e</td>
</tr>
</tbody>
</table>

Moyenne générale | 1212 | 439 | 1395 |
Cv % | 21,9 | 43,9 | 22,3 |
P calc.3/ | 2,61** | 2,90** | 2,98** |

Variétés | Mututu(4) | Kadehero (4) | SENS (3) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PVA 774</td>
<td>1154 ab</td>
<td>1155 ab</td>
<td>2584 ab</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1022 a-d</td>
<td>978 b-e</td>
<td>2628 a</td>
</tr>
<tr>
<td>3. M.local</td>
<td>1085 abc</td>
<td>999 b-e</td>
<td>2480 abc</td>
</tr>
<tr>
<td>4. RWR 52</td>
<td>1007 bcd</td>
<td>844 c-f</td>
<td>2514 a</td>
</tr>
<tr>
<td>5. PVA 15</td>
<td>983 bcd</td>
<td>734 ef</td>
<td>2199 a-d</td>
</tr>
<tr>
<td>6. RWR 45</td>
<td>938 bcd</td>
<td>1069 abc</td>
<td>2042 bcd</td>
</tr>
<tr>
<td>7. RWR 14</td>
<td>975 bcd</td>
<td>699 f</td>
<td>1969 cde</td>
</tr>
<tr>
<td>8. Nain de Kyondo</td>
<td>1219 a</td>
<td>1291 a</td>
<td>2603 ab</td>
</tr>
<tr>
<td>9. K 20</td>
<td>1116 ab</td>
<td>887 c-f</td>
<td>2124 a-d</td>
</tr>
<tr>
<td>10. Kabanima</td>
<td>1023 a-d</td>
<td>928 b-f</td>
<td>2115 a-d</td>
</tr>
<tr>
<td>11. PVA 46</td>
<td>856 de</td>
<td>885 c-f</td>
<td>1825 de</td>
</tr>
<tr>
<td>12. ZAA 84086</td>
<td>945 bcd</td>
<td>909 b-f</td>
<td>2206 a-d</td>
</tr>
<tr>
<td>13. Hatuey 23</td>
<td>965 bcd</td>
<td>1012 bcd</td>
<td>1457 e</td>
</tr>
<tr>
<td>14. PVA 782</td>
<td>1111 ab</td>
<td>930 b-f</td>
<td>2324 a-d</td>
</tr>
<tr>
<td>15. PVA 705</td>
<td>870 cd</td>
<td>785 def</td>
<td>1769 de</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>675 e</td>
<td>903 b-f</td>
<td>1819 de</td>
</tr>
</tbody>
</table>

Moyenne générale | 995 | 938 | 2172 |
Cv % | 29,0 | 37,8 | 30,4 |
P calc.3/ | 4,12** | 3,37** | 4,27** |

1/ Chiffres entre parenthèses = Nombre de saisons
2) Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité
Annexe 4.16: Rendements (kg/ha) des variétés de l’ECM 88-89 par SITES en MOYENNE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rubona (4)</th>
<th>Kabutare (2)</th>
<th>Mwogo (2)</th>
<th>Karama (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PVA 774</td>
<td>1645</td>
<td>1475 a 2/</td>
<td>1275 c</td>
<td>573 ab</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1656</td>
<td>1512 a</td>
<td>1700 b</td>
<td>700 ab</td>
</tr>
<tr>
<td>3. M.local</td>
<td>1670</td>
<td>1037 b</td>
<td>1500 bc</td>
<td>782 a</td>
</tr>
<tr>
<td>4. RWR 52</td>
<td>1514</td>
<td>1287 ab</td>
<td>875 de</td>
<td>785 a</td>
</tr>
<tr>
<td>5. PVA 15</td>
<td>1552</td>
<td>1250 ab</td>
<td>1150 cd</td>
<td>571 ab</td>
</tr>
<tr>
<td>6. RWR 45</td>
<td>1563</td>
<td>1152 ab</td>
<td>725 ef</td>
<td>805 a</td>
</tr>
<tr>
<td>7. RWR 14</td>
<td>1262</td>
<td>950 b</td>
<td>850 def</td>
<td>493 b</td>
</tr>
<tr>
<td>8. Nain de Kyondo</td>
<td>1499</td>
<td>1212 ab</td>
<td>2750 a</td>
<td>701 ab</td>
</tr>
<tr>
<td>9. K 20</td>
<td>1534</td>
<td>1325 ab</td>
<td>650 ef</td>
<td>633 ab</td>
</tr>
<tr>
<td>10. Kabanima</td>
<td>1447</td>
<td>1325 ab</td>
<td>425 f</td>
<td>632 ab</td>
</tr>
<tr>
<td>11. PVA 46</td>
<td>1273</td>
<td>1175 ab</td>
<td>650 ef</td>
<td>599 ab</td>
</tr>
<tr>
<td>12. ZAA 84086</td>
<td>1413</td>
<td>1112 ab</td>
<td>700 ef</td>
<td>599 ab</td>
</tr>
<tr>
<td>13. Hatuey 23</td>
<td>1585</td>
<td>962 b</td>
<td>575 ef</td>
<td>489 b</td>
</tr>
<tr>
<td>14. PVA 782</td>
<td>1560</td>
<td>1012 b</td>
<td>725 ef</td>
<td>474 b</td>
</tr>
<tr>
<td>15. PVA 705</td>
<td>1621</td>
<td>1167 ab</td>
<td>650 ef</td>
<td>596 ab</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>1449</td>
<td>1475 a</td>
<td>575 ef</td>
<td>443 b</td>
</tr>
</tbody>
</table>

Moyenne générale

<table>
<thead>
<tr>
<th></th>
<th>Rubona (4)</th>
<th>Kabutare (2)</th>
<th>Mwogo (2)</th>
<th>Karama (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne générale</td>
<td>1515</td>
<td>986</td>
<td>1215</td>
<td>617</td>
</tr>
<tr>
<td>CV %</td>
<td>41,4</td>
<td>33,0</td>
<td>20,90**</td>
<td>1,98*</td>
</tr>
<tr>
<td>F calc.3/</td>
<td>1,85*</td>
<td>1,85*</td>
<td>1,85*</td>
<td>1,85*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Moyenne générale</th>
<th>Rubona (4)</th>
<th>Kabutare (2)</th>
<th>Mwogo (2)</th>
<th>Karama (2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moyenne générale</td>
<td>1515</td>
<td>986</td>
<td>1215</td>
<td>617</td>
</tr>
<tr>
<td>CV %</td>
<td>41,4</td>
<td>33,0</td>
<td>20,90**</td>
<td>1,98*</td>
</tr>
<tr>
<td>F calc.3/</td>
<td>1,85*</td>
<td>1,85*</td>
<td>1,85*</td>
<td>1,85*</td>
</tr>
</tbody>
</table>

1/ Chiffres entre parenthèses = Nombre de saisons
2) Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **,**:** Essai significatif à 5% et 1% de probabilité; NS: Non significatif

110
Annexe 4.17: Rendements des variétés de l’ECM 88-89 par SITES en HAUTE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rwerere (4)</td>
</tr>
<tr>
<td>1. PVA 774</td>
<td>1407 ab 2/</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1529 a</td>
</tr>
<tr>
<td>3. M.local</td>
<td>1504 a</td>
</tr>
<tr>
<td>4. RWR 52</td>
<td>1011 de</td>
</tr>
<tr>
<td>5. PVA 15</td>
<td>1009 de</td>
</tr>
<tr>
<td>6. RWR 45</td>
<td>1417 ab</td>
</tr>
<tr>
<td>7. RWR 14</td>
<td>456 f</td>
</tr>
<tr>
<td>8. Nain de Kyondo</td>
<td>1201 bcd</td>
</tr>
<tr>
<td>9. K 20</td>
<td>1137 cd</td>
</tr>
<tr>
<td>10. Kabanima</td>
<td>1087 cde</td>
</tr>
<tr>
<td>11. PVA 46</td>
<td>856 e</td>
</tr>
<tr>
<td>12. ZAA 84086</td>
<td>1243 bcd</td>
</tr>
<tr>
<td>13. Hatuey 23</td>
<td>1262 bc</td>
</tr>
<tr>
<td>14. PVA 782</td>
<td>1067 cde</td>
</tr>
<tr>
<td>15. PVA 705</td>
<td>1211 bcd</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>903 e</td>
</tr>
</tbody>
</table>

Moyenne générale | 1144 | 1335 |
Cv % | 28,6 | 33,0 |
F calc.3/ | 13,90** | 3,93** |

1/ Chiffres entre parenthèses = Nombre de saisons
2) Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité
Annexe 4.18: Sensibilité des variétés de l'ECM 88-89 en HAUTE ALTITUDE.

<table>
<thead>
<tr>
<th>Variété</th>
<th>Reaction aux maladies (1-9)*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Viruse</td>
</tr>
<tr>
<td>1. Main de kyondo</td>
<td>1,75</td>
</tr>
<tr>
<td>2. Kilyumukwe</td>
<td>1,57</td>
</tr>
<tr>
<td>3. PVA 774</td>
<td>1,95</td>
</tr>
<tr>
<td>4. Mélange local</td>
<td>1,75</td>
</tr>
<tr>
<td>5. RWR 45</td>
<td>1,60</td>
</tr>
<tr>
<td>6. RWR 52</td>
<td>1,47</td>
</tr>
<tr>
<td>7. PVA 15</td>
<td>1,40</td>
</tr>
<tr>
<td>8. K 20</td>
<td>1,85</td>
</tr>
<tr>
<td>9. PVA 782</td>
<td>1,72</td>
</tr>
<tr>
<td>10. SAA 84086</td>
<td>1,40</td>
</tr>
<tr>
<td>11. Kabanime</td>
<td>1,92</td>
</tr>
<tr>
<td>12. Hatuey 23</td>
<td>1,37</td>
</tr>
<tr>
<td>13. PVA 705</td>
<td>1,40</td>
</tr>
<tr>
<td>14. PVA 46</td>
<td>1,97</td>
</tr>
<tr>
<td>15. RWR 14</td>
<td>3,10</td>
</tr>
<tr>
<td>16. G 11525</td>
<td>1,72</td>
</tr>
</tbody>
</table>

* Cotation: 1 à 9 (1=résistant; 9=tres sensible)
7.5. TABLEAUX DES RESULTATS DE L’ECM 89-90
Annexe 5.1: Rendement des variétés de l'ECM 89-90 sur haricots nains: ANALYSE GLOBALE.

Sites: Karama (colluvion), Karama (transition), Gashora, Muyumbu, SEIMS, Rubona, Rusatira, Kigoma, Rugande, Rubungo, Gahororo, Tubungo, Kamembe, Rwerere, PNAP (Ruhengeri)
Saisons: 89A, 8B, 90A, 90B
Nombre d'essais: 48

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 1378/4</td>
<td>1643 a</td>
<td></td>
<td>121</td>
</tr>
<tr>
<td>2. Kerme 20</td>
<td>1505 b</td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>3. RWR 222 A</td>
<td>1476 b</td>
<td></td>
<td>109</td>
</tr>
<tr>
<td>4. RWR 222 B</td>
<td>1426 bc</td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>5. AFR 8</td>
<td>1371 cd</td>
<td></td>
<td>101</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1354 cde</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>7. SSBD 13 MK</td>
<td>1345 cde</td>
<td></td>
<td>99</td>
</tr>
<tr>
<td>8. SMK 1015</td>
<td>1315 def</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>1310 def</td>
<td></td>
<td>97</td>
</tr>
<tr>
<td>10. XAN 194</td>
<td>1299 def</td>
<td></td>
<td>96</td>
</tr>
<tr>
<td>11. RWR 104</td>
<td>1269 def</td>
<td></td>
<td>94</td>
</tr>
<tr>
<td>12. 1364/5</td>
<td>1249 def</td>
<td></td>
<td>92</td>
</tr>
<tr>
<td>13. 1364/1</td>
<td>1228 efg</td>
<td></td>
<td>91</td>
</tr>
<tr>
<td>14. Kilyumukwe</td>
<td>1224 fg</td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>15. SMK 1004</td>
<td>1163 gh</td>
<td></td>
<td>86</td>
</tr>
<tr>
<td>16. AFR 13</td>
<td>1081 h</td>
<td></td>
<td>80</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1329</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>39,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>16,89 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.2: Rendement des variétés de l'ECM 89-90 sur haricots nains en Zone de BASSE ALTITUDE.

Altitude: < 1500 m
Sites: Karama (colluvion), Karama (transition), Gashora, Muyumbu, SEMS
Saisons: 89A, 89B, 90A, 90B
Nombre d'essais: 19

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. 1378/4</td>
<td>1370</td>
</tr>
<tr>
<td>2. SSBD 13 MK</td>
<td>1566</td>
</tr>
<tr>
<td>3. Kerme 20</td>
<td>1552</td>
</tr>
<tr>
<td>4. RWR 222 A</td>
<td>1387</td>
</tr>
<tr>
<td>5. SMK 1015</td>
<td>1386</td>
</tr>
<tr>
<td>6. RWR 104</td>
<td>1385</td>
</tr>
<tr>
<td>7. RWR 222 B</td>
<td>1368</td>
</tr>
<tr>
<td>8. AFR 8</td>
<td>1331</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>1311</td>
</tr>
<tr>
<td>10. SMK 1004</td>
<td>1291</td>
</tr>
<tr>
<td>11. Mélange local (T)</td>
<td>1269</td>
</tr>
<tr>
<td>12. Kilyumukwe</td>
<td>1267</td>
</tr>
<tr>
<td>13. XAN 194</td>
<td>1221</td>
</tr>
<tr>
<td>14. 1364/5</td>
<td>1059</td>
</tr>
<tr>
<td>15. 1364/1</td>
<td>1011</td>
</tr>
<tr>
<td>16. AFR 13</td>
<td>947</td>
</tr>
</tbody>
</table>

Moyenne générale 1318
CV % 31,9
F calc. 22,12 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.3: Rendement des variétés de l'ECM 89-90 sur haricots nains en Zone de MOYENNE ALTITUDE.

Altitude: 1500-1800 m  
Sites: Rubona, Rusatira, Rugande, Rubungo, Gahororo, Tubungo, Kamembe  
Saisons: 89A, 89B, 90A, 90B  
Nombre d'essais: 21

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td>DMRT 1/</td>
<td>% T</td>
</tr>
<tr>
<td>1. RWR 222 A</td>
<td>1616</td>
<td>a</td>
<td>119</td>
</tr>
<tr>
<td>2. 1378/4</td>
<td>1585</td>
<td>a</td>
<td>117</td>
</tr>
<tr>
<td>3. RWR 222 B</td>
<td>1518</td>
<td>ab</td>
<td>112</td>
</tr>
<tr>
<td>4. Kerme 20</td>
<td>1482</td>
<td>abc</td>
<td>109</td>
</tr>
<tr>
<td>5. APR 8</td>
<td>1398</td>
<td>bcd</td>
<td>103</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1354</td>
<td>cde</td>
<td>100</td>
</tr>
<tr>
<td>7. XAN 194</td>
<td>1339</td>
<td>cde</td>
<td>99</td>
</tr>
<tr>
<td>8. 1364/5</td>
<td>1302</td>
<td>def</td>
<td>96</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>1291</td>
<td>def</td>
<td>95</td>
</tr>
<tr>
<td>10. RWR 104</td>
<td>1267</td>
<td>def</td>
<td>94</td>
</tr>
<tr>
<td>11. SMK 1015</td>
<td>1267</td>
<td>def</td>
<td>94</td>
</tr>
<tr>
<td>12. 1364/1</td>
<td>1258</td>
<td>def</td>
<td>93</td>
</tr>
<tr>
<td>13. SSBD 13 MK</td>
<td>1240</td>
<td>def</td>
<td>92</td>
</tr>
<tr>
<td>14. AFR 13</td>
<td>1238</td>
<td>def</td>
<td>91</td>
</tr>
<tr>
<td>15. Kilyumukwe</td>
<td>1201</td>
<td>ef</td>
<td>89</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>1153</td>
<td>f</td>
<td>85</td>
</tr>
</tbody>
</table>

Moyenne générale: 1344  
CV %: 37,5  
F calc.: 7,92 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.4: Rendement des variétés de l'ECM 89-90 sur haricots nains en Zone de HAUTE ALTITUDE.

Altitude: > 1800 m
Sites: Rwerere, PNAP (Ruhengeri)
Saisons: 89A, 89B, 90A, 90B
Nombre d'essais: 8

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1364/1</td>
<td>1667</td>
<td>a</td>
<td>107</td>
</tr>
<tr>
<td>2. 1378/4</td>
<td>1585</td>
<td>ab</td>
<td>102</td>
</tr>
<tr>
<td>3. 1364/5</td>
<td>1566</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>4. Mélange local (T)</td>
<td>1560</td>
<td>abc</td>
<td>100</td>
</tr>
<tr>
<td>5. Kerme 20</td>
<td>1452</td>
<td>bcd</td>
<td>93</td>
</tr>
<tr>
<td>6. AFR 8</td>
<td>1398</td>
<td>b-e</td>
<td>90</td>
</tr>
<tr>
<td>7. XAN 194</td>
<td>1379</td>
<td>b-e</td>
<td>88</td>
</tr>
<tr>
<td>8. PVA 781</td>
<td>1355</td>
<td>cde</td>
<td>87</td>
</tr>
<tr>
<td>9. RWR 222 B</td>
<td>1325</td>
<td>de</td>
<td>85</td>
</tr>
<tr>
<td>10. RWR 222 A</td>
<td>1321</td>
<td>de</td>
<td>85</td>
</tr>
<tr>
<td>11. SMK 1015</td>
<td>1275</td>
<td>def</td>
<td>82</td>
</tr>
<tr>
<td>12. Kilyumukwe</td>
<td>1178</td>
<td>efg</td>
<td>76</td>
</tr>
<tr>
<td>13. SSBD 13 MK</td>
<td>1095</td>
<td>fg</td>
<td>70</td>
</tr>
<tr>
<td>14. RWR 104</td>
<td>1005</td>
<td>gh</td>
<td>64</td>
</tr>
<tr>
<td>15. AFR 13</td>
<td>986</td>
<td>gh</td>
<td>63</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>882</td>
<td>h</td>
<td>57</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1314</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>32,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>11,51 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.5: Rendement des variétés de l’ECM 89-90 sur haricots nains dans la région du BUGESERA.

Altitude: 1300-1500 m  
Zone: HA  
Sites: Karama (colluvion), Karama (transition), Gashora  
Saisons: 89A, 89B, 90A, 90B  
Nombre d’essais: 9

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. 1378/4</td>
<td>1794</td>
</tr>
<tr>
<td>2. Kerme 20</td>
<td>1566</td>
</tr>
<tr>
<td>3. SSBD 13 MK</td>
<td>1560</td>
</tr>
<tr>
<td>4. AFR 8</td>
<td>1517</td>
</tr>
<tr>
<td>5. RWR 222 B</td>
<td>1467</td>
</tr>
<tr>
<td>6. RWR 104</td>
<td>1459</td>
</tr>
<tr>
<td>7. RWR 222 A</td>
<td>1450</td>
</tr>
<tr>
<td>8. SMK 1004</td>
<td>1420</td>
</tr>
<tr>
<td>9. Mélange local (T)</td>
<td>1406</td>
</tr>
<tr>
<td>10. SMK 1015</td>
<td>1387</td>
</tr>
<tr>
<td>11. PVA 781</td>
<td>1385</td>
</tr>
<tr>
<td>12. XAN 194</td>
<td>1379</td>
</tr>
<tr>
<td>13. Kilyumukwe</td>
<td>1340</td>
</tr>
<tr>
<td>14. 1364/5</td>
<td>933</td>
</tr>
<tr>
<td>15. AFR 13</td>
<td>931</td>
</tr>
<tr>
<td>16. 1364/1</td>
<td>877</td>
</tr>
</tbody>
</table>

Moyenne générale: 1367  
CV %: 25.9  
F calc.: 22.24 ** 2/ 

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.6: Rendement des variétés de l’ECM 89-90 sur haricots nains dans la région du MAYAGA.

Altitude: 1350-1500 m  
Zone: BA  
Sites: Mututu  
Saisons: 89A, 89B, 90A, 90B  
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kerme 20</td>
<td>1470</td>
<td>a</td>
<td>157</td>
</tr>
<tr>
<td>2. SSBD 13 MK</td>
<td>1389</td>
<td>ab</td>
<td>148</td>
</tr>
<tr>
<td>3. 1387/4</td>
<td>1360</td>
<td>ab</td>
<td>145</td>
</tr>
<tr>
<td>4. RWR 222 B</td>
<td>1356</td>
<td>ab</td>
<td>144</td>
</tr>
<tr>
<td>5. RWR 222 A</td>
<td>1264</td>
<td>abc</td>
<td>135</td>
</tr>
<tr>
<td>6. XAN 194</td>
<td>1190</td>
<td>bcd</td>
<td>127</td>
</tr>
<tr>
<td>7. SMK 1015</td>
<td>1106</td>
<td>cde</td>
<td>118</td>
</tr>
<tr>
<td>8. AFR 8</td>
<td>1080</td>
<td>cde</td>
<td>115</td>
</tr>
<tr>
<td>9. SMK 1004</td>
<td>1068</td>
<td>cde</td>
<td>114</td>
</tr>
<tr>
<td>10. RWR 104</td>
<td>1033</td>
<td>cde</td>
<td>110</td>
</tr>
<tr>
<td>11. 1364/5</td>
<td>1028</td>
<td>cde</td>
<td>109</td>
</tr>
<tr>
<td>12. Kilyumukwe</td>
<td>986</td>
<td>def</td>
<td>105</td>
</tr>
<tr>
<td>13. PVA 781</td>
<td>958</td>
<td>def</td>
<td>102</td>
</tr>
<tr>
<td>14. Mélange local (T)</td>
<td>939</td>
<td>def</td>
<td>100</td>
</tr>
<tr>
<td>15. 13664/1</td>
<td>873</td>
<td>ef</td>
<td>93</td>
</tr>
<tr>
<td>16. AFR 13</td>
<td>765</td>
<td>f</td>
<td>81</td>
</tr>
</tbody>
</table>

Moyenne générale 1117  
CV % 30,6  
F calcul. 7,05 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.7: Rendement des variétés de l'ECK 89-90 sur haricots nains dans la région de SAVANE DE L'EST.

Altitude: 1250-1600 m  
Zone: BA  
Sites: SEMS  
Saisons: 89A, 90A  
Nombre d'essais: 2

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 1378/4</td>
<td>2162</td>
<td>a</td>
<td>128</td>
</tr>
<tr>
<td>2. RWR 104</td>
<td>2121</td>
<td>a</td>
<td>125</td>
</tr>
<tr>
<td>3. SSBD 13 MK</td>
<td>1972</td>
<td>a</td>
<td>116</td>
</tr>
<tr>
<td>4. SMK 1015</td>
<td>1962</td>
<td>a</td>
<td>116</td>
</tr>
<tr>
<td>5. PVA 781</td>
<td>1820</td>
<td>ab</td>
<td>107</td>
</tr>
<tr>
<td>6. SMK 1004</td>
<td>1784</td>
<td>ab</td>
<td>105</td>
</tr>
<tr>
<td>7. Kilyumukwe</td>
<td>1777</td>
<td>ab</td>
<td>105</td>
</tr>
<tr>
<td>8. Mélange local (T)</td>
<td>1695</td>
<td>ab</td>
<td>100</td>
</tr>
<tr>
<td>9. 1364/1</td>
<td>1421</td>
<td>bc</td>
<td>84</td>
</tr>
<tr>
<td>10. AFR 8</td>
<td>1402</td>
<td>bc</td>
<td>83</td>
</tr>
<tr>
<td>11. 1364/5</td>
<td>1391</td>
<td>bc</td>
<td>82</td>
</tr>
<tr>
<td>12. RWR 222 A</td>
<td>1182</td>
<td>c</td>
<td>70</td>
</tr>
<tr>
<td>13. RWR 222 B</td>
<td>1133</td>
<td>c</td>
<td>67</td>
</tr>
<tr>
<td>14. Kerme 20</td>
<td>1111</td>
<td>c</td>
<td>66</td>
</tr>
<tr>
<td>15. AFR 13</td>
<td>980</td>
<td>c</td>
<td>58</td>
</tr>
<tr>
<td>16. XAN 194</td>
<td>970</td>
<td>c</td>
<td>57</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1555</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>30,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>7,18 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.8: Rendement des variétés de l’ECM 89-90 sur haricots nains dans la région du PLATEAU DE L’EST (BA).

Altitude: 1400-1500 m
Zone: BA
Sites: Muyumbu
Saisons: 89A, 89B, 90A, 90B
Nombre d’essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement kg/ha</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kerme 20</td>
<td>1821</td>
<td>a</td>
<td>169</td>
</tr>
<tr>
<td>2. 1378/4</td>
<td>1740</td>
<td>ab</td>
<td>162</td>
</tr>
<tr>
<td>3. SSBD 13 MK</td>
<td>1556</td>
<td>bc</td>
<td>145</td>
</tr>
<tr>
<td>4. RWR 222 A</td>
<td>1378</td>
<td>cd</td>
<td>128</td>
</tr>
<tr>
<td>5. SMK 1015</td>
<td>1373</td>
<td>cd</td>
<td>128</td>
</tr>
<tr>
<td>6. RWR 222 B</td>
<td>1367</td>
<td>cd</td>
<td>127</td>
</tr>
<tr>
<td>7. PVA 781</td>
<td>1244</td>
<td>de</td>
<td>116</td>
</tr>
<tr>
<td>8. 1364/1</td>
<td>1243</td>
<td>de</td>
<td>116</td>
</tr>
<tr>
<td>9. 1364/5</td>
<td>1206</td>
<td>de</td>
<td>112</td>
</tr>
<tr>
<td>10. RWR 104</td>
<td>1201</td>
<td>de</td>
<td>112</td>
</tr>
<tr>
<td>11. AFR 13</td>
<td>1148</td>
<td>de</td>
<td>107</td>
</tr>
<tr>
<td>12. Kilyumukwe</td>
<td>1130</td>
<td>de</td>
<td>105</td>
</tr>
<tr>
<td>13. AFR 8</td>
<td>1127</td>
<td>de</td>
<td>105</td>
</tr>
<tr>
<td>14. Mélange local (T)</td>
<td>1075</td>
<td>e</td>
<td>100</td>
</tr>
<tr>
<td>15. XAN 194</td>
<td>1022</td>
<td>e</td>
<td>95</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>980</td>
<td>e</td>
<td>91</td>
</tr>
</tbody>
</table>

Moyenne générale | 1288 | 8,57 ** 2/ |
CV % | 28,7 |
F calc. | 8,57 ** 2/ |

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.9: Rendement des variétés de l’ECM 89-90 sur haricots nains dans la région du PLATEAU DE L’EST (MA).

Altitude: 1500-1800 m  
Zone: MA  
Sites: Gahororo, Rubungo  
Saisons: 89A, 89B, 90A, 90B  
Nombre d’essais: 7

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement (kg/ha)</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1378/4</td>
<td>1644</td>
<td>a</td>
<td>119</td>
</tr>
<tr>
<td>2. RWR 222 B</td>
<td>1562</td>
<td>ab</td>
<td>113</td>
</tr>
<tr>
<td>3. XAN 194</td>
<td>1507</td>
<td>abc</td>
<td>109</td>
</tr>
<tr>
<td>4. RWR 222 A</td>
<td>1466</td>
<td>abc</td>
<td>106</td>
</tr>
<tr>
<td>5. Kerme 20</td>
<td>1453</td>
<td>abc</td>
<td>106</td>
</tr>
<tr>
<td>6. AFR 13</td>
<td>1409</td>
<td>a-d</td>
<td>102</td>
</tr>
<tr>
<td>7. Mélange local (T)</td>
<td>1377</td>
<td>bcd</td>
<td>100</td>
</tr>
<tr>
<td>8. 1364/1</td>
<td>1330</td>
<td>bcd</td>
<td>97</td>
</tr>
<tr>
<td>9. SSBD 13 MK</td>
<td>1327</td>
<td>bcd</td>
<td>96</td>
</tr>
<tr>
<td>10. 1364/5</td>
<td>1325</td>
<td>bcd</td>
<td>96</td>
</tr>
<tr>
<td>11. PVA 781</td>
<td>1324</td>
<td>bcd</td>
<td>96</td>
</tr>
<tr>
<td>12. AFR 8</td>
<td>1301</td>
<td>bcd</td>
<td>94</td>
</tr>
<tr>
<td>13. SMK 1015</td>
<td>1286</td>
<td>cd</td>
<td>93</td>
</tr>
<tr>
<td>14. RWR 104</td>
<td>1274</td>
<td>cd</td>
<td>93</td>
</tr>
<tr>
<td>15. Kilyumukwe</td>
<td>1151</td>
<td>de</td>
<td>84</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>1016</td>
<td>e</td>
<td>74</td>
</tr>
</tbody>
</table>

Moyenne générale: 1359  
CV %: 34,0  
F calc.: 3,79 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.10: Rendement des variétés de l'ECM 89-90 sur haricots nains dans la région du PLATEAU CENTRAL.

Altitude: 1500-1900 m
Zone: MA
Sites: Rubona, Rusatira, Rugande, Tubungo
Saisons:
Nombre d'essais: 12

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
</tr>
<tr>
<td>1. RWR 222 A</td>
<td>1694</td>
</tr>
<tr>
<td>2. 1378/4</td>
<td>1611</td>
</tr>
<tr>
<td>3. Kerme 20</td>
<td>1520</td>
</tr>
<tr>
<td>4. RWR 222 B</td>
<td>1494</td>
</tr>
<tr>
<td>5. AFR 8</td>
<td>1483</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1369</td>
</tr>
<tr>
<td>7. 1364/5</td>
<td>1324</td>
</tr>
<tr>
<td>8. PVA 781</td>
<td>1313</td>
</tr>
<tr>
<td>9. RWR 104</td>
<td>1303</td>
</tr>
<tr>
<td>10. SMK 1015</td>
<td>1301</td>
</tr>
<tr>
<td>11. XAN 194</td>
<td>1276</td>
</tr>
<tr>
<td>12. Kilyumukwe</td>
<td>1273</td>
</tr>
<tr>
<td>13. 1364/1</td>
<td>1254</td>
</tr>
<tr>
<td>14. SMK 1004</td>
<td>1254</td>
</tr>
<tr>
<td>15. SSBD 13 MK</td>
<td>1217</td>
</tr>
<tr>
<td>16. AFR 13</td>
<td>1159</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1287</td>
</tr>
<tr>
<td>CV %</td>
<td>40,7</td>
</tr>
<tr>
<td>F calc.</td>
<td>2,53**</td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.11: Rendement des variétés de l'ECM 89-90 sur haricots nains dans la région de la DORSALE GRANITIQUE.

Altitude: 1400-1700 m  
Zone: MA  
Sites: Kigoma  
Saisons: 90B  
Nombre d'essais: 1

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. RWR 222 A</td>
<td>1642</td>
<td>a</td>
<td>165</td>
</tr>
<tr>
<td>2. RWR 222 B</td>
<td>1519</td>
<td>ab</td>
<td>153</td>
</tr>
<tr>
<td>3. Kerme 20</td>
<td>1189</td>
<td>bc</td>
<td>120</td>
</tr>
<tr>
<td>4. AFR 13</td>
<td>1063</td>
<td>cd</td>
<td>107</td>
</tr>
<tr>
<td>5. Mélange local (T)</td>
<td>993</td>
<td>cde</td>
<td>100</td>
</tr>
<tr>
<td>6. AFR 8</td>
<td>974</td>
<td>cde</td>
<td>98</td>
</tr>
<tr>
<td>7. XAN 194</td>
<td>973</td>
<td>cde</td>
<td>98</td>
</tr>
<tr>
<td>8. SSBD 13 MK</td>
<td>931</td>
<td>cde</td>
<td>94</td>
</tr>
<tr>
<td>9. 1378/4</td>
<td>847</td>
<td>cde</td>
<td>85</td>
</tr>
<tr>
<td>10. 1364/5</td>
<td>819</td>
<td>cde</td>
<td>82</td>
</tr>
<tr>
<td>11. 1364/1</td>
<td>801</td>
<td>cde</td>
<td>81</td>
</tr>
<tr>
<td>12. SMK 1004</td>
<td>800</td>
<td>cde</td>
<td>81</td>
</tr>
<tr>
<td>13. PVA 781</td>
<td>773</td>
<td>de</td>
<td>78</td>
</tr>
<tr>
<td>14. RWR 104</td>
<td>749</td>
<td>de</td>
<td>78</td>
</tr>
<tr>
<td>15. SMK 1015</td>
<td>686</td>
<td>de</td>
<td>69</td>
</tr>
<tr>
<td>16. Kilyumukwe</td>
<td>626</td>
<td>e</td>
<td>63</td>
</tr>
</tbody>
</table>

Moyenne générale: 962  
CV %: 28,7  
F calc.: 5,21 ** 2/  

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.12: Rendement des variétés de l'ECH 89-90 sur haricots nains dans la région du BUBERUKA.

Altitude: 1900-2300 m  
Zone: HA  
Sites: Rwerere  
Saisons: 89A, 89B, 90A, 90B  
Nombre d'essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mélange local (T)</td>
<td>1610</td>
<td>a</td>
<td>100</td>
</tr>
<tr>
<td>2. 1378/4</td>
<td>1504</td>
<td>ab</td>
<td>93</td>
</tr>
<tr>
<td>3. 1364/1</td>
<td>1409</td>
<td>abc</td>
<td>88</td>
</tr>
<tr>
<td>4. XAN 194</td>
<td>1388</td>
<td>abc</td>
<td>86</td>
</tr>
<tr>
<td>5. 1365/5</td>
<td>1367</td>
<td>abc</td>
<td>85</td>
</tr>
<tr>
<td>6. Kerme 20</td>
<td>1365</td>
<td>abc</td>
<td>85</td>
</tr>
<tr>
<td>7. AFR 8</td>
<td>1339</td>
<td>abc</td>
<td>83</td>
</tr>
<tr>
<td>8. RWR 222 B</td>
<td>1294</td>
<td>bc</td>
<td>80</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>1272</td>
<td>bcd</td>
<td>79</td>
</tr>
<tr>
<td>10. RWR 222 A</td>
<td>1256</td>
<td>bcd</td>
<td>78</td>
</tr>
<tr>
<td>11. Kilyumukwe</td>
<td>1139</td>
<td>cde</td>
<td>71</td>
</tr>
<tr>
<td>12. SMK 1015</td>
<td>1016</td>
<td>de</td>
<td>63</td>
</tr>
<tr>
<td>13. SSBD 13 MK</td>
<td>958</td>
<td>e</td>
<td>60</td>
</tr>
<tr>
<td>14. AFR 13</td>
<td>950</td>
<td>e</td>
<td>59</td>
</tr>
<tr>
<td>15. RWR 104</td>
<td>601</td>
<td>f</td>
<td>37</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>477</td>
<td>f</td>
<td>30</td>
</tr>
</tbody>
</table>

Moyenne générale: 1184  
CV %: 33,6  
F calc.: 12,29 ** 2/

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.13: Rendement des variétés de l'ECM 89-90 sur haricots nains dans la région des TERRES DE LAVE.

Altitude: 1600-2500 m  
Zone: BA  
Sites: PNAP (Ruhengeri)  
Saisons: 89A, 89B, 90A, 90B  
Nombre d'essais: 4

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Rendement</th>
<th>DMRT 1/</th>
<th>% T</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kg/ha</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. 1364/1</td>
<td>1925</td>
<td>a</td>
<td>128</td>
</tr>
<tr>
<td>2. 1365/5</td>
<td>1765</td>
<td>ab</td>
<td>117</td>
</tr>
<tr>
<td>3. 1378/4</td>
<td>1666</td>
<td>bc</td>
<td>110</td>
</tr>
<tr>
<td>4. Kerme 20</td>
<td>1539</td>
<td>bcd</td>
<td>102</td>
</tr>
<tr>
<td>5. SMK 1015</td>
<td>1535</td>
<td>bcd</td>
<td>102</td>
</tr>
<tr>
<td>6. Mélange local (T)</td>
<td>1509</td>
<td>b-e</td>
<td>100</td>
</tr>
<tr>
<td>7. AFR 8</td>
<td>1456</td>
<td>c-f</td>
<td>96</td>
</tr>
<tr>
<td>8. PVA 781</td>
<td>1437</td>
<td>c-f</td>
<td>95</td>
</tr>
<tr>
<td>9. RWR 104</td>
<td>1408</td>
<td>c-f</td>
<td>93</td>
</tr>
<tr>
<td>10. RWR 222 A</td>
<td>1387</td>
<td>def</td>
<td>92</td>
</tr>
<tr>
<td>11. XAN 194</td>
<td>1371</td>
<td>def</td>
<td>91</td>
</tr>
<tr>
<td>12. RWR 222 B</td>
<td>1355</td>
<td>def</td>
<td>90</td>
</tr>
<tr>
<td>13. SMK 1004</td>
<td>1286</td>
<td>def</td>
<td>85</td>
</tr>
<tr>
<td>14. SSBD 13 MK</td>
<td>1232</td>
<td>efg</td>
<td>82</td>
</tr>
<tr>
<td>15. Kilyumukwe</td>
<td>1218</td>
<td>fg</td>
<td>81</td>
</tr>
<tr>
<td>16. AFR 13</td>
<td>1022</td>
<td>g</td>
<td>68</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1445</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV %</td>
<td>26,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>F calc.</td>
<td>6,60 ** 2/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1/ Deux valeurs quelconques avec une même lettre ne sont pas statistiquement différentes au niveau de 5 % de probabilité  
2/ **: Différences significatives au niveau de 1 % de probabilité
Annexe 5.14: Rendements (kg/ha) des variétés de l’ECM 89-90 par SITES en BA.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Karama c.(4)</td>
<td>Karama t.(4)</td>
<td>Gashora (4)</td>
</tr>
<tr>
<td>1. 1378/4</td>
<td>1670 a</td>
<td>1778 a</td>
<td>2065 a</td>
</tr>
<tr>
<td>2. SSBD 13 MK</td>
<td>1515 ab</td>
<td>1563 ab</td>
<td>1642 cd</td>
</tr>
<tr>
<td>3. 1364/1</td>
<td>781 c</td>
<td>930 d</td>
<td>990 g</td>
</tr>
<tr>
<td>4. 1364/5</td>
<td>836 c</td>
<td>993 d</td>
<td>1039 fg</td>
</tr>
<tr>
<td>5. XAN 194</td>
<td>1344 b</td>
<td>1249 c</td>
<td>1645 cd</td>
</tr>
<tr>
<td>6. Kerme 20</td>
<td>1433 ab</td>
<td>1442 bc</td>
<td>2017 ab</td>
</tr>
<tr>
<td>7. AFR 8</td>
<td>1500 ab</td>
<td>1481 bc</td>
<td>1605 de</td>
</tr>
<tr>
<td>8. RWR 222 B</td>
<td>1287 b</td>
<td>1400 bc</td>
<td>1926 abc</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>1410 b</td>
<td>1302 bc</td>
<td>1461 de</td>
</tr>
<tr>
<td>10. RWR 222 A</td>
<td>1436 ab</td>
<td>1260 c</td>
<td>1761 bcd</td>
</tr>
<tr>
<td>11. Kilyumukwe</td>
<td>1406 b</td>
<td>1373 bc</td>
<td>1160 fg</td>
</tr>
<tr>
<td>12. SMK 1015</td>
<td>1381 b</td>
<td>1336 bc</td>
<td>1477 de</td>
</tr>
<tr>
<td>13. M.local (T )</td>
<td>1382 b</td>
<td>1307 bc</td>
<td>1605 de</td>
</tr>
<tr>
<td>14. AFR 13</td>
<td>802 c</td>
<td>842 d</td>
<td>1320 ef</td>
</tr>
<tr>
<td>15. RWR 104</td>
<td>1441 ab</td>
<td>1445 bc</td>
<td>1519 de</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>1338 b</td>
<td>1365 bc</td>
<td>1667 cd</td>
</tr>
<tr>
<td>Moyenne générale</td>
<td>1310</td>
<td>1317</td>
<td>1556</td>
</tr>
<tr>
<td>Cv %</td>
<td>26,3</td>
<td>23,8</td>
<td>19,7</td>
</tr>
<tr>
<td>F calc.3/</td>
<td>11,78**</td>
<td>8,45**</td>
<td>10,8**</td>
</tr>
</tbody>
</table>

Moyenne générale 1310 1317 1556
Cv % 26,3 23,8 19,7
F calc.3/ 11,78** 8,45** 10,8**

1/ Chiffres entre parenthèses = Nombre de saisons
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité.
Annexe 5.15: Rendements (kg/ha) des variétés de l’ECM 89-90 par SITES en MA.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
<th>SITES 2/</th>
<th>SITES 3/</th>
<th>SITES 4/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rubona(4)</td>
<td>Rusatira(4)</td>
<td>Tubungo(3)</td>
<td>Rugande(2)</td>
</tr>
<tr>
<td>1. 1378/4</td>
<td>2158 b 2/</td>
<td>1607 ab</td>
<td>1505 a</td>
<td>685 a</td>
</tr>
<tr>
<td>2. SSBD 13 Mk</td>
<td>1749 b-e</td>
<td>1158 e</td>
<td>1212 ab</td>
<td>278 c</td>
</tr>
<tr>
<td>3. 1364/1</td>
<td>1881 b-e</td>
<td>1204 e</td>
<td>1111 b</td>
<td>315 c</td>
</tr>
<tr>
<td>4. 1364/5</td>
<td>1880 b-e</td>
<td>1260 de</td>
<td>1314 ab</td>
<td>356 c</td>
</tr>
<tr>
<td>5. XAN 94</td>
<td>1675 cde</td>
<td>1366 a-e</td>
<td>1229 ab</td>
<td>370 c</td>
</tr>
<tr>
<td>6. Kerme 20</td>
<td>2027 bcd</td>
<td>1616 ab</td>
<td>1316 ab</td>
<td>620 ab</td>
</tr>
<tr>
<td>7. AFR 8</td>
<td>2073 bc</td>
<td>1581 abc</td>
<td>1228 ab</td>
<td>489 bc</td>
</tr>
<tr>
<td>8. RWR 222 B</td>
<td>2130 b</td>
<td>1532 a-d</td>
<td>1292 ab</td>
<td>450 bc</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>1962 b-e</td>
<td>1315 cde</td>
<td>1110 b</td>
<td>315 c</td>
</tr>
<tr>
<td>10. RWR 222 A</td>
<td>2536 a</td>
<td>1637 a</td>
<td>1537 a</td>
<td>362 c</td>
</tr>
<tr>
<td>11. Kilyumukwe</td>
<td>1611 de</td>
<td>1312 cde</td>
<td>1341 ab</td>
<td>417 bc</td>
</tr>
<tr>
<td>12. SMK 1015</td>
<td>1750 b-e</td>
<td>1347 b-e</td>
<td>1284 ab</td>
<td>337 c</td>
</tr>
<tr>
<td>13. M.local (T)</td>
<td>1907 b-e</td>
<td>1304 cde</td>
<td>1341 ab</td>
<td>465 bc</td>
</tr>
<tr>
<td>14. AFR 13</td>
<td>1567 e</td>
<td>1249 de</td>
<td>1065 b</td>
<td>305 c</td>
</tr>
<tr>
<td>15. RWR 104</td>
<td>1968 b-e</td>
<td>1271 de</td>
<td>1070 b</td>
<td>388 c</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>1769 b-</td>
<td>1396 a-e</td>
<td>999 b</td>
<td>321 c</td>
</tr>
</tbody>
</table>

Moyenne générale.
CV %
F. calc. 3/ 

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES</th>
<th>SITES</th>
<th>SITES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kigoma(1)</td>
<td>Rubungo(3)</td>
<td>Gahororo(4)</td>
</tr>
<tr>
<td>1. 1378/4</td>
<td>847 cde</td>
<td>1350 b</td>
<td>1864 a</td>
</tr>
<tr>
<td>2. SSBD 13 Mk</td>
<td>931 cde</td>
<td>1267 b</td>
<td>1372 ef</td>
</tr>
<tr>
<td>3. 1364/1</td>
<td>801 cde</td>
<td>1167 bc</td>
<td>1453 de</td>
</tr>
<tr>
<td>4. 1364/5</td>
<td>819 cde</td>
<td>1017 bc</td>
<td>1557 cde</td>
</tr>
<tr>
<td>5. XAN 194</td>
<td>973 cde</td>
<td>1133 bc</td>
<td>1787 abc</td>
</tr>
<tr>
<td>6. Kerme 20</td>
<td>1189 bc</td>
<td>1350 b</td>
<td>1530 de</td>
</tr>
<tr>
<td>7. AFR 8</td>
<td>974 cde</td>
<td>1033 bc</td>
<td>1501 de</td>
</tr>
<tr>
<td>8. RWR 222 B</td>
<td>1519 ab</td>
<td>1233 bc</td>
<td>1809 ab</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>773 de</td>
<td>1283 b</td>
<td>1354 ef</td>
</tr>
<tr>
<td>10. RWR 222 A</td>
<td>1642 a</td>
<td>1183 bc</td>
<td>1677 a-d</td>
</tr>
<tr>
<td>11. Kilyumukwe</td>
<td>626 e</td>
<td>1183 bc</td>
<td>1125 f</td>
</tr>
<tr>
<td>12. SMK 1015</td>
<td>686 de</td>
<td>1167 bc</td>
<td>1375 ef</td>
</tr>
<tr>
<td>13. M.local (T)</td>
<td>993 cde</td>
<td>1217 bc</td>
<td>1497 de</td>
</tr>
<tr>
<td>14. AFR 13</td>
<td>1063 cd</td>
<td>1783 a</td>
<td>1129 f</td>
</tr>
<tr>
<td>15. RWR 104</td>
<td>749 de</td>
<td>1150 bc</td>
<td>1366 ef</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>800 cde</td>
<td>883 c</td>
<td>1115 f</td>
</tr>
</tbody>
</table>

Moyenne générale
CV %
F. calc. 3/ 

1/ Chiffres entre parenthèses = Nombre de saisons
2) Deux valeurs avec une même lettre ne sont pas statistiquement différentes
3/ **: Essai significatif à 1% de probabilité.
### Annexe 5.16: Rendements (kg/ha) des variétés de l'ECM 89-90 par SITES en HAUTE ALTITUDE.

<table>
<thead>
<tr>
<th>Variétés</th>
<th>SITES 1/</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rwerere (4)</td>
</tr>
<tr>
<td>1. 1378 /4</td>
<td>1504 ab</td>
</tr>
<tr>
<td>2. SSBD 13MK</td>
<td>958 e</td>
</tr>
<tr>
<td>3. 1364/1</td>
<td>1409 abc</td>
</tr>
<tr>
<td>4. XAN 194</td>
<td>1388 abc</td>
</tr>
<tr>
<td>5. 1364/5</td>
<td>1367 abc</td>
</tr>
<tr>
<td>6. Kerme 20</td>
<td>1365 abc</td>
</tr>
<tr>
<td>7. APR 8</td>
<td>1339 abc</td>
</tr>
<tr>
<td>8. RWR 222 B</td>
<td>1294 bc</td>
</tr>
<tr>
<td>9. PVA 781</td>
<td>1272 bcd</td>
</tr>
<tr>
<td>10. RWR 222 A</td>
<td>1256 bcd</td>
</tr>
<tr>
<td>11. Kilyumukwe</td>
<td>1139 cde</td>
</tr>
<tr>
<td>12. SMK 1015</td>
<td>1016 de</td>
</tr>
<tr>
<td>13. M. local (T)</td>
<td>1610 a</td>
</tr>
<tr>
<td>14. AFR 13</td>
<td>950 e</td>
</tr>
<tr>
<td>15. RWR 104</td>
<td>601 f</td>
</tr>
<tr>
<td>16. SMK 1004</td>
<td>477 f</td>
</tr>
<tr>
<td><strong>Moyenne générale</strong></td>
<td>1184</td>
</tr>
<tr>
<td><strong>CV %</strong></td>
<td>33,6</td>
</tr>
<tr>
<td><strong>F calc 3/</strong></td>
<td>12,29 **</td>
</tr>
</tbody>
</table>

1/ Chiffres entre parenthèses = Nombre de saisons  
2/ Deux valeurs avec une même lettre ne sont pas statistiquement différentes  
3/ ** Essai significatif au niveau de 1% de probabilité
Annexe 5.17: Sensibilité des différentes variétés en essai ECM 1989-90 en HAUTE ALTITUDE.

Site: - Nom: Rwerere  
- Altitude: 2060 m  
- Saisons: 89A,89B,90A,90B  
- Région: BUBERUKA  
- Zone: HA

<table>
<thead>
<tr>
<th>Variétés</th>
<th>Réaction aux maladies (1-9)*</th>
<th>Virose</th>
<th>Bacteriose</th>
<th>Anthracnose</th>
<th>Ascochytose</th>
<th>Taches</th>
<th>Rouille</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 1378/4</td>
<td></td>
<td>1,65</td>
<td>1,75</td>
<td>4,32</td>
<td>4,60</td>
<td>2,55</td>
<td>1,17</td>
</tr>
<tr>
<td>2. Kerne 20</td>
<td></td>
<td>1,50</td>
<td>1,62</td>
<td>2,57</td>
<td>5,72</td>
<td>1,75</td>
<td>1,37</td>
</tr>
<tr>
<td>3. RWR 222 A</td>
<td></td>
<td>2,87</td>
<td>1,77</td>
<td>3,22</td>
<td>5,60</td>
<td>1,75</td>
<td>2,15</td>
</tr>
<tr>
<td>4. RWR 222 B</td>
<td></td>
<td>2,25</td>
<td>1,57</td>
<td>2,15</td>
<td>5,32</td>
<td>1,67</td>
<td>2,22</td>
</tr>
<tr>
<td>5. APR 8</td>
<td></td>
<td>2,70</td>
<td>1,57</td>
<td>2,15</td>
<td>6,02</td>
<td>3,02</td>
<td>1,77</td>
</tr>
<tr>
<td>6. APR 13</td>
<td></td>
<td>3,30</td>
<td>1,12</td>
<td>1,00</td>
<td>5,97</td>
<td>1,77</td>
<td>1,42</td>
</tr>
<tr>
<td>7. M.local (T)</td>
<td></td>
<td>2,02</td>
<td>1,37</td>
<td>3,61</td>
<td>5,57</td>
<td>3,60</td>
<td>3,00</td>
</tr>
<tr>
<td>8. SBBD 13 HK</td>
<td></td>
<td>1,90</td>
<td>1,70</td>
<td>1,82</td>
<td>6,07</td>
<td>1,50</td>
<td>2,92</td>
</tr>
<tr>
<td>9. SMK 1015</td>
<td></td>
<td>3,22</td>
<td>2,75</td>
<td>4,90</td>
<td>5,85</td>
<td>3,55</td>
<td>2,53</td>
</tr>
<tr>
<td>10. EMK 1004</td>
<td></td>
<td>2,72</td>
<td>2,50</td>
<td>6,42</td>
<td>7,17</td>
<td>3,67</td>
<td>3,10</td>
</tr>
<tr>
<td>11. FVA 781</td>
<td></td>
<td>2,02</td>
<td>1,90</td>
<td>2,00</td>
<td>4,97</td>
<td>3,22</td>
<td>2,60</td>
</tr>
<tr>
<td>12. XAN 194</td>
<td></td>
<td>2,42</td>
<td>1,20</td>
<td>1,62</td>
<td>4,97</td>
<td>2,15</td>
<td>2,82</td>
</tr>
<tr>
<td>13. RWR 104</td>
<td></td>
<td>2,17</td>
<td>2,30</td>
<td>7,17</td>
<td>7,10</td>
<td>4,37</td>
<td>1,40</td>
</tr>
<tr>
<td>14. 1364/5</td>
<td></td>
<td>2,27</td>
<td>2,85</td>
<td>4,57</td>
<td>4,32</td>
<td>2,15</td>
<td>3,67</td>
</tr>
<tr>
<td>15. 1364/1</td>
<td></td>
<td>2,42</td>
<td>2,50</td>
<td>4,85</td>
<td>4,50</td>
<td>2,00</td>
<td>1,35</td>
</tr>
<tr>
<td>16. Kilyumukwe</td>
<td></td>
<td>2,92</td>
<td>3,90</td>
<td>4,30</td>
<td>5,15</td>
<td>4,20</td>
<td>1,05</td>
</tr>
</tbody>
</table>

* Cotation: 1 à 9 (1=résistant; 9=très sensible)
7.6. **ABREVIATIONS UTILISEES**

<table>
<thead>
<tr>
<th>Acronyme</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANRUBY</td>
<td>Projet Animation Rural de Byumba</td>
</tr>
<tr>
<td>APA</td>
<td>Projet pour l'Amélioration de la Production Agricole</td>
</tr>
<tr>
<td>BA</td>
<td>Basse altitude (&lt;1500 m)</td>
</tr>
<tr>
<td>BGM</td>
<td>Projet Bugesera Gisaka Migongo</td>
</tr>
<tr>
<td>CIAT</td>
<td>Centro International de Agricultura Tropical</td>
</tr>
<tr>
<td>DANK</td>
<td>Projet de Développement Agricole Nshili-Kivu</td>
</tr>
<tr>
<td>DERVAM</td>
<td>Projet de Développement Rural des Vallées du Mutara</td>
</tr>
<tr>
<td>DGB</td>
<td>Projet de Développement Global de Butare</td>
</tr>
<tr>
<td>DRB</td>
<td>Projet de Développement Global de Byumba</td>
</tr>
<tr>
<td>EAVK</td>
<td>Ecole Agri-vétérinaire de Butare</td>
</tr>
<tr>
<td>ECM</td>
<td>Essai comparatif multilocal</td>
</tr>
<tr>
<td>GBK</td>
<td>Projet Agro-sylvo-pastoral Gisenyi-Butare-Kigali</td>
</tr>
<tr>
<td>HA</td>
<td>Haute altitude (&gt;1800 m)</td>
</tr>
<tr>
<td>IPV</td>
<td>Projet Intensification des Plantes Vivrières</td>
</tr>
<tr>
<td>ISAR</td>
<td>Institut des Sciences Agronomiques du Rwanda</td>
</tr>
<tr>
<td>Kibungo II</td>
<td>Projet Kibungo II</td>
</tr>
<tr>
<td>MA</td>
<td>Moyenne altitude (1500-1800 m)</td>
</tr>
<tr>
<td>MG</td>
<td>Moyenne générale</td>
</tr>
<tr>
<td>MINAGRI</td>
<td>Ministère de l'Agriculture</td>
</tr>
<tr>
<td>MINIPLAN</td>
<td>Ministère du Plan</td>
</tr>
<tr>
<td>PAG</td>
<td>Projet Agricole de Gitarama</td>
</tr>
<tr>
<td>PAK</td>
<td>Projet Agricole de Kibuye</td>
</tr>
<tr>
<td>PAP</td>
<td>Projet Agro-pastorale de Nyabisindu</td>
</tr>
<tr>
<td>PCCV</td>
<td>Projet Café et Cultures vivrières</td>
</tr>
<tr>
<td>PIA</td>
<td>Projet Intensification agricole</td>
</tr>
<tr>
<td>PKE</td>
<td>Projet Kigali-Est</td>
</tr>
<tr>
<td>PKN</td>
<td>Projet Kigali-Nord</td>
</tr>
<tr>
<td>SG</td>
<td>Sélection généalogique</td>
</tr>
<tr>
<td>SSS</td>
<td>Service des Semences Sélection</td>
</tr>
</tbody>
</table>