Capacitación en Tecnología de Producción de Pastos

Manejo y Utilización de Pasturas en Suelos Ácidos de Colombia
Fascículo 4
 Manejo y Utilización de Pasturas en Suelos Ácidos de Colombia

Autores:
Phanor Hoyos G., M. Sc.
Obed García D., M.V.
Mauricio Iván Torres M., M.VZ.

Asesoría científica:
Carlos Lascano, Ph.D.

Coordinación general:
Vicente Zapata S., Ed.D.
Carlos Vicente Durán, C. M.Sc.

Producción:
Claudia Patricia López, Ing. Agr.

Diagramación:
Flora Stella C. de Lozada
Contenido

Presentación de los Fascículos ... 2
Agradecimientos ... 2
Flujograma para el estudio de este Fascículo .. 3
Introducción al Fascículo .. 4

Secuencia 1. Manejo Agronómico de la Pastura .. 5
Fertilización de mantenimiento .. 6
Manejo de malezas e insectos plaga .. 10
Resumen de la Secuencia .. 10

Secuencia 2. Utilización de la Pastura .. 13
Utilización de la pastura con animales .. 14
Utilización de la pastura como campo de propagación (semillero) .. 30
Resumen de la Secuencia .. 35

Secuencia 3. Degradación y Rehabilitación de Pasturas .. 37
Degradación de pasturas .. 38
Evaluación de pasturas degradadas ... 46
Rehabilitación de pasturas .. 51
Resumen de la Secuencia .. 57

Anexos
Anexo 1. Reciclaje simplificado de nutrimentos para un ecosistema de pasturas .. 59
Anexo 2. Malezas. Clasificación morfológica en los tres ecosistemas ... 60
Anexo 3. Contenido de algunos nutrimentos en fertilizantes comerciales en Colombia .. 61
Anexo 4. Factores de conversión equivalencias y relaciones entre nutrimentos ... 62
Anexo 5. Cambios en la composición química del suelo en praderas de B. humidicola puro y asociado con D. heterocarpon (ssp ovalifolium) al tercer año de pastoreo .. 63
Anexo 6. Propiedades químicas de los suelos de la altillanura plana de Colombia según la textura ... 64
Anexo 7. Ecosistemas, dosis de siembra y fertilización de establecimiento de las especies forrajeras comerciales y promisorias ... 65
Anexo 8. Rutas del área del muestreo en una pradera según la forma del lote ... 67
Anexo 9. Bibliografía ... 68
Anexo 10. Copia de las transparencias del instructor ... 73
Presentación de los Fascículos

La serie de cuatro Fascículos para la Capacitación en Tecnología de Producción de Pastos es parte del conjunto de materiales publicados por el CIAT.

El Centro Internacional de Agricultura Tropical, CIAT, en colaboración con los programas nacionales de investigación agrícola, ha venido desarrollando tecnologías sobre producción de pasturas tropicales. Al mismo tiempo, el CIAT ha contribuido al fortalecimiento de la investigación en los programas nacionales mediante la capacitación de sus investigadores. Como resultado, existe en América tropical un acervo de tecnologías disponibles para ganaderos y profesionales expertos en pasturas tropicales.

Los Fascículos han sido diseñados con dos propósitos: (a) servir de apoyo al aprendizaje de todos aquellos que acudan a cursos, talleres y seminarios sobre tecnologías de producción de pastos y (b) constituirse en material de difusión de conceptos y métodos para ser aplicados por aquellos que trabajen en transferencia de tecnología agropecuaria.

Los Fascículos son para los participantes en la capacitación lo que las Unidades de Aprendizaje son para los instructores. Esto quiere decir que las dos publicaciones se complementan: cada una cumpliendo las funciones para las cuales fue diseñada. Las unidades con todo el material de apoyo, ejercicios, transparencias y anexos para facilitar la labor del instructor. Los Fascículos son más breves que el compendio del material de lectura que requiere el participante para apropiarse del contenido de tecnología de producción de pastos.

Estos Fascículos deberán estar disponibles para ser distribuidos entre los participantes en los eventos de capacitación de manera que puedan seguir a los instructores en sus presentaciones y estudiar los conceptos y procedimientos presentados durante la capacitación.

Agradecimientos

Los autores de este material agradecen al personal científico del CIAT y a la Sección de Materiales de Capacitación por el apoyo técnico que les brindó durante las etapas de su formación como capacitadores y en la elaboración de las Unidades de Aprendizaje y de los Fascículos, así como las múltiples contribuciones que ellos hicieron para garantizar la producción de esta serie de materiales dignos de reconocimiento de todos aquellos que se beneficien de la capacitación que se imparte mediante el empleo de estos materiales.

En el desarrollo metodológico de las Unidades y en su producción colaboraron muchas personas e instituciones. A todas ellas nuestro reconocimiento y especialmente a los nuevos capacitadores.

Nuestro agradecimiento especial a la señora Flora Stella C. de Lozada quien nos ayudó en las transcripciones del material.

Finalmente, nuestro agradecimiento a la Nestlé de Colombia y al Banco Ganadero Fomento entidades que colaboraron en la financiación del Programa de Formación de Capacitadores.

Los Autores
Flujograma para el Estudio de este Fascículo

Objetivo terminal

- Diseñar y recomendar estrategias de manejo y utilización de pasturas
- Identificar y resolver los problemas que afectan su productividad, en un agroecosistema determinado

Secuencia 1
Manejo agronómico de la pastura

Objetivos

- Determinar los niveles y fuentes de fertilizante necesarios para el mantenimiento de una pastura en el agroecosistema
- Indicar la época y método de aplicación de la fertilización de mantenimiento de una pastura
- Orientar al productor sobre el manejo preventivo de insectos plaga (salivazo y hormiga) y malezas en sus pasturas

Secuencia 2
Utilización de la pastura

Objetivos

- Evaluar en una finca la disponibilidad de forraje y la composición botánica de una pastura
- Diseñar la estrategia del manejo del pastoreo para lograr el balance graminea/leguminosa en una situación dada
- Proponer un plan de trabajo para el manejo de una pastura que se utilizará como semillero

Secuencia 3
Degradaclon y rehabilitación de pasturas

Objetivos

- Identificar los factores de degradación en una pastura dada
- Determinar el estado de degradación de una pastura con base en el calculo de la disponibilidad de forraje, la composición botánica, la evaluación de la condición de la pastura y el area de suelo descubierto
- Indicar los procedimientos de rehabilitación adecuados a los factores y estado de degradación de una pastura
Introducción al Fascículo

Los sistemas de producción animal constituyen la estructura básica de la producción de alimentos con mayor demanda en los países tropicales: carne y leche. La utilización de los forrajeros por medio del pastoreo es la estrategia más adecuada en zonas de producción extensiva, en las cuales la capacidad de los suelos limita el desarrollo de sistemas de producción más intensivos.

Los sistemas ganaderos se han desarrollado a partir del uso de especies nativas, de baja calidad nutritiva, lo cual, a su vez, determina el pobre comportamiento productivo. La introducción de especies forrajeras mejoradas, ayuda al incremento de la productividad de los sistemas; sin embargo, en suelos frágiles de fertilidad marginal, el establecimiento y el manejo de pasturas se adopta con algunos riesgos que ocasionan altos costos de producción, baja persistencia y deterioro del suelo.

El propósito de este Fascículo es presentar los conceptos básicos y los elementos prácticos que intervienen en el manejo y en la utilización de las pasturas introducidas en ecosistemas de suelos ácidos de baja fertilidad, como son los de la Altillanura plana colombiana, el Piedemonte llanero y el Piedemonte amazónico.

Para los propósitos didácticos se consideran tres secuencias instruccionales definidas alrededor del objetivo de trabajo: (1) manejo; (2) utilización y (3) degradación y rehabilitación de las pasturas. La Secuencia 1 hace énfasis en la relación suelo-planta. La Secuencia 2 hace énfasis en la relación planta-animal y se ha denominado utilización de la pastura. En la Secuencia 3 se discuten los factores relacionados con la degradación de las praderas y las estrategias para rehabilitarlas.

El conjunto de las tres secuencias tiene como propósito difundir las tecnologías disponibles, para incrementar y sostener la productividad del sistema ganadero, mejorando el suelo.
Secuencia 1. Manejo Agronómico de la Pastura

Flujograma para la Secuencia 1 ... 6
Información .. 6
Fertilización de mantenimiento ... 6
Niveles y frecuencia de fertilización ... 7
Fertilizantes .. 8
Métodos y épocas de fertilización ... 8
Cálculo de fertilizantes ... 9
Manejo de malezas e Insectos plaga ... 10
Malezas ... 10
Insectos plaga .. 10
Resumen de la Secuencia ... 10
Información

En esta secuencia, se entiende por manejo agronómico, la manipulación de varios factores que inciden en la estabilidad de una pastura especialmente en su relación suelo-planta, con el propósito de mantener su productividad en términos de composición botánica y potencial de crecimiento. La conservación de los niveles de fertilidad en el suelo se considera como el factor fundamental, por lo tanto, se presentan los requerimientos por especie y los procedimientos para su cálculo. Se hacen las consideraciones básicas para prevenir el desarrollo de especies invasoras y la incidencia de insectos plaga con especial referencia a salivazo y hormigas. Los elementos que aquí se presentan deben enmarcarse en los agroecosistemas del trópico bajo: Piedemonte amazónico, Piedemonte llanero y Altillanura plana colombiana.

Fertilización de mantenimiento

Con la aplicación de fertilizantes en una pastura se persigue mantener el balance de los nutrimientos que han sido extraídos por los animales en pastoreo, o se han perdido por escorrentía, lixiviación y volatilización natural, antes que se manifieste una deficiencia o algún signo de degradación. La fertilización es una práctica de mantenimiento preventiva para conservar la capacidad productiva de la pastura.

Se estima que más del 80% del nitrógeno, fósforo, potasio y calcio que ingieren los rumiantes son retornados al suelo en las excretas, con una distribución inferior al 1% del área en pastoreo. Se debe tener en cuenta
que en los procesos de reciclado ocurren pérdidas de nutrientes por lixiviación, volatilización y denitrificación. Por otro lado los residuos de origen vegetal y animal que llegan al suelo están expuestos a diferentes niveles de mineralización. También de los nutrientes disponibles para las plantas algunos pueden ser fijados como el caso del fósforo por la presencia de aluminio y hierro o en otros casos inmovilizados. En el Anexo 1 se presenta en forma simplificada el reciclaje de nutrientes en una pastura.

No obstante las pérdidas mencionadas anteriormente el balance del reciclaje en praderas bien manejadas es positivo. En el Anexo 5 se muestra el efecto del reciclaje de dos praderas de *B. humidicola* (pura y asociada con *D. heterocapron* ssp. *ovalifolium*) después de 3 años de pastoreo en suelos de altillanura. En las dos praderas se observan incrementos sustanciales en M.O. Mg y K destacándose un mayor aporte de P y Ca en la pradera asociada. Las producciones de carne en este periodo fueron de 116 y 240 kg/ha/año para las pasturas puras y asociadas respectivamente.

Niveles y frecuencia de fertilización

Es difícil determinar la frecuencia y los niveles de fertilización de mantenimiento de una pastura, debido a la serie de factores involucrados en la dinámica del ecosistema. Se sabe que las especies forrajeras tienen requerimientos que las hacen compatibles o no con un sistema agroecológico determinado, y que dentro de un grupo de especies adaptadas a un mismo ecosistema, existen diferencias en sus exigencias. Por lo tanto, el asistente técnico debe conocer los requerimientos de las especies forrajeras. En el Cuadro 1 se presenta una aproximación de los niveles de fertilización de mantenimiento para un grupo de gramíneas y leguminosas. Para la fertilización en asociaciones graminea-leguminosa se tomará el valor más alto recomendado de cada nutriente.

En pasturas asociadas, se estima que las leguminosas aportan cada año al suelo entre 15 y 158 kg/ha de N por fijación del nitrógeno atmosférico. En pasturas de gramíneas solas los requerimientos de nitrógeno deben suplirse con fuentes externas. En el Cuadro 1 se indican los niveles requeridos para algunas especies de graminea. Por otro lado, se ha establecido que *Andropogon gayanus* mantiene altos niveles de producción sin la necesidad de la aplicación de nitrógeno; posiblemente por su buen desarrollo radicular y su habilidad para utilizar el nitrógeno nativo del suelo. En otras gramíneas con respuesta similar a la de *A. gayanus*, ésta se relaciona más bien con una asociación efectiva con microorganismos fijadores de N.

Cuadro 1. Recomendaciones generales para fertilización de mantenimiento en pasturas de la Altillanura plana, Piedemonte llanero y Piedemonte del Caquetá

<table>
<thead>
<tr>
<th>Especie</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>S</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gramíneas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. gayanus</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>B. humidicola</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. dictyoneura</td>
<td>50</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>B. decumbens</td>
<td>100</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>B. brizantha</td>
<td>100</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>P. maximun</td>
<td>100</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Leguminosas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. acutifolium</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>C. macrocarpum</td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>C. brasilianum</td>
<td>5</td>
<td>10</td>
<td></td>
<td>12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>S. capitata</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>D. ovalifolium</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>P. phaseoloides</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>A. pintoi</td>
<td>5</td>
<td>10</td>
<td>12</td>
<td></td>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

--- Valores en guión significa que no se conocen sus requerimientos.

En suelos de textura pesada o arcillosa se requieren fertilizaciones menos frecuentes (cada dos años); en los suelos de textura liviana o arenosa se requiere fertilización más...
frecuente. Por otra parte, la fertilización nitrogenada adquiere mayor importancia en ecosistemas con bajo nivel de materia orgánica, como en la Altillanura plana. En términos generales los nutrimentos más limitantes en texturas livianas son N, Ca, Mg, K y los microelementos Zn, Cu y B, mientras en texturas pesadas el fósforo se constituye en uno de los más limitantes debido a los altos contenidos de Aluminio (ver Anexo 6). Los niveles recomendados de Zn, Cu y B para la altillanura son 3, 2 y 0.5 kg/ha del elemento, los cuales son particularmente importantes en el caso de asociaciones gramineas-leguminosas.

Otros aspectos a tener en cuenta es el balance de nutrimentos en el suelo, especialmente la relación Ca/Mg/K cuyo balance en meq/100 g de suelo debe ser 10:4:1. Se presenta un mayor desbalance en suelos arenosos (5:1:1) que en arcillosos (3:1:1). La situación se agrava cuando los productores utilizan fuentes de fósforo con altos contenidos de calcio como único insumo para el mantenimiento de praderas. Por otro lado la relación N/S en estos suelos es posiblemente muy baja dado los bajos niveles de materia orgánica (2%) y altos contenidos de azufre (>20 ppm).

En el Anexo 3 se presenta un listado de los fertilizantes comerciales disponibles en Colombia y su contenido de nutrimentos en forma elemental. Para facilitar el uso y cálculos de requerimiento de fertilizantes se presenta en el Anexo 4 algunos factores de conversión y equivalencias así como las relaciones más importantes de los nutrimentos en el suelo para lograr un adecuado balance. Se debe tenerse precaución en el uso de las relaciones pues éstas son válidas únicamente para condiciones de suelos ácidos.

Fertilizantes
Entre las fuentes de fósforo más utilizadas comercialmente para fertilizar praderas están el Superfosfato triple (SFT), Calfos y Fosforita Huila (FH). Estas tres fuentes son de alta, media y baja salubilidad respectivamente; sin embargo experimentalmente han mostrado una respuesta similar.

Los productores prefieren el uso de rocas como Fosforita Huila por la mayor concentración de P en relación al Calfos y por el contenido de calcio que no tiene el Superfosfato triple lo cual le representa un beneficio económico en el transporte (Anexo 3). Debido a que los productores no realizan fertilizaciones de mantenimiento completas y balanceadas las praderas muestran en corto tiempo síntomas de degradación. Una fertilización completa de mantenimiento debe incluir los siguientes nutrimentos N, P, Ca, Mg, K, S, Zn, Cu y B adecuadamente balanceadas. Para la aplicación de Ca, Mg, K y S existen en el mercado fertilizantes simples y compuestos. Los fertilizantes compuestos generalmente son más económicos pero no permiten flexibilidad para balancear los nutrimentos.

Es importante considerar la posibilidad del uso del cincel vibratorio en suelos de textura pesada en la práctica de fertilización del mantenimiento; pues ésto permite mejorar las condiciones de retención de humedad, liberación y uso eficiente de nutrimentos en el suelo. En praderas experimentales bien manejadas se ha encontrado compactación superficial (a 7 cm de profundidad) a los 3 años de pastoreo.

Métodos y épocas de fertilización
Existen varios métodos de aplicación de fertilizantes (al voleo, en banda, en surco), pero para el mantenimiento de pasturas en zonas cubiertas por especies establecidas, el método al voleo es el más práctico, ya que garantiza una distribución del fertilizante más homogénea sobre la superficie.

La fertilización puede ser manual o mecánica, dependiendo del área y de la disponibilidad de maquinaria. Los implementos de aplicación más común son: las voleadoras de tolva, de disco, de cañón y manual, y la abonadora de boquillas tipo Gandy.
Cuando se aplican fertilizantes es importante considerar la humedad en el suelo; toda vez que ésta facilita la movilidad y absorción de los nutrientes. Sin embargo durante los periodos de alta lluviosidad las pérdidas de nutrientes por lixiviación y escorrentía son significativas; por otro lado, la fertilización al inicio de la época seca puede resultar en una baja absorción e inmovilización de los nutrientes; en consecuencia, la época más adecuada para la aplicación de los fertilizantes es aquélla con pluviosidad moderada, bien sea al inicio de las lluvias o al final del segundo tercio del período lluvioso.

Es importante tener en cuenta no mezclar fertilizantes higroscópicos y/o volátiles con otros fertilizantes como en el caso de la urea. Estos deben aplicarse por separado.

Cálculo de fertilizantes

El ajuste de las cantidades de los nutrientes que se aplican en pasturas debe hacerse con base en los elementos: N, P, K, Ca, Mg y S. Es necesario tener en cuenta que cuando se manejan fuentes que tienen más de un nutrimento, la cantidad a utilizar está determinada por el elemento de mayor demanda, no siendo necesario el cálculo de los elementos restantes. Es importante resaltar que los requerimientos de fertilización de mantenimiento de pasturas son muy bajos y en la mayoría de los casos los contenidos de nutrientes del suelo superan dichos niveles. Sin embargo como se trata de una práctica preventiva se recomienda fertilizar teniendo en cuenta los requerimientos de las especies y el balance de nutrientes que debe tener el suelo.

El análisis de suelo servirá de guía para los ajustes en el balance de nutrientes y su dinámica en el tiempo. Con el propósito de ilustrar el procedimiento para el cálculo de fertilizantes, se desarrolla el siguiente ejemplo:

En una finca de la Altillanura plana se tiene una pastura de *B. dictyoneura* que se ha utilizado durante dos años en pastoreo; esta pastura requiere la aplicación de fertilización de mantenimiento. Los fertilizantes disponibles son urea, Sulpomag y fosforita Huila.

Procedimiento:

- En el Cuadro 1 se muestra que los requerimientos de mantenimiento para *B. dictyoneura* son: N = 50; P = 5; K = 10 Mg = 8; S = 8 y Ca = 25 kg/ha.
- En el Anexo 3 se presentan el contenido de los nutrientes en las fuentes: urea (46% de N); Sulpomag (18 de K, 11 de Mg y 22 de S); fosforita Huila (8 de P y 30 de Ca).

Cálculos.

De acuerdo con los porcentajes anteriores de cada nutrimento, por una regla de tres simple directa, se determina que es necesario aplicar: 108 kg/ha de urea, 73 kg/ha de Fosforita Huila y 56 kg/ha de Sulpomag. Además, de acuerdo con las cantidades y fuentes aplicadas se adicionaron también 20, 6 y 12 kg/ha de Ca, Mg y S, respectivamente.

Podíamos considerar ahora las relaciones que aparecen en el Anexo 4 para ilustrar el procedimiento de balance de nutrimentos valiéndonos del uso de otras fuentes. Tomando la relación Ca/Mg/K en kg/ha o sea 16.7/1/3.2 respectivamente; se inician los cálculos partiendo del Mg (requerimiento = 8 kg/ha). Aplicando las proporciones de la relación las cantidades necesarias para el balance son:

- Calcio = 133.6 kg/ha
- Magnesio = 8 kg/ha
- Potasio = 25.6 kg/ha

Para ajustar el calcio se podrían aplicar 446 kg de cal agrícola (contiene 30% de calcio) con 73 kg de Sulpomag ajustamos los 8 kg de Mg y obtenemos 16 kg de S y 13.1 de K. Los 12.5 kg de K faltantes para el balance se pueden suplir aplicando 25 kg de KCl (contiene 50% de potasio).

Si se conociera además la densidad aparente del suelo (Ejemplo DA = 1.3 g/cc) éste se
converiría en un factor de ajuste de fertilización. En este caso las cantidades de fertilizantes calculadas anteriormente se multiplicarían todas por 1.3

Manejo de malezas e insectos plaga

Malezas

Las malezas afectan la productividad de las pasturas en la medida que compiten con éstas por espacio, luz, agua y nutrimentos; además, algunas de ellas contienen principios tóxicos que afectan la salud de los animales que las consumen. Son un problema grave durante la fase de establecimiento de pasturas, generalmente en el Piedemonte, en donde las condiciones de fertilidad del suelo son mejores. En contraste en la Altillanura, en condiciones de menor fertilidad, la incidencia de malezas es menos importante. En el Anexo 2 se presenta un listado de las malezas que predomina en los ecosistemas Piedemonte llanero, Piedemonte amazónico y Altillanura. En las pasturas establecidas la invasión de malezas, en términos generales, es un problema secundario. El manejo de las malezas se basa en el mantenimiento de las condiciones favorables para la pastura que le permitan expresar su potencial productivo y su persistencia en el tiempo, mediante adecuadas prácticas de manejo que regulen la acción de los animales en pastoreo. Esto implica un proceso dinámico que incluye una adecuada selección del germoplasma, un buen establecimiento de las especies, un manejo apropiado del pastoreo y una adecuada fertilización de mantenimiento.

Insectos plaga

La presencia de insectos plaga es mayor durante la fase de establecimiento y está relacionada en forma directa con la especie; así, mientras *A. gayanus* es susceptible a hormigas cortadoras, *B. decumbens* lo es al salivazo. En la Altillanura, la población y la actividad de la hormiga *Acromyrmex landolphi* es mayor en *Andropogon gayanus* que en especies de *Brachiaria*.

Por otra parte, el hábito de crecimiento de la planta y su influencia sobre el microclima cercano a la superficie del suelo, puede facilitar la presencia de insectos plaga, tal es el caso de *A. gayanus* que no ofrece un ambiente propicio para la presencia del salivazo, debido a su hábito de crecimiento erecto y su desarrollo radicular profundo que no permiten la alimentación adecuada de las ninfas.

De la misma manera, existen factores inherentes a las especies que caracterizan su resistencia a los insectos; por ejemplo, *Brachiarla brizantha* cv. Marandú tiene sustancias que inhiben el desarrollo de los instares del salivazo (antibiosis). Con referencia a la resistencia por tolerancia, *B. humidicola* y *B. dictyoneura* soportan niveles altos de toxinas inoculadas por la saliva del insecto que, finalmente, producen daño foliar visible. Se ha encontrado una correlación positiva entre el forraje disponible y el tiempo requerido por el insecto para causar un nivel de daño previamente definido, siendo *B. dictyoneura* y *B. humidicola* 2.5 veces más tolerantes que *B. decumbens* y *B. ruziensis*. No obstante, las dos primeras especies permiten altas densidades del insecto, por lo que son buenas hospederas de éste. El manejo del pastoreo como regulador de la disponibilidad de forraje es importante para el control de la dinámica poblacional del insecto. Se ha observado que un sobrepastoreo durante la fase ninfa del insecto permite una mayor incidencia de los rayos solares sobre las ninfas y por ende, afecta su propagación.

Resumen de la Secuencia

El mantenimiento del potencial productivo de una pastura implica su manejo adecuado y de los factores que inciden en la relación suelo-planta. El factor más importante es la fertilidad del suelo, la cual determina el vigor de la pastura. La conservación de los niveles
adecuados de fertilidad en el suelo mediante la aplicación correcta de los nutrientes extraídos por la planta constituye la base para la fertilización de mantenimiento. En este fascículo se presentan los requerimientos, por especie de gramíneas y leguminosas adaptadas a los suelos de la Orinoquía colombiana y el Piedemonte caqueteño; igualmente, se hace referencia a las épocas más adecuadas de aplicación de los nutrientes y se describen los métodos de fertilización más comunes en estas zonas.

El manejo de plantas invasoras y de insectos plaga —especialmente salivazo y hormigas— se presenta como una actividad preventiva, que depende del vigor de la pastura para tolerar el ataque de estos insectos, de la adaptación del germoplasma y del sistema de manejo del pastoreo.
Secuencia 2. Utilización de la Pastura
Flujograma para la Secuencia 2

Objetivos
- Evaluar en una finca la disponibilidad de forraje y la composición botánica de una pastura
- Diseñar la estrategia del manejo del pastoreo para lograr el balance gramínea/leguminosa en una situación dada
- Proponer un plan de trabajo para el manejo de una pastura que se utilizará como semillero

Contenido
- Utilización de la pastura con animales
- Utilización de la pastura como campo de propagación (semillero)

Información
La utilización de las pasturas con animales se basa en el manejo correcto de la relación planta/animal. En esta relación, la disponibilidad de forraje, la composición botánica, la carga animal y el sistema de pastoreo requieren el desarrollo de metodologías cuantitativas que permitan su manejo, con el propósito de optimizar el recurso forrajero en función de la producción animal. En esta secuencia se presenta las metodologías de evaluación más adecuadas en cada uno de los ecosistemas, a la vez que se hace una serie de consideraciones prácticas sobre los sistemas de pastoreo conocidos para adecuarlos a las especies forrajeras de uso más frecuente.

Por otro lado, teniendo en cuenta el potencial de las pasturas y las demandas del productor, se presentan alternativas para incrementar la rentabilidad del sistema. El desarrollo de semilleros a partir de pasturas es una de ellas. En este sentido se presentan las consideraciones para definir con qué especies, en qué momento y la metodología para hacerlo.

Utilización de la pastura con animales
La introducción de animales en una pastura exige el conocimiento previo de su potencial, si se quiere hacer un uso racional de la misma, disminuyendo el riesgo de deterioro.
(degradación). Desafortunadamente, la cuantificación del recurso forrajero de una pastura es una práctica poco utilizada y la regulación de la carga animal es arbitraria; por lo general está se determina con base en la experiencia del productor, lo cual, la mayoría de las veces, conduce al subpastoreo o al sobrepastoreo de la pastura con la consecuente disminución de su vida productiva. La evaluación de las pasturas es una herramienta esencial, que permite calcular la disponibilidad de forraje y el número de animales que es posible sostener durante un tiempo determinado.

Evaluación de la pastura
Existen varios métodos de muestreo (destructivo y no destructivo) para estimar la disponibilidad de forraje y la composición botánica de una pastura. En general, los métodos no destructivos son los más recomendables porque permiten realizar un gran número de observaciones en poco tiempo. Entre estos últimos se tienen el muestreo de doble rango visual, rango de peso seco y el "Botan". Una característica común entre estos métodos es el manejo estadístico dispendioso, lo cual se ha simplificado mediante la implementación de procedimientos de fácil aplicación a nivel de finca. Estos procedimientos se describen a continuación.

Métodología para la evaluación de especies de crecimiento postrado
Se entiende por especies de crecimiento postrado aquellas que crecen en sentido horizontal decumbente, lo que garantiza una buena cobertura del suelo. Pertencen a este grupo especies de *Brachiaria* como *B. decumbens*, *B. dictyoneura*, *B. humidicola* y de otros géneros como: *Melinis*, *Cynodon*, *Paspalum*, y algunas gramas nativas. Para la determinación de la biomasa y su composición botánica en pasturas de estas características, se ha desarrollado el método de disponibilidad por frecuencia el cual se describe a continuación.

- **Método de disponibilidad por frecuencia (MDF)**

Este método se basa en una escala de 1 a 5 (1 = mínima, 5 = máxima disponibilidad de forraje de la gramínea). Tomando como referencia dicha escala, se realizan 40 observaciones visuales en la pastura utilizando un marco de 0.5 x 0.5 m (0.25 m²). En cada observación se califican el rendimiento y la cobertura de las especies presentes asignando, primero, segundo, o tercer puesto, de acuerdo con el grado de cobertura de la especie en el sitio de muestreo, los cuales se han identificado antes de efectuar el muestreo asignándoles un número. (1) El primer paso consiste en reconocer el área para establecer el grano de variación en la disponibilidad de forraje, luego se hacen algunos cortes para comparar el peso estimado antes del corte con el peso real y se ajusta por regresión la estimación. (2) El segundo paso, consiste en la construcción de una escala con los rangos de valores ajustados. Se eligen los puntos 1 y 5 de la escala asignando el número 1 para el punto de mínima disponibilidad y el número 5 al punto de máxima disponibilidad de forraje. Luego se busca el punto 3, tomando como base el promedio de peso de los puntos 1 y 5, con una desviación no mayor del 20%. De la misma manera se continúa con los puntos 2 (promedio entre 1 y 3) y 4 (promedio entre 3 y 5). (3) El tercer paso, consiste en hacer 40 observaciones visuales, calificando en cada una la disponibilidad de forraje de la gramínea, usando también valores intermedios en la calificación entre 0.5 y 5.0 (0.5, 1.0, 1.5, 2.0, 2.5... 5.0) de acuerdo con la escala de referencia, y la composición botánica asignando primero, segundo o tercer puesto a cada especie de acuerdo con su cobertura en la unidad de muestreo. (4) El cuarto paso consiste en cortar y pesar todo el forraje presente para cada uno de los 5 puntos elegidos de la escala, tomando de cada uno una submuestra no mayor de 250 g para secado y así determinar la materia seca. La Figura 1, presenta en forma esquemática el procedimiento.
Método de Disponibilidad por Frecuencia para Gramíneas (MDF)

Reconocimiento de la pastura

Cortes preliminares de gramínea

Escala de Disponibilidad

- Punto(1) = Disponibilidad mínima
- Punto(2) = \(\frac{(1)+3}{2} \)
- Punto(3) = \(\frac{(1)+ (5) + 20\%}{2} \) = Disponibilidad media
- Punto(4) = \(\frac{(3) + (4)}{2} \)
- Punto(5) = Disponibilidad máxima

Observaciones visuales

40 lanzamientos Marco 0.25 m²

Formatos

Cortes Peso Verde - Escala

Disponibilidad 1 - 5

Composición Botánica

Factores

1o. - 0.7
2o. - 0.2
3o. - 0.1

Cálculos:

- \% MS/Escala
- g MS/Escala
- kg MS/ha

Secado Horno

60°C x 48 h

Composición Botánica

- \% Especie
- kg MS/Especie/ha

Figura 1. Evaluación de pasturas con especies postradas. Método de disponibilidad por frecuencia para gramíneas
En los Cuadros 2 y 3 se presenta un ejemplo del procedimiento de cálculo de disponibilidad de forraje y la composición botánica en una finca.

Para ilustrar los cálculos del Cuadro 2 se tomará como ejemplo el punto 5 de la escala.

Para estimar el porcentaje de MS de la gramínea en los puntos de la escala se aplica la relación siguiente:

\[
MS(\%) = \frac{\text{Peso seco submuestra}}{\text{Peso verde submuestra}} \times 100
\]

MS (marco 5) = \(\frac{73}{235} \times 100 = 31.1\% \)

Para calcular el peso seco de gramínea en el marco se aplica la siguiente relación:

\[
\text{Peso seco gramínea en el marco} = \frac{\text{MS} \times \text{peso verde de gramínea en el marco}}{100}
\]

Peso seco (marco 5) = \(\frac{31.1 \times 500}{100} = 155.3 \text{ g} \)

Nótese que el peso verde de la materia vegetal en los marcos 1 y 2 de la escala se tomó completo para la submuestra, por lo tanto, el peso seco de la submuestra es el mismo peso seco para el marco.

Cuadro 2. Peso verde y seco de submuestra de gramínea para estimar el peso seco en los sitios seleccionados (escala 1 a 5)

<table>
<thead>
<tr>
<th>Escala</th>
<th>Gramínea presente por marco (g/0.25 m²)</th>
<th>Submuestra de gramínea (g) para secado</th>
<th>MS(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso verde</td>
<td>Peso seco</td>
<td>Peso verde</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>52</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>(83)(^1)</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>380</td>
<td>(112)(^1)</td>
<td>220</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>(155)(^1)</td>
<td>235</td>
</tr>
</tbody>
</table>

\(^1\) = Valores calculados

En el Cuadro 3 se encuentran las calificaciones visuales para la pastura en términos de disponibilidad (según la escala correspondientes) y orden de cobertura de las especies presentes, identificadas con números como se indica en la parte inferior del cuadro. En el Cuadro 4 se resume la información de los Cuadros 2 y 3 para estimar la disponibilidad de forraje.

En el Cuadro 4, una vez consignados los pesos secos de los cinco puntos de la escala, se calculan los valores intermedios, los cuales aparecen entre paréntesis. En la columna de calificación de rendimiento del Cuadro 3 se suman las veces que apareció cada valor y se anota en la columna frecuencia de rendimiento (FR) del Cuadro 4 (por ejemplo, 1.0 aparece 14 veces). La suma de estas frecuencias debe ser igual al número de marcos evaluados, en este caso 40. Para obtener la disponibilidad de forraje en cada punto se multiplica el peso seco por la frecuencia. La disponibilidad de forraje por marco se calcula de la forma siguiente:

\[
\text{MVS/marco (g)} = \frac{\text{Total de disponibilidad de gramínea}}{\text{Total de frecuencia}} = \frac{1495}{40} = 37.3875 \text{ g}
\]
Para transformar la MVS/marco a kg de MVS/ha, se procede de la manera siguiente:

\[
37,3875 \text{ g} \times \frac{10,000 \text{ m}^2}{0.25 \text{ m}^2} \times \frac{1 \text{ kg}}{1000 \text{ g}} = 1495.5 \text{ kg/ha}
\]

De acuerdo con los cálculos anteriores la disponibilidad total de gramínea en la pastura es de 1495.5 kg/ha de MVS.

Cuadro 3. Calificación visual de disponibilidad y cobertura

<table>
<thead>
<tr>
<th>Finca: El Carmen</th>
<th>Ubicación: Puerto Gaitán</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fecha: Julio 10/91</td>
<td>Marco: 0.25 m²</td>
</tr>
<tr>
<td>Pastura: B. decumbens + leguminosa</td>
<td>Area: 6 ha</td>
</tr>
</tbody>
</table>

Marco No.	Calificación de rendimiento	Orden de cobertura (%)						
	1 - 20	21 - 40	1 - 20	21 - 40	1 - 20	21 - 40	1 - 20	21 - 40
1 - 21	1.5	1.0	1	1	2	3	3	3
2 - 22	2.0	1.5	1	4	1	5	4	5
3 - 23	2.5	1.5	1	2	7	3	2	3
4 - 24	1.0	1.5	3	2	1	3	1	1
5 - 25	1.5	1.0	1	2	5	1	4	3
6 - 26	3.0	2.5	1	1	4	6	4	6
7 - 27	2.5	1.0	1	1	3	3	1	3
8 - 28	2.0	1.0	1	1	5	2	2	2
9 - 29	1.0	1.5	1	1	6	5	6	6
10 - 30	1.5	1.5	1	1	1	3	1	1
11 - 31	1.0	2.0	1	1	1	2	4	3
12 - 32	0.5	2.5	1	3	5	1	5	3
13 - 33	1.5	1.0	1	1	2	1	6	6
14 - 34	1.0	2.0	3	1	1	1	1	1
15 - 35	1.5	1.0	5	4	1	1	1	1
16 - 36	1.0	1.0	1	1	1	1	1	1
17 - 37	1.5	1.5	1	1	1	1	3	2
18 - 38	2.0	1.0	1	2	4	1	3	3
19 - 39	2.5	1.5	1	3	2	3	3	1
20 - 40	4.0	1.0	1	1	1	1	5	6

Cuadro 4. Peso seco y frecuencia de rendimiento de la escala para estimar la graminea total disponible

<table>
<thead>
<tr>
<th>Escala</th>
<th>Peso seco (PS)</th>
<th>Frecuencia de rendimiento (FR)</th>
<th>Disponibilidad (PS x FR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>(5)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
<td>14</td>
<td>140</td>
</tr>
<tr>
<td>1.5</td>
<td>(31)</td>
<td>13</td>
<td>403</td>
</tr>
<tr>
<td>2.0</td>
<td>52</td>
<td>5</td>
<td>260</td>
</tr>
<tr>
<td>2.5</td>
<td>(67.5)</td>
<td>5</td>
<td>337.5</td>
</tr>
<tr>
<td>3.0</td>
<td>83</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>3.5</td>
<td>(97.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.0</td>
<td>112</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>4.5</td>
<td>(133.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.0</td>
<td>155</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>40</td>
<td>1495.5</td>
</tr>
</tbody>
</table>

() = Cálculo de valores intermedios
PS = Peso seco
FR = Frecuencia de rendimiento

En el Cuadro 5 se resume la cobertura de las especies de acuerdo con la información del Cuadro 3. Por ejemplo, la especie No. 2, *S. capitata*, aparece cuatro veces en el primer orden de cobertura. Al terminar el ejercicio se debe verificar que la suma del número de veces que aparece cada especie en cada orden de cobertura sea igual al número de marcos evaluados (40 en este caso).

En el Cuadro 5, la columna sobre la suma ponderada contiene el valor que aporta cada especie con relación al total de marcos evaluados; esta columna se calcula como la suma ponderada de acuerdo con los coeficientes que aparecen en cada posición (0.7, 0.2 y 0.1).

Por ejemplo: para la especie 1 (*B. decumbens*) se calcula así:

\[
\text{Suma} = 29 \times 0.7 + 18 \times 0.2 + 11 \times 0.1 = 25
\]

Una vez que se calculan las sumas ponderadas para cada especie se totaliza la columna y el resultado debe ser igual a 40. La composición botánica de la pastura se determina dividiendo la suma ponderada de cada una de las especies entre el total de puntos visuales (40).

Por ejemplo para la especie 1 (*B. decumbens*) se calcula:

\[
25 \times 100 = 62.5
\]

Se debe notar que la disponibilidad de la graminea (1495.5 kg/ha de MS) representa el 62.5% del total del forraje disponible. En consecuencia, por regla de tres se deduce que el forraje total es:

\[
\text{Forraje total disponible} = \frac{1495.5 \times 100}{40} = 392.8 \text{ kg/ha}
\]

Por último, se calcula la disponibilidad de MS de los diferentes componentes de la pastura multiplicando los porcentajes respectivos de composición botánica por el forraje total disponible y dividiendo por 100. Este cálculo se ilustra a continuación con las especies 2 y 3.

Ej.: Especie 2 (*S. capitata*)

\[
2392.8 \times 10.8 = 258.4 \text{ kg/ha de MS}
\]

Ej.: Especie 3 (*C. acutifolium*)

\[
2392.8 \times 13.2 = 315.8 \text{ kg/ha de MS}
\]

Metodología para la evaluación de especies de crecimiento erecto
Una característica de las pasturas establecidas con especies erectas - *Andropogon gayanus, Panicum maximum, Hyparrhenia rufa, Brachia brizanta*- en ecosistemas con suelos de baja fertilidad como la Altillanura, es su baja cobertura y crecimiento individual de las plantas en macollas, lo cual determina que la estimación del forraje disponible requiera una metodología diferente a la utilizada para...
Cuadro 5. Resumen de la disponibilidad y composición botánica de la pastura

<table>
<thead>
<tr>
<th>Especie de componente</th>
<th>Número de veces en cada posición</th>
<th>Suma ponderadav</th>
<th>Composición botánica pastura</th>
<th>MS kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primera 0.7z</td>
<td>Segunda 0.2z</td>
<td>Tercera 0.1z</td>
<td></td>
</tr>
<tr>
<td>1. B. decumbens</td>
<td>29</td>
<td>18</td>
<td>11</td>
<td>25.0</td>
</tr>
<tr>
<td>2. S. capitata</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4.3</td>
</tr>
<tr>
<td>3. C. acutifolium</td>
<td>4</td>
<td>7</td>
<td>11</td>
<td>5.3</td>
</tr>
<tr>
<td>4. M. pitieri</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2.2</td>
</tr>
<tr>
<td>5. A. purpusii</td>
<td>1</td>
<td>5</td>
<td>3</td>
<td>2.0</td>
</tr>
<tr>
<td>6. P. rudgei</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>1.0</td>
</tr>
<tr>
<td>7. Malezas de hoja ancha</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.2</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

v Suma ponderada = (No. veces 1a. posición x 0.7) + (No. veces 2a. posición x 0.2) + (No. veces 3a. posición x 0.1)

z Factor de corrección

especies postradas. Por el contrario, en ecosistemas de mayor fertilidad, donde las gramíneas erectas muestran amplia cobertura, se recomienda utilizar el método de muestreo de especies postradas.

A partir de estas consideraciones se desarrolló el método poblacional estratificado que se basa en la estimación del forraje por conteos poblacionales de la graminea.

- **Método poblacional estratificado**

Se basa en la estratificación de la pastura de acuerdo con la altura de las plantas -considerando la distancia desde el suelo y el punto donde se doblan las hojas más altas, sin incluir los tallos florales-. Después de un reconocimiento de la pastura para observar la distribución de las plantas y su altura, se seleccionan en el área de muestreo las 10 plantas más altas y promediar su altura. Si el promedio de altura es mayor o igual a 100 cm, se divide el valor en tres partes iguales para determinar los rangos de los estratos bajo, medio y alto; si el promedio es mayor o igual a 50 cm e inferior a 100 cm se divide el valor entre 2 para determinar los rangos de los estratos bajo y alto, y si el promedio es inferior a 50 cm se considera solamente un estrato.

Una vez establecidos los estratos se evalúa la pastura por medio del conteo de las plantas en cada estrato y su respectiva cobertura en 40 marcos de 1 m² cada uno. Con esta información se procede de la manera siguiente:

- Considerando los rangos establecidos se cuantifica por estrato el total de plantas.
- Se procede a seleccionar tres plantas representativas en cada estrato.
- Se realiza el corte de plantas a ras de suelo descartando el material muerto.
- Se pesa el material verde de las tres plantas de cada estrato y se determina el promedio de peso verde por plantas por estrato.
- Para cada estrato se mezcla el material verde y se toman submuestras de 200 g por estrato, las cuales se secan a 60°C por 48 horas.
- Se pesan las submuestras de cada estrato.
A partir de los datos de peso seco de las submuestras se obtiene:
- El porcentaje materia seca de la submuestra/estrato
- El promedio de peso/planta/estrato
- Los kilogramos de materia seca/estrato en 40 m²
- Los kilogramos de materia seca/estrato/ha
- Los kilogramos totales de materia seca/ha

Para determinar la composición botánica de la pastura se sigue la misma metodología descrita para especies postradas, pero utilizando un marco de 1 m².

La Figura 2 presenta un resumen del procedimiento de la evaluación.

Para ilustrar los cálculos de disponibilidad de forraje en pasturas erectas, se presenta un ejemplo de muestreo en una parcela de *Andropogon gayanus*. Al medir las 10 plantas más altas se encontró un promedio de altura de 120 cm. La información sobre recuento de plantas se resume en el Cuadro 6. En el Cuadro 7 se presentan los datos sobre el peso de las plantas y de las submuestras por estrato, necesarios para el cálculo de disponibilidad de forraje.

La secuencia de los cálculos es la siguiente:

1. Estratificación por altura. Debido a que el promedio de altura de las plantas altas es superior a 100 cm, se debe considerar tres estratos:

 Estrato =
 Promedio de altura de plantas altas = 120 = 40 cm
 3

 Como cada estrato es de 40 cm los rangos de altura para plantas bajas, medias y altas son: 0 - 40, 41 - 80 y 81 - 120 respectivamente.

2. Número de plantas/estrato y por hectárea. En el Cuadro 6 se presenta el número de plantas/estrato en 40 m². Para convertir esta cifra a plantas/ha se toma como ejemplo el estrato A con 12 plantas/40 m².

 Número de plantas altas/ha = 12 x 10000 = 3000
 40

 Como se puede observar esta conversión equivale a multiplicar el número de plantas en 40 m² por el factor 250 (o sea, 10000/40).

3. Promedio de peso verde/planta/estrato. En el Cuadro 7 se puede observar el peso verde de tres plantas por estrato. Para el estrato A (alto) el promedio es:

 Peso verde/estrato A = 1200 + 1140 + 1060 = 1133.3
 3

4. Materia seca (%). En el Cuadro 7 también se resumen los pesos verdes y secos de las submuestras. La materia seca se calcula como la relación (peso seco/peso verde) x 100. Para el caso de la submuestra A se calcula:

 Submuestra A = 60 x 100 = 30%
 200

5. Kilogramos de materia verde seca/planta por estrato. Continuando con el ejemplo del estrato A (alto), se multiplica el promedio del peso verde (1133.3 g) por el porcentaje de materia seca respectivo (30%). La primera expresión puede dividirse por 1000 para convertirla a kg. El cálculo se expresa así:

 kg de MVS/planta/estrato A = 1133.3 x 0.30
 1000 100

6. Kilogramos de materia seca/estrato y forraje total. Se multiplica la MVS/planta (0.340) por el número de plantas/ha del estrato A, (3100). El cálculo se expresa como:
Figura 2. Flujograma para la evaluación de pasturas con especies erectas. Método poblacional estratificado
Cuadro 6. Conteo de población y disponibilidad de forraje en una pastura de *Andropogon gayanus*

<table>
<thead>
<tr>
<th>Rango de altura (cm)</th>
<th>Número de plantas</th>
<th>Materia seca (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrato</td>
<td>40 m²</td>
<td>Por ha</td>
</tr>
<tr>
<td>A 82 - 120</td>
<td>12</td>
<td>3000</td>
</tr>
<tr>
<td>M 41 - 80</td>
<td>18</td>
<td>4500</td>
</tr>
<tr>
<td>B 0 - 40</td>
<td>10</td>
<td>2500</td>
</tr>
<tr>
<td>Totales</td>
<td>10000</td>
<td>2172</td>
</tr>
</tbody>
</table>

A = alto, M = medio, B = bajo

Con base en los resultados anteriores se completan los cuadros hasta obtener la producción de materia verde seca total por hectárea.

Manejo del pastoreo

El manejo del pastoreo tiene como finalidad asegurar la productividad animal y mantener la estabilidad de la pastura. El manejo varía en función de los componentes de la pastura, entre ellos: el grado de compatibilidad entre las especies, el hábito de crecimiento de las gramíneas (erecto o estolonífero) y de las leguminosas (rastrero o voluble), la presencia del animal como cosechador del forraje, la respuesta de las especies al pastoreo y la palatabilidad de los componentes de la asociación, que sumados a la capacidad selectiva del animal, dan como resultado el equilibrio entre las especies.

Durante el desarrollo de esta fase de la Secuencia se utilizaron los conceptos de carga animal, presión de pastoreo, intensidad de pastoreo, pastoreo continuo y pastoreo rotacional.

- **Relación carga - productiva animal.** El factor más importante que afecta la estabilidad y la productividad de las pasturas es la carga animal, debido a que existe una interacción entre la disponibilidad del forraje y la defoliación producida por el consumo de los animales.

Cuadro 7. Peso de plantas por estrato y por submuestra (gramos) en una pastura de *Andropogon gayanus*

<table>
<thead>
<tr>
<th>Estrato</th>
<th>Peso verde/planta</th>
<th>Peso submuestra</th>
<th>Materia seca (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>A</td>
<td>1200</td>
<td>1140</td>
<td>1060</td>
</tr>
<tr>
<td>M</td>
<td>600</td>
<td>680</td>
<td>720</td>
</tr>
<tr>
<td>B</td>
<td>240</td>
<td>290</td>
<td>230</td>
</tr>
</tbody>
</table>

A = alto, M = medio, B = bajo

kg de MVS/ha estrato A = 0.340 kg MVS x 3000 plantas = 1020

Una vez que se calcula la disponibilidad de los demás estratos, se suman para obtener la disponibilidad total de la gramínea. En este ejemplo, equivale a sumar 1020 + 954 + 198 = 2172 kg/ha de MS total.

Ejemplo: Cálculo de disponibilidad de MS para una gramínea erecta:

En el Cuadro 8 se presenta la información de campo dejar las 10 plantas de mayor altura (parte inferior del cuadro) y los respectivos conteos de plantas por estrato (representados x cruces) de una pastura de *Panicum maximum* (Cuadro 9). La información de cobertura para determinar la composición botánica es similar a la que se sigue para especies postradas, por lo tanto, no se presenta esta información. En el Cuadro 10 se resumen los pesos de las plantas y de las submuestras.

23
Cuadro 8. Formato de campo para el recuento de plantas por estrato y composición botánica. (Método poblacional estratificado)

<table>
<thead>
<tr>
<th>Finca:</th>
<th>La Tertulia</th>
<th>Ubicación:</th>
<th>Villavicencio</th>
<th>Fecha: agosto/92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pastura:</td>
<td>Panicum maximun</td>
<td>Area:</td>
<td>6 ha</td>
<td>Marco: 1 m²</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Marco No.</th>
<th>Altura de planta (cm)</th>
<th>Orden de cobertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>1 - 21</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>2 - 22</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>3 - 23</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>4 - 24</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>5 - 25</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>6 - 26</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>7 - 27</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>8 - 28</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>9 - 29</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>10 - 30</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>11 - 31</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>12 - 32</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>13 - 33</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>14 - 34</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>15 - 35</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>16 - 36</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>17 - 37</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>18 - 38</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>19 - 39</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>20 - 40</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Especies: 1.
2.
3.
4.
5.
6.

Altura de plantas = 100 + 109 + 111 + 110 + 118 + 106 + 112 + 95 + 93 + 96 = 1050
Promedio de altura = 105
A, M, B = Estratos de altura alta, media y baja

Cuadro 9. Conteo de poblaciones y disponibilidad de forraje

<table>
<thead>
<tr>
<th>Estrato</th>
<th>Rango de altura (cm)</th>
<th>Número de plantas</th>
<th>Materia seca (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>40 m²</td>
<td>Por ha</td>
</tr>
<tr>
<td>A</td>
<td>71 - 105</td>
<td>15</td>
<td>3750</td>
</tr>
<tr>
<td>M</td>
<td>36 - 70</td>
<td>20</td>
<td>5000</td>
</tr>
<tr>
<td>B</td>
<td>0 - 35</td>
<td>12</td>
<td>3000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>11750</td>
<td></td>
</tr>
</tbody>
</table>

A = alto, M = medio, B = bajo
Cuadro 10. Peso de plantas por estrato y submuestras (gramos)

<table>
<thead>
<tr>
<th>Estrato</th>
<th>Peso verde/planta</th>
<th>Materia submuestra seca</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>A</td>
<td>1250</td>
<td>1200</td>
</tr>
<tr>
<td>M</td>
<td>720</td>
<td>712</td>
</tr>
<tr>
<td>B</td>
<td>260</td>
<td>300</td>
</tr>
</tbody>
</table>

A = alto, M = medio, B = bajo.

Se ha establecido una relación entre la carga animal y la producción por unidad de área en distintos ecosistemas. El modelo de Mott (1960) propone una relación en la cual la ganancia por animal es alta cuando la carga es baja, debido a que el animal tiene más oportunidad de seleccionar y consumir un forraje de mejor calidad, sin embargo las ganancias por unidad de área son bajas. Al incrementar gradualmente la carga, las ganancias individuales se mantienen constantes y continúan mejorando las ganancias por unidad de área, hasta un punto en el cual comienzan a disminuir rápidamente, como resultado de las limitaciones en disponibilidad del forraje (Figura 3).

La Figura 4 muestra el diseño propuesto por Matches y Mott (1975) donde se incluye el concepto de presión de pastoreo (kg de materia verde seca por cada 100 kg de peso vivo). De acuerdo con éste, la presión de pastoreo óptima es un rango donde se acerca a las máximas ganancias por unidad de área y la productividad individual comienza a disminuir; se podría decir que es el rango de equilibrio entre disponibilidad y calidad de forraje. Presiones de pastoreo que se salen del rango óptimo conducen inevitablemente a condiciones de subpastoreo o sobrepastoreo. Para las condiciones de la Altillanura plana colombiana se han determinado los rangos adecuados de disponibilidad de forraje y presión de pastoreo para diferentes gramíneas (Cuadro 11) que permiten estimar la carga animal respectiva.
Figura 4. Relación entre la ganancia de peso vivo, por animal y por hectárea, y la presión de pastoreo
Fuente: Matches y Mott, 1975)

Cuadro 11. Rangos de disponibilidad de gramineas y presiones de pastoreo recomendadas para ajustar la carga animal en pasturas de la Altillanura colombiana (primera aproximación)

<table>
<thead>
<tr>
<th>Especie</th>
<th>Época</th>
<th>Gramínea disponible MS kg/ha</th>
<th>Presión de pastoreo MS kg/100 kg PV</th>
<th>Prom.</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. dictyoneura</td>
<td>Lluvia</td>
<td>1500-2500</td>
<td>3.0-2.6</td>
<td>2.8</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1000-1500</td>
<td>7.0-5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>A. gayanus</td>
<td>Lluvia</td>
<td>2000-3200</td>
<td>4.0-3.6</td>
<td>3.8</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1300-1700</td>
<td>11.5-6.5</td>
<td>9.0</td>
</tr>
<tr>
<td>B. decumbens</td>
<td>Lluvia</td>
<td>1300-2000</td>
<td>3.0-2.4</td>
<td>2.7</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1000-1300</td>
<td>6.7-5.7</td>
<td>6.2</td>
</tr>
<tr>
<td>B. humidicola</td>
<td>Lluvia</td>
<td>1300-1500</td>
<td>1.4-1.0</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1000-1300</td>
<td>3.3-2.9</td>
<td>3.1</td>
</tr>
</tbody>
</table>

1 Asume 210 días para época de lluvia y 125 días de época seca.
Relación carga animal-sistema de pastoreo

El sistema de pastoreo es una estrategia para utilizar el forraje disponible durante un tiempo determinado, teniendo como finalidad la producción animal. Para su elección es importante considerar las características del ecosistema, del germoplasma disponible y las condiciones socioeconómicas que enmarcan la explotación.

Es importante destacar el tiempo como un componente importante en los sistemas de pastoreo, pues la combinación de periodos de ocupación y descanso determinan el sistema que se debe emplear; aquél incluye: ningún descanso (pastoreo continuo), hasta periodos variables de ocupación y descanso (pastoreo rotacional).

El pastoreo continuo con cargas bajas permite alta selectividad, buenas ganancias individuales de peso, bajos rendimientos por unidad de área y utilización desuniforme de la pastura; cargas altas conllevan necesariamente al agotamiento de la disponibilidad del forraje, a pérdidas individuales y por unidad de área y al recurrir necesariamente a un periodo de descanso que automáticamente limita al campo teórico la existencia de un pastoreo continuo. De otro lado, pastoreos rotacionales con cargas bajas se aproximan más a un pastoreo continuo y por tal razón son menos productivos a nivel individual y por hectárea, sin embargo, cuando se utilizan cargas altas se favorecen, hasta determinado límite, las ganancias individuales. En la Figura 5 se ilustran estas dos situaciones.

Los periodos de ocupación y descanso influyen directamente sobre la composición botánica y la persistencia de la asociación. Si la presión de pastoreo y el período de ocupación permite la selectividad animal, éste tiende a consumir inicialmente la gramínea, luego con los días aumenta el consumo de leguminosas. Periodos de descanso muy prolongados pueden resultar en crecimiento excesivo de las gramíneas.

Estrategia del manejo flexible

La complejidad de los diversos factores que interactúan en el balance gramínea-leguminosa en condiciones de pastoreo y considerando el efecto que la carga animal, se plantea la necesidad de emplear cargas ajustables como estrategia práctica para lograr mantener la productividad animal sin perjuicio de la asociación. Se propone entonces, implementar un manejo diferente, en el cual se considere que dentro de un mismo ecosistema el manejo ideal de la asociación difiere según las especies que la conforman.

El sistema de pastoreo flexible es una estrategia para el manejo de asociaciones gramíneas-leguminosas. Consiste en variar la intensidad de pastoreo (carga o presión de pastoreo) y sistema de pastoreo, en función...
de la disponibilidad de forraje y balance de sus componentes. La carga animal deberá ajustarse de acuerdo con el forraje disponible. Cuando la disponibilidad llegue a un máximo preestablecido deberá aumentarse la carga animal, de la misma manera cuando la disponibilidad se approxime al límite inferior preestablecido se debe disminuir la carga animal. Los ajustes de cargá animal se deben basar en presiones de pastoreo establecidas previamente. Por ejemplo, se pueden fijar presiones de pastoreo de 3 y 6 kg de forraje verde en base seca por cada 100 kg de peso vivo por día si no se dispone de información en la zona. Cuando la disponibilidad en la pastura alcance algunos de estos límites, se ajustará la carga, aumentando o disminuyendo el peso vivo total, para mantener la presión establecida. Los ajustes de carga deben ser estacionales.

El balance gramínea-leguminosa estará basado en la oportunidad de variar los días de ocupación y descanso de la pastura. Con este sistema se pretende que el porcentaje de leguminosa no se salga del rango establecido. Por ejemplo, 15 - 50% son los límites mínimos y máximos, establecidos para una leguminosa en asociación. Si la leguminosa alcanza el límite superior (50%) se deberá prolongar los períodos para favorecer el consumo de las gramíneas y disminuir su proporción en la pastura. La Figura 6, esquematiza el manejo requerido de esta estrategia.

Figura 6. Representación esquemática del manejo requerido para mantener la mayoría de las asociaciones de gramíneas y leguminosas tropicales en condiciones de buen manejo

Fuente: Spaln J.M. y J.M. Pereira, 1984
• Estimación de la carga animal

Una vez determinada la disponibilidad de gramínea en una pastura es posible estimar la carga animal. Este cálculo debe entenderse como una aproximación ya que no involucra en su fórmula las tasas de crecimiento de las gramíneas, ni las pérdidas de forraje por pisoteo de los animales.

La fórmula general para calcular la carga animal, propuesta por Paladines y Lascano (1983), se expresa así:

Pastoreo continuo Pastoreo rotacional

\[
PVT = \frac{MVSHa \times A}{DP \times PP} \quad \text{PVT} = \frac{MVSHa \times A \times 100}{(DOP+DDP) \times NCP \times PP}
\]

Donde:
- \(PVT \) = Peso vivo total expresado en kg de peso vivo/ha/día
- \(MVSHa \) = kg de materia verde seca de gramínea/hectárea
- \(A \) = Área del potrero en hectáreas
- \(DP \) = Días de pastoreo de la pastura
- \(PP \) = Presión de pastoreo en kg de materia verde seca por hectárea por cada 100 kg de peso vivo
- \(DOP \) = Días de ocupación de la pastura
- \(DDP \) = Días de descanso de la pastura
- \(NCP \) = Números de ciclos de pastoreo

Para ilustrar los cálculos se presentan los ejemplos siguientes:

Ejemplo 1: Estimación de la carga animal de una pastura bajo pastoreo rotacional

Pastura: *B. decumbens + S. capitata* (Capica)
- Tipo de pastoreo: Rotacional en tres potreros
- Tamaño de potrero: 4 ha
- Ciclo de pastoreo: 42 días
 - Días de ocupación: 14 días
 - Días de descanso: 28 días
- Peso promedio de los animales: 400 kg de peso vivo (PV)
- Forraje disponible: 2500 kg MVS/ha

Presión de Pastoreo: 3.5 kg de MVS/100 kg de PV
Tiempo total de pastoreo: (fase lluviosa) = 3 ciclos

a. El productor desea saber ¿cuánto peso vivo total debe introducir en la pastura?

Cálculos:

Cálculo de kg de Peso Vivo Total por potrero de 4 ha

\[
PVT = \frac{kg \text{ MVS} \times A \times 100}{(DOP+DDP) \times NCP \times PP}
\]

\[
PVT = \frac{2500 \text{ kg MVS} \times 12 \times 100}{(14 \times \text{DO} + 28 \times \text{DD}) \times 3 \times 3.5 \times \text{ha de MVS}} = 6803 \text{ kg}
\]

b. ¿Cuántos animales puede soportar en promedio la pastura durante los tres (3) ciclos de pastoreo?

\[
\text{Animales} = \frac{\text{kg peso vivo total}}{\text{Peso promedio de animales}} = \frac{6803 \text{ kg}}{400 \text{ kg}} = 17 \text{ animales}
\]

c. Si la unidad animal en este ecosistema equivale a 450 kg, ¿cuál es la carga animal en unidades animal por hectárea?

\[
\text{Carga animal} = \frac{\text{Peso vivo total}}{\text{Area x Unidad animal}} = \frac{6803 \text{ kg}}{12 \text{ ha x 450 kg}} = 1.26 \text{ Unidad animal/ha.}
\]

Ejemplo 2: Estimación de la carga animal de una pastura bajo pastoreo continuo.

Area de la pastura = 15 ha
- Tasa de crecimiento de la gramínea = 6 kg/ha/día de MVS
- Días de ocupación (fase lluviosa) = 210 días
- La pastura, el promedio de peso de los animales, el forraje disponible y la presión de pastoreo son iguales a los del ejercicio anterior.
a. ¿Cuántos animales se podrán introducir en la pastura para obtener la presión de pastoreo deseada y, cuál será la carga animal (UA/ha)?

\[
PVT = \left(\frac{kg \text{ MVS} + (TC \times DO)}{DO \times PP} \right) \times A \times 100
\]

Donde:
- TC = Tasa de crecimiento o rebrote de MVS por ha/día
- DO = Días de ocupación
- PVT = 12500 ± (6 x 210) x 15 x 100 kg PVT
 \[\frac{210 \times 3.5}{735}\]
- PVT = 7673 kg PV total en 15 ha, el número de animales que se necesitan son:

\[
7673 = 25.5 \text{ animales}
\]

300

\[
PVT/ha = \frac{7673}{15} = 511.3 \text{ kg/ha}
\]

\[
CA (UA/ha) = \frac{PVT}{UA} = \frac{511.3 \text{ kg/ha}}{300 \text{ kg/UA}} = 1.7 \text{ UA/ha}
\]

Utilización de la pastura como campo de propagación (semillero)

Germoplasma

Se consideran únicamente las pasturas de gramíneas solas, ya que las leguminosas, en este caso, no toleran una extracción de semillas en la medida que estarían produciendo reservas para conservar sus poblaciones. En consecuencia, difícilmente se puede pensar en producir semillas de leguminosas bajo estas condiciones. En algunos casos especiales en que el componente leguminoso domine en la pastura, puede justificarse la cosecha de semilla siempre y cuando no sean especies de *Centrosema* sp. que requieren infraestructura adicional (espalderas).

Por otro lado, las gramíneas que florecen al final de la época lluviosa, *Andropogon gayanus* entre ellas, tienen un serio inconveniente de calidad de forraje en la época seca. Por lo tanto, es posible decir que el germoplasma disponible, compatible con la aplicación de esta estrategia, se reduce a las especies que semillan a mediados de la estación lluviosa: *B. brizantha*, *B. decumbens*, *B. dictyoneura*. En alguna medida, y sólo a nivel del Piedemonte, se puede considerar la especie *P. maximus*.

Manejo del semillero

El productor que desea producir semilla de forrajeras, debe seleccionar lotes con alta población y cobertura. Las prácticas de manejo más comunes para gramíneas incluyen: corte de uniformización, fertilización, cosecha, beneficio de semilla.

- **Corte de uniformización**

Su objetivo principal es el de promover el rebrote sincronizado de tallos florales y, en algunos casos, como en *A. gayanus*, restringir la altura del cultivo en la época de madurez. Consiste en la defoliación parcial, que se debe hacer en una época previamente definida de acuerdo con la época de inducción de la floración de la especie. El corte puede hacerse por medio de un pastoreo fuerte (sobre pastoreo) durante un tiempo definido; un corte mecánico con guadaña o con un pase de segadora a una altura indicada para la especie de pasto, o la combinación de los métodos anteriores, es decir, un pastoreo y luego un corte mecánico. Algunos productores en la Altillanura utilizan la quema como corte de uniformización de sus lotes; esta práctica continuada tiene efectos negativos en el sistema, tales como destrucción de la materia orgánica, la erosión y la compactación del suelo, entre otros.

- **Fertilización**

El nitrógeno es el elemento más limitativo para la producción de semillas de las gramíneas. Su aplicación después del corte de uniformización promueve la formación de tallos florales. En términos generales, una
aplicación nitrogenada suplementada con una fertilización de mantenimiento, permite obtener buena producción de semilla y mantener la capacidad productiva de la pastura. Básicamente, la cosecha manual involucra tres etapas diferentes: corte de las inflorescencias, apilado y separación de las espiguillas.

- Cosecha

Las gramíneas presentan variaciones en el periodo de floración. Las espiguillas se desarrollan en forma escalonada en cada racimo floral y las semillas no maduran uniformemente. De allí, la importancia de establecer el punto óptimo de cosecha para lograr el mayor rendimiento de semilla pura (espiguillas con cariópside). En la práctica, es muy difícil determinar el punto óptimo de cosecha y se requiere revisiones muy frecuentes durante la etapa de floración. Los parámetros más importantes para tomar esta decisión consisten en determinar el inicio de la floración y el momento en que se alcanza la mayor densidad de espigas. Normalmente una semana después de la máxima floración empieza el desprendimiento de las espiguillas maduras. Para B. dictioneura y A. gayanus el punto óptimo de cosecha está entre 1 y 2 semanas después de que el cultivo alcanza la máxima floración.

Los métodos de cosecha más utilizados son el manual y los mecánicos: golpeadora o batidora y combinada. La selección del método depende del tamaño del lote, de la disponibilidad de mano de obra y de maquinaria, y del costo de operación.

Cosecha manual es el método más utilizado en América Latina. Es apropiado para áreas pequeñas y ofrece los rendimientos más altos de semilla pura, además se obtiene una semilla cruda con relativamente bajo material inerte y libre de semillas de malezas.

El corte de los tallos florales se realiza con una hoz o machete, evitando agitar bruscamente las inflorescencias para prevenir la pérdida de la semilla madura. El apilado de espigas crea un ambiente de alta temperatura y humedad relativa, conocido como "sudado", que facilita el desprendimiento de las espiguillas de la panicula y la completa maduración de las cariópsides (Figura 7). Un buen apilado se hace en una capa permeable extendida en el suelo sobre un trozo de madera o guadua, a una altura máxima de 60 cm y una capa vegetal de 15 cm de espesor para cubrir las inflorescencias. Una vez completado el "sudado" (3 a 4 días) se procede a separar las espiguillas desprendidas del resto del material en una forma suave para evitar la caída de las espigas sin cariópside o inmaduras. Para este proceso se recomienda utilizar zaranda de malla de alambre.

Para la cosecha con golpeadora o batidora, se usan máquinas de construcción sencilla y liviana, que constan, básicamente, de un recipiente o cajón acoplado a un tractor o carro (Figura 8). La recolección se hace por el golpe de las espigas a través del movimiento del vehículo. La modificación más frecuente consiste en la adición de un molinete. Con este sistema se logra una recolección eficiente de semillas maduras y de buena viabilidad (semillas con cariópsides). La cosecha se realiza en varios pases a medida que las espigas maduran, permitiendo obtener alto porcentaje, rendimiento y peso de semilla pura comparado con los métodos manual, tradicional y combinada directa. Su utilización es más aplicable a lotes que no muestran alta densidad de tallos florales y que no justifican el uso de mano de obra o una combinada.

La cosecha por combinada es ineficiente debido a la alta proporción de material húmedo y verde que recolecta, y al bajo volumen de inflorescencias y espigas pequeñas con relación a los cultivos. Sin embargo existen algunos modelos como la de flujo axial que son más eficientes en la trilla.
Figura 7. Apilado y sudado de semillas de gramíneas (A y B) y zaranda utilizada para su separación (C)
Beneficio de semilla

Una vez que se cosecha la semilla es necesario someterla a una serie de operaciones y tratamientos hasta que quede lista para la siembra. En general, el acondicionamiento de las semillas comprende: secado, prelimpieza, limpieza, desaristada, clasificación, escarificación, empaque y almacenamiento; no obstante, la mayoría de las gramíneas no requieren todos estos procesos.

Las especies como _A. gayanus, Hyparrhenia rufa_ requieren el desaristado, pero no la escarificación; en contraste, las especies de _Brachiaria_ no necesitan desaristado pero sí escarificación. En la Figura 9 se ilustra, en forma esquemática, las clases de semillas que es posible obtener (cruda, limpia, clasificada, escarificada) según los tratamientos a que se someta durante su beneficio. Sin embargo sólo se mencionarán las etapas de prelimpieza y secado, ya que los otros procesos se realizan únicamente por las empresas semillistas.

La prelimpieza es una operación mediante la cual se separan los contaminantes de mayor tamaño (tallos, hojas, piedra). Su objetivo es reducir el volumen del material para secado y puede ser manual o mecánico. Cuando la cosecha es manual la prelimpieza es igual a la separación o trilla antes descrita. Sin embargo, es importante señalar que este
Figura 9. Etapas del proceso de acondicionamiento de semillas de forrajeras
acondicionamiento se puede continuar durante y después del secado. Las zarandas más adecuadas para este propósito, son las de malla de alambre de 1.6 x 0.8 m y aberturas de 2.54 cm x 2.54 cm, colocadas a 70 cm del suelo.

La etapa de secado es importante en el proceso de acondicionamiento de la semilla, ya que cuando no se hace en forma correcta se puede afectar la viabilidad de la semilla. El secado natural se realiza extendiendo las semillas sobre un piso expuesto al sol o a la sombra. En el primer caso, el espesor de la capa de semilla debe ser de 30 a 40 cm y el volteo de semillas cada 2 ó 3 horas; en el segundo caso, el espesor debe tener entre 15 y 20 cm. El nivel apropiado de humedad para almacenamiento es de 10 a 12%.

Resumen de la Secuencia

La secuencia instruccional desarrolla una discusión detallada alrededor del uso de la pastura como sustrato básico de la producción animal. Presenta como premisa la cuantificación del recurso forrajero para planificar su utilización. Los métodos, de Disponibilidad por Frecuencia para gramíneas postradas y el Poblacional Estratificado, para gramíneas erectas, son expuestos en profundidad como herramientas de determinación de la biomasa disponible en términos de kg de materia seca/ha; ajustada de manera sencilla a las condiciones de finca. Seguidamente, se discute acerca de la relación planta-animal en el marco de la carga, presión y sistema de pastoreo, los factores inseparables cuya interacción, en último término, determina la productividad del animal, de la pastura y la sostenibilidad del sistema. Como resultado de estas consideraciones, se presenta la estrategia de manejo flexible como alternativa que ajusta la dinámica de la pastura en su respuesta a la influencia del animal.

Por otro lado, como opción en la productividad de la pastura, se presenta el manejo de la pastura como semillero. Se consideran las limitaciones de germoplasma que tiene la estrategia y se plantea toda una sucesión de actividades para convertir el potrero en campo de producción de semillas el cual es objeto de un manejo especial. El proceso es conducido hasta las primeras etapas de poscosecha, cuando el productor -un ganadero- entrega el producto a procesadores más especializados.
Secuencia 3. Degradación y Rehabilitación de Pasturas

Flujograma para la Secuencia 3 ... 38
Información .. 38
Degradación de pasturas .. 38
 • Factores de degradación asociados al suelo ... 39
Evaluación de pasturas degradadas ... 46
 • Evaluación de disponibilidad y composición botánica de la pastura 46
 • Evaluación de la erosión del suelo y estado sanitario de la pastura 48
Rehabilitación de pasturas ... 51
 • Prácticas de rehabilitación .. 51
 • Estrategias para la rehabilitación de pasturas .. 54
Resumen de la Secuencia .. 57
Información

En condiciones de pastoreo es posible observar disminución en la producción de las pasturas y de los animales. En las primeras ocurren cambios en la composición botánica, en la producción de biomasa y, a veces, aparece la erosión. Se dice entonces que la pastura está en proceso de degradación.

La degradación de las pasturas ocasiona alteraciones en la relación suelo-planta-animal. Para evitar los efectos nocivos de la degradación es necesario aplicar una serie de prácticas de manejo que, en conjunto, se conocen como estrategias de rehabilitación de la pastura. En esta secuencia instruccional se desarrollan las metodologías para determinar los factores de degradación, así como también las prácticas de rehabilitación de pasturas.

Degradación de pasturas

La degradación de pasturas es el proceso de pérdida gradual de su capacidad productiva en un agroecosistema determinado.

La degradación es el resultado de fallas anteriores, ya sea en la selección de las especies, en el manejo durante el establecimiento, o en el mantenimiento y utilización de la pastura. Por el contrario, un buen manejo en las etapas anteriores garantiza la persistencia de la pastura en condiciones de productividad adecuada durante un tiempo indefinido. La Figura 10 presenta un modelo que explica las tendencias de las pasturas según su manejo.

Las causas de un proceso de degradación incluyen factores asociados con el suelo y asociados con la pastura propiamente dicha.
Factores de degradación asociados al suelo

Dentro de los factores asociados con el suelo, que influyen en el proceso de degradación de las pasturas, están la composición química y la estructura física. Cambios en cualquiera de los dos, o en ambos, determinan alteraciones en el ambiente que afectan las plantas en términos de producción de biomasa, calidad y capacidad de competencia.

La pérdida de la fertilidad, ocasionada por la pérdida de nutrimentos del suelo, involucra los factores que regulan la relación suelo/planta: estructura del suelo; requerimientos nutricionales de las especies (especie de gramínea, asociación gramínea-leguminosa, eficiencia de la leguminosa); utilización de la pastura (pastoreo vs. corte); sistema de pastoreo (presión y frecuencia); fertilización de mantenimiento. Cuando se rompe el equilibrio entre estos factores y se pierden más de los nutrimentos de los que se aportan, ocurre un desbalance que conlleva a la pérdida de fertilidad del suelo.

Para pasturas tropicales en suelos ácidos, se considera que los macronutrimentos: N, P, Ca, K, Mg y S son limitativos, por tanto, la respuesta a su aplicación casi siempre es significativa en términos de producción y calidad de biomasa. Estos se aplican en el establecimiento de la pastura, de acuerdo con su disponibilidad en el suelo. Para mantenimiento se deben aplicar en la cantidad necesaria para llenar las pérdidas por extracción del cultivo o debidas a la lixiviación. Sin embargo, es frecuente observar que esto último no se hace, lo que favorece el proceso de degradación de las pasturas debido a la deficiencia en la fertilidad.

La falta de uno o varios nutrimentos en el suelo se manifiesta en las pasturas por la apariencia del follaje, pérdida de crecimiento, muerte y pérdida de hojas. En el Cuadro 12 se presentan los principales síntomas de deficiencia de algunos nutrimentos.

El análisis de suelos es una referencia importante para el diagnóstico del proceso de degradación por pérdida de la fertilidad. Los análisis en forma periódica: antes del establecimiento, después de la fertilización y cada año, permiten construir el perfil sobre los cambios de la fertilidad de una pastura.

El contenido de materia orgánica y de nitrógeno son indicadores clave para determinar la fertilidad y el proceso de degradación de las pasturas. La deficiencia de N determina la pérdida de vigor de la pastura y de su calidad. Por otro lado, las plantas deficientes en N pierden la capacidad para utilizar otros elementos como P y S. No obstante, la aplicación de este elemento sólo se considera para pasturas de gramíneas solas, ya que cuando se encuentran asociadas con leguminosas toman el nitrógeno a través de la simbiosis bacteriana y del reciclado de nutrimentos.
Cuadro 12. Síntomas principales de la deficiencia de algunos nutrimentos en pasturas tropicales

<table>
<thead>
<tr>
<th>Síntoma de deficiencia</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>S</th>
<th>Cu</th>
<th>Zn</th>
<th>Fe</th>
<th>B</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducción del crecimiento</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clorosis:</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Hojas viejas</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervenial</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enrojecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas viejas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borde hojas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Color púrpura</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas viejas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verde intenso a normal</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrepamiento foliar</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformación foliar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartonamiento foliar</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Centro hojas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borde hojas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas viejas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscisión</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abundante</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defoliación</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebrotes en roseta</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muerte meristemas</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muerte guía planta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Ayarza, 1991

Compactación y erosión del suelo

Después de un periodo prolongado de utilización de las pasturas es posible que ocurran cambios importantes en la estructura física del suelo; por ejemplo, puede ocurrir una reducción del espacio entre las partículas lo que disminuye la porosidad y, en consecuencia, la circulación de agua y aire; se dice, entonces, que el suelo está compactado. La compactación del suelo aumenta la escorrentía, disminuye el desarrollo de las raíces y la extracción de los nutrimentos que se encuentran a mayor profundidad en el suelo, por consiguiente, las plantas pueden presentar deficiencias de éstos. Esta situación se presenta normalmente cuando la porosidad del suelo es inferior a 10%.

La compactación depende de la textura del suelo, del área descubierta, la intensidad de las lluvias y la presión de uso de la pastura. En suelos compactados el agua corre por la superficie (escorrentía) arrastrando partículas y materiales en depósito. Se inicia entonces la erosión.
En suelos arenosos y livianos los procesos de compactación son menores. Sin embargo, el grado de erosión es importante en estos suelos cuando son pendientes y presentan áreas descubiertas.

Factores de degradación asociados con los componentes de la pastura

Los componentes de las pasturas pueden disminuir su capacidad productiva, especialmente cuando no se utilizan en forma adecuada y se agotan sus reservas necesarias para la producción de biomasa. Esto puede ocurrir porque las especies no están adaptadas al medio, o porque hay un déficit o un exceso en la producción de forraje en relación con el consumo, ocasionando cambios en la composición y en la calidad de la biomasa. En consecuencia, los factores de la pastura que determinan su degradación son, el manejo del pastoreo, la presencia de insectos plaga, la adaptación del germoplasma y la invasión de malezas.

Sistemas de utilización de las pasturas

El pastoreo es la utilización directa de las gramíneas y las leguminosas por el animal. Cuando se enmarca en períodos determinados de ocupación y descanso, se identifica como un sistema; y si se caracteriza en términos de consumo animal, se define por la intensidad del pastoreo. El control de estas variables constituye el manejo del pastoreo. Con el manejo del pastoreo se persigue evitar el consumo excesivo (sobrepastoreo) o el consumo deficiente (subpastoreo) de la pastura; ya que ambas situaciones tienen serias implicaciones en el mantenimiento de la productividad de la pastura.

El sobrepastoreo origina el consumo excesivo de la biomasa disponible, a tal punto que no se permite la recuperación de las especies establecidas. Es una consecuencia de la utilización de cargas animales altas durante tiempo prolongado y con descansos muy cortos, que ocasionan una pérdida de la cobertura vegetal, compactación del suelo y presencia de malezas.

Normalmente, los bovinos seleccionan la gramínea, por lo tanto, la primera consecuencia del sobrepastoreo es el predominio de las leguminosas. Sin embargo, en condiciones extremas de sobrepastoreo en pasturas con leguminosas de aceptable palatabilidad o durante las épocas secas, es posible encontrar un consumo importante no sólo de aquéllas sino de los demás componentes de la pastura.

El subpastoreo, al contrario del sobrepastoreo, es la utilización de la pastura con un número de animales inferior al necesario para cosechar todo el forraje disponible. Está determinado por el manejo de cargas animales bajas, períodos cortos de ocupación y períodos largos de descanso.

Aparentemente es contradictorio considerar que el exceso de forraje disponible es una causa de degradación de las pasturas. Pero, en estas condiciones, pierde calidad nutritiva por el exceso de maduración de las gramíneas. Además, las leguminosas pueden ser desplazadas por la gramínea asociada y, finalmente, la biomasa acumulada genera condiciones ambientales adecuados para el desarrollo de enemigos naturales —plagas y enfermedades—. En consecuencia, la pastura pierde su capacidad productiva y entra en el proceso de degradación.

Insectos plaga

Los insectos-plaga son agentes de degradación de las pasturas. Ejercen su actividad sobre el follaje de las plantas forrajeras, ya sea porque succionan la savia, inyectan toxinas o cortan las hojas; en todos los casos, su daño se traduce en una reducción de la biomasa disponible. Se considera, en consecuencia, que los insectos en las pasturas tienen un efecto similar al de los animales: cosechan el forraje o lo destruyen, aumentando la presión sobre ellas.

Los ataques de insectos están, generalmente, asociados con otros problemas de las pasturas. Es frecuente observar que un mal manejo del pastoreo está acompañado de ataques graves de salivazo o de hormigas.
El salivazo o mión de los pastos (*Zulia colombiana, Z. pubescens, Aeneolamia varia* y *A. reducta*) produce en las pasturas una "quemazón" similar a la producida por los herbicidas de contacto. El insecto puede producir en las pasturas desde pequeños parches necróticos hasta el daño general en todo el follaje. Se sabe que tanto la ninfa (Figura 11) como el adulto (Figura 12) producen daño en la planta al succionar el xilema y depositar toxinas.

Figura 11. Vista ventral de la ninfa de un cercópido, con la localización del canal que aloja los espiráculos. (Tomado de: Costa Lima, 1942)

Figura 12. Características morfológicas del adulto de un cercópido (Tomado de: Costa Lima, 1942)

- **Control cultural de cercópodos.** En Campo Grande, Brasil, Koller y Valério (1988) demostraron la importancia que tiene el manejo de pasturas para el control de cercópodos. El pastoreo adecuado, que reduce la biomasa disponible y evita la acumulación de hojas secas y material orgánico, puede controlar parcialmente las poblaciones de cercópodos, debido a la exposición de las ninfas a la disecación por el sol. Debido a que el daño causado por cercópodos en la pastura sólo se visualiza dos semanas después del pico poblacional de las ninfas, es necesario conocer con anticipación las poblaciones emergentes de éstas, lo que dificulta la implementación de este método de control como curación, por lo menos en sistemas extensivos de pastoreo. En consecuencia, se sugiere el uso del pastoreo estratégico como un control preventivo.

En el manejo de cercópodos en pasturas y en sistemas de cultivo arroz-pastos, se debe tener presente que:
1. Aunque los cercópidos generalmente no cumplen su ciclo de vida en el arroz, los adultos pueden migrar desde pasturas susceptibles causando daños significativos en este cultivo.

2. Durante los picos de población del insecto, el pastoreo estratégico puede ayudar a bajar la densidad de las ninfas de cercópidos. Se debe prestar especial atención a las pasturas de gramíneas susceptibles, ubicadas cerca a un cultivo de arroz.

3. Se han encontrado altos niveles de resistencia tipo antibiosis en B. brizantha cv. Marandú. Sin embargo, otras características, como su escasa adaptación a suelos pobres, limitan la utilización de este cultivar.

4. Las progenies resultantes de los primeros cruzamientos entre B. decumbens, B. brizantha y B. ruziizensis, se están seleccionando por adaptación edáfica y resistencia a cercópidos, entre otras características. Se espera que próximamente estarán disponibles nuevas variedades e híbridos de Brachiaria para evaluación bajo pastoreo. Estas variedades resistentes deben ofrecer la solución definitiva al problema de cercópidos en pasturas solas y asociadas con arroz, especialmente en los Llanos Orientales de Colombia.

Hormigas arrieras. Las hormigas cortadoras de hojas tienen una presencia biótica dominante en las sabanas de Colombia, Venezuela y los Cerrados de Brasil. Además de su influencia en la composición botánica de la sabana (Etter y Botero, 1990), se estima que las colonias de Acromyrmex landolti son capaces de excavar, durante dos meses de la época seca, hasta 1.5 m3 de suelo/ha, lo que indica que también pueden afectar las características físicas del suelo (Lapointe et al., 1990). Debido a su gran variedad de hospedantes —desde pasturas hasta cultivos de arroz— son una plaga importante y un obstáculo para la explotación agrícola y ganadera de las sabanas (Robinson y Fowler, 1982). En los Llanos Orientales de Colombia existen por lo menos tres especies de hormigas trozadoras: (1) Atta cephalotes, se encuentra principalmente en los bosques de galería y corta únicamente plantas de hoja ancha, como árboles y arbustos; se convierte en plaga sólo cuando se siembran cultivos susceptibles en su medio ambiente. (2) Atta laevigata, habita la sabana abierta y corta tanto gramíneas como vegetación de hoja ancha. Construye hormigueros grandes hasta de 10^4 individuos, con numerosas cámaras que alcanzan hasta 5 m de profundidad. (3) Acromyrmex landolti, corta gramíneas solamente y construye numerosos nidos, aunque relativamente pequeños (10^3 individuos) en la sabana abierta. Presenta polimorfismo pero no es tan extremo como en Atta y no posee una casta de soldados. Las obreras de A. landolti no construyen los caminos que son notables en el caso de Atta. Los nidos de A. landolti son pequeños y alcanzan altas densidades en la sabana nativa, llegando hasta 2000 nidos/ha. Los hormigueros de esta especie pueden tener entre tres y 10 cámaras de poco volumen (una cámara típica ocupa 500 cm3) (Figuras 13 y 14). Por lo general, estas cámaras se ubican en forma vertical bajo el suelo. En los Llanos Orientales de Colombia cada hormiguero presenta una sola entrada (Lapointe et al., 1993). Aparentemente, los hormigueros de A. landolti no permanecen en un sólo sitio por más de un año, lo que hace suponer que las hormigas pueden mudarse y establecerse en otro sitio, aunque es poco lo que se conoce de este comportamiento.

Los hormigueros de A. laevigata y A. cephalotes pueden cubrir varios metros cuadrados de superficie. Ambas especies presentan un polimorfismo marcado e inclusive tienen una casta de soldados. El control de estas hormigas se simplifica debido al gran tamaño de sus nidos y a su baja densidad por hectárea. Los métodos comunes de control consisten en insuflar los nidos con productos específicos y utilizar cebo tóxicos con base en insecticidas persistentes.
Daños causados por las hormigas arrieras. En arroz, el daño por *A. landolti* se presenta durante la fase de establecimiento. En las pasturas, el daño puede ocurrir en cualquier etapa de desarrollo del cultivo; durante el establecimiento, el daño es ocasionado por las hormigas de las colonias presentes en el sitio antes de la siembra. La colonización de hormigas arrieras puede ocurrir durante varios años y resultar en la pérdida total de la biomasa.

Figura 13. Principales características morfológicas de las hormigas cortadoras
Fuente: CIAT, 1982a

Figura 14. Esquema de un hormiguero. a) entrada; b) respiradero; c) cámara de almacenamiento; d) cámara de cultivo; e) detalle del cultivo de hongo; f) canal lateral
Fuente: CIAT, 1982a
Durante la germinación, el daño en el cultivo se nota por la presencia de plántulas trozadas, lo cual implica la pérdida de la planta, resultando en un establecimiento incompleto del cultivo. En el arroz, el vigor de la semilla y la fertilización en la siembra permiten la recuperación de las plántulas después del corte ocasionado por las hormigas. Sin embargo, los cortes sucesivos causan la muerte de aquéllas.

Resistencia varietal de Brachiaria a Acromyrmex landolzi. A algunas variedades de Brachiaria son altamente resistentes a A. landolzi. Esta resistencia se manifiesta por una reducción en el número de plántulas que sufren corte durante el establecimiento y en la tasa de colonización de las pasturas establecidas. Este mecanismo de resistencia se debe a que la gramínea inhibe el hongo Attamyces bromatificus, simbiótico de la hormiga.

En resumen, aunque los cercópidos y las hormigas arrieras son plagas importantes y potenciales para las pasturas, el uso de variedades resistentes a estos insectos y las prácticas culturales adecuadas pueden minimizar los daños ocasionados por estos enemigos naturales. En los ecosistemas de suelos ácidos, se requieren especies que toleren la toxicidad del Al y en algunos casos de Mn, la baja disponibilidad de N, P, Ca, K y microelementos, resisten una carga potencial alta de patógenos y plagas, y que en la época seca produzcan biomasa. Cuando se dispone de este material, se dice que el germoplasma es adaptado.

En general, cuando el proceso de degradación de una pastura se debe a la baja adaptación del germoplasma, se requiere el reemplazo de este por especies que toleren o resistan mejor la condición adversa del medio. Así, en suelos mal drenados, encharcables, no es posible desarrollar B. decumbens. En condiciones de altas presiones de salivazo es mejor establecer B. brizantha, B. dictyoneura o B. humidicola. Con alta población de hormigas arrieras se debe descartar la siembra de A. gayanus.

La invasión de malezas en un ambiente en equilibrio es mínima. Normalmente las especies indeseables son nativas en el lote antes del establecimiento de la pastura y tienen una alta capacidad para competir con las especies introducidas, ya que conservan una buena cantidad de semilla residual que persiste en el suelo. Debido a su adaptación en el medio, se manifiestan en forma agresiva con el menor desequilibrio en la pastura.

Para que ocurra la invasión de especies indeseables, es necesario que disminuya la población de las especies introducidas como consecuencia de la pérdida de la fertilidad del suelo.
suelo, el sobrepastoreo, la presencia de plagas. Por otro lado, el potencial de las malezas está muy ligado al ecosistema, en condiciones de bosque o de Piedemonte el problema es mayor que en las sabanas.

En general, la invasión de las malezas en pasturas se puede disminuir mediante su control eficiente en el establecimiento, con selección de germoplasma y con un adecuado manejo del pastoreo.

El proceso de degradación de las pasturas
La degradación de las pasturas es un proceso continuo y progresivo de deterioro de su capacidad de producción. Los factores que determinan este proceso ya han sido ampliamente tratados en esta secuencia y, pueden o no, conservar una relación causa-efecto entre sí.

Las causas de degradación pueden incidir en forma independiente o asociarse en una cadena de eventos en la cual unos generan los otros. El proceso después de un tiempo tiene como resultado final una pastura improductiva o de muy baja capacidad. En este proceso interactúan múltiples factores los cuales, de una u otra manera, disminuyen la población de plantas introducida. La Figura 15 propone un esquema donde se muestran los factores de degradación y sus interrelaciones.

Evaluación de pasturas degradadas
Para determinar el estado de degradación de una pastura es necesario hacer evaluaciones en el campo (muestreos), que sirvan de fundamento para diseñar estrategias de rehabilitación. Las evaluaciones incluyen el cálculo de disponibilidad de forraje y composición botánica de la pastura (método de disponibilidad por frecuencia y método poblacional estratificado); y la determinación del daño causado por la erosión del suelo, insectos-plaga y deficiencias nutricionales.

Evaluación de disponibilidad y composición botánica de la pastura
Para el propósito de esta secuencia no se incluyen los procedimientos de cálculo de disponibilidad de forraje y composición botánica. Estos procedimientos fueron descritos en la Secuencia 2. Se hace referencia aquí al uso de escalas que permiten evaluar la disponibilidad de las gramíneas, la población de plantas y la composición botánica de una pastura.

En el Cuadro 13 se presentan los rangos de disponibilidad de forraje, que se consideran adecuados para mantener niveles sostenibles de productividad animal, en pasturas de gramíneas de la Altiplanicie plana.

Cuando el nivel de disponibilidad de la gramínea llega a 20% por debajo del límite inferior, se considera que las pasturas están sobrepastoreadas, pero que pueden recuperarse con el manejo del pastoreo, principalmente. Cuando la disponibilidad de la gramínea representa más de 20% por debajo del límite inferior, es necesario utilizar varias estrategias para su recuperación.

Por otra parte, los niveles de disponibilidad por encima del límite superior limitan el consumo de los animales por baja calidad y lignificación del forraje y ponen en peligro la persistencia de las leguminosas por competencia, reflejándose, finalmente, en una baja productividad animal.

En el Cuadro 14 se presentan escalas para evaluar la cobertura de las gramíneas postradas, leguminosas, malezas y suelo descubierto. Para el caso de gramíneas erectas se presenta una escala basada en población de plantas y no en cobertura. Estas escalas están diseñadas en función de la metodología de muestreo utilizada.
DEGRADACION DE PASTURAS
PROCESO

Pérdida fertilidad del suelo

Pérdida vigor y calidad

Descontrol del pastoreo

Insectos plagas

Pérdida de población

Germoplasma no adaptado

Suelo descubierto

Invasión de malezas

Compactación

Erosión

Baja capacidad de carga

BAJA PRODUCTIVIDAD

Figura 15. Representación esquemática del proceso de degradación de pasturas
Cuadro 13. Rangos adecuados de disponibilidad de forraje de diferentes gramíneas en la Altiplanura plana colombiana. (Primera aproximación)

<table>
<thead>
<tr>
<th>Especie</th>
<th>Epoca</th>
<th>Disponibilidad de forraje. Materia verde seca, kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. dictyoneura</td>
<td>Lluvia</td>
<td>1500 a 2500</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1000 a 1500</td>
</tr>
<tr>
<td>A. gayanus</td>
<td>Lluvia</td>
<td>2000 a 3200</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1300 a 1700</td>
</tr>
<tr>
<td>B. decumbens</td>
<td>Lluvia</td>
<td>1300 a 2000</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1000 a 1300</td>
</tr>
<tr>
<td>B. humidicola</td>
<td>Lluvia</td>
<td>1300 a 1500</td>
</tr>
<tr>
<td></td>
<td>Seca</td>
<td>1000 a 1300</td>
</tr>
</tbody>
</table>

Se asumen 210 días en época de lluvias y 125 días en época seca.

En el Cuadro 14 se presentan escalas de evaluación sobre población y composición botánica de la pastura

<table>
<thead>
<tr>
<th>Escala</th>
<th>Cobertura %</th>
<th>Población grármínea erecta</th>
<th>Gramínea postrada</th>
<th>Leguminosa</th>
<th>Maleza</th>
<th>Suelo descubierto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muy alta</td>
<td></td>
<td>> 20000</td>
<td>>80</td>
<td>>40</td>
<td>>20</td>
<td>>40</td>
</tr>
<tr>
<td>Alta</td>
<td></td>
<td>15001-20000</td>
<td>61-80</td>
<td>31-40</td>
<td>16-20</td>
<td>31-40</td>
</tr>
<tr>
<td>Media</td>
<td></td>
<td>10001-15000</td>
<td>41-60</td>
<td>21-30</td>
<td>11-15</td>
<td>21-30</td>
</tr>
<tr>
<td>Baja</td>
<td></td>
<td>5001-10000</td>
<td>21-40</td>
<td>11-20</td>
<td>6-10</td>
<td>11-20</td>
</tr>
<tr>
<td>Muy baja</td>
<td></td>
<td>>5000</td>
<td>≤20</td>
<td>≤10</td>
<td>≤5</td>
<td>≤10</td>
</tr>
</tbody>
</table>

En el Cuadro 15 se presentan las escalas de evaluación para las cuatro (4) variables mencionadas. Para las deficiencias nutricionales se construyó una escala común a varios macronutrientes (N, P, K y Mg) móviles en la planta, lo cual permite mostrar en forma acentuada las deficiencias en las hojas viejas de las gramíneas.

Como ejemplo, en el Cuadro 16, se presenta una evaluación de campo en una pastura de Bracharia decumbens asociada con Stylosanthes capitata cv. Capica. En cada marco se evaluaron la erosión del suelo, el daño por hormigas y por salivazo, las deficiencias de N, P, K y Mg, y el área de suelo descubierto. En este caso se utilizaron 40 marcos de evaluación.

El paso siguiente consiste en resumir las frecuencias de daño de cada una de las variables evaluadas. Las frecuencias de daño
<table>
<thead>
<tr>
<th>Escala</th>
<th>Erosión del suelo</th>
<th>Daño en la gramínea</th>
<th>Deficiencia nutricional (hojas viejas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>- Mínimo arrastre de partículas. - Distribución uniforme de residuos vegetales.</td>
<td>- Ausencia de daño. - Area foliar completa</td>
<td>- Ausencia de deficiencia. - Color del follaje normal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>- Erosión leve. - Arrastre de partículas y terrones muy pequeños. - Formación de pequeños cúmulos de tejido vegetal.</td>
<td>- Daño leve. - Algunas perforaciones y/o consumo. - Daño entre el 1 al 10% del área foliar.</td>
<td>- Deficiencia leve. - Algunas hojas muestran amarillamiento en los ápices y/o bordes. - Algunas hojas pueden mostrar coloración rojiza.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>- Erosión moderada. - Formación de huellas y canales de escorrentía. - Arrastre de suelo y residuos vegetales en forma localizada. - Compactación localizada.</td>
<td>- Daño moderado. - Los insectos han consumido entre 11 y 20% del área foliar.</td>
<td>- Deficiencia moderada. - Clorosis que afecta entre el 11 al 30% del área foliar. - Algunas hojas rojas y púrpura. - Necrosis apical.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>- Alta erosión. - Formación de canales más o menos profundos. - Suelos con bajo contenido de residuos vegetales. - Superficie del suelo compactada.</td>
<td>- Daño grave. - Los insectos han consumido más del 20% del área foliar.</td>
<td>- Alta deficiencia - Plantas con clorosis en casi toda el área foliar. - Coloración rojo púrpura en muchas hojas. - Necrosis parcial y total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cuadro 15. Escala de evaluación de erosión, insectos-plaga y deficiencias nutricionales en pasturas
Cuadro 16 Evaluación de erosión, insectos plaga y deficiencias nutricionales

Finca: El Trébol
Ubicación: Pto. López
Fecha: mayo/92
Pastura: B. decumbens + Capica
Area: 10 ha
Marco: 0.25 m²

<table>
<thead>
<tr>
<th>Marco No.</th>
<th>Erosión del suelo</th>
<th>Hormigas y otros</th>
<th>Salivazo o miión</th>
<th>Deficiencia nutricional</th>
<th>Suelo descubierto</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-20</td>
<td>21-40</td>
<td>1-20</td>
<td>21-40</td>
<td>1-20</td>
</tr>
<tr>
<td>1-21</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2-22</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>3-23</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>4-24</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5-25</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6-26</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7-27</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>8-28</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9-29</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>10-30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>11-31</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>12-32</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>13-33</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14-34</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15-35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16-36</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>17-37</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>18-38</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>19-39</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>20-40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

1º Hormigas, chapules, falso medidor (Mocis latipes)
2º Presencia de ninñas o adultos

Se calculan sumando el número de veces que aparece cada uno de los valores de la escala (1, 2, 3 y 4). El resumen de las frecuencias se presenta en el Cuadro 17. Obsérvese que todas las frecuencias para cada variable suman 40, lo que corresponde al total de marcos evaluados.

Finalmente se calcula el nivel de daño a través de un promedio ponderado (X_p). Para calcular el X_p se realizan los pasos siguientes:

1. Multiplique cada frecuencia por el valor de la escala correspondiente.
2. Sume los valores anteriores.
3. El resultado anterior divídalo entre 40 y obtiene el nivel de daño.

A manera de ejemplo se ilustrarán los cálculos para determinar el nivel de daño causado por erosión del suelo.

$$X_p (erosión) = \frac{(1 \times 24) + (2 \times 13) + (3 \times 3) + (4 \times 0)}{40} = 1.475$$

Siguiendo el mismo procedimiento se obtienen los niveles de daño por hormigas (1.525), salivazo (3.125) y deficiencias nutricionales (1.875). El porcentaje de suelo descubierto se determina por el promedio aritmético, así: $6201 \div 40 = 15.5\%$

Para interpretar los resultados se consulta las escalas del Cuadro 15 y se comparan los
Cuadro 17. Resumen de la evaluación de erosión, insectos plaga y deficiencias nutricionales

<table>
<thead>
<tr>
<th>Escala</th>
<th>Erosión del suelo</th>
<th>Hormigas y otros</th>
<th>Salivazo</th>
<th>Deficiencias nutricionales (hojas viejas)</th>
<th>Suelo descubierto %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>25</td>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>15.5</td>
</tr>
<tr>
<td></td>
<td>x p</td>
<td>1.475</td>
<td>1.525</td>
<td>3.125</td>
<td>1.875</td>
</tr>
</tbody>
</table>

valores. De acuerdo con los resultados anteriores, los daños causados por erosión del suelo, hormigas y deficiencias nutricionales, se consideran leves, mientras se presenta un daño moderado por salivazo. El porcentaje de suelo descubierto se considera bajo.

Rehabilitación de pasturitas

Una vez que se reconoce el estado de degradación de una pastura, es necesario diseñar los procedimientos para recuperar su capacidad de producción. Rescatar la capacidad productiva de una pastura hasta niveles económicos, y reincorporarla al sistema de producción animal, es lo que se conoce como rehabilitación de la pastura. La recuperación de una pastura supone la presencia de una población mínima de especies introducidas, a partir de la cual comienzan las actividades de rehabilitación. El proceso de degradación es complejo y con frecuencia se hace necesario utilizar una combinación de prácticas de manejo para lograr el objetivo. En este caso, se denominan estrategias, y su propósito es corregir la degradación hasta donde haya avanzado.

Prácticas de rehabilitación

Las prácticas de rehabilitación incluyen los procedimientos útiles en el control de los efectos de degradación que aparecen en las pasturas. Tienen por finalidad restituir las condiciones físicas y químicas del suelo, y la recuperación de la calidad y el volumen disponible del forraje. Teniendo en cuenta los factores de degradación descritos antes, las prácticas de rehabilitación pueden enumerarse asumiendo un orden según su intensidad: regulación del pastoreo, fertilización, control de malezas, labranza, siembra.

La regulación del pastoreo, o manejo del pastoreo, tiene como objetivo la maximización en el uso del forraje disponible, con el propósito de lograr la mayor producción animal posible sin deteriorar los componentes de la pastura. Se utiliza como una herramienta de rehabilitación cuando ha ocurrido un desbalance en la composición botánica de la pastura, como consecuencia de la reducción en la población de la gramínea por el sobrepastoreo o de la leguminosa por el subpastoreo. Este sistema de rehabilitación de pasturas, que se basa en la regulación del pastoreo y de la carga animal, sólo es posible cuando el proceso de degradación no está avanzado y se aplica solamente al balance gramínea/leguminosa.

Las anteriores consideraciones implican el dominio de la gramínea o de la leguminosa, especies dinámicas que tratan de dominar en la biomasa, compitiendo por espacio, luz, agua y nutrimientos. El animal interviene en el proceso mediante los mecanismos de
consumo, pisoteo y excreciones, que interactúan en el sistema conservando el balance de los componentes de la pastura o alterándolo en una dirección.

La estrategia de manejo flexible propone un ajuste de los factores de manejo para corregir los desbalances en la pastura. A partir del modelo propuesto (Figura 16), la carga animal, el período de ocupación y la suspensión del pastoreo, favorecen a la gramínea o a la leguminosa.

El impacto de la pérdida de fertilidad en la persistencia de las pasturas es bien conocido. De acuerdo con los análisis previos de suelo es posible determinar los elementos deficientes, lo cual se manifiesta en el desarrollo de la pastura. Para la rehabilitación de pasturas degradadas es necesario, por lo general, aplicar una cantidad de fertilizantes similar a la que se aplica en el establecimiento.

Es importante considerar que el N se puede aplicar como fertilizante o mediante la introducción de leguminosas; aunque la segunda opción resulta más económica a largo plazo, es necesario disponer de especies persistentes. Las necesidades de aplicación de los demás nutrimientos ya se discutieron en otras secuencias de este Fascículo.

El control de malezas como práctica de rehabilitación de pasturas se puede realizar por métodos mecánicos y químicos. El empleo del control manual depende de la población y tipo de maleza predominante; su uso es frecuente en zonas de bosque o en pasturas asociadas durante el establecimiento. Otros métodos mecánicos utilizados para el control de malezas leñosas, como el uso de la guadaña, incluyen procedimientos que pueden ser erosivos en zonas de ladera.

El control químico de malezas es eficiente en pasturas de los ecosistemas bosque tropical y sabanas. Normalmente, estos ecosistemas tienen un potencial de enmalezamiento mayor que las sabanas. En el Piedemonte caqueteño, donde no es muy frecuente la labranza, se recurre al empleo de herbicidas.

Para controlar malezas leñosas de hoja ancha (Cassia tora, Mimosa pudica, Clidemia hirta, Elephantopus mollis, Sida acuta, etc.) y malezas gramineas (Imperata ciliandra, Paspalum virgatum, etc.) se aplica Glifosato en forma localizada con "azadón químico" o bomba de espalda.

Para el control de helechos (Pteridium aquilinum) y de azulejo o morfiño (Clidemia hirta) se puede utilizar Metsulfuron-metil, el cual no afecta las gramineas, aunque sí levemente las leguminosas Centrosema macrocarpum, Desmodium phaseoloides y Arachis pintoi.

En casos de invasión generalizada de malezas de hoja ancha, se puede utilizar 2,4-D amina que no afecta la gran mayoría de leguminosas nativas, excepto Centrosema sp. y Pueraria phaseoloides; para conservar estas leguminosas se recomienda emplear Cyanazine.

Para malezas como Mimosa pudica, que no se controlan con 2,4-D amina, el control debe ser localizado con un herbicida sistémico.

Las prácticas de labranza cuando se usan para la rehabilitación de pasturas, permiten nuevamente la circulación de agua, aire y la regeneración de las radículas. Por otro lado, con la remoción del suelo se activan los procesos de mineralización, los cuales hacen más disponible el nitrógeno, el azufre y el fósforo de la materia orgánica, que pueden ser utilizados eficientemente por las plantas, antes de que sean inmovilizados o se pierdan por lixiviación. Adicionalmente, la labranza en la pastura degradada, estimula la germinación de las semillas residuales de especies introducidas, incorpora las excretas "controla la vegetación indeseable.

Existen varios implementos de labranza que son útiles para la rehabilitación de pasturas. Su uso depende del tipo de suelo y de la
Figura 16. Factores de manejo del pastoreo involucrados en el balance gramínea/leguminosa
Representación esquemática
pastura, entre ellos: (1) El arado de cinceles, que es eficiente para romper la compactación y restituir el drenaje en suelos arcillosos y franco-arcillosos. Una de las características principales de este implemento es que no balda el suelo, de tal manera que la parte infértil no queda expuesta, como si ocurre en la labranza con arado de disco. (2) Otro implemento es el rastrillo californiano, el cual puede trabajar sobre la superficie después del pase de los cinceles. En suelos arenosos, el paso de este implemento es suficiente.

El empleo de germoplasma especie adaptadas a las condiciones edáficas y bióticas prevalentes, es una condición esencial para que una pastura sea persistente. En los procesos de erosión, es necesario restituir la cobertura vegetal mediante la siembra de especies adaptadas; pero en ecosistemas de bosque la labranza es difícil, por lo cual se adoptan métodos de labranza cero, como herbicidas y siembra con chuzo. Otra opción es la utilización de pelets, los cuales son pequeños bloques compactos constituidos por fertilizantes de solubilidad variable y semilla, y, en algunos casos, por un herbicida inocuo a la especie que se siembra.

Estrategias para la rehabilitación de pasturas

Las estrategias de rehabilitación de pasturas involucran las prácticas culturales que tienen como objetivo restituir la capacidad productiva de aquellas. Cuando el proceso de degradación es incipiente, por ejemplo, cuando ocurre el desbalance de los componentes de la pastura, las prácticas de rehabilitación necesarias son pocas y, muchas veces, con el manejo del pastoreo es suficiente. Sin embargo, el proceso de degradación usualmente se enfrenta cuando ya está en etapas muy avanzadas y la solución se hace más compleja y costosa, ya que en este estado es necesario aplicar fertilizantes, labranza y semillas.

En la Figura 17 se presenta el proceso de degradación y se proponen las prácticas posibles para corregir las causas de ésta. Se ilustra cómo es posible utilizar una o varias prácticas para corregir uno o varios factores de degradación.

Debido a los altos costos que implica la rehabilitación de pasturas, se han desarrollado estrategias para minimizar su impacto económico, entre ellas las siembras simultáneas de arroz de secano con pasturas.

El establecimiento de pasturas utilizando un cultivo pionero, se inició con los agricultores del ecosistemas de bosque, quienes establecen las pasturas simultáneamente o después de un cultivo transitorio de arroz, sorgo, maíz o soya. Tradicionalmente el sistema se ha manejado como un método de establecimiento de pasturas a partir de cultivos pioneros. Sin embargo, la implementación práctica, y los resultados que se obtienen lo configuran como una estrategia económica de rehabilitación de pasturas.

La disponibilidad de germoplasma compatible, hace posible el aprovechamiento de la labranza, la fertilización y el manejo, para establecer pasturas vigorosas durante el tiempo de desarrollo del cultivo pionero. Las exigencias del sistema implican una baja competencia por fertilizantes de los pastos hacia el cultivo y la tolerancia de las especies forrajeras al manejo agronómico y la cosecha del cultivo.

Simultáneamente, las plantas forrajeras crecen en condiciones de mejor fertilidad, lo cual determina un crecimiento vegetativo mayor y la consolidación de la pastura en menor tiempo, en relación con la pastura establecida en forma tradicional. En estas condiciones, el ingreso por el producto agrícola permite amortiguar parte de los costos de establecimiento de la pastura.

El desarrollo reciente de variedades de arroz secano adaptadas a suelos ácidos y de baja fertilidad son una opción viable como cultivo anual en la altillanura de los Llanos Orientales de Colombia. Las investigaciones en campos
Figura 17. Representación esquemática del proceso de degradación de una pastura y las prácticas de rehabilitación orientadas a corregir las factores causales
experimentales y su revalidación en fincas han demostrado la factibilidad de establecer pasturas mejoradas, mediante la siembra asociada de especies forrajeras con las nuevas variedades de arroz. Con esta práctica se pueden reducir los costos de establecimiento, ya que tanto las gramíneas como las leguminosas forrajeras pueden aprovechar la fertilización aplicada al arroz. Como resultado, la nueva tecnología está siendo adoptada en forma creciente por los productores de la región.

Los resultados obtenidos en este experimento permiten concluir lo siguiente:

1. En la altillanura de los Llanos Orientales de Colombia es posible producir arroz, mediante el cultivo asociado de éste con varias gramíneas y leguminosas forrajeras. Esta práctica no afecta el rendimiento del arroz.

2. El cultivo asociado con arroz es efectivo para el establecimiento de pasturas mejoradas y adaptadas en la sabana nativa, sin necesidad de hacer una fertilización dirigida a las pasturas.

3. El efecto residual de la fertilización aplicada al arroz asociado fue similar al de la fertilización recomendada para el establecimiento de pasturas mejoradas en la altillanura.

4. Ninguna de las especies forrajeras evaluadas presentó un potencial sobresaliente para establecerse con arroz como cultivo asociado. Las especies que resultaron más productivas después de la cosecha del arroz fueron también las más promisorias cuando se sembraron como pasturas solas. Esto sugiere que para la altillanura colombiana la estrategia convencional de seleccionar germoplasma por su adaptación a condiciones de severo estrés edáfico, es acertada también para la búsqueda de variedades para siembras asociadas.

Como un indicador del potencial del sistema de establecimiento de pasturas en forma conjunta con arroz de secano, en el Cuadro 18 se presentan las ganancias de peso de novillos que pastorean dos pasturas de este tipo. Las ganancias diarias de peso vivo animal fueron de 705 y 629 g, las cuales no tienen antecedentes en sistemas de pastoreo en la Altillanura.

Cuadro 18. Ganancias de peso en pasturas establecidas con arroz de secano, en una finca de la Altillanura plana colombiana

<table>
<thead>
<tr>
<th>Epoca</th>
<th>Días de pastoreo</th>
<th>Carga (UA/ha)</th>
<th>g/anim./día</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A.g./B.dic.</td>
<td>A.g. + S.c</td>
</tr>
<tr>
<td>Lluvias</td>
<td>213</td>
<td>2.04/1.93</td>
<td>834</td>
</tr>
<tr>
<td>Seca</td>
<td>110</td>
<td>1.16/1.13</td>
<td>546</td>
</tr>
<tr>
<td>Lluvias</td>
<td>159</td>
<td>1.85/1.81</td>
<td>641</td>
</tr>
<tr>
<td>Total y medias</td>
<td>482</td>
<td>1.78/1.71</td>
<td>705</td>
</tr>
</tbody>
</table>

A.g. = *Andropogon gayanus*
S.c. = *Stylosanthes capitata*
B. dic. = *Brachiaria dictyoneura*
C.a. = *Centrosema acutifolium*

Fuente: CIAT, (1991a; 1991c.).
Resumen de la Secuencia

En esta Secuencia se describen las causas de degradación de una pastura; entre éstas, las que tienen origen en la planta y en el suelo, sus interrelaciones y sus efectos en la persistencia y en la productividad. Se define una metodología de evaluación de pasturas para cuantificar su nivel de degradación y ofrecer los elementos básicos para su rehabilitación.

Finalmente, se presentan las opciones disponibles en términos de prácticas culturales para regresar a la pastura a su capacidad productiva original y, recuperarla para la producción animal. Se presenta la posibilidad de combinar varias prácticas de rehabilitación, dentro de las cuales se destaca la siembra simultánea de arroz de secano con pastos, como una opción económicamente viable en las condiciones de las sabanas bien drenadas.
Anexo 1. Reciclaje Simplificado de Nutrimentos para un Ecosistema de Pastura

Adaptado de: Spain y Salinas, 1994
Anexo 2. Malezas. Clasificación Morfológica en los Tres Ecosistemas

<table>
<thead>
<tr>
<th>Especie</th>
<th>Tipo de maleza</th>
<th>Piedemonte Llanero</th>
<th>Piedemonte Amazónico</th>
<th>Altillanura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabo de zorro (Andropogon bicornis)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Grama amarga (Homolepis aturensis)</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Estrellita (Dichromena ciliata)</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>Bledo (Amaranthus spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batatilla (Ipomoea spp.)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escobas (Sida spp.)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicho (Senna tora y S. occidentalis)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botón de oro (Melampodium spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruta de pavo (Chomelia spinosa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espino (Pitcheabolium odoratum)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coichón de pobre (Mesosetum pitieri)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paja de burro (Panicum rudgei)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaratara (Axonopus purpusii)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibora, guayacana (Imperata contracta)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1° 1 = Malezas de hoja angosta
2 = Malezas de hoja ancha
3 = Malezas arbustivas

Fuente: CIAT, 1989 a, 1989 b
Anexo 3. Contenido de Algunos Nutrimentos en Fertilizantes Comerciales en Colombia

<table>
<thead>
<tr>
<th>Fertilizante</th>
<th>Contenido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Urea</td>
<td>46</td>
</tr>
<tr>
<td>Sulfato de amonio</td>
<td>20</td>
</tr>
<tr>
<td>Fosfato de amonio (MAP)</td>
<td>12</td>
</tr>
<tr>
<td>Fosfato diamónico (DAP)</td>
<td>18</td>
</tr>
<tr>
<td>Nitron 26</td>
<td>23</td>
</tr>
<tr>
<td>Superfosfato triple</td>
<td>-</td>
</tr>
<tr>
<td>Superfosfato simple</td>
<td>-</td>
</tr>
<tr>
<td>Calfós (abono fosfórico)</td>
<td>-</td>
</tr>
<tr>
<td>Roca fosfórica Huila (fosforita)</td>
<td>-</td>
</tr>
<tr>
<td>Roca fosfórica Pesca</td>
<td>-</td>
</tr>
<tr>
<td>Fosfato de magnesio fundido</td>
<td>-</td>
</tr>
<tr>
<td>Cloruro de potasio</td>
<td>-</td>
</tr>
<tr>
<td>Sulfato de potasio</td>
<td>-</td>
</tr>
<tr>
<td>Sulpomag (KMAG)</td>
<td>-</td>
</tr>
<tr>
<td>Sulcamag</td>
<td>-</td>
</tr>
<tr>
<td>Sulfato de magnesio</td>
<td>-</td>
</tr>
<tr>
<td>Oxido de magnesio</td>
<td>-</td>
</tr>
<tr>
<td>Yeso comercial</td>
<td>-</td>
</tr>
<tr>
<td>Cal dolomítica</td>
<td>-</td>
</tr>
<tr>
<td>Cal dolomita</td>
<td>-</td>
</tr>
<tr>
<td>Cal agrícola</td>
<td>-</td>
</tr>
<tr>
<td>Flor de azufre</td>
<td>-</td>
</tr>
</tbody>
</table>

Fertilizantes Compuestos

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-15-15</td>
<td>15.0</td>
<td>6.5</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14-14-14</td>
<td>14.0</td>
<td>6.1</td>
<td>11.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10-20-20</td>
<td>10.0</td>
<td>8.7</td>
<td>16.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10-30-10</td>
<td>10.0</td>
<td>13.1</td>
<td>8.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Marin, M.G. 1982
Anexo 4. Factores de Conversión Equivalencias y Relaciones Entre Nutrimentos

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Factor1</th>
<th>Elemento</th>
<th>Factor1</th>
<th>Compuesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>P$_2$O$_5$</td>
<td>0.4364</td>
<td>P</td>
<td>2.2914</td>
<td>P$_2$O$_5$</td>
</tr>
<tr>
<td>K$_2$O</td>
<td>0.8302</td>
<td>K</td>
<td>1.2046</td>
<td>K$_2$O</td>
</tr>
<tr>
<td>MgO</td>
<td>0.603</td>
<td>Mg</td>
<td>1.6582</td>
<td>MgO</td>
</tr>
<tr>
<td>Mg CO$_3$</td>
<td>0.2883</td>
<td>Mg</td>
<td>3.4682</td>
<td>Mg CO$_3$</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>0.333</td>
<td>S</td>
<td>3.000</td>
<td>SO$_4$</td>
</tr>
<tr>
<td>CaO</td>
<td>0.7147</td>
<td>Ca</td>
<td>1.3942</td>
<td>CaO</td>
</tr>
<tr>
<td>CaCO$_3$</td>
<td>0.4004</td>
<td>Ca</td>
<td>2.4972</td>
<td>CaCO$_3$</td>
</tr>
</tbody>
</table>

1 Valores calculados con base en relación de peso atómico y moleculares

Equivalencias

1 meq de K/100 g de suelo = 781 kg/ha de K
1 meq de Ca/100 g de suelo = 400 kg/ha de Ca
1 meq de Mg/100 g de suelo = 240 kg/ha de Mg
1 ppm de P = 2 kg/ha de P
1 ppm de S = 2 kg/ha de S

Relaciones entre Nutrimentos

- Relación C/N= ≤ 15
- Relación N/S= (15 a 1)
- Relación Ca:Mg:K (meq/100 g de suelo) = 10:4:1
- Relación Ca:Mg:K (en kg/ha) = 16.7:1:3.2

1 Todas las equivalencias y relaciones asumen densidad aparente del suelo= 1 g/cc
Anexo 5. Cambios en la Composición Química del Suelo en Praderas de *B. humidicola* Puro y Asociado con *D. heterocarpon* (ssp *ovalifolium*) al Tercer Año de Pastoreo

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4.3</td>
<td>4.72</td>
<td>3.9</td>
<td>4.71</td>
</tr>
<tr>
<td>MO (%)</td>
<td>8.3</td>
<td>5.95</td>
<td>3.7</td>
<td>5.92</td>
</tr>
<tr>
<td>Al (meq/100 g)</td>
<td>1.6</td>
<td>2.77</td>
<td>3.2</td>
<td>2.60</td>
</tr>
<tr>
<td>P (ppm)</td>
<td>3.0</td>
<td>3.12</td>
<td>2.3</td>
<td>3.97</td>
</tr>
<tr>
<td>Ca (meq/100 g)</td>
<td>0.23</td>
<td>0.25</td>
<td>0.1</td>
<td>0.29</td>
</tr>
<tr>
<td>Mg (meq/100 g)</td>
<td>0.04</td>
<td>0.10</td>
<td>0.06</td>
<td>0.14</td>
</tr>
<tr>
<td>K (meq/100 g)</td>
<td>0.05</td>
<td>0.11</td>
<td>0.08</td>
<td>0.16</td>
</tr>
<tr>
<td>S (ppm)</td>
<td>-</td>
<td>19.6</td>
<td>-</td>
<td>22.4</td>
</tr>
<tr>
<td>Saturación Al (%)</td>
<td>83.3</td>
<td>85.6</td>
<td>93.0</td>
<td>81.5</td>
</tr>
</tbody>
</table>

* Muestreo de la sabana en donde se sembraron las praderas.
 Todos los muestreos se realizaron a 10 cm de profundidad.

Fertilización de establecimiento en kg/ha: 20 de P, 118 de K, 11 de Mg y 22 de S
Anexo 6. Propiedades Químicas de los Suelos de la Altillanura Plana de Colombia Según la Textura

<table>
<thead>
<tr>
<th>Variable</th>
<th>20</th>
<th>32</th>
<th>38</th>
<th>55</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>MO</td>
<td>3.56</td>
<td>2.37</td>
<td>2.04</td>
<td>1.91</td>
<td>1.25</td>
</tr>
<tr>
<td>pH</td>
<td>3.97</td>
<td>4.08</td>
<td>4.09</td>
<td>4.26</td>
<td>4.34</td>
</tr>
<tr>
<td>P</td>
<td>1.65</td>
<td>2.19</td>
<td>2.38</td>
<td>2.76</td>
<td>3.40</td>
</tr>
<tr>
<td>Al</td>
<td>3.26</td>
<td>1.94</td>
<td>1.77</td>
<td>1.26</td>
<td>0.91</td>
</tr>
<tr>
<td>Ca</td>
<td>0.19</td>
<td>0.22</td>
<td>0.15</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>Mg</td>
<td>0.067</td>
<td>0.062</td>
<td>0.041</td>
<td>0.037</td>
<td>0.036</td>
</tr>
<tr>
<td>Ca/Mg</td>
<td>2.91</td>
<td>3.73</td>
<td>3.67</td>
<td>4.88</td>
<td>5.32</td>
</tr>
<tr>
<td>Mg/K</td>
<td>1.06</td>
<td>1.16</td>
<td>1.00</td>
<td>0.98</td>
<td>1.04</td>
</tr>
<tr>
<td>Saturación Al</td>
<td>92.02</td>
<td>87.19</td>
<td>89.91</td>
<td>85.25</td>
<td>79.21</td>
</tr>
<tr>
<td>Saturación Ca</td>
<td>5.90</td>
<td>9.96</td>
<td>7.93</td>
<td>12.23</td>
<td>17.59</td>
</tr>
<tr>
<td>Saturación Mg</td>
<td>2.08</td>
<td>2.84</td>
<td>2.15</td>
<td>2.52</td>
<td>3.28</td>
</tr>
<tr>
<td>C.I.C.</td>
<td>3.52</td>
<td>2.22</td>
<td>1.96</td>
<td>1.48</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Anexo 7. Ecosistemas, Dosis de Siembra y Fertilización de Establecimiento de las Especies Forrajeras Comerciales y Promisorias

A.1a. Especies forrajeras comerciales y promisorias

<table>
<thead>
<tr>
<th>Especie</th>
<th>Cultivar</th>
<th>Ecosistema</th>
<th>Clase textural suelo</th>
<th>Drenaje</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Atillanura</td>
<td>Piedemonte llanero</td>
<td>Piedemonte del Caquetá</td>
</tr>
<tr>
<td>A.1. Gramíneas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. decumbens</td>
<td>Común</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. dictyoneura</td>
<td>Llanero</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. humidicola</td>
<td>Humidicola</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. brizantha</td>
<td>La Libertad</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>P. maximum</td>
<td>Común</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A. gayanus</td>
<td>Carimagua</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. arietata</td>
<td>Común</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. mutica</td>
<td>Tanner</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B. polystachya</td>
<td>Pasto pará</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E. polystachya</td>
<td>Comun</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>A.2. Leguminosas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pintoi</td>
<td>Maní</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C. acutifolium</td>
<td>Centrosema</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>P. phaseoloides</td>
<td>Comun</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>S. capitata</td>
<td>Capica</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

+ = Adaptado
T = Tolerante

Fuente: Belalcázar, J. et al., 1994
Especies forrajeras comerciales y promisorias

<table>
<thead>
<tr>
<th>Especie</th>
<th>Cultivar</th>
<th>Materiales y dosis de siembra</th>
<th>Fertilización de establecimiento (kg/ha)</th>
<th>Aplicarse con cal dolomita</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1. Gramíneas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. decumbens</td>
<td>Común</td>
<td>1.5-2.5* 8-12</td>
<td>25*** 30-45 20-30 300 500</td>
<td></td>
</tr>
<tr>
<td>B. dictyoneura</td>
<td>Llanero</td>
<td>2.0-3.0* 8-12</td>
<td>25*** 30-45 30-50 200 300</td>
<td></td>
</tr>
<tr>
<td>B. humidicola</td>
<td>Pasto humidicola</td>
<td>2.0-3.0 1.5-2.0 4.0-6.0</td>
<td>25*** 30-45 30-50 200 300</td>
<td></td>
</tr>
<tr>
<td>B. brizanta</td>
<td>La Libertad</td>
<td>2.0-3.0 10-12 4.0 6.0 2</td>
<td>30-45 20-30 300 500</td>
<td></td>
</tr>
<tr>
<td>P. maximum</td>
<td>Común</td>
<td>10-12 20-25</td>
<td>20-30 20-30 500 300 300</td>
<td>200 300</td>
</tr>
<tr>
<td>A. gayanus</td>
<td>Carimagua</td>
<td>4.0-5.0 10-15</td>
<td>20-30 20-30 500 300 300</td>
<td>200 300</td>
</tr>
<tr>
<td>B. arrecta</td>
<td>Pasto Tanner</td>
<td>1.0-1.2 50</td>
<td>50 30-50 300 300 300 300</td>
<td>300 500</td>
</tr>
<tr>
<td>B. mutica</td>
<td>Común</td>
<td>1.0-1.5 50</td>
<td>50 30-50 300 300 300 300</td>
<td>300 500</td>
</tr>
<tr>
<td>E. polystachya</td>
<td>Común</td>
<td>1.0-1.5 50</td>
<td>50 30-50 300 300 300 300</td>
<td>300 500</td>
</tr>
<tr>
<td>A.2. Leguminosas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. pintol</td>
<td>Mani forraje perenne</td>
<td>7-8 0.5-0.8</td>
<td>30-50 30-50 300 500 15-20 10-15</td>
<td></td>
</tr>
<tr>
<td>C. acutifolium</td>
<td>Centrosema Vichada</td>
<td>4</td>
<td>50 20 30-30 300-500 10 10</td>
<td></td>
</tr>
<tr>
<td>P. phaseoloides</td>
<td>Común Kudzu</td>
<td>3 0.12 4-6</td>
<td>50 80 50 500 20 20</td>
<td></td>
</tr>
<tr>
<td>S. capitata</td>
<td>Capica</td>
<td>2-3 4-6</td>
<td>50 50 300 10-15 10</td>
<td></td>
</tr>
</tbody>
</table>

* = Si las gramíneas se establecen utilizando material vegetal en la siembra es recomendado utilizar pequeñas dosis de N.
** = Es conveniente inocular la semilla de las leguminosas con su rhizobium específico al momento de la siembra.
*** = 30-40 días después de la siembra aplicada al voleo como urea.
**** = Responde a la fertilización con N y P desde el momento del establecimiento.

Fuente: Belalcázar, J. et al., 1994
Existen otras rutas de recorrido, sin embargo éstas resultan muy prácticas porque permiten tomar puntos de referencia en áreas grandes (postes, árboles, etc.).

Cuando el lote es homogéneo también se pueden tomar líneas paralelas en el sentido más largo del potrero o combinar también líneas diagonales con paralelas si el número de grupos de participantes es superior a 4.

En cada línea de muestreo se deben evaluar 20 marcos distribuidos según la longitud de la línea. Cada grupo debe evaluar 2 líneas de muestreo (40 marcos).
Anexo 9. Bibliografía

CIAT, 1982a. Descripción de las plagas que atacan los pastos tropicales y características de sus daños; (Guía de estudio para ser usada como complemento de la Unidad Audiotutorial sobre el mismo tema). Contenido científico: Calderón, Mario y Varela, Fernán. Producción: Valencia G. Carlos A. Cali, Colombia. CIAT 50p. (Serie 04SP-03.01).

MOYA, E. M. C., 1991. Recuperación de una pradera de B. decumbens con diferentes prácticas culturales y fertilización con dos fuentes de fósforo y caracterización de los métodos de recuperación en la región. Santafé de Bogotá. 159 p.

Anexo 10. Copia de las Transparencias del Instructor

Pasta
MUP-A Flujograma para el estudio de esta Unidad
MUP-B Objetivo terminal

Secuencia 1
MUP-1 Flujograma para la Secuencia 1
MUP-2 Reciclaje simplificado de nutrimentos para un ecosistema de pastura
MUP-3 Criterios a tener en cuenta en la fertilización de mantenimiento de una pradera
MUP-4 Recomendaciones generales para fertilización de mantenimiento en pasturas de la Altillanura plana, Piedemonte llanero y Piedemonte del Caquetá
MUP-5 Contenido de algunos nutrimentos en fertilizantes comerciales en Colombia
MUP-6 Factores de conversión, equivalencias y relaciones entre nutrimentos
MUP-7 Malezas. Clasificación morfológica en los tres ecosistemas

Secuencia 2
MUP-8 Flujograma para la Secuencia 2
MUP-9 Factores de manejo del pastoreo en el balance gramínea-leguminosa
MUP-10 Método de disponibilidad por frecuencia para gramíneas (MDF)
MUP-11 Rutas del área de muestreo en una pradera según la forma del lote
MUP-12 Peso verde y seco de submuestra de gramínea para estimar el peso seco en los sitios seleccionados
MUP-13 Calificación visual de disponibilidad y cobertura
MUP-14 Peso seco y frecuencia de rendimiento de la escala para estimar la gramínea total disponible
MUP-15 Resumen de la disponibilidad y composición botánica de la pastura
MUP-16 Flujograma para la evaluación de pasturas con especies erectas. Método poblacional estratificado
MUP-17 Formato de campo para el recuento de plantas por estrato y composición botánica
MUP-18 Conteo de poblaciones y disponibilidad de forraje
MUP-19 Fórmula general para calcular la carga animal
MUP-20 Ejemplo 1. Estimación de la carga animal de una pastura bajo pastoreo rotacional.
MUP-21 Ejemplo 2. Estimación de la carga animal de una pastura bajo pastoreo continuo
MUP-22 Manejo de la pradera como semillero
MUP-23 Apilado y sudado de semillas de gramíneas y zaranda utilizada para su separación
MUP-24 Máquina golpeadora para cosecha de semilla de gramíneas
MUP-25 Etapas del proceso de acondicionamiento de semillas de forrajes

Secuencia 3
MUP-26 Flujograma para la secuencia 3
MUP-27 Tendencia de las pasturas en el tiempo, según el manejo
MUP-28 Síntomas principales de la deficiencia de algunos nutrimentos en pasturas tropicales
MUP-29 Representación esquemática del proceso de degradación de una pastura
MUP-30 Malezas. Clasificación morfológica en los tres ecosistemas
Metodología de evaluación
MUP-31 Rangos adecuados de disponibilidad de forraje de diferentes gramíneas en la Altillanura plana colombiana
MUP-32 Escalas de evaluación sobre población y composición botánica de la pastura
MUP-33 Escala de evaluación de erosión, insectos plaga y deficiencias nutricionales en pasturas
MUP-34 Evaluación de erosión, insectos plaga y deficiencias nutricionales. Ejemplo de evaluación con datos hipotéticos
MUP-35 Resumen de la evaluación de erosión, insectos plaga y deficiencias nutricionales

Rehabilitación
MUP-36 Factores de manejo del pastoreo involucrados en el balance gramínea/leguminosa. Representación esquemática
MUP-37 Estrategias de rehabilitación de pasturas
MUP-38 Ganancias de peso en pasturas establecidas con arroz de secano, en una finca de la Altillanura plana colombiana
MUP-39 Degradación y rehabilitación de pasturas
MUP-40 Factores de degradación asociados a la pastura
MUP-41 Compactación y erosión
MUP-42 Pérdida de la fertilidad del suelo
Flujograma para el Estudio de esta Unidad

Dinámica de grupo → Expectativas de aprendizaje → Exploración inicial de conocimientos

Objetivo terminal

- Diseñar y recomendar estrategias de manejo y utilización de pasturas
- Identificar y resolver los problemas que afectan su productividad, en un agroecosistema determinado

Secuencia 1

Manejo agronómico de la pastura

Ejercicio

1.1 Cálculo de fertilizantes

Secuencia 2

Utilización de la pastura

Ejercicios

2.1 Cálculo de disponibilidad y composición botánica para especies de crecimiento postrado
2.2 Cálculo de disponibilidad para especies erectas de baja cobertura
2.3 Cálculo de carga animal

Prácticas

2.1 Evaluación de pasturas con especies de crecimiento postrado
2.2 Evaluación de pasturas con especies de crecimiento erecto de baja cobertura

Secuencia 3

Degradación y rehabilitación de pasturas

Ejercicio

3.1 Rehabilitación de una pastura degradada

Práctica

3.1 Evaluación de la erosión del suelo y estado sanitario de la pastura

Bibliografía general del Evento del Instructor

MUP-A
Objetivo Terminal

Diseñar y recomendar estrategias de manejo y utilización de pasturas para identificar y resolver los problemas que afectan la productividad, en un agroecosistema determinado.
Flujograma para la Secuencia 1

- Manejo Agronómico de la Pastura
 - Objetivos
 - Determinar los niveles y fuentes de fertilizante necesarios para el mantenimiento de una pastura en el agroecosistema
 - Indicar la época y método de aplicación de la fertilización de mantenimiento de una pastura
 - Orientar al productor sobre el manejo preventivo de insectos plaga (salivazo y hormiga) y malezas en sus pasturas
 - Contenido
 - Fertilización de mantenimiento
 - Manejo de malezas e insectos plaga
 - Ejercicio
 - 1.1 Cálculo de fertilizantes
 - Resumen

MUP-1
Reciclaje Simplificado de Nutrimentos para un Ecosistema de Pastura

1 (Adaptado de: Spain y Salinas, 1984)
Criterios a Tener en Cuenta en la Fertilización de Mantenimiento de una Pradera

✓ Historia del Lote
 - Análisis inicial del suelo
 - Establecimiento
 - Manejo

✓ Productividad y Composición Botánica

✓ Epoca de Fertilización

✓ Nivel y Frecuencia de Fertilización
 - Adaptación de germoplasma
 - Requerimientos
 - Textura del suelo

✓ Fuentes de Fertilización
 - Grado de solubilidad

✓ Compatibilidad Física de los Fertilizantes

✓ Densidad Aparente del Suelo
 - Arcilosos = 1.25 g/cc (20% de arena)
 - Arenosos = 1.50 g/cc (70% de arena)

MUP-3
Recomendaciones Generales para Fertilización de Mantenimiento en Pasturas de la Altillanura Plana, Piedemonte Llanero y Piedemonte del Caquetá

<table>
<thead>
<tr>
<th>Especie</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Mg</th>
<th>S</th>
<th>Ca</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gramíneas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. gayanus</td>
<td></td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>B. humidicola</td>
<td></td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>B. dictyoneura*</td>
<td>50</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>B. decumbens</td>
<td>100</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>B. brizantha*</td>
<td>100</td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>P. maximun</td>
<td>100</td>
<td>11</td>
<td>15</td>
<td>12</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Leguminosas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. acutifolium*</td>
<td></td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>C. macrocarpum</td>
<td></td>
<td>3</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>25</td>
</tr>
<tr>
<td>C. brasilianum</td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. capitata</td>
<td></td>
<td>5</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>50</td>
</tr>
<tr>
<td>D. ovalifolium</td>
<td></td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>P. phaseoloides</td>
<td></td>
<td>5</td>
<td>10</td>
<td>12</td>
<td>12</td>
<td>25</td>
</tr>
<tr>
<td>A. pintoi</td>
<td></td>
<td>5</td>
<td>10</td>
<td>12</td>
<td></td>
<td>25</td>
</tr>
</tbody>
</table>

---: Valores en guión significa que no se conocen sus requerimientos.

MUP-4
Contenido de Algunos Nutrimentos en Fertilizantes Comerciales en Colombia

<table>
<thead>
<tr>
<th>Fertilizante</th>
<th>Contenido (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Urea</td>
<td>46</td>
</tr>
<tr>
<td>Sulfato de amonio</td>
<td>20</td>
</tr>
<tr>
<td>Fosfato de amonio (MAP)</td>
<td>12</td>
</tr>
<tr>
<td>Fosfato diamónico (DAP)</td>
<td>18</td>
</tr>
<tr>
<td>Nitrón 26</td>
<td>23</td>
</tr>
<tr>
<td>Superfósforo triple</td>
<td>-</td>
</tr>
<tr>
<td>Superfósforo simple</td>
<td>-</td>
</tr>
<tr>
<td>Calfos (abono fosfórico)</td>
<td>-</td>
</tr>
<tr>
<td>Roca fosfórica Huila (fosforita)</td>
<td>-</td>
</tr>
<tr>
<td>Roca fosfórica Pesca</td>
<td>-</td>
</tr>
<tr>
<td>Fosfato de magnesio fundido</td>
<td>-</td>
</tr>
<tr>
<td>Cloruro de potasio</td>
<td>-</td>
</tr>
<tr>
<td>Sulfato de potasio</td>
<td>-</td>
</tr>
<tr>
<td>Sulpomag (KMG)</td>
<td>-</td>
</tr>
<tr>
<td>Sulcamag</td>
<td>-</td>
</tr>
<tr>
<td>Sulfato de magnesio</td>
<td>-</td>
</tr>
<tr>
<td>Oxido de magnesio</td>
<td>-</td>
</tr>
<tr>
<td>Yeso comercial</td>
<td>-</td>
</tr>
<tr>
<td>Cal dolomítica</td>
<td>-</td>
</tr>
<tr>
<td>Cal dolomita</td>
<td>-</td>
</tr>
<tr>
<td>Cal agrícola</td>
<td>-</td>
</tr>
<tr>
<td>Flor de azufre</td>
<td>-</td>
</tr>
</tbody>
</table>

FERTILIZANTES COMPUESTOS

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>Ca</th>
<th>Mg</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-15-15</td>
<td>15.0</td>
<td>6.5</td>
<td>12.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>14-14-14</td>
<td>14.0</td>
<td>6.1</td>
<td>11.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10-20-20</td>
<td>10.0</td>
<td>8.7</td>
<td>16.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>10-30-10</td>
<td>10.0</td>
<td>13.1</td>
<td>8.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Fuente: Marin, M.G. 1982
Factores de Conversión, Equivalencias y Relaciones entre Nutrimentos

<table>
<thead>
<tr>
<th>Compuesto</th>
<th>Factor<sup>1/</sup></th>
<th>Elemento</th>
<th>Factor<sup>1/</sup></th>
<th>Compuesto</th>
</tr>
</thead>
<tbody>
<tr>
<td>P<sub>2</sub>O<sub>5</sub></td>
<td>x</td>
<td>0.4364</td>
<td>P</td>
<td>x</td>
</tr>
<tr>
<td>K<sub>2</sub>O</td>
<td>x</td>
<td>0.8302</td>
<td>K</td>
<td>x</td>
</tr>
<tr>
<td>MgO</td>
<td>x</td>
<td>0.603</td>
<td>Mg</td>
<td>x</td>
</tr>
<tr>
<td>MgCO<sub>3</sub></td>
<td>x</td>
<td>0.2883</td>
<td>Mg</td>
<td>x</td>
</tr>
<tr>
<td>SO<sub>4</sub></td>
<td>x</td>
<td>0.333</td>
<td>S</td>
<td>x</td>
</tr>
<tr>
<td>CaO</td>
<td>x</td>
<td>0.7147</td>
<td>Ca</td>
<td>x</td>
</tr>
<tr>
<td>CaCO<sub>3</sub></td>
<td>x</td>
<td>0.4004</td>
<td>Ca</td>
<td>x</td>
</tr>
</tbody>
</table>

^{1/} Valores calculados con base en relación de peso atómico y moleculares

Equivalencias¹

- 1 meq de K/100 g de suelo = 781 kg/ha de K
- 1 meq de Ca/100 g de suelo = 400 kg/ha de Ca
- 1 meq de Mg/100 g de suelo = 240 kg/ha de Mg
- 1 ppm de P = 2 kg/ha de P
- 1 ppm de S = 2 kg/ha de S

Relaciones entre Nutrimentos

- Relación C/N: ≤ 15
- Relación N/S: (15 a 1)
- Relación Ca:Mg:K (meq/100 g de suelo) = 10:4:1
- Relación Ca:Mg:K (en kg/ha) = 16.7:1:3.2

^{1/} Todas las equivalencias y relaciones asumen densidad aparente del suelo = 1 g/cc

MUP-6
Malezas. Clasificación Morfológica en los Tres Ecosistemas

<table>
<thead>
<tr>
<th>Especie</th>
<th>Tipo de maleza 1/</th>
<th>Agroecosistema</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabo de zorro</td>
<td></td>
<td>Piedemonte</td>
</tr>
<tr>
<td>(Andropogon bicornis)</td>
<td>x</td>
<td>Llanero</td>
</tr>
<tr>
<td>Grama amarga</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(Homolepis aturensis)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Estrellita</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>(Dichromena ciliata)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bledo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Amaranthus spp.)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Batatilla</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Ipomoea spp.)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Escobas (Sida spp.)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Bicho (Senna tora y S. occidentalis)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Botón de oro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Melampodium spp.)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Fruta de pavo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Chomelia spinosa)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Espino (Pitchecolobium odoratum)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Colchón de pobre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Mesosetum pitieri)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Paja de burro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Panicum rudgei)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Guaratara</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Axonopus purpusi)</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>Vibora, guayacana</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Imperata contracta)</td>
<td>x</td>
<td></td>
</tr>
</tbody>
</table>

1 = Malezas de hoja angosta
2 = Malezas de hoja ancha
3 = Malezas arbustivas

MUP-7
Flujograma para la Secuencia 2

Utilización de la Pastura

Objetivos

✔ Evaluar en una finca la disponibilidad de forraje y la composición botánica de una pastura
✔ Diseñar la estrategia del manejo del pastoreo para lograr el balance gramínea/leguminosa en una situación dada
✔ Proporcionar un plan de trabajo para el manejo de una pastura que se utilizará como semillero

Contenido

- Utilización de la pastura con animales
- Utilización de la pastura como campo de propagación (semillero)

Ejercicios

2.1 Cálculo de disponibilidad y composición botánica para especies de crecimiento postrado
2.2 Cálculo de disponibilidad para especies erectas de baja cobertura
2.3 Cálculo de carga animal

Prácticas

2.1 Evaluación de pasturas con especies de crecimiento postrado
2.2 Evaluación de pasturas con especies de crecimiento erecto de baja cobertura

Resumen

MUP-8
Factores de Manejo del Pastoreo Involucrados en el Balance Gramínea/Leguminosa

FACTORES DE MANEJO DEL PASTOREO

- Carga animal (UA/ha)
 - Baja
 - Menor consumo gramínea
 - Favorece leguminosa
 - Alta
 - Mayor consumo gramínea
 - Favorece gramínea

- Sistema de pastoreo
 - Ocupación (días)
 - Menor
 - Mayor

- Suspensión del pastoreo
 - Moderado
 - Prolongado
 - Semilla gramínea
 - Balance gramínea/leguminosa
Método de Disponibilidad por Frecuencia para Gramíneas (MDF)

1. Reconocimiento de la pastura
2. Cortes preliminares de gramínea
3. Observaciones visuales
4. 40 lanzamientos Marco 0.25 m²
5. Formatos
6. Cortes Peso Verde - Escala
 - Composición Botánica submuestra ≥ 250 g/corto
 - Secado Horno 60°C x 48 h

Escala de Disponibilidad
- Punto(1)= Dispon. mínima
- Punto(2)= \(\frac{(1)+(3)}{2} \)
- Punto(3)= \(\frac{(1)+(5)+20\% \text{ Dispon. media}}{2} \)
- Punto(4)= \(\frac{(3)+(4)}{2} \)
- Punto(5)= Dispon. máxima

Disponibilidad 1 - 5

Composición Botánica
- Factores
 1a. - 0.7
 2a. - 0.2
 3a. - 0.1

Cálculos:
- % MS/Escala
- g MS/Escala
- kg MS/ha

Composición Botánica
- % Especie
- kg MS/Especie/ha

MUP-10
Rutas del Área de Muestreo en una Pradera según la Forma del Lote

Croquis del área de muestreo para gramíneas postradas (Método de disponibilidad por frecuencia)

Grupo 1 Grupo 2

Grupo 4

Grupo 3

Grupo 1

Grupo 2

Grupo 3

Area homogénea

Area heterogénea
Peso Verde y Seco de Submuestra de Gramínea para Estimar el Peso Seco en los Sitios Seleccionados

<table>
<thead>
<tr>
<th>Escala</th>
<th>Gramínea presente por marco (g/0.25 m²)</th>
<th>Submuestra de gramínea (g) para secado</th>
<th>MS² (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Peso verde</td>
<td>Peso seco</td>
<td>Peso verde</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>52</td>
<td>150</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>(83)¹⁰</td>
<td>210</td>
</tr>
<tr>
<td>4</td>
<td>380</td>
<td>(112)¹⁰</td>
<td>220</td>
</tr>
<tr>
<td>5</td>
<td>500</td>
<td>(155)¹⁰</td>
<td>235</td>
</tr>
</tbody>
</table>

¹⁰ () = Valores calculados
² () = Contenido de materia seca (valores calculados)
Calificación Visual de Disponibilidad y Cobertura

Finca: El Carmen
Fecha: Julio 10/91
leguminosa
Area: 6 ha
Ubicación: Puerto Gaitán
Pastura: B. decumbens +

<table>
<thead>
<tr>
<th>Marco No.</th>
<th>Calificación de rendimiento 1-20</th>
<th>Orden de cobertura (%)</th>
<th>Marco: 0.25 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-20 21-40</td>
<td>Primero 1-20 21-40</td>
<td>Segundo 1-20 21-40</td>
</tr>
<tr>
<td>1 - 21</td>
<td>1.5 1.0</td>
<td>1 1 2 3</td>
<td>3 3</td>
</tr>
<tr>
<td>2 - 22</td>
<td>2.0 1.5</td>
<td>1 4 1 5</td>
<td>4 5</td>
</tr>
<tr>
<td>3 - 23</td>
<td>2.5 1.5</td>
<td>1 2 7 3</td>
<td>2 3</td>
</tr>
<tr>
<td>4 - 24</td>
<td>1.0 1.5</td>
<td>3 2 1 3</td>
<td>1 1</td>
</tr>
<tr>
<td>5 - 25</td>
<td>1.5 1.0</td>
<td>1 2 5 1</td>
<td>4 3</td>
</tr>
<tr>
<td>6 - 26</td>
<td>3.0 2.5</td>
<td>1 1 4 6</td>
<td>4 6</td>
</tr>
<tr>
<td>7 - 27</td>
<td>2.5 1.0</td>
<td>1 1 3 3</td>
<td>1 3</td>
</tr>
<tr>
<td>8 - 28</td>
<td>2.0 1.5</td>
<td>1 1 5 2</td>
<td>2 2</td>
</tr>
<tr>
<td>9 - 29</td>
<td>1.0 1.5</td>
<td>1 1 6 5</td>
<td>6 6</td>
</tr>
<tr>
<td>10 - 30</td>
<td>1.5 1.5</td>
<td>1 1 1 3</td>
<td>1 1</td>
</tr>
<tr>
<td>11 - 31</td>
<td>1.0 2.0</td>
<td>1 1 1 2</td>
<td>4 3</td>
</tr>
<tr>
<td>12 - 32</td>
<td>0.5 2.5</td>
<td>1 3 5 1</td>
<td>5 3</td>
</tr>
<tr>
<td>13 - 33</td>
<td>1.5 1.0</td>
<td>1 1 2 1</td>
<td>6 6</td>
</tr>
<tr>
<td>14 - 34</td>
<td>1.0 2.0</td>
<td>3 1 1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>15 - 35</td>
<td>1.5 1.0</td>
<td>5 4 1 1</td>
<td>1 2</td>
</tr>
<tr>
<td>16 - 36</td>
<td>1.0 1.0</td>
<td>1 1 1 1</td>
<td>1 1</td>
</tr>
<tr>
<td>17 - 37</td>
<td>1.5 1.5</td>
<td>1 1 1 1</td>
<td>3 2</td>
</tr>
<tr>
<td>18 - 38</td>
<td>2.0 1.0</td>
<td>1 2 4 1</td>
<td>3 3</td>
</tr>
<tr>
<td>19 - 39</td>
<td>2.5 1.5</td>
<td>1 3 2 3</td>
<td>3 1</td>
</tr>
<tr>
<td>20 - 40</td>
<td>4.0 1.0</td>
<td>1 1 1 1</td>
<td>5 6</td>
</tr>
</tbody>
</table>

Especies:
1. B. decumbens
3. C. acutifolium
5. Axonopus purpussi
7. Malezas hoja ancha

2. Stylosanthes capitata
4. Mesosetum pitienti
6. Panicum rudgei

MUP-13
Peso Seco y Frecuencia de Rendimiento de la Escala para Estimar la Gramínea Total Disponible

<table>
<thead>
<tr>
<th>Escala</th>
<th>Peso seco (PS)</th>
<th>Frecuencia de rendimiento (FR)</th>
<th>Disponibilidad de la gramínea (PS x FR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0.5)</td>
<td>(5)</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1.0</td>
<td>10</td>
<td>14</td>
<td>140</td>
</tr>
<tr>
<td>(1.5)</td>
<td>(31)</td>
<td>13</td>
<td>403</td>
</tr>
<tr>
<td>2.0</td>
<td>52</td>
<td>5</td>
<td>260</td>
</tr>
<tr>
<td>(2.5)</td>
<td>(67.5)</td>
<td>5</td>
<td>337.5</td>
</tr>
<tr>
<td>3.0</td>
<td>83</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>(3.5)</td>
<td>(97.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.0</td>
<td>112</td>
<td>1</td>
<td>112</td>
</tr>
<tr>
<td>(4.5)</td>
<td>(133.5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5.0</td>
<td>155</td>
<td>0</td>
<td>155</td>
</tr>
<tr>
<td>Total</td>
<td>40</td>
<td>1495.5</td>
<td></td>
</tr>
</tbody>
</table>

() = Cálculo de valores intermedios
PS = Peso seco
FR = Frecuencia de rendimiento

MUP-14
Resumen de la Disponibilidad y Composición Botánica de la Pastura

<table>
<thead>
<tr>
<th>Especie de componente</th>
<th>Número de veces en cada posición</th>
<th>Composición botánica</th>
<th>MS kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Primera 0.7³</td>
<td>Segunda 0.2²</td>
<td>Tercera 0.1²</td>
</tr>
<tr>
<td>1. B. decumbens</td>
<td>29</td>
<td>18</td>
<td>11</td>
</tr>
<tr>
<td>2. S. capitata</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>3. C. acutifolium</td>
<td>4</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>4. M. pitrii</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5. A. purpusii</td>
<td>1</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>6. P. rudgei</td>
<td>0</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>7. Malezas de hoja ancha</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Totales</td>
<td>40</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

MUP-15
Flujograma para la Evaluación de Pasturas con Especies Erectas. Método Poblacional Estratificado

MUP-16
Formato de Campo para el Recuento de Plantas por Estrato y Composición Botánica

Finca: La Tertulia
Ubicación: Villavicencio
Fecha: 15 Ag/92
Area: 6 ha
Pastura: Panicum maximun
Marco: 1 m²

<table>
<thead>
<tr>
<th>Marco No.</th>
<th>Altura de planta (cm)</th>
<th>Orden de cobertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>M</td>
</tr>
<tr>
<td>1 - 21</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>2 - 22</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>3 - 23</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>4 - 24</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>5 - 25</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>6 - 26</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>7 - 27</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>8 - 28</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>9 - 29</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>10 - 30</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>11 - 31</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>12 - 32</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>13 - 33</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>14 - 34</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>15 - 35</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>16 - 36</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>17 - 37</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>18 - 38</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>19 - 39</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td>20 - 40</td>
<td>x</td>
<td>x</td>
</tr>
</tbody>
</table>

Especies: 1. 2. 3. 4. 5. 6.

Altura de plantas: 100 + 109 + 111 + 110 + 118 + 106 + 112 + 95 + 93 + 96 = 1050

Promedio de altura: 105

A, M, B = Estratos de altura alta, media y baja

MUP-17
Conteo de Poblaciones y Disponibilidad de Forraje

<table>
<thead>
<tr>
<th>Estrato</th>
<th>Rango de altura (cm)</th>
<th>Número de plantas</th>
<th>Materia seca (kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>71 - 105</td>
<td>15</td>
<td>3750</td>
</tr>
<tr>
<td>M</td>
<td>36 - 70</td>
<td>20</td>
<td>5000</td>
</tr>
<tr>
<td>B</td>
<td>0 - 35</td>
<td>12</td>
<td>3000</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>11750</td>
</tr>
</tbody>
</table>

A = alto, M = medio, B = bajo.
Fórmula General para Calcular la Carga Animal

Paladines y Lascano (1983), se expresa así:

Pastoreo continuo

\[PVT = \frac{MVSHa \times A}{DP \times PP} \]

Pastoreo rotacional

\[PVT = \frac{MVSHa \times A \times 100}{(DOP+DDP) \times NCP \times PP} \]

Donde:

- \(PVT \) = Peso vivo total expresado en kg de peso vivo/ha/día
- \(MVSHa \) = kg de materia verde seca de gramínea/hectárea
- \(A \) = Area del potrero en hectáreas
- \(DP \) = Días de pastoreo de la pastura
- \(PP \) = Presión de pastoreo en kg de materia verte verde seca por hectárea por cada 100 kg de peso vivo
- \(DOP \) = Días de ocupación de la pastura
- \(DDP \) = Días de descanso de la pastura
- \(NCP \) = Números de ciclos de pastoreo

MUP-19
Ejemplo 1
Estimación de la Carga Animal de una Pastura Bajo Pastoreo Rotacional

<table>
<thead>
<tr>
<th>Pastura:</th>
<th>B. decumbens + S. capitata (Capica)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo de pastoreo:</td>
<td>Rotacional en tres potreros</td>
</tr>
<tr>
<td>Tamaño de potrero:</td>
<td>4 ha</td>
</tr>
<tr>
<td>Ciclo de pastoreo:</td>
<td>42 días</td>
</tr>
<tr>
<td>- Días de ocupación:</td>
<td>14 días</td>
</tr>
<tr>
<td>- Días de descanso:</td>
<td>28 días</td>
</tr>
<tr>
<td>Peso promedio de los animales:</td>
<td>400 kg de peso vivo (PV)</td>
</tr>
<tr>
<td>Forraje disponible:</td>
<td>2500 kg MVS/ha</td>
</tr>
<tr>
<td>Presión de Pastoreo:</td>
<td>3.5 kg de MVS/100 kg de PV</td>
</tr>
<tr>
<td>Tiempo total de pastoreo:</td>
<td>(fase lluviosa) = 3 ciclos</td>
</tr>
</tbody>
</table>

MUP-20
a. El productor desea saber ¿cuánto peso vivo total debe introducir en la pastura?

Cálculos:
Cálculo de kg de Peso Vivo Total por potrero de 4 ha

\[
PVT = \frac{\text{kg MVS} \times A \times 100}{(DOP + DDP) \times NCP \times PP} \]

\[
PVT = \frac{2500 \text{ kg MVS/ha} \times 12 \text{ ha} \times 100}{(14DO + 28DD) \times 3 \text{ ciclos} \times 3.5 \text{ kg/ha de MVS}} \]

\[
PVT = 6803 \text{ Kg} \]

b. Cuántos animales puede soportar en promedio la pastura durante los tres (3) ciclos de pastoreo?

\[
\text{Animales} = \frac{\text{kg peso vivo total}}{\text{Peso promedio de animales}} = \frac{6803 \text{ kg}}{400 \text{ kg}} \]

\[
\text{Animales} = 17 \]

c. Si la unidad animal en este ecosistema equivale a 450 kg, cual es la carga animal en unidades animal por hectárea?

\[
\text{Carga animal} = \frac{\text{Peso vivo total}}{\text{Area} \times \text{Unidad animal}} = \frac{6803 \text{ kg}}{12 \text{ ha} \times 450 \text{ kg}} \]

\[
\text{Carga animal} = 1.26 \text{ Unidad animal/ha} \]

MUP-20-1
Ejemplo 2
Estimación de la Carga Animal de una Pastura Bajo Pastoreo Continuo

Area de la pastura = 15 ha
Tasa de crecimiento de la gramínea = 6 kg/ha/día de MVS
Días de ocupación (fase lluviosa) = 210 días

La pastura, el promedio de peso de los animales, el forraje disponible y la presión de pastoreo son iguales a los del ejercicio anterior.

a. Cuántos animales se podrán introducir en la pastura para obtener la presión de pastoreo deseada y, cuál será la carga animal (UA/ha).

\[PVT = \frac{(\text{kg MVS} + (\text{TC} \times \text{DO})) \times A \times 100}{\text{DO} \times \text{PP}} \]

Donde:
- \(\text{TC} \) = Tasa de crecimiento o rebrote de MVS por ha/día
- \(\text{DO} \) = Días de ocupación

\[PVT = \frac{(2500 + (6 \times 210)) \times 15 \times 100}{210 \times 3.5} = \frac{5640000}{735} \]

\[PVT = 7673 \text{ kg PV total en 15 ha, el número de animales que se necesitan son:} \]

\[\frac{7673}{300} = 25.5 \]

\[\frac{PVT}{ha} = \frac{7673}{15} = 511.3 \text{ kg/ha} \]

\[\frac{\text{CA (UA/ha)}}{\text{UA}} = \frac{511.3 \text{ kg/ha}}{300 \text{ kg/UA}} = 1.7 \text{ UA/ha} \]

MUP-21
Manejo de la Pradera como Semillero

✓ Selección del lote
 - Alta población y cobertura
 - Control de especies invasoras

✓ Manejo previo del pastoreo
 - Mantener disponibilidad de forrajes relativamente baja

✓ Corte de uniformización
 - Pastoreo corto e intensivo (sobrepastoreo)
 - Guadañada o segada

✓ Fertilización
 - Nitrógeno: 50 a 100 kg-ha
 - Azufre: 15 a 20 kg-ha
 - Aplicaciones de fósforo, potasio y magnesio mejoran la producción

✓ Cosecha
 - Manual
 - Golpeadora o batidora
 - Combinada

✓ Beneficio de semilla
 - Semilla cruda
 - Semilla limpia
 - Semilla clasificada
 - Semilla escarificada

✓ Almacenamiento
 - Humedad: 10 al 12%

MUP-22
Apilado y Sudado de Semillas de Gramíneas (a y b) y Zaranda Utilizada para su Separación (c)
Máquina Golpeadora para Cosecha de Semilla de Gramíneas

MUP-24
Etapas del Proceso de Acondicionamiento de Semillas de Forrajeras

MUP-25
Flujograma para la Secuencia 3

Degradación y Rehabilitación de Pasturas

Objetivos
- Identificar los factores de degradación en una pastura dada
- Determinar el estado de degradación de una pastura, con base en el cálculo de la disponibilidad de forraje, la composición botánica, la evaluación de la condición de la pastura y el área de suelo descubierto
- Indicar los procedimientos de rehabilitación adecuados a los factores y estado de degradación de una pastura

Contenido
- Degradación de pasturas
- Evaluación de pasturas degradadas
- Rehabilitación de pasturas

Ejercicio
- 3.1 Rehabilitación de una pastura degradada

Práctica
- 3.1 Evaluación de la erosión del suelo y estado sanitario de la pastura

Resumen

MUP-26
Tendencia de las Pasturas en el Tiempo, según el Manejo1

1 Fuente: Spain y Gualdrón, 1991
Síntomas Principales de la Deficiencia de Algunos Nutrimentos en Pasturas Tropicales

<table>
<thead>
<tr>
<th>Síntoma de deficiencia</th>
<th>Elemento</th>
<th>N</th>
<th>P</th>
<th>K</th>
<th>S</th>
<th>Cu</th>
<th>Zn</th>
<th>Fe</th>
<th>B</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reducción del crecimiento</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clorosis:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hojas viejas</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Intervenal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Apice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Enrojecimiento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hojas viejas</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Verde intenso a normal</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Encrespamiento foliar</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deformación foliar</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acartonamiento foliar</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Necrosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Centro hojas</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Borde hojas</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Hojas viejas</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abscisión</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hojas jóvenes</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Defoliación</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rebrotes en roseta</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muerte meristemar</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muerte guía planta</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Ayarza, 1991

MUP-28
Representación Esquemática del Proceso de Degradación de una Pastura

MUP-29
Malezas. Clasificación Morfológica en los Tres Ecosistemas

<table>
<thead>
<tr>
<th>Especie</th>
<th>Tipo de maleza</th>
<th>Piedemonte Llanero</th>
<th>Piedemonte Amazónico</th>
<th>Altillanura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabo de zorro (Andropogon bicornis)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Grama amarga (Homolepis aturensis)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Estrellita (Dichromena ciliata)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Bledo (Amaranthus spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Batatilla (Ipomoea spp.)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escobas (Sida spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bicho (Senna tora y S. occidentalis)</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botón de oro (Melampodium spp.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruta de pavo (Chomelia spinosa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espino (Pitcheocolobium odoratum)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Colchón de pobre (Mesosetum pitieri)</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Paja de burro (Panicum rudgei)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guaratara (Axonopus purpusi)</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>Vibora, guayacana (Imperata contracta)</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1° 1 = Malezas de hoja angosta, 2 = Malezas de hoja ancha, 3 = Malezas arbustivas. Fuente: CIAT, 1989 a, 1989 b

MUP-30
Rangos Adecuados de Disponibilidad de Forraje de Diferentes Gramíneas en la Altillanura Plana Colombiana (Primera Aproximación)

<table>
<thead>
<tr>
<th>Especie</th>
<th>Epoca</th>
<th>Disponibilidad de forraje Materia verde seca, kg/ha</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. dictyoneura</td>
<td>Lluvia</td>
<td>1500 a 2500</td>
</tr>
<tr>
<td>Seca</td>
<td>1000 a 1500</td>
<td></td>
</tr>
<tr>
<td>A. gayanus</td>
<td>Lluvia</td>
<td>2000 a 3200</td>
</tr>
<tr>
<td>Seca</td>
<td>1300 a 1700</td>
<td></td>
</tr>
<tr>
<td>B. decumbens</td>
<td>Lluvia</td>
<td>1300 a 2000</td>
</tr>
<tr>
<td>Seca</td>
<td>1000 a 1300</td>
<td></td>
</tr>
<tr>
<td>B. humidicola</td>
<td>Lluvia</td>
<td>1300 a 1500</td>
</tr>
<tr>
<td>Seca</td>
<td>1000 a 1300</td>
<td></td>
</tr>
</tbody>
</table>

Se asumen 210 días en época de lluvias y 125 días en época seca

FUENTE: Hoyos *et al.*, 1992

MUP-31
Escalas de Evaluación sobre Población y Composición Botánica de la Pastura

<table>
<thead>
<tr>
<th>Escala</th>
<th>Población</th>
<th>Cobertura</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gramínea erecta</td>
<td>Gramínea postrada</td>
</tr>
<tr>
<td>Muy alta</td>
<td>> 20000</td>
<td>> 80</td>
</tr>
<tr>
<td>Alta</td>
<td>15001 - 20000</td>
<td>61 - 80</td>
</tr>
<tr>
<td>Media</td>
<td>10001 - 15000</td>
<td>41 - 60</td>
</tr>
<tr>
<td>Baja</td>
<td>5001 - 10000</td>
<td>21 - 40</td>
</tr>
<tr>
<td>Muy baja</td>
<td>< 5000</td>
<td>< 20</td>
</tr>
</tbody>
</table>

MUP-32
Escala de Evaluación de Erosión, Insectos-Plaga y Deficiencias Nutricionales en Pasturas

<table>
<thead>
<tr>
<th>Escala</th>
<th>Erosión del suelo</th>
<th>Hormigas y otros</th>
<th>Salivazo (mión)</th>
<th>Deficiencia nutricional (hojas viejas)</th>
</tr>
</thead>
</table>
| 1 | - Mínimo arrastre de partículas
- Distribución uniforme de residuos vegetales | - Ausencia de daño
- Area foliar completa | - Ausencia del daño
- Color del follaje normal
- No hay ninfas ni adultos | - Ausencia de deficiencia
- Color del follaje normal |
| 2 | - Erosión leve
- Arrastre de partículas y terrones muy pequeños
- Formación de pequeños cúmulos de tejido vegetal | - Daño leve
- Algunas perforaciones y/o consumo
- Daño entre el 1 al 10% del área foliar | - Daño leve
- Algunas manchas largas o rayas de color amarillo pálido
- Algunas ninfas y/o adultos | - Deficiencia leve
- Algunas hojas muestran amarillamiento en los ápices y/o bordes
- Algunas hojas pueden mostrar coloración rojiza |
| 3 | - Erosión moderada
- Formación de huellas y canales de escorrentía
- Arrastre de suelo y residuos vegetales en forma localizada
- Compactación localizada | - Daño moderado
- Los insectos han consumido entre 11 y 20% del área foliar | - Daño moderado
- Abundantes manchas largas o rayas de color amarillo
- Algunas hojas pardas o marrón
- Mediana población de ninfas y/o adultos | - Deficiencia moderada
- Clorosis que afecta entre el 30% del área foliar
- Algunas hojas rojas y púrpura
- Necrosis apical |
<table>
<thead>
<tr>
<th>Escala</th>
<th>Erosión del suelo</th>
<th>Hormigas y otros</th>
<th>Salivazo (mión)</th>
<th>Deficiencia nutricional (hojas viejas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Alta erosión</td>
<td>Daño grave</td>
<td>Daño grave</td>
<td>Alta deficiencia</td>
</tr>
<tr>
<td></td>
<td>Formación de canales más o menos profundos</td>
<td>Los insectos han consumido más del 20% del área foliar</td>
<td>Plantas color pardo o marrón en casi todo el follaje</td>
<td>Plantas con clorosis en casi toda el área foliar</td>
</tr>
<tr>
<td></td>
<td>Suelos con bajo contenido de residuos vegetales</td>
<td></td>
<td>Algunas plantas muertas</td>
<td>Coloración rojo púrpura en muchas hojas</td>
</tr>
<tr>
<td></td>
<td>Superficie del suelo compactada</td>
<td></td>
<td></td>
<td>Necrosis parcial y total</td>
</tr>
</tbody>
</table>

MUP-33-1
Evaluación de Erosión, Insectos Plaga y Deficiencias Nutricionales

Finca: El Trébol
Ubicación: Pto. López
Fecha: Mayo 15-92
Area: 10 ha
Marco: 0.25 m²
Pastura: B. decumbens + Capica

<table>
<thead>
<tr>
<th>Marco No.</th>
<th>Erosión del suelo</th>
<th>Hormigas y otros(^{v})</th>
<th>Salivazo o mión(^{z})</th>
<th>Deficiencia nutricional hojas viejas</th>
<th>Suelo descubierto %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-20</td>
<td>21-40</td>
<td>1-20</td>
<td>21-40</td>
<td>1-20</td>
</tr>
<tr>
<td></td>
<td>1-20</td>
<td>21-40</td>
<td>1-20</td>
<td>21-40</td>
<td>1-20</td>
</tr>
<tr>
<td>1-21</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2-22</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>3-23</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>4-24</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>5-25</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>6-26</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>7-27</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8-28</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>9-29</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>10-30</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>11-31</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>12-32</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>13-33</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>14-34</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>15-35</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>16-36</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>17-37</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>18-38</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>19-39</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>20-40</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

\(^{v}\) Hormigas, chapules, falso medidor (Mocis lalipes)

\(^{z}\) Presencia de ninfas o adultos

MUP-34
Resumen de la Evaluación de Erosión, Insectos Plaga y Deficiencias Nutricionales

<table>
<thead>
<tr>
<th>Escala</th>
<th>Erosión del suelo</th>
<th>Hormigas y otros</th>
<th>Salivazo</th>
<th>Deficiencias nutricionales (hojas viejas)</th>
<th>Suelo descubierto %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>24</td>
<td>25</td>
<td>4</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>13</td>
<td>11</td>
<td>4</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>15</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>17</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Suma</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>X p</td>
<td>1.475</td>
<td>1.525</td>
<td>3.125</td>
<td>1.875</td>
<td>15.5</td>
</tr>
</tbody>
</table>
Factores de Manejo del Pastoreo Involucrados en el Balance Gramínea/Leguminosa. Representación Esquemática
Estrategias de Rehabilitación de Pasturas

Representación Esquemática del Proceso de Degradación de una Pastura y las Prácticas de Rehabilitación Orientadas a Corregir los Factores Causales

MUP-37
Ganancias de Peso en Pasturas Establecidas con Arroz de Secano, en una Finca de la Altillanura Plana Colombiana

<table>
<thead>
<tr>
<th>Epoca</th>
<th>Días de pastoreo</th>
<th>Carga (UA/ha)</th>
<th>g/anim./día</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>A.g./B.dic.</td>
<td>A.g. + S.c</td>
</tr>
<tr>
<td>Lluvias</td>
<td>213</td>
<td>2.04/1.93</td>
<td>834</td>
</tr>
<tr>
<td>Seca</td>
<td>110</td>
<td>1.16/1.13</td>
<td>546</td>
</tr>
<tr>
<td>Lluvias</td>
<td>159</td>
<td>1.85/1.81</td>
<td>641</td>
</tr>
<tr>
<td>Tot. y medias</td>
<td>482</td>
<td>1.78/1.71</td>
<td>705</td>
</tr>
</tbody>
</table>

A.g. = Andropogon gayanus
B. dic. = Brachiaria dictyoneura
S.c. = Stylosanthes capitata
C.a. = Centrosema acutifolium

Fuente: CIAT, (1991a; 1991c.)

MUP-38
Degradación y Rehabilitación de Pasturas

Definición: Proceso de pérdida de la capacidad productiva de las praderas en un agroecosistema dado.

Factores de degradación:
- Pérdida de la fertilidad del suelo
- Compactación y erosión
- Factores de degradación asociados a la pastura

Diagnóstico:
Planta
- Cambios en la apariencia del follaje
- Pérdida de crecimiento
- Muerte y pérdida de hojas

Suelo
- Química (M.O., N, P, K, Ca, Mg, S, microelementos)
- Física (Densidad aparente, porosidad, infiltración)

Evaluación de pasturas degradadas
- Cálculo de disponibilidad de forraje
- Composición botánica
- Cuantificación de: erosión, insectos plaga y deficiencias nutricionales

MUP-39
Degradación y Rehabilitación de Pasturas

Estrategias de rehabilitación de praderas

- Manejo del pastoreo
- Fertilización
- Control de malezas
- Labranza
- Introducción de germoplasma adaptado
- Renovación a través de cultivos

MUP-39-1
Factores de Degradación Asociados a la Pastura

✔ Pastoreo
 - Sobrepastoreo
 - Subpastoreo

✔ Insectos plaga
 - Mión de los pastos
 - Hormigas

✔ Germoplasma

✔ Invasión de malezas
Compactación y Erosión

Compactación: Acercamiento de las partículas del suelo, reduciendo el espacio de circulación del agua y del aire.

Consecuencias:
- Mayor densidad
- Menor porosidad
- Deterioro de la permeabilidad
- Menor desarrollo de raíces
- Imposibilidad de reacciones químicas aerobicas
- Menor disponibilidad de elementos
- Menor infiltración
- Más escorrentía

Factores Determinantes:
- Textura del suelo
- Área descubierta
- Presión del uso

Erosión: Lavado de las capas superficiales por pérdida de la cobertura vegetal
Pérdida de la Fertilidad del Suelo

Se involucran factores reguladores de la relación suelo/planta:

• Estructura del suelo

• Requerimientos nutricionales de las especies establecidas

• Utilización de la pastura (pastoreo, corte)

• Sistema de pastoreo (presión, frecuencia)

• Fertilización de mantenimiento (N, P, K, Ca, Mg, S)