

Centro Internacional de Agricultura Tropical International Center for Tropical Agriculture

An evaluation of the accuracy of DEM-derived altitude and slope values

Technical Report

Sara Byne, William Bell and Grégoire Leclerc,
May 1997

View Three
EyePoint. 1063437798095500
Targer. 1064070795436
AGL: 500 Az 166 PICh 004

All Views produced using DEM 10-25 and Aerial Photo Series C-1204 Nos: 281,282 \& 283

KEY TO PARAMETERS
AGL. (Alrove Gruanil Ltives) Hetyhi (an mesters) a) Eyepuml Pusitom

 HernziJ!
Ramye Fiany: 0' va:~ 'un Evernman m Numbial Mites

Plates 2 and 3. Photographs of the study area

An evaluation of the accuracy of DEM-denived altitude and slope values

SARA BYNE
affihation and address

WILLIAM BELL
Head of Information Services and GIS group
Centıo Internacıonal de Agnicultura Tropical (CIAT) AA 6713, Calı Colombia Emal W Bell@cgnet com
GREGOIRE LECLERC ${ }^{\prime}$
Semor Research Fellow, GIS group
Centro Internacional de Agricultura Tropical (CIA D) AA 6713, Calı, Colombia Email G Leclerc@cgnet com

Keywords digitising, grid, scale, accuracy, correlation, cost

Short tatle Accuracy of DEM-derived altitude and slope values

Acknowledgements This project was financed by the "Ecoregional Fund to Support
Methodological Intuatives', a special research fund created by the Mimstry of Development Cooperation of the Netheilands, and later jomed by the Swiss Development Coopetation The Internationd Service for National A gricultural Research (ISNAR), the Netherlands, has been designated the Management Agent for this Fund

[^0]
An craluation of the accuracy of DEM-derived altitude and slope values

Abstract

This project was set up to ins estigate the level of rocurncy which em be expected for slope and altude values derived from low cost Digtal Elevation Models (DEMs) Light grdded DLMs were generded from digitised contour maps 1 a tange of scales (from 110000 to 1200,000) and using a range of contour intervals 25 m 50 m and 100 m) A Control DCM was then produced using large scale aernl photographs (28000) wheh were iegistered for auto extriction of z values using Helava solthare and accurncy tested using 91 differentially measured GPS ground control ponts 7 he DEM showed a vertical RMSE of 426 m whth s well with the accuracy standards for a level one DCM is stipulated by the USGS The alttude ind slope readings denn ed from each of the eight test models were then compared to the values derived from the Control to assess the relationship between the cost of production of a DEM and the accuracy of the results The relationshup betw een cell size and slope correltion was also examined Several recommendations are made regarding optimal production methods for a DLM based on application needs

1 Introduction

A digital elevation model (DLM) is a thice-dimensional computerised model of the earth's surface used to store topographic attıbutes in digital form I hese models have been developed within the field of Gcographical Information Systems (GIS) and are a valuable soutce of data for agricultural research The information they provide can be used as input to a wide range of projects such as soil erosion modelling (Vertessy et al 1990), cıop suitability (Bradley et al 1994), dramage basin montoring and flood control (Rosenthal et al 1995) hydrological run-off modelling (MacMillan et al 1994), land classification (Robison et al 1992, Dikau 1989), viewshed analysis (Lee 1991, Smart et al 1991) and pollution dispetsion modelling (Woodrow 1993) They are also being used in the field of Remote Sensing to ard geometric and radiometric correction of satellite mages (Conese et al 1993)

It is widely acknowledged that the products of a GIS will reflect and in some cases augment, any errois present in the source data (Goodchild and Gopal 1989) Likewise, the accuracy of a DCM and its products is dependent on the quality of the altitude data from which the surface has been generated

To generate and store DEMs, many data sources can be used ranging from analytical and softcopy photogrammetiy of sterco satellite imaging and derial photographs (Day and Mulleı 1988, Welch and Papacharalampos 1992 Гoutin and Beaudon 1995) to the digitisation of topographic maps (Eklundh and Martensson 1995) and ground surveys (McLaren and Kenne 1989) The range of data sources for deriving DEM surfaces is diversifying rapidly, and the

and their products appear in scientific journals (Skidmore 1989, Adkins and Merry 1994, Bolstad and Stowe 1994, Brown and Barra 1994, Gao 1997) The Unted States Geological Survey (USGS) pubhshed a set of accuracy specifications for ther own DEM products in 1990 (USGS 1990) Io date no international standards exist to which a DEM should conform to lend legumacy to ts resulting data Many of the accuracy assessments that have been performed are specfic to a single data source product in a particular type of landscape

Findings from current research in this ficld are non-transferable or mapplicable to the data and complex landscapes encountered in tropical hilside aicas However, the Centio Internacional de Agncultura Liopical (CIAT) needed information to validate DEMs in theu agricultual models for the hillsides of tropical America Λ further problem for CIAT research programs was the lack of information regaiding the costs associated with producing a DEM and therr relationship with the level of accuracy that can be expected I he data sources for producing DEMs that are beleved to be more accurate are also understood to be more expensive (Rhind 1992), although little investigation has been made of this relationship and of quantifying the level of performance of data in the low-cost categones

Specrfic objectives of the project were to

- Determine the level of accuracy of slope and altutude values derived fiom DEMs that have been produced using different scales of cartographe data
- Examine the telationship between mereased accuacy of a DEM and corresponding increases in the cost of production
- Examine the telationship between cell resolution and the correlation between "true" and derived slope values
- Examinc high error occurrences document where they are, develop reasons for their occurience, and work towards reducing them

Finally it was hoped to inctease the user's awaieness of the level of accuracy they can expect of DLMs being used

2 Methods

I he evaluation was divided into four phases (see $2 l$ to 24) each of which deals with a particulat stage of the research, development, and assessment of nine DEMs Dight of these models were produced using a range of topographic maps as source data, and the ninth using highly accurate, large-scale stereo photography The ninth was considered to represent "tuue" altitude and was developed to act as a contiol This model was quality controlled using many Global Positioning Systems (GPS) ground control points (GCPs) collected in the field

21 Studyarea

The study area was selected in an area considered typical of the tıopical American hillsides Decision-makers nceded accurate and up-to-date information DEMs piovide aspect, altitude and slope data that can be used as input to agricultural and hydrological simulation models which are used to understand the consequences of proposed changes to the agroecosystem of the area In rugged landscape, such as that encountered in hillsides, height and aspect change dramatically
over short distances, and eriors can accrue tapidly in the absence of dense (and expensive) datasets Thus, DLMs must be checked for accuracy before being included in any decision support system

I he site chosen covers $30 \mathrm{~km}^{2}$ within the Rıo Ovcjas watershed in the Andean foothills of southern Colombia (l 1 gure 1) It was considered suitable because of its physical characteristics, manageability, accessibility and the availability of data I he region has an elevation range of 1400 to 2200 m and can be considered typical of many hillside areas found in the Andean regions of South America I wo laige rivers with complex networks of tributaries dissect it Ihere are many v-shaped valleys with steep lower slopes and high plain areas Thus the site was considered to have a sufficient range of topogiaphy on which to test the representational capabilities of DCMs for hillsides

Both cartographic and photographic data were avalable for the area at a range of scales CIAT was involved in a watershed study in the area and thus had already recorded several photocontrol points and had set up a permanent GPS control station nearby The area had to be of manageable size in terms of time spent in the field computer model size (number and diversity of pixels for iaster storage), complexity and processing time It was considered that $30 \mathrm{~km}^{2}$ was large enough to include a diverse range of landscape features yet small enough to be handled in an efficient manner The area is easily accessible by car and the ioad network within the area is good However because of steep slopes in the area and the roads being largely unpaved many become impassable after heavy rainfall Thus all fieldwork had to be conductea in the dry season

22 Data collection and preparation

Tive topographic maps from 110,000 to 1200,000 were used as cartogiaphic input to create the test DCMs The Instituto Geografico Augustin Codazzı (IGAC) produced these maps They are honizontally teferenced using a national Thansverse Meicator Piojection with the central meridran positioned through Bogota, the capital of Colombar They are verically ieferenced using Mean Sea Level in Buenaventua, a city located on the Pacifc coast, 150 km noith-west of the study area The contour hnes were derived from nernal photographs using acro-triangulated photo-identfiable points collected by IGAC Colombian maps have no documented accuracy specifications The contour and river ares were digutused for each model for the $30-\mathrm{km}^{2}$ study area and also for a $500-\mathrm{m}$ zone of interpolation suriounding its boundary

Names were assigned to the DEMs according to the scale of the input data source and the vertucal interval between contours digitised to produce them For example, Model $10-25$ was produced from a topographic map with a sounce scale of 110,000 with a vertical contour interval of 25 m and Model $25-100$ from a topographic map with a source scale of 125,000 with a vertical contour interval of 100 m Figure 2 shows the time taken to prepare each of the models The tasks mvolved in pteparmg and correcing a DLM can be divided into seven categones

Calculating values refers to the process of manually assessing and marking altude values on the maps to ease the digitising process

2 Digitusing meludes the setting up of tic points and digitising of all contour hes, rivers and spot heights

3 Ior revision and correction the digitised maps are then compared to the originals to detect errors such as contour misplacement or mussing arcs

4 When entering and revising attrbutes altitude information is added and errors sought The time taken for this process depends manly on contour interval rather than on the scale of the map

5 For map joming edges are matched where mote than one map sheet is used
6 In pre-processing for Hutchmsons' the data arc then prepared for input to Ilutchnsons' interpolation algorthm (see under 23) This involves ensung that all streams are pointing downstream and that a known sinkhole coverage is prepared whete necessary The latter is a coverage that contans mformation about natural depressions or waterholes in the landscape and is used to ensure ther preservation in the final DEM All other deptessions wete treated as data errors and removed Other pre-processing steps require preparing an interpolation boundary and generalising contour lines to minmise data concentration along contours the tame taken for this stage mereases as map scales mcrease

7 The final stage is error correction Some errors only become apparent after an intial DCM is produced and checked for accutacy Contour comparisons and slope profiles can reveal rivers that do not follow valley floors incorrectly coded contours and mussing lakes and areas needing supplemental altutude data More entors of this kind tend to occur in coverages that have been digitised from smaller-scale data because of the close proximity of contours on the map and the data complexty Thus map size
and time spent on this phase auc inversely related, that is, the smaller the scale the more post-processing work is needed to maximise return from the data

7 he costs displayed in Figure 3 provide a useful indicator of the worth of each model when examınıng level of accuracy in lateı sections In calculating costs it was assumed that a tramed digitising operator could perform tasks $1-5$ whereas tasks 6 and 7 would require someone with a higher skill level, including a good knowledge of DCM production methods and interpolation algonthms Ihus, costs were calculated according to wage levels, assigning US\$8 per hour for tasks 1-5 and US\$15 per hour for tasks 6 and 7

The differences in cost appear minimal with regard to models 100-50 25-100, 100-100 and 200-100 However, the size of the study area is relatively small ($30 \mathrm{~km}^{2}$) and minor differences at this level could lead to significant savings when working with larger areas The estimated costs per square kılometre are shown below A degree of caution should be exercised if using this to calculate DEM production costs for larger areas

Cost per model pei square kilometre (US dollars)

Models								
	$10-25$	$10-50$	$25-50$	$100-50$	$10-100$	$25-100$	$100-100$	$200-100$
Cost	3367	2487	1980	1843	2057	1817	1723	1710

Considerations such as the number of map sheets that the area covers should be taken into account because of the additional tasks involved in "stitching" multiple map sheets together

DEMs that include large tracts of flatter terran would cost much less because of the reduction in contour lines and the inciease in resolution required to represent them (see under 2 3) It can also reasonably be assumed that as the size of the area incieases the cost-per-square-kılometre will decrease In such cases large amounts of data can be handled simultaneously saving processing, checking and verification time per unit area of land

Additional costs have not been included heic (e g , hardware, software, i unnıng costs, map acquisition, and training) because they may vary gieatly fiom one organisation to another The figures shown above should be considered to act as a good indicator of the relative cost of producing each DEM all other factors being equal

Although these costs may appear high, they should be consideied in context with the worth of the information 「ield survey costs would be much higher if an attempt was made to collect altitude, slope and aspect data in a tegular grid pattern over such a latge area Much time and expense would also be incurred in translating field survey results to digital form for analysis DEM production does have high initial costs, but once produced the model is easy and cheap to mampulate and can be integrated into a wide range of agricultuial applications

23 DLM productıon

The procedure for gencratıng a DEM from topographic maps can be divided into three stages First, a data structure is chosen with which to repiesent the surface and, in the case of raster representation, an approprrate cell size selected Next a method of interpolation is selected to transform the source data to a continuous elevation surface 「inally, some standard error
checking procedures should be undertaken to ensure that the DLM is an accuate reflection of the data used to produce it

A chotce can be made fiom different data structures to store the elevation data The most commonly used are the Inangulated Irregular Network whereby contrguous, planar triangles are fitted to the mput data points (Pcucker et al 1978) and the Gid (or Raster-based) data structure, which uses a matux to store clevation values at fegulat miervals Λ Gnd structur was chosen for this study for several teasons First and most important its format is easy to manipulate to derive secondary characteristics from the surface (e g , slope or aspect) and the size of the data blocks can be standardised for multiple-gnd comparisons Well-suted to overlay and other spatial analysis procedures, the Grid structure can be linked to the many other coverages in CIAT that are also stored in this format Finally, the data are stored in a compact stucture using run length encoding a compression technique that stores long sequences of numbers as single references Eleven models were produced at a resolution of 5 m and later aggregated to latger cell sizes to investigate the relationship between cell size and slope values The techmque makes it possible to open and work with a many grids simultancously

When using a Gid stiucture the most important consideration is the size of its pixels This is known as the gnd cell resolution The resolution chosen will drectly affect the level of generalisation introduced to the data as it determines the size of each block of land that a single value represents in the grid This is partucularly important when determing slope values because it affects the surface area that contributes to each slope value calculation Nthough as small a cell size as possible is desirable to "fit" the ter ram closely the size chosen must also
cnable efficient handling and storage of data and attempt to mummse data redundancy Λ resolution of 5 m was chosen as a base resolution for each of the models for the following reasons

1 The complevity of the landscape or the level of detal present in the landscape
2 The level of detal avalable in the source data
Important detal may be lost if a cell resolution is overlapping two or more contour lines in steep areas Retaming as much of the input data as possible is desirable wthout generalising it and losing valuable information

3 The propect application
The nature of the application is also significant in selecting a cell resolution With a large-scale project where only a general idea of the regions with high altitude and slope are requred, more can be gamed by generalising the surface (processing tumes will be faster and production cosis lower) than by representing it with fine detail In the CIAT Hillsides Program, agricultural modeling projects are typically conceined with small-scale farming plots where many of the farms have less than 5 ha of land

All models were produced at a resolution of 5 m and later aggegated to larger cell sizes to investigate the relationshp between cell size and slope values

To produce a DEM, a method of interpolation must be developed to transform a set of
discrete altitude data pomts (Ie , contour data and spot heights) to a continuous dataset (ie a DEM) Numerous algorthms exist for this purpose (e g, Knging, Inverse Distance Weighting, Linear Regression Analysis and Splines) and a choice between them should be based on the nature of the mput data, the type of landscape and the data structure chosen to store the DEM For the present purpose, Hutchnson's (1989) method of mtcrpolation was chosen to generate the DCMs, based on its proven performance in a sernes of accuracy tests conducted in similar terrain in October 1993 (Rincon, 1995) Gao (1997) states that Hutchnson's method of gndding if used for miterpolation may acheve a higher level of accuracy The method uses a gid-based technque of iterative fimte-differences that honours input altutude data points and dranage channels according to a user-defined set of "accept or reject" toletances A successively smaller grid was placed over the input points and values calculated for the cell centtes using the data that fall within each cell Following cach iteration, dranage was assessed through the model and points were elimmated that block flowpaths by less than a specified amount to enable dramage Where errors were detected by contour comparison, profiling or histogram analysis, the mput data was corrected and Iutchmson's method of inter polation retun to produce a new model The process was performed iteratively until the optimal model was produced [his results in a contmuous surface that is depressionless and dramable, that is it contams no walls or simkholes that would prevent simulated water from flowing to the edges of the DEM Thus, it is valuable for use in conjunction with agricultural and hydrological datasets Io alleviate any unatural "terracing" effect, a low-pass 3×3 filter was used lor smoothing

24 Field control

Two sets of GCPs were needed to produce and quality check the Control DCM The first set was used to georeference the photographs and to provide vertually referenced data, and the second set to compute the DEM's verical accuracy I his second set meluded over 100 points that were selected throughout the area using a random-stratified sample As this project investigates accuracy, the GCPs had to be accurate to withm one half of one pixel resolution of the computed DEM (ie, 25 m) To acheve this level of precision, ClAI high-piecision GPSs (Leica Systems 2000) were used to provide field control

Thirty-four random locations were presclected and visited or as close by as possible depending on accessibility At each of these locations a number of points were collected, situated up to 20 m apart, for 126 checkpoints I welve photo-control points wert selected from the aerial photographs to use as reference control for the DCM

Maclaren and Kenme (1989) stated that large-scale stereo photographs are a highly accurate, although expensive, means of producing a three-dimensional model of the teram 「or this study, a model was produced using sterco photographs at a scale of 128,000 Ihis was assumed to iepresent the trucst model of the terram and was used as a control to assess the value of the models produced using topographic maps

A set of three stereo photographs was selected for the area according to their contrast quality, scale (128,000), date (1989), proportion of cloud cover and metadata avalabilty The negatives were then purchased from IGAC in Bogota, and sent to the USA to be commercially scanned using a high-resolution scanner (25 microns) The GCPs collected in the second
fieldwork were then used to geographcally 1 eference the photographs and height values determmed using a soft-copy terrain-mapping package (I lelava), which IGAC provided Altitude was not adjusted for forest cover or high-vegetation

Areas that had been interpolated were identsficd through photo-analysis and automatically excluded where a height deviation of 15 m or more was apparent between the Contiol DГM at a 5-m resolution and a parallel model developed at a $10-\mathrm{m}$ icsolution A mask-grid was produced which, as its name suggests, effectively masks out the arcas where cloud or uncertainty in height values were apparent leaving 90 rehable GCPs for crror chucking The mask-grid was then used to elimnate the same areas from each of the cartographically derived DCMs A second mask was created to eliminate edge areas from the computed slope values (ie, where less than nne of the cells in a 3×3 window contamed data)

In accordance with the accuracy standards specified by the USGS, a Level One DCM (ie, derived photogrammetrically) should have a vertical root mean square enor (RMSE) of not more than 7 m The maximum RMSE permited is 15 m , (USGS 1990) The RMSC is defined as

$$
\begin{equation*}
\text { RMSL } \frac{\sqrt{\sum\left(z_{1}-z_{t}\right)^{2}}}{n} \tag{1}
\end{equation*}
$$

where $z_{1}=$ interpolated DEM elevation of a test point, $z_{f}=$ true elevation of a test point and $n=$ number of test points In thus study the computed RMSC was 426 m -well within the USGS crror specifications for a Level One DEM Of the checkpomts tested 83% were withm 5 m of the DEM-derived z-value, wheh is a good fit considering that the DCM cell resolution was 5 m Vertical errors of up to 4 or 5 m pel $5-\mathrm{m}$ ground interval can be anticipated in a complex
landscape such as this In effect, 10% of the pomts showed an error greater than 50 m and 15% showed more than 30 m Maximum error was 244 m Note that transformation of the elcvation for WGS84 and of IGAC maps has been completed based as a fit between GPS values (WGS89) and map value The WGS84 surface was consistently higher than IGAC with a mean difference of 265 m Each of the DEMs was assessed for accuracy based on then degree of simulanty to the Control Model

3 Results and discussion

The following analysis and conclusions rely on the assumption that the Control Model repiesents "truth" in the field Several factors should be kept in mind regarding the results of this analysis

- The presence of noise in the central model
- Bras in GCPs' selection
- IGAC maps' accuracy standards
- Results are specific to this type of landscape

31 Altitude

The models were first assessed with regat to the accurdcy of their altitude values Table 1 shows the descriptive statistics for cach of the DCMs After removing cloud fiom cach of the models 991,573 cells ($2479 \mathrm{~km}^{2}$) were evaluated At first glance the figures in 7 able 1 1eveal a
high degree of smilanty between the models Note that the tange of altutude values nanows for models 1-9 as the precision of the source data decreases This is because the altutude values were determmed using an averaging techmque which, together with the lack of input "peak" or "pit" data in the small-scale models produces a smoothing effect resulung in "higher lows" and "lower highs" than those that exist on the "true" altitude model A test of correlation was then performed on each pan of models to provide an mitual mdication of the relationships between "true" and calculated altitude values

All populations were nomalised using z-scores then the correlation coefficient ($)$ was calculated for each pair of models using the total populations (ic, over 900,000 values) Thus all of the r-values can be considered sigmficant at the 100% probability level The correlation matrix in Table 2 shows results It clearly shows a strong positive relationship between each of the models and the "true" surface, with all values for $;$ lying close to 10 Some prelimmary observations can be drawn fiom this data with respect to the relative strengths of the models First, the correlation coefficients in column one for model $10-25(09977)$ and model $10-50(09972)$ are smalar I he value for $10-100$ is only slighty lower (09933) All these nodels were based on the same map scale (1 10,000) but a different number of contour lines digitused in each case The closeness of these figures suggests that it may be more cost-efficient to digitise every second on indeed evety fourth contour on a 110,000 map rather than every single contour Second, the coefficients for the degree of correlation between the Control as compared with model 25 $100(09886)$ and model 100-50(09866) imply that the contour interval itself is not the
only determinng factor In this case, the closer contour interval of 50 m produced a model that was actually less similar to "truc" altutude than digitising with a contour mterval of 100 m because of the difference in base map scale that was used Thus, a larger scale with less contou lines may be preferable to a smallet scale map with more contours This suggests that the contour interval and the base map scale should be considered together before selectung the opumal data source for a DEM

To examine the absolute differences that exist between the models, the altitude values were then compared to "true ' altitude on a cell-by-cell basis The differences were reclassed into error categories and results charted (Figure 4) Cor this study, a height difference of up to 7 m was considered "good", bearing in mind the sufface area of each cell ($25 \mathrm{~m}^{2}$) and the probability for height alteration within each individual window A difference of up 1015 m m height allows a two-cell horizontal placement error, which is considered realistic given the scales of the input data sources Although not desirable, this was considered acceptable for the type of modeling undertaken Thus, the percentage of each model that falls witho classes 1 and 2 is tcrmed "usable" and is heicafter regarded as an indicator of the value of each of the models

Note that in model 10-25 (Figure 4), 91% of the cells are considered usable, as opposed to only 50% in model $200-100$ at the other cond of the scale llowever, these figures should be considered with regard to the time taken to produce cach of the models (shown in italics) Models 100-100 and 200-100 show poor results, but considered with regard to the short time taken to produce them (almost one third of the time and consequent expense of model $10-25$), and then they may be a reasonable option for producing a general representation of the terram Model
$100-50$ has only 54% of usable terran, which is not much bettet than these models and actually took longer to produce than model 25-100, which shows better tesults (60%)

If a cut-off level of the usabilty of a model is set at 68% (1 e , over 68% of the cells must be wthm 15 m of "true" altitude otherwise we cannot use the model), only four models are worthy of further discussion 10-25, 10-50, 25-50 and 10-100 Sigmficantly, they molude all thee models that relied on the 110000 scale map as a base data souce This imples that even if a contour interval is closer on a smaller-scale map, the level of detal that is lost regarding he positioming will have knock-on effects in the process of producing a DEM

Of the four models, the differences that occu between models $10-25$ and $10-50$ are so minmal that the $10-50$ model is prefcrable to the $10-25 \mathrm{~m}$ terms of time and costs saved in the production process (it takes less than 75% of the time taken to produce model $10-25$ and is US $\$ 250$ cheaper) Models $10-100$ and $25-50$ also show sumla levels of accuacy, with 71% and 77% of each (respectively) falling withm an acceptable level of accuracy As they take about the same time to produce and model 10-100 costs only US $\$ 127$ more per km^{2}, a decision between them may depend on other factors such as ther ability to represent slope accurately (see under 32) Another factor affecting the decision may be how long is spent on each individual phase of the production process Cor example, the total times may be simular but 「igure 2 clearly shows that the amount of time spent in the digitising laboratory (tasks 1-4) is lower for model $10-100$ This means that a bigher proportion of the processing time for this model is spent on tasks that require a higher skill level It may be desirable to distribute the labour such that the more highly skilled personnel will have more time for other work

Clearly an informed decision should be based on an under standing of the tume and money avalable, together with the level of accurdcy requred Model 10 -50 appears to provide a good compromse at the top end of the field and model $25-50$ could be used to produce a less accurate, although usable model at three-quaters of the cost The models produced using 1100,000 and 1200,000 source scale data have relatively low standards of accuacy and ther use should be avorded if intending to conduct research at a local level (as in this case)

32 Slope

A number of algonthms can be used for deriving slope values fiom a DCM Most of these operate by fitting a function to four or more of the eight elevation values that surtound the central cell (Evans 1980) A 3×3 analysis window or "kernel" is passed over the grd and slope values are assigned to each cell based on the relationship between its height value and the heights of its ammedrate neighbours Calculation methods include determining the slope of the steepest fall or rise (Goetz, cited in Theobald 1992), calculating drectional finte differences with the window, with and without weighted kernels, (Sharpnack and Akin 1969 Horn 1981) and using multiple linear reglession to fit a surface to the data ponts (Skidmore 1989) The latter assesses Horn's method for accuracy (selected for this study) and compares it favourably with several other common methods for calculating slope

	Z_{01}	Z_{++}
Z_{-0}	Z_{00}	Z_{+0}
Z_{--}	Z_{0-}	Z_{+-}

3×3 Гilter

$$
\begin{array}{cl}
p_{w} & {\left[\left(Z_{++}+2 Z_{+0}+Z_{+}\right)-\left(Z_{+}+2 Z_{-}+Z_{-}\right)\right] / 8 \phi \chi} \tag{2}\\
q_{w} & {\left[\left(Z_{+}+2 Z_{0+}+Z_{-}\right)-\left(Z_{1-}+2 Z_{0-}+Z_{-}\right)\right] / 8 \phi p}
\end{array}
$$

where 8ϕ is the gid cell resolution from west to east and $8 \phi v$ from south to north

321 Devation in slope values

Table 3 shows the descriptive statustics for each of the slope models Although the range of valucs meteases as the accuracy of the mput data decreases, it should be noted that the mean slope value is lower As the standard deviation remams relatively stable this suggests that higher incidences of lower slope values occur in the models with lower data density That is, it appears as if the slope values ate bemg underestumated when repicsented by models produced from smaller-scale data 10 examine this observation in more detal, none samples of 475 cells each were taken from the normalised populations of the models Гirst, Analysis of Vanance (the I-ratio test) was used as described in Ebdon (1981) to establish if a significant difference existed between the populations The following hypotheses were set
H_{o} Samples were taken from identical populations
$\mathrm{H}_{1} \mathrm{At}$ least one sample was taken from a population with a sigmficantly different distribution to the other samples

An F-value of 1809 was computed and the Null Hypothesis rejected at the 00001 probability level The Tukey-Kramer Studentised Range (Honestly Sigmficant Difference) Test was then used to examme the character and extent of the differences that existed between each of the populations (Kramer 1956) This is a multiple companison means test smmar to the t-test but the probability of conclusive errors is lower as the Maximum Experimentwise Eiror Rate (or probability that the null hypothesis will be falsely tejected) is controlled, assuming equal sample sizes (SAS Institute Inc 1988) A parr of sample means are considered to be significantly different if

$$
\begin{equation*}
\left.\left|\mu_{1}-\mu_{j}\right| / s V_{1}+I n_{y}\right) / 2 g(\alpha k v) \tag{3}
\end{equation*}
$$

where $q(\alpha k, v)$ is the α-level critical value of a studentised iange distribution of k independent normal random varables with v degrees of freedom

Three "I ukey" groupings were identified and are histed in Table 4 Using the identufied groupings it can be sard that the mean slope values computed by models $25-100,100-100$ and 200-100 differ sigmficantly from the "true" slope values and are underestimating by an average of
5° The slope values calculated bv Models 10-50 25-50 100-50 and 10-200 are between 2° and 4° less than the "true" slope values the latter two models tending towards the larger errors Model $10-25$ is the only one that exhbits no significant mean deviation from the "true" slope values

These findings confirm the assumption that models derived from small-scale map data (1 e , 1100000 or 1200000) tend to underestmate slope values It can be explaned by the lack of topographe detall avalable in the source data, which leads to larger tracts of interpolated land values Because of the nature of most interpolation algonthms used these values will be placed along an unrealistically smooth scale between known data points Although these findings are specific to the methods of interpolation and type of landscape that were modelled for this study clearly a general correction factor should be applied to models denved from small-scale data The correction factors below can be used as a "rule-of-thumb" compensation for generahsed slopes in studies where only small-scale maps are avalable

Correction factors (CF) for underestimated slope values (Cell resolution $=5 \mathrm{~m}$)

Model	$10-25$	$10-50$	$25-50$	$100-50$	$10-100$	$25-100$	$100-100$	$200-100$
F (dcgrees $)$	0	+2	+2	+3	+4	+5	+5	+5

Correlation coefficients were then calculated for each of the slope grids as compared to the Control Model using the methodology previously described The low correlation values minally calculated (Table 5) reflect the inherent structural differences between the Control DEM and the models derised through interpolation

To decrease the roughness of the terrain visible in the Control Model and allevate minor
errors in elevation values the surface was smoothed using a 3×3 low-pass filter The correlation coefficients after this intial smoothing of the data show some improvement (Table 5 column 3) but these figures are still too low to produce a trustworthy estimate of slope values The models could be smoothed repeatedly to aron out the surface undulations and thus increase the correlation between "true" and calculated slope The resultung slopes would be more simılar but highly generahsed and would represent a surface area far larger than twice the cell size because of the averaging of neighbouring cells to acheve the smoothed effect Thus it was considered undesirable to smooth the data further and alternative explanations were exammed for the high internal deviation between the DEMs

322 Potental sources of errot

A through analysis of potentral sources of errors in both the reference DEM and landscape factors showed that most errors were caused by structural differences within the models The high resolution of the DEMs is the most influential factor affecting the level of detal (1e, surface undulations) in the models Although minmising the cell size to maintain terrain complexity for altitude values is desirable, the local errors that result from this level of detal contribute heavily to the deviation of slope values The only way to increase slope accuracy m this case is to merease the size of the area that the slopes represent or select a coarser resolution by averaging thus avording local error and producing more generahsed slope values The relationship between cell resolution and slope correlation was therefore examined to determme whether an optimal cell resolution that would reflect the quality of the input data could be recommended for each of the
models
Figure 5 illustrates the effect that increasing the cell size has on the correlation of slope values It clearly shows that as the cell size is increased the degree of correlation mereases sharply up to a sill point after which the rate of change slows tending towards 10 It seems safe to assert that this sill point is the lowest the cell size can go to produce a reasonable definition of slope Below this level unwanted noise is present in the data This graph clearly shows that a different cell size suits a different level of mput data Note that the models with a wider contour interval have consistently lower correlation with "true" slope despite a higher degree of correlation to "true" alttude (Figure 6) This confirms the importance of a narrow contour interval to maintain accurate intra-cell relationships Therefore it is important to determine the cell size best suited to the level of detal avalable in the source data

To determine such cell size the correlation coefficients were first compared with the internal cell deviations to determine a means of defining a level at which the s-value represents a usable model The level of 6° was chosen as the cut-off for the accurate representation of slope Beyond this level errors were considered too high for use in agncultural databases Figure 6 shows the relationship between the correlation value and the proportion of the model that falls within 6° of "true" slope Thus the regression line can be used to determine the quality of a model at any resolution with regard to the proportion considered usable If a cut-off point of 68% (e , over 68% of the model must be within 6° of "true" slope) is set a model will only be accepted with a correlation coefficient of 066 or more (e e $68=[857][066]+11228$)

Using this method and referring to Table 4 it can be determined at what resolution each
model could be considered "usable" for slope Thus, in this case (with a cut-off of $r=066$) it can be stated that models 10-25 and 10-50 are best represented with a cell size of 20 m , model 25-50 at 40 m , and models $10-100$ and $25-100$ at 70 m Models $100-50 \quad 100-100$ and $100-200$ are not considered usable with a cell size of less than 120 m Using Table 4 with Figure 6 a cell size and model can be selected that suit the level of accuracy required However it should be stressed again that increasing the resolution results in larger and larger slope surfaces being renresented Before using any of the derived slope grids, whether these generalised slopes are good enough for the application must be decided In the case of a Hillsides Research Project, a cell size of 30 m is probably the maximum level of precision at which to work In this case only models $10-25,10$ 50 and 25-50 are considered usable The other models may provide a good general representation and a relative indicator of high or low slope areas but cannot be relied upon for large-scale modelling purposes

4 Conclusions

In producing a DEM from topographic maps enlarging the interval between digitised contours can save time and expense This research indicates that it would be cost-effective to digitise every $n^{\text {th }}$ contour on a map rather than every single line provided the new interval is less than 25 m wider than the onginal interval when modelling altutude or slope This interval can be increased to 50 m wider than the original contour interval in cases where modeling altitude only is required With regard to slope determination the contour interval has more influence than the map scale in providing realistic slope representations Models with a wide contour interval were less accurate in modelling slope at acceptable resolutions (under 40 m), regardless of the scale of
the source map
Cartographic data sources at a scale of 1100,000 or 1200000 with a contour interval of 100 m or more provide insufficient detall to accurately represent slope in the hillside areas But If these are the only source avalable in a designated research area it may be possible to estimate "true" slopes by applying a correction factor to the calculated slope values Small-scale maps such as these have been proven to ronsistently underestimate slope by an average of 5° However, even if a correction factor is apphed, high incidences of error will probably occur and this method is recommended only as a last resort

The optimal cell resolution of a DEM is not necessarily "the smaller the better" if intending to derive slope values in a complex landscape A resolution that is too small incorporates too much norse (e, local deviations) in the data and can lead to erroneous slope calculations In selecting a cell size to model slope both the type of landscape and the level of detall in the source data must be taken into account With a base map scale of 1100000 the best resolution is upwards of 70 m despite the desirability of modelling this kind of landscape at less If the base map scale is unable to represent slope accurately at the desired resolution (1 e up to 30 m) then it should be considered unsuitable as an input data source for the DEM

Although low-pass filters can be used to "ron out" local errors in the surface they should not be used too hberally as such methods are ultmately affecting the slope values in the same way as increasing the cell size Namely slopes derived from mult-filtered data will be representing a surface area that is several umes larger than the cell itself

With regard to using DEMs derived from topographic maps as a source for geo-correcting
remotely sensed umages onlv scales of 110000 and 125000 (less reliable) would apparently be usable As the slopes derived using Horns' algorithm represent up to twice the cell size a resolution of 15 m would be considered desirable to provide slope input to a $30-\mathrm{m}$ resolution satellite image Unless using a different algonthm stereophotos or other methods should be considered as a more sutable data source from which to denve the DEM

Finally and most importantly this information goes some way towards providing users with an awareness of the level of accuracy that they can expect of a DEM Clearly the scale of the source data from which it has been produced is fundamental to the dependability of the model Care should be taken to obtam specifications regarding production methods and error checking procedures and their results before attempting to incorporate a DEM or any of its derived products into a spatial modelling sy stem

References

ADKINS, K , and MERRY $\mathrm{C}, 1994$, Accuracy assessment of elevation data sets using the Global Positioning System Photogrammetric Engineering and Remote Sensing 60 195-202

BOLSTAD, P, and STOWE, T, 1994 An evaluation of DEM accuracy elevation, slope, and aspect Photogrammettic Engineering and Remote Sensing, 60 1327-1332

BRADLEY R, JONES, R J, and SIDDONS, P, 1994 A land information sy stem for environmental risk assessment Mapping Awareness, 8 20-23

BROWN, D and BARA T, 1994, Recognition and reduction of systematic error in elevation and derivative surfaces from 75-minute DEMs Photogiammetmic Engineering and Remote Sensing, 60 189-194

CONESE, C GILABERT M A MASELLI, F and BOTTAI L, 1993 Topographic normalization of TM scenes through the use of an atmospheric correction method and Digital Terran Models Photogrammetric Engineeting and Remote Sensing 59, 17451753

DAY, T and MULLER, A 1988 Quality assessment of Digital Elevation Models produced by automatic stereomatchers from SPOT image pairs Photogiammetric Record 12,797808

DIKAU, R 1989, Digital relief models in landform analysis In Three dimensional applications in Geographe Information Svstems edited by I Raper (London Taylor and Francis), pp 51-77

EBDON, D 1981, Statistics in geography A practical approach (Oxford Basıl Blackwell) EKLUNDH L, and MARTENSSON, U 1995, Rapıd generation of Digital Elevation Models from topographic maps Inter natronal Jou nal of Geogr aphcal Infor mation Systems, 9 329-340

EVANS, S, 1972 General geomorphometry denvatives of altitude and descriptive statistics In Spattal analysis in geomorphology edited by R J Chorley (London Methuen) pp $17-90$

EVANS,S 1980 An integrated system of terran analysis and slope mapping Zeitschrift fur Geomorphologle 36 274-295

GAO J, 1997, Resolution and accuracy of terran representation by grid DEMs at a micro-scale International Journal of Geographical Information Systems, 11, 199-212

GOODCHILD, M and GOPAL S (editors), 1989, Accuracy of spatial databases (London Taylor and Francis)

HORN, B K, 1991, Hill shading and the reflectance map In Ptoceedings Institute of Electrical and Electronucs Engineers $6914-47$

HUTCHINSON, M F, 1989, A new procedure for gndding elevation and stream line data with automatic removal of spurious pits Joum nal of Hydrology, 106, 211-232

KRAMER C Y, 1956 Extension of multiple range tests to group means with unequal numbers of replications Biometrics 12, 307-311

LEE J, 1991, Analysis of visibility sites on topographic surfaces Inter national Joun nal of Geogi aphical Infor mation Systems, 5, 413-429

MACMILLAN, R A, FURLEY, P A and HEALEY R G, 1994, Using hydrological models and Geographic Information Systems to assist with the management of surface water in agricultural landscapes In Landscape ecology and GIS edited by R Hames-Young D Green, and S Cousms (London Taylor and Francis), pp 181-209

MCLAREN, R, and KENNIE, T 1989, Visualization of dgital terrain models Techniques and appheations In Three dimensional applications in geographical information systems edited by J Raper (London Taylor and Francis) pp 79-98

PEUCKER T,FOWLER R J LITTLE, J I and MARK D M 1978, The triangulated irregular network In Proceedings, American Society of Photogiammetty Digital Tert ain Models Sympostum (St Lous ASP), pp 516-540

RHIND, D 1992, Data access, charging and copynght and their impheations for Geographical Information Systems International Journal of Geographical Information Systems 6 13-30

RINCON M 1995, Validacion de modelos de elevacion digital MSc Thesıs Universidad del Valle, Calı, Colombia Avalable from Centro Internacional de Agricultura Tropical 320 pp

ROBISON, D M JONES P G, and CARTER, S E, 1992, A geographical information approach for stratifying tropical Latin America to identifi research problems and opportunties in sustanable agriculture In Landscape Ecology and Agr oecosystems edited by R G H Bunce, L Ryszkowksi and M G Paolettı (Flonda CRC Press Inc) pp 197-215

ROSENTHAL W D SRINIVASAN, R and ARNOLD J G, 1995, Altemative river management using a linked GIS hydrology model In Transactions of the Amertcan Society of Agicultur al Engineers, 38, 783-790

SAS Institute Inc, 1988 SAS/ETS ${ }^{\circledR 2}$ User's Gude Version 6 Filst Edtion (Cary SAS Institute lnc)

SHARPNACK, D and AKIN, G 1969 An algorithm for computing slope and aspect from elevations Photogrammetric Engineering and Remote Sensing 35247 SKIDMORE A 1989, A comparison of techniques for calculating gradient and aspect from a gridded digital elevation model Internatıonal Journal of Geogı aphical Informatıon Systems, 3, 323-334

SMART J MASON, M, and CORRIE G 1991, Assessing the visual impact of development plans In GIS applicatıons in natural resources Ploceedings of GIS 90 Symposium edited by M Heit and A Shortrend, (Canada) pp 295-303

THEOBALD, D, 1992, Accuracy and bias issues in surface representation In Accuracy of spatıal databases edıted by M Goodchıld (London Tay lor and Francıs) pp 99-107

TOUTIN, T, and BEAUDOIN, M, 1995 Real-tıme extraction of planımetric and altımetric features from digital stereo SPOT data using a digital video plotter Photogrammetric Engineering and Remote Sensing 61 63-68

USGS (United States Geological Survey), 1992 Standards for Digital Elevation Models National Mapping Programs Technical Instruments http //nmdpow9 er usgs gov VERTESSY, R, WILSON C J SILBURN D M, CONNOLLY R D, and CIESIOLKA A, 1990 Predicting erosion hazard areas using digital terrain analvsis In Resear ch needs and applications to seduce erosion and sedimentation in tropical highlands Proceeding of PH Symposium, AHS AISH publication 192 298-308

WELCH, R and PAPACHARALAMPOS D 1992 Three-dmensional terran visualization on personal computers An application with stereo SIR-B images Photogrammetric Engineering and Remote Sensing 58 71-75

WOODROW, D 1993, Environmental applications of GIS in the water industry Magise, 7 22-23

Table 1 Descriptive statistics for altitude models

Model	Altitude (m)				
	Minmum	Maximum	Mean	Standard	Range
1 Control	15566	21888	18634	1357	6322
21025	15586	21884	18631	1373	6298
31050	15584	21719	18619	1371	6135
42550	15615	21748	18610	1352	6133
510050	15609	21729	18605	1377	6120
610100	15931	21380	18614	1340	5449
725100	15671	21334	18591	1299	5663
8100100	15858	21408	$18>99$	1343	2550
9200100	15846	21512	18585	1317	9666

Table 2 Correlation matrid for altude models

	Control	1025	1025	1050	1050	100-50	10050	100100	200100
Controi	10000								
1025	09977	10000							
1050	09972	09989	10000						
2550	09952	09962	09965	10000					
10050	09866	09894	09902	09908	10000				
10100	09933	09944	00957	09930	09879	10000			
25100	09986	09893	09895	09920	09862	09914	10000		
100100	09844	09863	09872	09875	09937	09894	09907	10000	
200100	09803	09808	09816	09814	09821	09819	09821	09836	10000

Table 3 Descriptive statustucs for stope models Slope values represent a 10 m surface area

Model	Slope vaiue ${ }^{\text {1 }}$			
	Maximum	Mean	Standard	Range
1 Control	735	200	105	735
21025	769	194	112	769
31050	711	177	105	711
42550	806	177	108	806
510050	829	161	107	829
610100	713	163	102	713
725100	730	156	104	730
8100100	729	151	103	729
9200100	827	149	107	827

1 minimum slope value is 0 for all models

Table 4 Tukeys Studentised (Honesth Signficant Difference) Range Test for Digtal Elevation Model slope populatons ${ }^{1}$

Model	Tuhey grouping 2	Control μ	
1025	A		
Control	A	420242	02
1050	AB	418432	00
2550	AB	396079	18
10050	BC	395840	18
10100	BC	376228	34
25100	C	369269	39
100100	C	356349	48
200100	C	354969	49

1 Critical value of Studentised Range $=4389$ minmum SD $=02713005 \mathrm{df} 4266 \mathrm{MSE}$
2 Models marked with the same letter are not considered significanti different

Tables Correlation coefficients for slope models as compared to true slope
Model Coeffictent correlations r
Control model Improvement in r
Rau data After smoothing

1 Control	100000	100000	None
21025	041353	047412	006059
31050	039581	045263	005682
42550	034262	039042	004780
510050	026454	030137	003683
610100	027210	030867	003657
725100	027334	030945	003611
8100100	022452	025464	003012
9200100	024281	027580	003299

(missing-need a map of $30 \mathrm{~km}^{2}$ within Rio Ovejas watershed in the Andean foothills of southern Colombia)

Figure 1 Location of the study area

Center

(missing on diskette)
Figure 2 Digital Elevation Model (DEM) preparation times

Figure 3 Cost in US dollars for producing each Digital Elevation Model

CLASSES OF ERROR (AL TITUDE) \longleftarrow	- hor al captcula Firstar
107 m Good	fret letor
2.715 m Fay	
3. 15.20 m Poor	
4. 20.30 m Hegh R'rior	
5. sam Serrous frror	
Time taken to produce model (nows)	

Anitad

Figure 4 Difference between Digital Elevation Model altitude values and 'true altutude (all 991,573 cells have been classffied)

Figure5
Effect of increasing cell size on correlation of slope values

Figure 6 Cut-off point for determining model usabilty

[^0]: Corresponding author

