SB	
ZI	
63	
656	

GLOBAL CASSAVA RESEARCH AND DEVELOPMENT

The Cassava Econmy of Asia Adapting to Economic Change

Documentation of cassava demand studies conducted in Asia in collaboration with national programs

Draft version prepared for TAC for the Nairobi meeting June 21 July 1 1987

UNIDAD DE INFORMACION Y DOCUMENTACION

23 ABR 1998

May 1987

CIAT Centro Internacional de Agricultura Tropical

GLOBAL CASSAVA RESEARCH AND DEVELOPMENT

The Cassava Economy of Asia Adapting to Economic Change

Ъy

Dr John Lynam

with collaboration from the following persons with respect to the Chapters indicated

Dr Boonjit Titapiwatanakun Kasetsart University Thailand

Dr Delane Welsch University of Minnesota Malaysia

The Chapter entitled Trends and Distribution of Chinese Cassava Production and Use was prepared by

> Dr Bruce Stone International Food Policy Research Institute

> > May 1987

CIAT Centro Internacional de Agricultura Tropical

Preface

The accompanying manuscript on the Cassava Economy of Asia represents a work still in progress The study is essentially complete in its major findings but the work has not yet been shaped into a consistent whole Distribution at this stage is done in order to share at an early stage the findings of the study with those interested in understanding the current status and future potential of the cassava crop The report should therefore be read as a draft the introductory chapter is not included here and the animal feed section for the China chapter was not ready in time for inclusion Also some of the figures are sitll lacking in the text

The study has adopted a country-by-country approach to the analysis of the cassava economy in Asia It will hopefully be apparent from the study that this approach was correct as the differences between the various countries are large indeed The study covers all the major cassava producing countries in the region except Vietnam for which access was restricted The study relies almost exclusively on secondary data sources The only primary data collection involved a cost survey of chipping and pelleting factories in Thailand A dependence on existing data source has often left areas where further detail would have been valuable especially in production issues Nevertheless Asian countries have relatively well developed data systems which allowed a significant level of detail in the analysis although the data base for cassava is far weaker than that for the principal grains

The study was carried out by John Lynam the economist in the CIAT Cassava Program except for the chapter on China which was dony by Dr Bruce Stone of the International Food Policy Research Institute Dr Lynam was aided in this task by Dr Boonjit Titapiwatanakum of Kasetsart University who oversaw the cost survey of the cassava processing plants in Thailand Dr Delane Welsch of the University of Minnesota was hired as a consultant for the early phases of the project to help in data collection and initial planning of the subject material The author visited all the countries and the principal production zones but not extensive period of time was devoted to more in-depth studies in the countries With the current study as a planning base there are now plans to undertake more micro-level studies which will support CIAT s overall research effort on cassava in Asia

The current volume should therefore be seen as an integral part of CIAT s research effort in the region and as such the contans and results will be subject to revision as more information is developed about the crop in Asıa An independent researcher may have approached the subject differently and in some instances may have put emphasis on different issues However what has been more valuable for CIAT is the in the conclusions process inherent in the study The study provides only a snapshot in time of an ongoing exercise focused on a fuller integration of this type of research into research on cassava production and processing technology in Having been forced to develop hypotheses probe data sources Asia and understand markets and policies the CIAT Cassava Program has itself deepened its understanding of cassava in the region an understanding on which it now can build

The Cassava Economy of Asıa Adaptıng to Economic Change

- I Taking Root A History of Cassava in Asia (Chapter in preparation)
 - 1 Introduction and early distribution
 - 2 The integration of cassava into Asian food economies
 - 3 The advent of steamship trade and the rise of tapioca pearl
 - 4 Shifting comparative advantage Malaysia Indonesia and Thailand
 - 5 Cassava a crop in permanent transition

II India Kerala and Tamil Nadu

- 1 Production
 - a Production trends and distribution
 - b Cassava production systems
 - l Kerala
 - 2 Tamil Nadu
 - c Yields
 - d Costs of production and labor utilizaiton
 - e Technology

2 Markets and Demand

- a A synthesis of production and utilization
 - l Kerala
 - 2 Tamil Nadu
 - 3 Other States
- b Cassava for direct human consumption
- c The dried chip market
- d The starch market
- e Pricing and market efficiency
- 3 Conclusions
- III Trends and Distribution of Chinese Cassava Production and Use (by Bruce Stone IFPRI)
 - 1 Production
 - a Production trends and distribution
 - b Cassava production systems
 - c Yields
 - d Costs of production and labor utilization
 - e Technology development
 - 2 Markets and demand
 - a A synthesis of production and utilization
 - b Cassava for direct human consumption
 - c The starch market
 - d The domestic and export animal feed market
 - 3 Conclusions

IV Indonesia

- 1 Production
 - a Production trends and distribution
 - b Cassava production systems
 - c Yields
 - d Costs of production and labor utilization
 - e Technology development
- 2 Markets and Demand
 - a A synthesis of production and utilization
 - b Cassava for direct human consumption
 - c The starch market
 - d Gaplek in feed markets
 - e Pricing and market efficiency
- 3 Conclusions

Malaysia

V

VI

- 1 Production
 - a Production trends
 - b Cassava production systems
 - c Yields
 - d Costs of production and labor utilization
 - e Technology development
- 2 Markets and Demand
 - a A synthesis of production and utilization
 - b The domestic and export market for starch
 - c The domestic animal feed market
 - d Pricing and market efficiency
- 3 Conclusions

Philippines

- 1 Production
 - a Production trends and utilization
 - b Cassava production systems
 - c Yields
 - d Costs of production and labor utilization
 - e Technology development
- 2 Markets and Demand
 - a A synthesis of production and utilization
 - b Cassava for direct human consumption
 - c The starch market
 - d The dried chip market
 - e Pricing and market efficiency
- 3 Conclusions

VII Thailand

- 1 Production
 - a Production trends
 - b Cassava production systems
 - c Yields
 - d Costs of production and labor utilization
 - e Supply response
 - f Technology development
- 2 Markets and Demand
 - a A synthesis of production and utilization
 - b The cassava pellet export market
 - 1 Price formation
 - 2 Profitability of the cassava pellet industry
 - c The cassava starch market
 - d The animal feed market
- 3 Conclusions

VIII World and Regional Markets for Cassava Products

- l Protectionism and Substitution Decline in the World Starch Trade
- 2 Protectionism and Substitution The Rise in Trade in Cassava Feedstuffs
 - a Demand for cassava in the EEC
 - b The Asian regional market for cassava feedstuffs
- 3 Conclusions
- IX A Comparative Analysis of Cassava Production and Utilization in Tropical Asia
 - 1 A Comparative Analysis of Production
 - 2 A Comparative Analysis of Consumption
 - 3 Marketing and Price Formation
 - 4 Cassava s Future Role in Asıa

Cassava within the Rural Economies of Kerala and Tamil Nadu

India is a vast diverse sub-continent where over three-quarters of the 684 million people (1981 Census) live in the rural and sector where their welfare is subject to the vagaries of the annual monsoons Consequently a major concern of agricultural policy has been developing the capacity of the country to feed itself and this in turn has resulted in a commitment to attaining self-sufficiency in food grain production This goal was achieved in the mid-1970 s essentially by focusing on development of the more productive agricultural regions (Sarma 1982)

Self-sufficiency while indicating a termination in imports is nevertheless a relative concept because it implies that consumption is limited to production availability rather than determined by demand factors The central government has attempted to control the resultant price fluctuations by intervening in grain marketing to manage demand The government operates a public food distribution system at subsidized prices to ensure that a certain minimum level of universal distribution of food grains is achieved independent of income levels

As Sarma has noted This (self-sufficiency) strategy which was confined to certain crops and areas with assured irrigation also resulted in the widening of interpersonal and interregional disparities The justice objective in terms of reducing or social unemployment underemployment and alleviating poverty in rural areas remained largely unfulfilled (p 24) The cassava-growing areas in the south of India have been such a region which has remained largely outside the area of impact of green revolution technology Although cassava is very much a the regional crop in India this is also true of all other crops except rice Analyzing cassava in southern India thus provides some insight into rectifying the disparities between regions in India

PRODUCTION

Production Trends and Distribution

Cassava is very much a regional crop in India two states Kerala and Tamil Nadu make up 97% of cassava production in India (Table 2 1) On a country wide basis cassava makes only a small contribution to total calorie supplies with production being more or less equivalent to some of the minor coarse grains such as barlev or the small millets However in the south of the country cassava ranks second to rice as the major calorie producing crop Given the range of temperature and rainfall conditions in India this type of regional specialization in crop production would be expected for non-irrigated crops

According to the official data series area planted to cassava in India increased slowly from the mid-sixties to the mid-seventies reaching a peak area of 392 thousand hectares in 1975-76 (Table 2 1) Since then cassava area has declined quite markedly reaching a level of 310 thousand hectares in 1981-82 The trends in area are due principally to changes in

able 2 1	India	Trends	ın Area	Production	and	Yıeld	for	the	Country	and	the	Major	
	Produci	ng Stat	es 196	4-1981									

· _ · · · · · ·		India			Kerala			Tamıl Nadu	
Crop Year	Area (000ha)	Production (000 t)	Yıeld (t/ha)	Area (000ha)	Production (000 t)	Yield (t/ha)	Area (000 ha)	Production (000 t)	Y (
1964-65	240 0	3 033 0	12 6	209 0	2 763 0	13 2	25 0	243 0	1
1965 66	271 0	3 467 0	12 8	230 0	3 095 0	13 5	35 0	339 0	
1966-67	290 0	3 817 0	13 2	245 0	3 410 0	13 9	39 0	377 0	1
1967 68	335 0	4 520 0	13 5	298 0	4 198 0	14 1	30 0	285 0	1
1968-69	359 0	4 636 0	12 9	298 0	4 081 0	13 7	55 0	527 0	
1969-70	353 0	5 214 0	14 8	296 0	4 666 0	15 8	44 0	513 0	1
1970 71	353 0	5 216 0	14 9	294 0	4 617 0	15 7	47 0	567 0	1
1971-72	353 7	6 025 9	17 0	303 3	5 429 3	17 9	42 6	545 0	1
1972 73	363 2	6 317 4	17 5	304 8	5 629 4	18 7	50 0	629 5	1
1973-74	368 2	6 420 9	17 1	306 4	5 659 5	18 5	51 7	681 6	1
1974-75	387 6	6 325 9	16 3	317 9	5 625 1	17 7	52 7	564 9	1
1975 76	392 0	6 638 3	16 9	326 9	5 390 2	16 5	50 1	1 115 8	2
1976 77	385 8	6 375 0	16 5	323 3	5 125 5	15 9	48 0	1 128 2	2
1977 78	358 3	5 688 3	15 9	289 7	4 188 6	14 5	52 8	1 310 3	2
1978 79	361 5	6 050 1	16 7	289 9	4 226 3	14 6	54 0	1 682 0	3
1979-80	365 3	5 952 2	16 3	290 3	4 223 6	14 5	58 1	1 591 4	2
1980-81	320 8	5 868 1	18 3	243 3	4 097 8	16 8	53 3	1 539 3	2
1981 82	310 2	5 267 4	17 9	241 8	4 073 0	16 8	42 3	1 324 8	3

Source Bulletin on Commercial Crop Statistics and Agricultural Situation in India Ministry of Agriculture cassava plantings in Kerala Cassava has been widely planted in Kerala since at least the turn of the century In the 55-year period from 1920 to 1975 cassava area in Kerala expanded at a relatively slow and uneven rate of 1 3% per annum (Table 2 2) Since 1975 cassava area has declined rapidly to the same level as the early sixties On the other hand area planted to cassava in Tamil Nadu has remained relatively constant at around 50 thousand hectares since the late 1960 s

Production trends are more difficult to evaluate since the basis on which yield has been estimated has been changed twice In 1963 yield levels in Kerala were revised sharply upward from a trend of 7 t/ha to a rising yield trend starting at 12 t/ha In 1979 a crop cutting survey was instituted in Kerala and Tamil Nadu and what had been a rising trend in yields in Kerala was revised downward In Tamil Nadu on the other hand yield estimates were dramatically increased Given these revisions in yield estimates production trends which follow from the area and yield estimates are somewhat meaningless What can be said with some degree of confidence is that production in Kerala has declined markedly since 1975 at an annual rate of about 5% per annum Cassava production in Tamil Nadu in the same period has shown a slight increase The dominant question that arises is the reason behind the declining area and production of cassava in Kerala

Cassava production systems

Kerala Kerala is one of the most populous rural areas in the tropics Population densities in some districts exceed 1000 people per square kilometer About 81% of the population reside in the rural area according to the 1981 census while a little less than half of the work force are directly involved in agriculture However a more accurate reflection of the population pressure is that while average farm size is only 0 49 of a hectare only one third of the work force in the agricultural sector have access to land Moreover over 70% of the population who do own land have less than half a hectare (Table 2 3)

As a consequence of this population pressure land use is very intensive Excluding forest reserves and non-agricultural uses 87% of available land is cultivated The cropping intensity index in Kerala in 1977/78 was 132 percent well above the average for India as a whole However this figure is more remarkable when it is considered that two-thirds of cultivated area is under permanent tree crops Thus for area under annual crops the cropping intensity index is 192 percent that is a substantial portion of the land under annual crops is double or triple cropped

Cassava is the most important annual crop in Kerala after rice making up 38/ of the net area sown to annual crops Two factors explain why cassava has achieved such importance in so intensive an agricultural system First the non-irrigated upland areas are cnaracterized by lateritic soils which are low in inherent soil fertility especially phosphorus and are quite acidic Cassava in comparison to most other annual crops is well adapted to such soils even with relatively minimal amounts of fertilizer Second cassava gives very high carbohydrate yields under these conditions With average yields around 15 t/ha only triple II - 4 -

Table 2 2 India Growth in Area Planted to Cassava in Kerala 1920-1980

Crop Year	Area (000 ha)
1920-21	164
1925-26	170
1930 31	194
1934-36	175
1940-41	183
1944-45	197
1952-53	205
1955-56	222
1960-61	245
1965-66	260
1970-71	294
1975-76	327
1980 81	243

Source Panikar et al 1977 and Government of Kerala Statistics for Planning Directorate of Economics and Statistics Trivandrum various years

Size of Holding (ha)	Distribution of Holding (%)
Below 0 04	18 7
0 04 - 0 25	37 2
0 25 - 0 50	15 6
0 50 - 1 00	13 3
1 00 - 2 00	97
2 00 - 3 00	32
3 00 4 00	14
More than 4 00	09
Total	100 0

Table 2 3 India Percentage Distribution of Farms by Size in Kerala 1970-71

SOURCE Statistics for Planning 1980 Government of Kerala 1980 cropping of rice under irrigation gives higher dry weight yields in the state

While rice is grown on the irrigated bottomland cassava is grown on the sloping upland areas On these upland soils cassava competes primarily with tree crops for land and it is the general concensus that cassava is being displaced by higher value tree crops However for the principal tree crops increased plantings of rubber and cashewnut are more than offset by declining area of coconut and black pepper (Table 2 4) The crop or crops that are displacing cassava remain unclear from the aggregate data but the strongest hypothesis still remains some combination of tree crops

Cassava production systems in Kerala are relatively simple compared to countries such as Indonesia This is partly due to the constraints on potential intercrops imposed by soil conditions Annual rainfall in the state averages about 3000 mm and varies from about 2000 mm in the south to 3800 mm in the north There is a long dry period from December to March when little rain at all is received The rains start in April-May when 60-65% of the cassava crop is sown (Hone 1973) The monsoons arrive in full force in June-July From 35-40% of the crop is planted in September-October when the rains have fallen off but before the start of the dry season in December

Land preparation is done completely by hand and any green vegetation in the plot is concentrated in the soil below where the cassava stems are to be sown The stakes are sown vertically at populations of 10 to 12 thousand per hectare In such intensive systems weed control is fairly meticulous and when farmyard manure or wood ash is available it is incorporated in the same form as the green manure

Some chemical fertilizer is certainly used on cassava in Kerala although there is conflicting data to suggest just how extensive this use is Certainly potassium fertilizer consumption is a much higher percentage of total fertilizer consumption in Kerala than in India as a whole (33 3/ of consumption as compared to 11 4% in the whole country) Cassava (and tree crops) has a higher potassium requirement than grain crops А National Council of Applied Economic Research survey in 1975/76 found that 83% of cassava area in Kerala was fertilized but that only 19 kg/ha of nutrients were applied to the area fertilized Desai (1982) has found this survey to substantially overestimate aggregate fertilizer consumption in He provides estimates for India as a whole suggesting that in Kerala 1976/77 38 2% of cassava area was fertilized at a rate of 33 kg/ha The limited data available thus suggests that there is some fertilization of cassava but at very low rates of application

The cassava roots are harvested at about 10 months with the bulk of the crop being harvested in the dry period from December to February The percentage of the crop that is sold off the farm is open to some question A relatively dated report (Tapioca Market Expansion Board 1972) estimates that about 40/ of production enters market channels (Table 2 5) This would appear a bit low considering that cassava is such a pervasive consumption item in Kerala that about two-thirds of households in Kerala do not grow cassava and that household consumption surveys show higher consumption levels for purchased cassava than own production (Table 2 6)

	TABLE 2 4	India	Area under	· Principal	Tree Crops	in Kerala	1970-80
--	-----------	-------	------------	-------------	------------	-----------	---------

			Rubb	er			
Crop Year	Coconut (000 ha)	Black Pepper (000 ha)	Less than 2 has (000 ha)	Total (000 ha)	Cashewnut (000 ha)		
1970-71	719 1	117 5	68 5	203 1	na		
1971-72	730 3	116 3	71 7	208 8	na		
1972-73	745 4	116 3	74 1	213 1	n a		
1973-74	744 8	118 2	77 1	217 5	103 2		
1974-75	748 2	108 2	79 4	221 3	104 9		
1975-76	692 9	110 6	81 9	224 4	109 1		
1976-77	695 0	108 7	85 5	230 6	113 3		
1977-78	673 5	101 0	88 4	233 4	127 0		
1978-79	660 6	80 5	91 3	235 9	n a		
1979-80	664 5	107 2	n a	na	па		

Source Government of India Bulletin of Commercial Crop Statistics Directorate of Economics and Statistics Ministry of Agriculture various years

District	Percent Commercialized
Trivandrum	46 8
Quilon	32 2
Alleppey	33 9
Kottayam	28 5
Ernakulum	16 9
Trichur	53 4
Palghat	77 6
Malappuram	42 6
Kozhikode	38 2
Cannonore	23 0
Kerala	39 3

Table 2 5	India	Percent o	of Farm	Production	Commercialized	n۱
	Various	District	s of Ke	erala State	1971	

Source Tapioca Market Expansion Board 1972

Annua		Ri	ce		Ca	ssava	
Household Income (Rupees)	Total Consumption (kg)	Ration (kg)	Own Production (kg)	Open Market (kg)	Total Consumption (kg)	0wn Production (kg)	Open Market (kg)
Less than 600	8 40	565	-	2 75	12 90	0 40	12 50
601-1200	9 43	6 39	-	3 04	11 31	2 96	8 35
1201-2400	13 47	7 70	1 77	4 00	15 46	4 13	11 33
2401-3600	13 89	6 67	1 11	6 11	12 66	4 33	8 33
3601-4800	12 00	4 90	2 00	5 10	6 70	4 50	2 20
More than 4800	13 42	5 14	5 71	2 57	3 29	3 29	-
						_	

Table 2.6 India Consumption of Rice and Cassava by Income Strata and by Source of Supply Rural Kerala 1977 (kg/household/week)

SOURCE George 1979

The perversity of the latter is due to the positive relation between income and land ownership in Kerala and the shift from cassava to rice at higher incomes 40% is then probably a minimum estimate of marketed surplus of cassava in Kerala

The most common marketing practice is for farmers to sell the standing cassava crop to purchase agents for a lump sum payment The agents do not necessarily harvest straight away but must harvest before the start of the rains Farmers as well gradually harvest the crop themselves selling in small lots by the roadside or in local markets When marketing of the fresh root is problematic particularly in the north of Kerala the roots are peeled sliced and dried as chips during the principal harvest period in the dry season Wholesale merchants and weekly markets serve as assembly points for roots and chips

Tamil Nadu The other major cassava producing zone is in the western part of Tamil Nadu where production is principally concentrated in Salem District Production systems for cassava are considerably different from those in Kerala and this arises from a change in the limiting production constraint from soil factors in Kerala to moisture availability in Tamil Nadu Rainfall in the major production area of Salem District averages 820 mm per year This average however masks a very high variation with annual rainfall in the last ten years ranging from 550 mm to 1250 mm There is a five-month dry season from January to May when rainfall averages no more than 14 mm in the whole period This limited rainfall is in many cases supplemented by irrigation

Farm size for cassava farmers in Tamil Nadu is somewhat larger than that in Kerala A sample of 70 cassava farmers in Salem District found an average farm size of 2 6 hectares with an average area sown to cassava of 75 ha (Uthamalingam 1980) The larger farm size reflects in part the much drier conditions in Tamil Nadu and the relative scarcity of irrigation water Cassava is grown almost strictly as a cash crop in these cropping systems and competes for land principally with cotton and to a lesser extent rice and sugar cane

Cassava s role in these cropping systems is defined by its access to a ready market (the industrial starch market) and cassava s efficiency in water use Over 85% of the irrigation water is provided by wells and the farmer must plan his cropping pattern around expected rainfall and available water stored in the wells When irrigation water is in short supply farmers turn from rice and sugarcane to cassava or cotton depending on output prices

According to the sample of 70 farms in Salem District 90% of the farms grew cassava under irrigation The crop cutting survey in all of Tamil Nadu found that 72% of the plots were grown under irrigation The irrigated crop is planted at the end of the rains in January Up to four or five irrigations are needed for establishment Frequency of irrigation afterwards depends on water availability in the wells and the arrival of premonsoon showers in June On average 20 irrigations are given at an interval of 15 to 20 days The rainfed crop is sown at the start of the southwest monsoon in August The crop is assured of no more than five months of rainfall before the start of the dry season in January which is followed by the pre-monsoon showers in June-July A rainfed crop is often grown on as little as 500 mm of rainfall The irrigated crop is usually harvested after 8 to 10 months while the rainfed crop requires 12 months before it can be harvested

Land preparation relies on bullocks and for the irrigated crop the land is ploughed four or five times before forming either beds and channels or ridges and furrows Plant population is approximately 10 000/ha Stakes are sown vertically and normally six or seven weedings are done during the course of the crop year

Fertilization or manuring is a common practice for cassava in Tamil especially for the irrigated crop The crop-cutting survey found Nadu that 74% of the cassava plots were either fertilized or manured using either animal manure or a vegetable compost The farmer survey in Salem found an average application of 18 5 t/ha of farmyard manure or 15 1 t/ha Manuring is often combined with application of compound of compost fertilizer Moreover cassava is usually planted in rotation with other crops and will often take advantage of residual fertility from fertilizer application on prior crops However where cassava is grown in successive years in the same plot there is a marked tendency for yield to drop Α typical trend is 35 t/ha in the first year 24 t/ha in the second and 17 t/ha in the third (Tapioca Experiment Station Salem District private communication)

In contrast to Kerala most of the cassava is harvested and marketed by farmers only a small percentage is sold standing in the lot In the Salem farm sample 87% of the cassava was marketed directly by farmers The reason for this is the very decentralized nature of the cassava starch processing industry The industry consists of upwards of 500 relatively small-scale plants distributed throughout the district Coordination of harvesting by the farmer and processing of the fresh roots at the factory are easily managed without the need of middlemen or large expenditures on transport

<u>Yields</u>

By world standards cassava yields in India are high Yields in the 1980-81 crop year averaged 16 8 t/ha in Kerala and 28 9 t/ha in Tamil Nadu With the generally intensive level of cultural practices used in Kerala and Tamil Nadu this high yield is not surprising The difference in yields between Kerala and Tamil Nadu is due essentially to the poorer soils in Kerala and the use of irrigation and associated higher input levels in Tamil Nadu

The author is unaware of any farm-level data on distribution of cassava yields in Kerala and therefore of any estimates of vield variance across farms in the state The district-level data suggest a slight tendency for yields to be higher in the southern and central parts of the state and lower in the north Thus the 1980-81 crop estimates suggest average yields of 15 t/ha in the four southern districts and of 11 t/ha in Kozhikode and 12 t/ha in Malappuram in the north This limited data suggest little variation in yields across the state but has little implication for across farm variation

In Tamil Nadu a crop cutting survey in 7 districts in the state found a significant variation in farm-level yields (Table 2 7) The yield distribution was skewed toward the lower side of the mean and as well exhibited a very extended upper tail that is a more or less typical distribution for farm-level cassava yields apart from the very high mean Over 15% of the plots had yields of over 37 t/ha with a maximum yield of 84 2 t/ha

Tamil Nadu provides a perfect example of the yield potential of cassava when grown under very favorable production conditions Part of the reason why national cassava yields in other parts of Asia never approach such levels is that cassava is usually grown under more marginal agro-climatic conditions Yet even within a highly productive region such as Tamil Nadu over a quarter of the farmers are getting less than 15 t/ha Such typical yield distributions lie at the heart of production research what factors explain the difference in yields at the low and high end of the distribution and to what extent are these factors a function of farmer management or a function of more or less uncontrollable biological and edapho-climatic factors facing the farmer? The issue is critical to understanding the substantial yield gap for cassava between the experiment station and farm level and how closely experimental yields translate into farm-level yields

Costs of production and labor utilization

In such densely populated rural areas and in such intensive production systems as exist in southern India the expectation is that relative to other cassava production areas wage rates will be low labor input per hectare will be high inputs that substitute for land will be applied at high levels and labor costs will be a lower portion of total costs The available data suggest per hectare labor inputs of 265 days for irrigated systems in Tamil Nadu 139 days for rainfed systems in Tamil Nadu (Uthamalingam 1980) and 116 days for production systems in Kerala (Ninan 1984)

The breakdown of labor activities for Tamil Nadu shows that weeding is the principal labor requirement and makes up 60% of total labor demand with inputs in rainfed systems requiring about half that in irrigated systems (Table 2 8) Labor for harvesting forms the next major component in both systems followed by land preparation In Kerala on the other hand land preparation is by far the principal source of labor demand again reflecting the non-use of any sort of alternative power source in Labor use for weeding is far below that employed in preparing the land Tamil Nadu either in irrigated or rainfed systems Thus moisture for weed growth is not a factor influencing labor input The key difference is the use of hired female labor in Tamil Nadu whereas in Kerala especially on farms of less than one hectare most of weeding is done by family labor almost solely men

Labor input in cassava systems in India is lower than that in Indonesia but significantly higher than labor input in Thailand Malaysia and the Philippines This result is expected given the relative II - 13 -

Table 2 7 India Yield Distribution from Crop Cutting Survey Tamil Nadu 1979-80 (287 farms)

Yıeld Strata (t/ha)	Percentage Distribution
0-75	13
7 5-15 0	14
15 0-22 5	16
22 5-30 0	25
30 0-37 5	16
37 5-45 0	8
45 0-52 5	5
52 5-60 0	2
60 0 75 0	1
75 0-90 0	03

Average Yield = 24 5 t/ha Standard Deviation = 14 1 t/ha Maximum Yield = 84 2 t/ha Irrigated Yield = 27 4 Unirrigated Yield = 15 6

SOURCE Unpublished results of crop cutting survey Tamil Nadu II - 14 -

TABLE 2 8	India	Labor U	se in	Cassava	Production	Systems	in	Tamil
	Nadu	1978-79	and i	n Kerala	1976-77			

			Kerala			
Activity	Irri Men (days/ha)	gated Women (days/ha)	Rain Men (days/ha)	nfed Women (days/ha)	Rainfed Men (days/ha)	
Preparatory Cultivation	27 2	-	11 9	-	54	
Seeds and Sowing	15 2	36	65	53	10	
Manuring	54	-	71	-	а	
Irrigation	25 3	-	-	-	-	
Weeding	-	96 7	-	91 9	27	
Harvesting	30 6	-	28 1	-	22	
Miscellaneous	-	18	-	19	2	
Total	103 7	161 6	53 5	85 0	115	

a Included in weeding

Source Uthamalingam 1980 Ninan 1984

II - 15 -

differences in the land-labor ratios in the cassava growing regions of the different countries Moreover labor costs are a lower proportion of total production costs in India as compared to the latter three countries In Tamil Nadu labor makes up only 35% of variable production costs and less than 20% of total costs This is due to the large expenditures on fertilizer and land rental

A comparison of production costs between Kerala and Tamil Nadu (Table 2 9) shows that per ton costs are higher in Kerala than Tamil Nadu The difference is due in large part to differences in yield levels particularly when it is considered that rainfed systems in Tamil Nadu are of only marginal importance Moreover when average yields reported for the state are used in place of the study s sample yields the difference Nevertheless the flow of cassava is from Kerala becomes even more marked to Tamil Nadu and not vice versa This is due to the very seasonal nature of cassava supply in Tamil Nadu and the fact that the opportunity cost of irrigated land when there is sufficient water is much higher than is reflected in average rental rates

Technology Development

Not only is there very limited potential for expanding area in cassava in southern India but competition from other crops has actually resulted in declining area planted to cassava in Kerala There is an obvious demand for technology that would lead to increases in cassava yields The question arises since the production systems are so intensive and cultural practices are of such a high level whether there is a significant yield gap to exploit?

This issue is at the heart of the work of the Central Tuber Crops Research Institute (CTCRI) in Kerala Under the Indian Council of Agricultural Research the institute assumes principal responsibility for research on cassava in India Most of their work is focused on conditions in Kerala where research has been carried out since 1963 Independent research on cassava is carried out in Tamil Nadu at the Tamil Nadu Agricultural University in Corimbatore and the Tapioca Experiment Station established in 1971 in Salem District as part of Horticultural Department This division in activities allows research to focus on the of Tamil Nadu very different production systems of Kerala and Tamil Nadu Moreover India has had the longest period of continuous research on cassava in Asia

The search for yield increasing technology in Kerala has focused on essentially four principal factors (a) improved high-yielding varieties (b) soil fertility management (c) control of African cassava mosaic virus and (d) intercropping systems The two principal constraints on increased productivity are perceived to be soil factors and the virus disease Given the high level of cultural practices in the state overcoming these two constraints would probably not lead in themselves to much higher yield levels Major increases in per hectare productivity would have to combine as well improved varieties and intercropping with the problem in the later being the identification of an adapted legume crop

Table 2 9 India Cost of Production of Cassava in Tamil Nadu and Kerala 1978-79

			[am]	Na	du			Kera	la
Cost Item	In	nga	ted	R	ainfi	ed		Raınf	ed
	(Ri	ipee,	<u>/ha)</u>	<u>(R</u>	upee,	<u>/ha)</u>	(Rupee	<u>/ha)</u>
Variable Costs									
Preparatory Cultivation Seeds and Sowing Manures and Manuring Irrigation Weeding Plant Protection Harvesting Interest on Working Capital	1	273 220 101 300 477 237 274	0 5 6 1 6 7 1		180 222 529 228 - 177 140	4 0 2 2 5 4		466 221 687 79 349 17 200 212	6 1 6 8 5 0 6 3
Total Variable Cost	2	884	7	1	477	7		2 234	5
Fixed Costs Rental Value of Land Depreciation Interest on Fixed Capital	1	776 210 387	4 7 5		989 147 228	7 8 4			
Total Fixed Capital	2	374	6	1	365	9		1 880	0
Total Costs	5	259	3	2	843	6		4 114	5
Yıeld (t/ha)		22	96		10	74		13	63
Variable Cost per Ton		123	9		137	6		163	9
Total Cost per Ton		229	7		265	2		301	9

Source Uthamalingam 1980 Hone 1973

During the early years of CTCRI when a germplasm bank was being assembled one selection from Malaysia M-4 was released and found wide acceptability with farmers This variety has since set the standard and developing hybrids to replace M-4 has been a difficult task Only five hybrids have been released since the inception of the institute H-165 H-97 and H-226 in 1970 and H-2304 and H-1687 in 1977 A fertility trial carried out at the experimental station arguably gives some indication of potential yield gain with these varieties (Table 2 10) Average yields of M-4 at intermediate fertilizer levels are at about the state average of 15 t/ha indicating little gain to be achieved by agronomic practices The hybrid H-2304 yielded 24 t/ha at intermediate fertilizer levels and 32 t/ha at relatively high fertilizer levels

Because most cassava grown in Kerala is consumed as a boiled root quality characteristics are very important This has probably been one of the principal factors limiting the wider adoption of the hybrids These quality characteristics include HCN content short cooking time (due to limited fuel resources of households) softness with cooking (apparently related to the ratio of amylose to amylopectin) good consistency (high and to a more minor extent whiteness of the flesh starch content) (H-1687 for example is yellowish due to a high carotene content) M-4 is recognized to have good culinary quality and for these properties to be stable across locations and through the growing season The result is usually a price discount for roots from the hybrids for example farm prices of 0 90 rupees/kg for M-4 versus 0 75 rupees/kg for H-1687 (field notes 1982) Thus a 25% yield advantage is almost canceled by a 20% price discount

Besides higher yielding ability and root quality characteristics the other major breeding objective is field tolerance to cassava mosaic virus M-4 though brought from Malaysia where the disease does not exist has relatively high field tolerance as do almost all the released hybrids Tolerance does not imply immunity with this disease and tolerant varieties must be combined with adequate selection of clean planting material since this is the principal means of spreading the disease Unlike in West Africa where the disease is easily spread by the white fly vector effective white fly infection in India is only 2 to 5%

The final two breeding objectives are short maturity and plant type compatible with intercropping systems The latter is complementary to the research on intercropping systems Most of the cassava in Kerala is grown in monoculture due in large part to the lack of adaptation of potential commercial intercrops to the lateritic soils The institute is having some success in promoting peanuts as a suitable intercrop with cassava Moreover since cassava is planted continuously for many years in the same plot maintaining soil organic matter is difficult Long term fertility trials have shown that applying farm yard manure with fertilizer gives a significantly higher yield than fertilizer alone and that manure appears to be necessary in maintaining yield levels over time (CTCRI 1980 and 1982)

Increasing cassava production in southern India is dependent on increasing yields These yield increases in turn depend on the development of high-yielding varieties that do not sacrifice quality for yield and that are tolerant to cassava mosaic virus The improved varieties in turn imply heavier demands on soil fertility and thus higher rates of fertilizer application Although the research objectives are

				NK	Combinati	ons (kg/ha	of N and	K20)			
Varieties	50 50	50 100	50 150	75 75	75 150	75 225	100 100	100 150	100 200	100 250	Mean
H-165	22 67	23 01	22 88	24 24	22 84	26 47	28 30	25 08	23 87	27 93	24 73
H-2304	24 07	25 99	25 27	27 84	30 42	28 64	32 16	32 96	32 43	31 41	29 12
H- 1687	19 29	19 04	21 47	19 62	20 13	22 96	26 05	26 39	25 31	25 02	22 53
M 4	15 18	14 76	15 66	16 95	16 10	15 83	18 62	18 66	17 48	18 62	17 79
Mean	20 30	20 70	21 32	22 16	22 16	22 37	23 47	26 28	24 77	25 74	

Table 2 10 India Cassava Root Yield of Different Varieties in a Fertilizer Trial

Source Central Tuber Crops Research Institute Annual Report 1978-79 Trivandrum

quite straight forward after twenty years of consistent breeding effort CTCRI has found the progress to be slow in part because substantial effort at the beginning had to be devoted to more basic studies since little basic research had been done on cassava up to that point in time in part because their varietal evaluation system requires approximately ten years from cross to potential release of a new variety and possibly in part because the recombination of all desired characters at adequate levels has a low probability producing a requisite hybrid The efforts upto this point in time suggest that a goal of average farm-level yields of 25 t/ha is a feasible objective If the goal is worth pursuing depends in turn on the prospective outlook for utilization of the cassava crop

Markets and Demand

Kerala and Tamil Nadu present very different market structures (Table In Kerala the market for fresh cassava for human consumption 2 11) while in Tamil Nadu virtually all of the roots are processed dominates into starch or tapioca pearl (see Appendix 2 1 for a discussion of the data sources used to construct the supply and utilization table) There is evidence of some trade between the two states but this appears to be relatively small and the flow is in only one direction from Kerala to Cassava markets in the two states appear to react Tamil Nadu independently of each other a feature reinforced by the periodic controls on exports of cassava by the Kerala State government The focus therefore will be on the evaluation of Kerala and Tamil Nadu as two relatively independent markets

Cassava for Direct Human Consumption

Cassava as a direct food source achieves substantial weight in only the food economy of Kerala As might be expected in rural economies where population pressure on land is high per capita food consumption levels are low About 70% of average incomes are spent on food with the principal component being rice on which 30% of total income is spent (Table 2 12) In the rural areas over 6% of average income is spent on just cassava In such economies food consumption is directly dependent on income levels and as can be seen in Table 2 13 food calorie distribution is symmetric to income distribution Average daily caloric intake is just over 2000 Using the relatively gross standard of 2100 calories as the calories minimum daily requirement Table 17 shows as much as 35% of the population rural areas and 50% in the urban areas falling below minimum in requirements Because of the work and activity patterns of the poor in rural areas calorie shortages can be considered to be chronic

Cassava plays a key role in the calorie nutrition of the population of Cassava is at least as important (National Sample Survey 28th Kerala Round) or more important (Kumar 1979) than rice for the low-income strata in rural areas Rice is however the preferred food and consumption However at least for the 81% of the increases markedly with income population in the rural areas cassava consumption shows a slight increasing trend across income strata (Table 2 14) Even though per capita consumption levels are high as compared to Indonesia for example the National Sample Survey would indicate some limited capacity by rural consumers to increase cassava consumption with increases in income although with everything else equal most of that increase in income would go to increased rice consumption

				Domes	tic Utiliz	ation	
			Human Con	sumption		Anıma1	
State	Production (000 t)	Export (000 t)	Fresh (000 t)	Dried (000 t)	Starch (000 t)	Feed (000 t)	Waste (000 t)
Kerala	4189	22	2437	619	499	-	503
Tamıl Nadu	1310	-	126	-	1162 <u>1</u> /	-	131
Andra Pradest	า 137	-	-	-	123	-	14
Other	52	-	47		-		5
India	5688	22	2610	619	1784	-	653

Table 2 11 India Production and Utilization of Cassava Roots by State 1977/78

<u>1</u>/ Includes 109 thousand tons of roots and chips imported from Kerala Source CIAT estimates

Ru	ral			Urb	an	
Amount	Perc	ent	Amo	unt	Per	cent
(Rupees) (%)	(Rup	<u>ees)</u>	()	%)
18 14	32	8	18	10	26	3
17 70	32	0	17	26	25	0
3 53	6	4	1	67	2	4
0 72	1	3	1	21	1	8
1 12	2	0	1	72	2	5
1 82	3	3	3	93	5	7
2 52	4	6	3	42	5	Q
11 75	21	2	16	69	24	2
39 60	71	5	46	74	67	8
297	5	4	3	60	5	2
2 63	4	8	2	55	3	7
0 10	0	2	1	26	1	8
10 05	18	2	14	78	21	4
15 75	28	5	22	19	32	2
55 35	100	0	68	93	100	0
55 35	100	0	68	93	100	0
	Ru Amount (Rupees) 18 14 17 70 3 53 0 72 1 12 1 82 2 52 11 75 39 60 2 97 2 63 0 10 10 05 15 75 55 35	Rural Amount (Rupees) Perce (% 18 14 32 17 70 32 3 53 6 0 72 1 1 12 2 1 82 3 2 52 4 11 75 21 39 60 71 2 97 5 2 63 4 0 10 0 10 05 18 15 75 28 55 35 100	Rural Percent Amount Percent (Rupees) (7) 18 14 32 8 17 70 32 0 3 53 6 4 0 72 1 3 1 12 2 0 1 82 3 3 2 52 4 6 11 75 21 2 39 60 71 5 2 97 5 4 2 63 4 8 0 10 0 2 10 05 18 2 15 75 28 5 55 35 100 0	RuralAmountPercentAmount (Rupees)1814328181770320173536410721311122011823332524631175212163960715462975432634820100211005182141575285225535100068	RuralUrbAmountPercentAmount(Rupees)(γ)(Rupees)18143281814328177032017703201770320177032017703201770320177032017263353641112201823325246396071539607154674297543602126342100211575285221955355351000689393	RuralUrbanAmountPercentAmountPerc $(Rupees)$ $(?)$ (Rupees)(?)18143281810177032017263536416720721312111122017221823339352524634251175212166924396071546746729754360526348255301002126110051821478211575285221932553510006893100

Table 2 12 India Average Consumer Expenditure Pattern Kerala 1973-74

Source Government of India the National Sample Survey 28th Round 1973/74

Table 2 13Jndia Caloric Consumption by Income Strata in Kerala 1971-72

Per Capita	<u>_</u>	Rural			Urba	
Monthly Expenditure (Rupees)	% Dist of Hous	ribution seholds	Per Capita Calorie Consumption	% Dist of Hou	ribution seholds	Per Capita Calorie Consumption
0-15	3	1	893	3	3	953
15-21	5	9	1229	7	6	1079
21-24	4	6	1716	5	7	1575
24-28	8	5	1466	6	9	1490
28-34	13	0	1900	12	1	1787
34-43	9	5	2320	14	5	1989
43 55	15	6	2603	14	2	2289
55 - 75	18	6	2900	10	9	2700
75-100	9	2	3614	7	3	3060
More than 100	12	3	4293	17	6	3907
Average	100	0	2023	100	0	2103

Source Statistics for Planning 1980 Government of Kerala

Table 2 14	India	Monthly Per	r Capita	Consumption	of	Cassava	and	Rıce
	by Inc	ome Strata	1973/74					

	Ca	ssava	Rice			
Income Strata (Rupees/capita)	Rural (kg/capita)	Urban (kg/capıta)	Rural (kg/capita)	Urban (kg/capīta)		
0-13	5 04	-	1 96	-		
13-15	8 33	0 20	1 75	3 60		
15-18	4 63	12 50	3 42	1 67		
18-21	7 60	3 23	3 18	2 95		
21 24	6 49	3 05	4 34	4 23		
24-28	5 14	5 59	4 98	4 06		
28-34	7 49	3 06	5 06	5 60		
34-43	6 48	4 10	6 05	5 59		
43-55	7 79	4 04	7 26	781		
55-75	7 20	4 73	8 43	7 32		
75-100	6 86	3 24	10 44	9 90		
100-150	7 35	2 02	11 88	8 81		
150 200	11 16	1 65	15 37	9 63		
Greater than 200	5 43	1 50	18 67	10 50		
Average	699	3 64	7 33	7 23		

Source Government of India The National Sample Survey 28th Round National Sample Survey Organization 1973/74

Because of the limited incomes in Kerala a low-cost-per-calorie food such as cassava plays a principal role as a supplement to the higher cost A principal issue is whether promoting technical change in cassava rice production and the resultant lower prices will lead to bridging the In the major cassava producing district of Trivandrum calorie deficit cassava prices tend to be substantially lower and rice prices higher than in other districts The survey of Kumar in Trivandrum suggests that cassava consumption levels are substantially higher and rice consumption slightly lower than the average for Kerala (Table 2 15) However for the poorer income strata total calorie consumption is substantially higher than for the state average for this stratum In areas such as the survey area where average annual consumption reaches 172 kg there is probably not much potential for further increases in cassava consumption but changing the rice-cassava price relationship in other parts of Kerala would on the basis of this very limited comparison lead to increases in cassava consumption and increased calorie consumption

Shah (undated) has argued that attempts to increase the production of low cost high calorie foods with a view to bridging the calorie gap by themselves may prove inadequate because preferences for food qualities other than just calories bias consumption even in the low income groups to more costly foods Food consumption patterns across income groups as described above would indeed confirm that food quality is important but as well that for the poor where price differences are sufficiently large cassava can constitute up to two thirds of total calorie intake that is the poor are very responsive to changes in relative prices of substitutes

The central government has in part incorporated the quality argument in its system of public food distribution The foodgrain distribution system has played a major role in the food economy of Kerala since 1964 when food shortages in India led to food zoning and curtailment of private interstate trade The system depends on a comprehensive system of ration or fair price shops at which consumers are given quotas for foodgrains and prices are set well below open market prices However consumption requirements are well above the ration quota and consumers must purchase their additional requirements from the open market

The availability of ration rice has a marked influence on rice and cassava consumption patterns A study by George (1979) found that consumption of ration rice was relatively constant across income strata (Table 2 6) although this finding is based on household income Kumar (1979) found that ration rice consumption increased with income when expressed on a per capita basis However whereas the higher income strata were able to complement this allotment with rice from open market purchases and at the highest income levels from own production the lower income strata supplemented the ration rice with very high levels of cassava consumption most of which was purchased (George 1979) Nutrition of the poor thus depended principally on ration rice allotments and cassava purchases as was also found by Kumar

Wheat is also available through the ration shops but George (1979) found that rural households consumed only a small quantity of wheat When their rice quota was exhausted consumers preferred to purchase cassava

		Kumar Su	irvey		National Sa	ample Survey
-			Open Market			·····
Income Strata	Cassava	Ration Rice	Rice	Total Rice	Cassava	Rice
(Rupees/capita)	(kg/capita)	(kg/capita)	(kg/capita)	(kg/capita)	(kg/capita)	(kg/capita)
0-15	19 95	1 60	69	2 29	6 27	1 88
15-24	17 68	2 29	1 46	3 75	6 47	3 83
25-34	16 13	2 51	2 04	4 55	6 70	5 03
35-49	16 09	2 67	2 06	4 73	7 18	6 17
50-74	14 35	3 46	1 64	5 10	7 20	8 43
Greater then 75 $\frac{1}{2}$	4 19	3 55	2 35	5 90	7 16	12 08
Average	14 13	2 89	1 98	4 87	699	7 23

Table 2 15 India Monthly Rural Consumption of Cassava and Rice by Income Strata

1/ For Kumar sample there are two observations only

Sources Kumar 1979 Government of India 1973/74

from the open market than wheat from the ration shops Wheat purchases from the ration shops accounted for only about one-third of the total wheat allotment for the total sample and were the lowest in the low income household (p 33)

Given the preference for rice a principal determinant of the demand for cassava will be ration rice allotments The first factor to consider is whether ration rice consumption is influenced by demand factors Two studies (George 1979 and Kumar 1979) conclude that ration rice consumption is not influenced by demand factors but purely by supplies available that is all that is available would be consumed

As levy procurement of rice within Kerala dropped to negligible the ration system in Kerala came to rely almost completely on levels allotments from the Central Pool of the Food Corporation of India (FCI) Moreover these allotments now account for over half of rice supplies in Kerala (Table 2 16) and whereas such allotments should introduce a certain stability in rice supplies they are in fact the major cause of variability in rice availability in the state The author knows of no study which analyzes the determinants of state allocation of ration rice by the FCI but obviously there are other criteria than just maintenance of per capita consumption levels over time There is little choice but that cassava will continue to be a principal component of a food strategy in Kerala and in particular cassava can be used to provide a certain flexibility in the operation of the food ration system in the state

The dried chip market

A peeled dry chip similar to gaplek in Indonesia is produced in Kerala The market principally provides an alternative outlet for cassava during the principal harvest period from December to April which coincides with the dry season The chips are principally produced and assembled in the northern districts with Calicut Trichur and Changanachery being the principal assembly centers

Data on the markets for cassava chips are virtually non-existent What can be said is that this market is not as large nor as well-integrated as the gaplek market in Indonesia Most consumers in Kerala have relatively direct access to fresh roots and most field observations would suggest a consumer preference for fresh over dried cassava The one and relatively dated source (Tapioca Market Expansion Board 1972) on processed cassava consumption suggests very limited consumption levels with an average annual per capita consumption of 9 5 kg of dried product Indications are that the dried chip market for human consumption will remain very limited

As is apparent in Indonesia a well functioning dried chip market provides an element of price stability to the fresh root market especially where the major portion of planting and harvesting takes place at relatively restricted times of year. The chip market acts as a storage mechanism for cassava during the low season and provides a price floor during the peak harvest period. In Kerala the other major market for cassava chips is for processing into starch and glucose especially glucose. Fresh roots produce a higher quality starch (Meuser et al 1978) but chips are used in the starch industry in Kerala because they are

Year	Rice Production $\frac{1}{(000 t)}$	Ration Card Take-off (000 t)	Total Supplies (000 t)
1971	857	844	1701
1972	892	874	1766
1973	908	764	1672
1974	830	786	1616
1975	814	539	1353
1976	879	937	1816
1977	828	1380	2208
1978	854	872	1726
1979	8 48	570	1418
1980	N A	812	N A

Table 2 16 India Rice Production Ration Rice Take-off and Rice Availabilities in Kerala 1971-1980

1/ Rice production is on a milled basis by crop year

Source Government of Kerala Statistics for Planning and Government of India Bulletin on Food Statistics cheaper on a starch basis and help to maintain operation outside the peak harvest season However if roots were available at the price and quantity desired the starch industry would operate exclusively on roots This particular outlet then does not provide a certain demand on which to develop an expansive dried chip market

The other principal option in developing a dried cassava market is the export market India exported limited quantities of cassava chips to The largest export level reached in this Europe between 1957 and 1964 period was 72 thousand tons in the 1958-59 crop year Exports virtually ceased until 1977 when exports to the EEC were resumed (Table 2 17) This reopening of export shipments was brought on by a substantial price fall in dried cassava in Kerala in 1977 which brought prices in line with f o b prices in Thailand (Figura 2 1) Through the early part of the 1970 s Upto cassava prices in India were normally well above Thai prices and 1977 exports were not profitable From the beginning of 1977 through mid-1981 Indian prices remained in line with Thai prices and exports continued at a rate of about 20 thousand tons a year India fortunately enjoyed a rising international price for cassava during this period and prices in Kerala very closely tracked f o b Thai prices from early 1977 through mid-1981 at which point Indian prices could not match a falling international price In 1982 India again effectively dropped out of the export maket

Export levels of 20 to 30 thousand tons result in high shipping costs and does not allow incentives for investment in more efficient marketing and processing capacity -- although there is some compensation in that India is closer than competitors to European markets At this stage Kerala does not have the production base to develop an effective export market and simultaneously meet domestic requirements nor will India ever be in the position of being a large exporter of cassava products However a significant increase in yield levels could lead to further development of this nascent industry which would in turn provide incentives for further market integration the setting of a stable floor price and in turn lower and more stable prices for fresh cassava for food

The starch market

The market for cassava for starch production is divided between a fully integrated industry based on small-to-medium scale plants in Tamil Nadu and a relatively fragmented starch industry in Kerala consisting of two large-scale plants 3 medium-scale and 50 small-scale plants The principal constraint on expansion of this industry is supply of raw material to run the plants

The industry in Kerala probably operates at no more than 50% capacity Factories here must compete with cassava for the fresh market and during at least part of the year must offer a lower price for cassava roots than pertains on the fresh market in order to remain competitive with production in Tamil Nadu Thus in 1981 a major starch factory in Kerala paid 260 rupees/t for roots which compared to farm level prices in Tamil Nadu of between 280 to 360 rupees/t and farm gate prices for the fresh market in Kerala of 400 rupees/t (field observations 1982) The farmer price would only cover variable production costs for the farmer and represents a price at which farmers would sell roots of low quality or where identification of other market outlets was a constraint Further

Year	Quantit (tons)		
1975	0		
1976	0		
1977	7 949		
1978	37 182		
1979	26 799		
1980	11 915		
1981	24 215		
1982	3 037		
1983	10		
1984	23		
1985	40		

~

~

TABLE 2 17 India Imports by the EEC of Cassava Chips from India 1975-1985

Source NIMEXE Analytic Tables for Foreign Trade

'I EHF E
development of the starch industry in Kerala requires that prices in the fresh food and starch markets be brought closer in line Unlike the chip export market the root market for starch is already probably large enough to set an effective price floor should that ever be necessary As it is declining production trends and rising cassava prices implies that the starch industry in Kerala will remain moribund

The cassava root market for starch in Tamil Nadu functions as a single integrated market The starch industry here nevertheless operates at between 45 to 60% capacity Competition in Tamil Nadu does not come on the demand side with alternative market outlets but rather from the supply side where cassava must compete with a substantial number of crop alternatives for irrigated land Root prices to the farmer are in turn determined principally by the sale price of starch since roots make up approximately 80% of the total cost of starch or sago production (Table 2 18)

The cost and operating structure of the starch and sago industry shown in Table 2 18 suggests a relatively competitive small-to-medium scale industry where annual returns on fixed investment of from 17 to 31% provide a normal return on investment considering the general capital scarcity that characterizes the Indian economy With further increases in farm production capacity there is little doubt that a dropping cassava price would motivate further investment in processing capacity

The end market for sago and starch is not well documented The market for both apparently is centered in the more northern states The end use of starch is principally in the textile industry especially Bombay Here cassava starch competes with maize starch which is preferred over cassava starch apparently because of the higher viscosity and sells at a premium to cassava starch The cassava pearl or sago on the other hand is used strictly in food uses and the largest market appears to be Bengal Uses range from a festival food to a filler for particularly Calcuta Ex-factory prices of sago in 1978-79 of 1 55 rupees/kg compare rice favorably to rice prices of 2 2 rupees/kg The potential consumption of starch and sago in India is not known but traders knowledgeable about the industry suggest that demand is no constraint at forseeable production levels

Pricing and market efficiency

Price determination and market allocation between competing uses are governed at least in Kerala essentially by factors which influence the demand for fresh cassava for human consumption The starch chip and export markets serve to set something of a price floor by absorbing any surpluses at the most competitive price at the time Because of the very marked seasonality of harvest such surpluses occur seasonally during the year as well as periodically from year to year Because the fresh human consumption market makes up such a large part of total production -compared for example to Java -- any changes in either cassava supply or fresh root demand will create substantial instability in supplies going to alternative markets Due to this factor and the very severe constraint on expansion in production area the development of these alternative markets has been very fragmented

		T	Tapioca Pearl					
Cost Item	Small Factory (Rupees	Lar / Factor	ge ory	Sma Fac (Run	ill tory		Lai Fact	rge tory
Variable Costs		<u>, (Kup</u>	<u> </u>	(nu	<u>, , , , , , , , , , , , , , , , , , , </u>			56657
Cassava Roots Temporary Labor Fuel Electricity Coconut Oil Gunny Bags Interest on Working Capital	465 612 25 294 4 292 23 892 23 039	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	303 236 624 035 605	497 43 5 4 2 25 33	227 826 060 687 955 602 333	-	989 78 11 9 4 50 69	237 011 492 240 864 436 067
iotal variable costs	542 127	/ 809	803	612	089	T	212	340
Permanent Labor Office Overhead Depreciation Buildings Machinery Interest on Fixed Capital Taxes Total Fixed Costs	9 093 2 173 6 832 15 933 3 250 39 459	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	277 181 870 285 910 000 523	7 2 1 5 13 2 32	237 040 703 003 295 756 034		12 3 10 19 3 53	908 825 695 617 618 786 449
Total Costs	581 583	3 865	326	644	723	1	265	795
Annual Output (tons)	431	L 6	652	8	411 8	8	822	0
Total Cost per Ton	1347	7	1326		1566		1540)
Output Price per Ton	1333	3	1333		1556		155	5
Value of By Products per Ton	89	5	93		72		72	2

Table 2 18 India Annual Costs of Production of Starch and Tapioca Pearl in Tamil Nadu 1978-79

Source Ulthamalingam 1980

Although cassava consumption and prices are obviously influenced by rice availability and prices there are no studies which measure the degree Planning and investment in rice production cassava of this influence production and ration rice distribution in Kerala are critically dependent on such a study Price series provide the only data which shed light on the interaction between the rice and cassava markets and here several inexplicable trends become apparent One special difficulty in analyzing price series is separating out the effects of inflation in the general price level Since the consumer budget is weighted so heavily by food purchases the consumer price index will reflect changes in food prices more than other products These tend to be somewhat volatile anyway but in India upto 1977 food zoning heavily restricted interstate trade in food Food price levels thus varied by state and using the consumer grains price index for India as a whole to deflate prices in any particular state will probably not be reflective of price inflation in that particular state For this reason the consumer price index in Trivandrum was used to deflate all prices in Kerala

During the decade of the 1970 s real retail rice price rose till 1974-5 and then fell dramatically (Table 2 19) due to increases in ration rice availability Retail cassava prices on the other hand remained relatively constant through the period resulting in rice becoming relatively cheaper to cassava While the marketing margin for fresh cassava in Kerala is proportionally low compared to margins in other countries the margin has masked much higher variability in cassava prices at the farm and wholesale levels (Table 2 20) At the farm and wholesale levels comparable though not as marked trends to those that have occurred in the retail rice market have occurred In particular there is a falling real cassava price at a time (1976-78) when production was declining This would support a marked influence of rice prices and rapidly availabilities on cassava prices In 1979 the brief linkage to international prices caused cassava prices to rise

The dominant issue then is what has been happening with rice availabilities? Through the decade of the 1970 s rice production in Kerala was relatively stable (Table 2 16) The component of variability in rice supplies in Kerala was the availability of ration rice What is inexplicable with the available data is the low rice prices in 1978 and Since food zoning and restrictions on interstate trade of food 1979 grains were eliminated in 1977 it is possible that there have been flows of rice into Kerala from other states brought by private traders and sold However even the limited evidence on open market on the open market availabilities suggest that such supplies were not much changed in the years 1978 and 1979 (Table 2 21) and that eliminating food zoning has had no impact on rice supplies in Kerala Rice prices in Kerala have been traditionally higher than in the other Indian states (eg retail rice prices in 1981 in Kerala were 3 3 Rs/kg compared to 2 4 Rs/kg in Tamil Nadu) and while the liberalization of trade flows should bring prices more in line the mechanism to do this has to be increased availabilities

Thus while it is not clear why rice prices have declined and in turn put a damper on cassava prices that should otherwise have been rising in response to declining production This allowed cassava prices to become competitive in the world market for a period of five years To the extent

Table 2 19 India Constant¹ Retail Prices of Rice and Cassava in Kerala 1970-1979

Year	Rice (Rupee/kg)	Cassava (Rupee/kg)	Rice/ Cassava	Open Market/ Ration Rice
1970	2 87	55	52	1 5
1971	2 78	57	49	14
1972	3 04	55	55	16
1973	3 47	58	60	18
1974	3 84	56	68	26
1975	3 53	54	65	27
1976	3 02	62	49	NA
1977	2 73	58	47	N A
1978	2 43	55	44	NA
1979	2 33	61	38	N A

¹ Prices deflated by consumer price index in Trivandrum 1975 = 100Source Government of Kerala 1980 George 1979 II - 35 -

Table 2 20 India Average Prices of Fresh Cassava Roots at the Farm Wholesale and Retail Level 1970-80

	Farm-	level 1/	Whole	sale 1/	Ret	Retail 1/		
Year	Nomina]	Real 🕂	Nomina]	Real 💾	Nominal	Real 💾		
· - · ·	(Rupee/t)	(Rupee/t)	(Rupee/t)	(Rupee/t	Rupee/t)	(Rupee/t)		
1970	N A	NA	209	386	300	550		
1971	214	391	222	407	310	570		
1972	235	406	240	415	320	550		
1973	309	446	311	449	400	580		
1974	384	423	397	437	510	560		
1975	400	400	391	391	540	540		
1976	398	449	391	441	550	620		
1977	325	376	323	373	500	580		
1978	316	353	326	363	490	590		
1979	398	411	410	424	590	610		
1980	N A	NA	443	NA	NA	N A		

 $\frac{1}{2}$ Deflated by consumer price index in Trivandrum 1975 = 100

Source Government of Kerala Statistics for Planning Directorate of Economics and Statistics Trivandrum various years

Table 2 21 India Availability of Rice in Three Major Markets in Kerala 1970-81

Year	Jan-Mar (000 t)	Apr-June (000 t)	July-Sept (000 t)	0ct Dec (000 t)	Total (000 t)
1970	21 0	10 7	55	44	41 3
1971	7 2	12 1	94	11 3	40 0
1972	25 7	25 7	15 3	15 3	82 0
1973	11 2	98	85	12 2	41 7
1974	86	96	84	47	31 3
1975	4 2	83	11 3	45	28 3
1976	43	12 4	78	10 9	35 4
1977	12 6	12 5	11 7	97	46 5
1978	12 0	13 9	87	11 2	45 8
1979	8 1	10 6	55	71	31 3
1980	80	5 1	5 0	13 1	31 2
1981	10 2	86	33	24 9	47 0

Source Government of India Bulletin on Food Statistics Directorate of Economics and Statistics Ministry of Agriculture various years that increased rice supplies can be assured this would have the greatest impact on nutrition in Kerala What is clear however is that there are no such assurances Maintaining low priced cassava for the human consumption market provides a critical element of stability in food supplies What is needed however is better integration with alternative markets which can handle surpluses when rice supplies are adequate What this requires is a larger production base and this can only be achieved with further increases in yields

Conclusions

Cassava serves a major if somewhat distinct role in the agricultural economies of Kerala and western Tamil Nadu In Kerala internal rice production is stagnant and there is an increasing portion of the upland area being planted to higher value tree crops Food supplies thus rely critically on rice allocations from the central pool and more recently apparent privately-traded inflows from outside the state in However maintaining or improving the food intake and nutrition of the low income strata the options are increases in rice rationing off-take or more plentiful and cheaper cassava Compared to rice where an increase in the poor s ration allotment implies an increase for everyone cheaper cassava could target directly on the poor and would not involve subsidies from the public treasury -- theses subsidies are born by the Food Corporation of India and not the Kerala State government (George 1985) The design of a food and nutrition policy in Kerala is heavily dependent on the prognosis for rice production in India as a whole both given that food zoning is a policy of the past and that rice stocks in the central pool have increased in the mid-1980 s Nor should policy makers appear insensitive by suggesting that the poor should just eat cassava Pure pragmatism suggests that the calorie intake of the poor is critically low and that cassava can be as cheap a means as any of increasing calorie intake

In Tamil Nadu on the other hand a potential growth industry much like the case of Indonesia exists in the starch and tapioca pearl market The industry is constrained by lack of raw material for processing and for farmers there is no restrictions on finding market outlets for their production Prices are in most respects relatively stable and any increases in yields will directly improve farmer incomes

The issue then is how much higher farm level yields can be raised in these two states over the relatively high level which farmers already Such increases will almost certainly depend on higher yielding achieve The research of the CTCRI suggests that there is scope for varieties An issue which CTCRI is very conscious of is that doing this in Kerala the quality characteristics of these improved varieties shall have to remain high since cassava is essentially consumed in a fresh form In Tamil Nadu on the other hand there are no such restrictions other than that the yield gap to be exploited there appears to be much smaller Southern India represents one of the few situations in Asia (Java is the other) where the only frontier for cassava to exploit is the yield frontier

Appendix 2 1 A synthesis of production and utilization

The uncertainty surrounding the cassava production estimates and the paucity of data on cassava consumption in its various end uses makes the development of a consistent supply and distribution series a speculative enterprise The exercise will be attempted by first separating Kerala and Tamil Nadu then reviewing the available consumption data for each state and finally integrating these estimates with the production estimates The result provides the basis for the evaluation of cassava markets and demand in southern India

Kerala An analysis of cassava utilization must begin with an estimate of human consumption of fresh roots Several estimates exist but as can be seen in Table 2A l there is a substantial range in these estimates Given that Kumar s sample introduces a substantial upward bias in the cassava consumption estimate -- consumption is higher in the southern districts in rural areas and in the lower income strata -- the striking feature is the difference between the estimates from food balance sheets and those from sample surveys The George and Kumar samples have upward blases in their estimates of per capita consumption The National Sample Survey is probably the best structured sample and thereby estimate of consumption levels Since fresh human consumption is considered the largest single market for cassava the difficulty arises of how to account for the difference between the consumer sample estimate and that derived from production estimates in the food balance sheets

Dried cassava chips are also produced in Kerala principally in the northern districts and primarily in the period October to April These chips go into various end uses Dried cassava can be prepared in the home and eaten especially when fresh cassava is not available Cassava flour is also produced by grinding the chips At least one factory operates in Malappuram exactly for this purpose The flour is in turn used to produce fine noodles Often the flour is produced in the home Also large starch factories also buy chips for processing particularly for glucose Finally from 1955 to 1966 cassava chips were exported production After that exports ceased until just recently and since 1977 India has again been exporting modest amounts of cassava chips

Statistics on production and utilization of cassava chips are practically non-existent The Taploca Market Expansion Board provides the single estimate of household consumption of processed cassava products and estimates an annual consumption of 9 5 kg per capita of dried cassava It can only be assumed that cassava flour is included in this figure Cassava chip exports were initiated again in 1977 after a lull of about 10 years Exports remain small and irregular Imports into the European Community from India were 7 949 t in 1977 37 182 t in 1978 26 799 t in 1979 and 11 915 t in 1980 Chips purchased by the starch factories are assumed to be included in starch production figures

This leaves only potential exports of dried cassava to other states Data on transport through selected checkposts for the period May 1975 to May 1976 give the following figures

Source	Sample Sıze	Sample Structure	Period	Annual Per Capıta Consumption
Kumar	43 households	Trivandrum District Rural Only Bottom 50% of Income Strata	Feb-Sept 1974	171 9
George	100 households	Two Vıllages Rural Only	Nov 1977	114 7
National Sample Survey	890 households	Complete State Rural and Urban	0c† 1973-June 1974	78 3
Tapioca Market Expansion Board	unknown	All but One District Rural and Urban	1971	56 5
U N Dept of Economic and Social Affairs		Food Balance Tables	1961/62-1970/	71 208 4
Govt of Kerala	-	Food Balance Tables	1974	276

Table 2A 1 India Different Estimates of Per Capita Consumption of Fresh Cassava in Kerala

Sources Kumar 1979 George 1979 Government of India 1973/74 Government of Kerala 1972 U N Department of Economic and Social Affairs 1975 Government of Kerala 1977

	Quantity (M T)	Value (100 000 rupees)
Tapioca chips	N A	78 80
Dry Tapioca	90 150	44 34

At the Kozhikode wholesale market the price for cassava chips in this period was 62 rupees/100 kg which implies a volume of tapioca chips of 12 710 t On the other hand, the per ton price for dried cassava implied by the above value and volume figure is 49 rupees/t a figure undervalued by at least a factor of ten A selection of either the volume or value figure is arbitrary Processing the chips into starch is possible but 90 thousand tons is a bit excessive in relation to starch production capacity in Tamil Nadu Moreover assembly of this volume is a bit large compared to more recent international export volumes It is therefore assumed that 90 thousand quintals (100 kg) were exported to Tamil Nadu implying a total export volume for the two products of 21 725 t

Starch is the other major consumption form of cassava in Kerala The industry is reckoned to run at undercapacity and to be a much more minor producer than Tamil Nadu A listing of reported starch plants -- (Table 2A 2) although not necessarily a complete listing-- and their estimated annual production gives a starch production figure of approximately 57 thousand tons An alternative unpublished estimate for 1977/78 is 110 808 t of starch (State Planning Board private communication) The latter figure would imply a much larger industry than is commonly reckoned

The final entry in the accounting of cassava utilization in Kerala is Most reports on the starch industry in Tamil root export to Tamil Nadu Nadu cite imports of cassava roots from Kerala The roots principally come from Trichur district in the north Estimates of these exports are few Hone (1974) presents an estimate of 400-800 thousand tons and cites a figure that licenced exports of up to 400 thousand tons are permitted This is a remarkable volume considering that road transport is relatively scarce and expensive---transport costs add as much as 40/ to root purchase A transport price of 150 rupees per ton was cited (field price in Kerala 1982) compared to a wholesale root price in Trichur of 519 rupees notes The higher cost of root production in Kerala together with the in 1981 transport cost is bound to make cassava roots from Kerala competitive only outside the principal harvest season in Tamil Nadu Moreover cassava production in Trichur district is one of the lowest in Kerala producing 114 thousand tons in 1980/81 A more reasonable estimate is probably in the range of 50 to 75 thousand tons

A synthesis of these various consumption estimates is presented in Table 2A 3 for the year 1977 Comparing the consumption aggregate to the 1977/78 production figure that is after the production series had been radically revised downward due to the crop cutting survey reveals that about a million tons still remain unaccounted for Wastage in an economy such as Kerala with the small distances to market and the well developed marketing services is probably small but may be assumed to be in the At this point there is no more justification neighborhood of 10 to 12% for revising the consumption figure upward as for revising the production the human consumption figure downward Assuming that figure 15 underestimated and putting the remainder in that category would imply a per

II - 41 -

Table 2A 2 India Estimated Capacity and Output of Starch Plants in Kerala

Capacıty (t of starch/day)	Production Estimate (t/year)
80 t	15 125
100 t	17 500
10 t	1 500
10 t	1 500
3 t	21 500
	57 125
	Capacity (t of starch/day) 80 t 100 t 10 t 10 t 3 t

Source Report of the Sub Committee of the Tapioca Market Expansion Board Department of Food Government of Kerala Trivandrum 1972

Useage	Estimate (t)	Conversion Rate	Fresh Root Estimate (t)
Human Consumption-Fresh	1 854 850 1	1 0	1 854 850
Human Consumption-Dried	225 045 ²	2 75	618 875
Starch	110 808 ³	4 5	498 636
International Export-Chips	7 950 ⁴	2 75	21 860
Interstate Export Chips	12 700 ⁵	2 75	34 925
Interstate Export-Roots	75 000 ⁶	1 0	75 000
Naste	502 630	1 0	502 630
Total Utilization			3 606 776
Production			4 188 600

Table 2A 3 India Estimates of Production and Utilization of Cassava in Kerala 1977/78

Sources ¹ National Sample Survey 1973/74 ² Tapioca Market Expansion Board ³ Kerala State Planning Board ⁴ Renshaw 1983 ⁵ Government of Kerala Statistics for Planning ⁶ Estimate capita consumption level of 103 kg/year Compared to the other sample estimates this is not unreasonable but certainly suggests that earlier estimates of per capita consumption from food balance sheets were substantially overestimated generally by more than 100%

Tamil Nadu

The market for cassava in Tamil Nadu as compared to Kerala is dominated by demand for industrial uses as opposed to food uses The starch and tapioca pearl industry centered in Salem District is considered to be the major end user of cassava in Tamil Nadu There are 611 starch factories in Tamil Nadu 497 of which are located in Salem District and the other 114 of which are located in Dharampuri South Arcot and Coimbatore districts (Salem Starch and Sago Manufacturers s Cooperative private communication and Uthamalingam 1980) Utilization of cassava roots would then follow from the operational characteristics of these plants

Uthamalingam (1980) selected a sample of 30 starch and pearl facto ies in Salem town and in outlying rural areas The operational structure is given in Table 2A 4 There are 228 pearl factories and 269 starch factories in Salem and assuming a distribution of 75% small-scale and 25% large-scale leads to an average annual output per factory of 499 t This annual average starch output thereby implies an annual production level of 248 thousand tons in Salem District and an additional 57 thousand tons in the three adjacent districts

Uthamalingam (1980) provides alternative estimates based on the quantity shipped by railway and that purchased by the Salem Sago and Starch Merchants Association (Table 2A 5) These are only about one-third of the above estimates The rail shipments obviously do not include the starch consumed locally -- a food habits survey by the Protein Foods Association of India suggests significant local consumption of pearl -- or that transported by road and therefore provides only a minimum estimate of production and an idea of variation of production from year to year The estimate based on per factory output implies root utilization of 992 thousand tons in Salem and 228 thousand tons in the adjacent districts assuming the relatively high conversion rate reported in Tamil Nadu of 4 1

Most reports suggest that food usage of the cassava root is relatively minimal in Tamil Nadu The 1973/74 National Sample Survey reports an average annual rural consumption of cereal substitutes of 4 l kg/year for the whole state It is probable that this figure includes only cassava but it is not certain what percentage would be root and what would be processed cassava Since the only reported consumption in Tamil Nadu is for rural areas it is probable that this figure only includes root consumption This would imply a total food consumption of 125 thousand tons

The recapitulation of the consumption together with an assumed 10% wastage gives a total figure of 1 514 thousand tons which compares favorably with the production estimate of 1 682 thousands tons in 1978/79 and $\vec{1}$ 591 thousand tons in 1979/80 A small change in the starch conversion rate could account for any difference. The production and consumption data would appear to be more or less consistent at least since the 1977/78 crop year

Table 2A 4 India Characteristics of Starch and Pearl Factories in Salem District Tamil Nadu 1978/79 $\frac{1}{2}$

	Starch			Pearl			rl
	Small		Large		Sma11		Large
Root Input (t)	1 629	6	2 416	1	1 635	3	3 287 3
Starch Output (t)	431	6	652	8	411	8	822 0
Conversion Rate (%)	26	5	27	2	25	2	25 0
Average Operation Period (days)	135		144		175		184

<u>1</u>/ In Salem District there are 269 starch factories and 228 tapioca pearl factories

Source Uthamalingam 1980

Table 2A 5 India Annual Rail Shipments of Starch and Pearl from Salem and Purchases by the Salem Sago and Starch Merchant's Association 1970-1977

	Rail Sh	nipments	Association	Purchases
Year	Pearl	Starch	Pearl	Starch
	(t)	(t)	(t)	<u>(t)</u>
1970	52 589	39 553	NA	NA
1971	55 171	28 987	N A	NA
1972	41 133	41 488	N A	NA
1973	22 249	41 102	N A	NA
1974	18 871	42 822	NA	NA
1975	44 774	45 827	N A	NA
1976	36 394	30 656	38 605	29 583
1977	55 702	35 081	55 095	26 596

Source Uthamalingam 1980

Other States For the sake of completeness Andhra Pradesh is the only other state with anywhere close to a significant production volume Production in this state was 88 2 thousand tons in 1979/80 and 171 0 thousand tons in 1980/81 This volume is comparable to about 10% of the production of Salem District Cassava is a rainfed crop in Andhra Pradesh and is principally grown in East Godavari District The cassava root is used exclusively in a small cassava pearl industry located in the district Trends and Distribution of Chinese Cassava Production and Use 1820-1984 (A technological and economic examination of historical development and future potential)

Bruce Stone

A paper prepared for the International Center for Tropical Agriculture Palmira Colombia

> International Food Policy Research Institute Nashington D C December 1986

TRENDS AND DISTRIBUTION OF CHINESE CASSAVA PRODUCTION AND USE

1820 - 1984

Production trends and distribution

No official national data series for cassava in the Peoples Republic have been published by Chinese authorities It is possible to obtain estimated series from the Food and Agricultural Organization of the United Nations ¹ Such series are based on assumed annual increments in harvested area for most years and somewhat less regular but a similar monotonically non-decreasing set of estimates for production. Yields appear to be derived from the rough area and production estimates by calculation. The only figure among these which appears to have come from a Chinese source is the 3 million ton production figure circa 1980 provided unofficially as an <u>undated</u> estimate to the 1982 CIAT delegation by one of the agricultural science institutes visited in Guangdong. Earlier work ² has concluded that the entire FAO series for root and tuber crops bears little relation to the aggregate series published since 1979 by Chinese statistical authorities ³. It is now also clear that the FAO

²Bruce Stone An Examination of Economic Data on Cassava Production Utilization and Trade a paper prepared for the International Center for Tropical Agriculture (CIAT) International Food Policy Research Institute Washington D C August 1983

³e g He Kang et al Zhongguo Nongyebu [Ministry of Agriculture of China] (eds) <u>Zhongguo Nongye Nianjian 1980</u> [Agricultural Yearbook of China 1980] (Beijing Nongye Chubanshe [Agricultural Publishing House] 1980) and Zhongguo Guojia Tongjiju [State Stat stical Bureau] <u>Zhongguo Tongji Nianjian - 1983</u> [Statistical Yearbook of China - 1983] (Beijing Tongji Chubanshe [Statistical Publishing House] 1983)

¹e g FAO Supply Utilization Tapes 1984 Rome 1985 FAO Standardized Commodity Balance Tape 1984 Rome 1985 and FAO Production Yearbook Tape 1984 Rome 1985

series for cassava <u>per se</u> conflict with officially published series for one of the two principal growing regions and with scattered national estimates for individual years found elsewhere in Chinese publications Since 1984 the FAO has taken account of some of the recent information in formulating current root and tuber crop estimates for publication in <u>FAO Production Yearbooks</u>. But much recent information has not been reflected in FAO series and additional work is required to obtain a reliable impression of long term trends for individual crops including cassava

According to Chinese sources ⁴ cassava had been introduced into China from South America via nanyang [the South Seas or Pacific Ocean] by 1820 although it is not clear whether it entered Guangdong Province directly from the West or whether it was introduced indirectly following regional cultivation in Sri Lanka India or Indonesia By far the main Chinese producing area is the extreme south below the Tropic of Cancer (23 5°N) especially Guangdong

⁴Liang Guangshang (ed) Mushu Zaipei yu Liyong [Cassava Cultivation and Use] (Guangzhou Guangdong Keji Chubanshe [Guangdong Scientific and Technical Publishing House] 1981) author's preface and p 4 Cassava is confirmed to have been grown in China for more than 100 years in Zhongguo Kexueyuan Dili Yanjiusuo Jingji Dili Yanjiushi [Chinese Academy of Sciences Institute of Geography Economic Geography Research Room] Zhongguo Nongye Iii Zonglun [A General Treatise on China's Agricultural Geography] (Beijing Kexue Chubanshe [Scientific Publishing House] 1980) p 129 1820 was also the introduction date mentioned during a spring 1982 delegation from the International Center for Tropical Agriculture (CIAT) and recorded in James H. Cock and Kazuo Kawano. Cassava in China unpublished trip report CIAT Palmira Colombia June 1982 p 1 However Mushu Zaipei yu Liyong clearly indicates that 1820 is the earliest record of cassava cultivation so far uncovered the intioduction date may well have been earlier

Province and Guangxi Zhuang Autonomous Region Of the two production has typically been greatest in Guangdong Cassava is also cultivated in Fujian Yunnan Hunan Guizhou and Taiwan Provinces but much less extensively and to a very minor extent in Hubei Jiangxi Zhejiang and Sichuan Some estimates of provincial cultivated area gleaned from Chinese sources are arranged in Table 1

While cassava had been introduced into Guangdong and Guangxi by the first half of the 19th century and a book devoted to cassava planting methods had been published as early as 1900 the first cultivation record in Fujian is 1920 and in Taiwan 1929 Introduction dates for most other provinces were considerably later Hunan 1941 Guizhou 1942 Zhejiang 1954 and Jiangxi 1959 Cultivation of cassava in Yunnan though potentially beginning earlier was estimated at only two thousand hectares in 1960 Most farmland in these provinces fall within what is described in Chinese sources as the expansion area north of the Tropic of Cancer and south of 30°N There is experimental cultivation of cassava even north of 30°N with the northernmost plantings at the Hebei Forestry Science Institute at 39°20 N These experiments began during the famine years in 1960 and 1961 in Hubei Anhui Jiangsu Shaanxi Shandong Liaoning Sichuan and Hebei which constitute the first record of cassava related activities in these provinces ⁵ Cassava

- 3 -

⁵Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> author s preface and pp 4 9 and 10

<u></u> .	Chana	Guanadona	Guangya	Fullen	Тазшар	Vunnan	Guizhou	Hunan Zhejiang
<u></u>		duangdong	(thous	and hecta	res)	runnan	durzhou	
1943		33 4						
1950			41 5					
1951			37 6					
1952			48 5		80			
1953			41 3		90			
1954			6/5		10 4			
1955			62 6		10 7			
1956			93 0		10 6			
1957			104 3		10 9			
1958			132 6		12 3			
1959			118 8		11 9			
1960			127 9		13 0	20		
1961	365 3		104 4	>6 /	1/2		06	
1962			(183 5/15	87)	18 2			
1963			153 4		20 2			
1964		<140*	154 3		19 8			(0 0)
1905		<149	102 2		20 5			(U3)
1900			102 2		21 0			
1907			70 3		22 U 25 D			
1900			137		25 0			
1909		<201 [*]	124 /		25 9			
1071		×201	145 0		24 1			
1072		167.3	129 0		24 0			
1072		107 5	124 J 107 9		24 0			
1973			107 9		24 3			
1975		<222×	131 9		20.0			
1975		~225	110 5		22 2			
1970			74 6		22 3			
1978	(470 530) <236*	131 0		19 5			
1979	(410 550	/ 200	156 0		17 0			
1980			207 8		14 9			
1981	(350)	(200)	190 4		13.9			
1982	(000)	≤195	175 2		-0 9 9 9			
1983		≤158	120 6		58			
1984		≤159	94 0		52			
-								

Table 1 Area Sown with Cassava in China and Major Chinese Cassava-Growing Provinces 1943 1984

Notes Empty data cells indicate that the statistical information is not available and do not denote zero values Parentheses enclose rough estimates for the indicated or nearby years. The applicable years for parenthesized estimates were not stated in the source. Other provinces where farmers grow cassava include Hubei and Sichuan but sown area is minor. Taiwan Province is now normally not included in national aggregated statistics for the People s Republic of China although separate data entries for Taiwan are not unusual among PRC statistical compendia Taiwan is probably included in the 1961 national figure however

* These figures probably overestimate officially recorded plantings by 20-40 thousand hectare See Table 7

Sources

Guangxi Guangxi Jingji Nianjian Bianjibu [Guangxi Economic Yearbook Editorial Department] (eds.) <u>Guangxi Jingji</u> <u>Nianjian 1985</u> [Guangxi Economic Yearbook 1985] (Nanning Guangxi Jingji Nianjian Bianjibu 1985) pp. 531 and 593

> The 1976 figure was confirmed in Guangxi Nongye Dili Bianxiezu [Guangxi Agricultural Geography Editorial Board] (eds) <u>Guangxi Nongye Dili</u> [Guangxi Agricultural Geography] (Nanning Kexue Chubanshe [Scientific Publishing House] 1980) p 76

> The lower figure for 1962 is from Liang Guangshang (ed), <u>Mushu Zaipei yu Liyong</u> (Guangzhou Guangdong Keji Chubanshe 1981) p 9

Taiwan Republic of China Executive Yuan Directorate General of Budget Accounting and Statistics <u>Statistical</u> <u>Yearbook of the Republic of China 1985</u> (Taipei Republic of China 1985) p 281

The 1952 54 figures were added from

Republic of China Directorate-General of Budget Accounting and Statistics <u>Statistical Yearbook of the</u> <u>Republic of China 1982</u> (Taipei Republic of China 1982) p 115

China and other Provinces

The 1978 figure is from Zhongguo Kexueyuan Dili Yangjiusuo Jingji Dili Yanjiushi [Chinese Academy of Science Institute of Geography Economic Geography Research Laboratory] <u>Zhongguo Nongye Dili Zonglun</u> [A General Treatise on Chinese Agricultural Geography] (Beijing Kexue Chubanshe 1980) p 129

The 1981 figure is from James H Cock and Kazuo Kawano Cassava in China unpublished trip report International Center for Tropical Agricultural Research (CIAT) Cali Colombia June 1982 pp 1-2

The 1961 figure is from Liang <u>Mushu Zaipei yu Liyong</u> p 9 This source also stated that national cassavasown area remained around 5 million mu during the 1960s (300-367 000 hectares assuming 4 5-5 5 million mu) The figure for Hunan Zhejiang and Jiangxi combined was given as around 5 000 mu (333 ha) in each year of the 1960s

Guangdong The overestimates for Guangdong for 1965 1970 1975 1978 1979 and 1982-84 are from Table 7 A 1981 overestimate of 201 thousand hectares was also calculated The 1979 and 1982-84 estimates are relatively close approximations The 1965 1970 1975 and 1978 figures probably overestimate by at least 20-40 thousand hectares See Table 7 The 1943 and 1972 figures are from Liang Mushu Zaipei yu Liyong p 9 and the 1981 estimate is from Cock and Kawano Cassava in Asia p 1

seems to enjoy some very minor farmer cultivation in Sichuan but probably not elsewhere within the experimental area. In fact it is not yet clear from the estimates of national Guangdong and Guangxi cultivation assembled in Table 1 that cassava expansion efforts have resulted in significant increased plantings outside of those two provinces

In the absence of a reliable national cassava production series the best approximation would be to synthesize production series for Guangdong and Guangxi Fortunately complete 1950-84 series for Guangxi were published in 1985 (Table 2) These data though not necessarily without flaws provide the best understanding of year to year movements in cultivation and yields A glance at Table 2 will

	Production		Área	Yield			
	(Grain Equival	lent) (Fresh Root)		(Graın Equivaler	it) (Fresh Root)		
	Tons	Tons	(Hectares)	T/Ha	T/Ha		
950	30 045	150 225	41 507	0 724	3 619		
951	39 365	196 825	37 567	1 048	5 239		
952	41 870	209 350	48 493	0 863	4 317		
953	36 635	183 175	41 340	0 886	4 431		
954	42 535	212 675	67 453	0 631	3 153		
955	35 365	176 825	62 647	0 565	2 823		
956	58 280	291 400	93 013	0 627	3 133		
957	91 000	455 000	104 320	0 872	4 362		
958	165 205	826 025	132 567	1 246	6 231		
959	140 330	701 650	118 840	1 181	5 904		
960	88 045	440 225	127 913	0 688	3 442		
961	115 855	579 275	104 353	1 110	5 551		
962	189 260	946 300	183 547	1 031	5 156		
963	152 335	761 675	153 433	0 993	4 964		
964	160 225	801 125	154 307	1 038	5 192		
965	167 835	839 175	158 520	1 059	5 294		
966	84 435	422 175	102 220	0 826	4 130		
967	173 715	868 575	70 300	2 471	12 355		
968	162 120	810 600	73 667	2 201	11 004		
969	216 750	1 083 750	124 733	1 738	8 6a9		
970	235 990	1 179 950	145 600	1 621	8 104		
971	211 295	1 050 475	129 613	1 630	8 151		
372	262 270	1 311 350	124 480	2 107	10 535		
973	206 545	1 032 725	107 900	1 914	9 571		
974	170 765	853 825	100 847	1 693	8 467		
975	260 425	1 302 125	131 900	1 974	9 872		
976	187 065	935 325	110 473	1 693	8 467		
977	141 865	709 325	74 567	1 903	9 513		
978	258 295	1 291 475	131 020	1 971	9 857		
979	312 645	1 563 225	155 993	2 004	10 021		
980	481 215	2 406 075	207 760	2 316	11 581		
981	484 280	2 421 400	190 387	2 544	12 718		
982	468 255	2 341 275	175 173	2 673	13 365		
983	326 680	1 633 400	120 640	2 708	13 539		
984	241 180	1 205 900	94 001	2 566	12 829		

able 2 Cassava Production Area and Yield in Guangxi Zhuang Autonomous Region 1950 1984

Cassava production and yield data are often quoted in Chinese statistical sources on a grain equivalent basis. Since 1964 the conversion to grain equivalence for all root and tuber crops has meant dividing the fresh weight by five although this would undervalue cassava sweet potatoes and taro relative to most cereal crops in terms of calories per unit weight. It is assumed that the production and yield data in the source for this table appeared in grain equivalent form The original data have therefore been multiplied by five to calculate fresh root weight

Source Guangxi Jingji Nianjian Bianjibu (eds.) <u>Guangxi Jingji</u> <u>Nianjian 1985</u> (Nanning Guangxi Jingji Nianjian Bianjibu 1985) pp. 531-532 and 593

confirm that the 35-year period encompasses considerable variation in both

During the 1950s some government-initiated efforts were undertaken to expand cultivation of cassava which was viewed as a crop capable of providing considerable bulk and caloric content per unit area One cannot rule out the possibility however that a portion of the implied increase in cultivation reflected previously unregistered cassava areas eventually included in statistical coverage especially during the formation of agricultural producers cooperatives (1954-56) and the people's communes (1958) Elsewhere⁶ it has been demonstrated that most of the implied growth in total root and tuber crop area since 1952 is likely to be real the actual figures remaining in all probability within about 5 percent (below) the official data

The considerable increase in cassava area in 1958 parallels an even larger reported increase for all root and tuber crops. While 1958 was a year of extreme statistical distortion casting doubt on

- 8 -

⁶Bruce Stone An Analysis of Chinese Data on Root and Tuber Crop Production The China Quarterly September 1984 pp 594 630

the magnitude of the increase the implied growth was no greater than that of 1956 much of which may have been real 1958 was also a year in which great efforts were made to increase foodcrop production by Root and tuber crops including cassava whatever means possible were correctly identified as the easiest means to effect a short term leap in bulk food production. It is difficult however to accept the implied 1958 increase in average yield to ar unprecedented level especially in view of the (except for sweet and white potatoes more modest) expansion of area planted with other food crops and maintenance of yields in that year. In sum while it appears that the total Guangxi foodcrop data (excluding cassava) have been adjusted in the 1985 Guangxi Economic Yearbook for the statistical distortion typical of 1958 published materials it is quite possible that those for cassava may not have been particularly in the yield category

The decline in 1959 area however followed by some recovery in 1960 are undoubtedly real although it is impossible to verify the exact figures Inflated reports of miraculous grain production success in 1958 led authorities to increase area sown with economic crops in 1959 at the expense of staples ⁷ When the truth became clear (1958 had been a good but not spectacular year) it was too

9 -

⁷Li Choh-ming <u>The Statistical System of Communist China</u> (Berkeley University of California Press 1962) Kenneth R Walker <u>Food Grain Procurement and Consumption in China</u> (Cambridge Cambridge University Press 1984) Nicholas R Lardy <u>Agriculture in China s</u> <u>Modein Economic Development</u> Cambridge Cambridge University Press 1983

late to correct spring planting Some compensation would have been made with 1959 fall planted cassava however and in 1960 in view of poor harvests for all foodcrops the previous year. The yield decline in 1960 is consistent with widespread natural disasters throughout China estimated to be the worst in the twentieth century. These were somewhat less severe in Guangxi than in some other provinces but yields of other Guangxi food crops reportedly decline by a weighted average of 9 percent during 1960 and 1961.⁸ Spring planted cassava in particular is subject to insect damage during the seedling period and in the fall typhoon damage

The low area figure for 1961 is consistent with both poor statistical coverage during the period and significant rural dislocation associated with the 1960-61 famine throughout China which may have partially extended into Guangxi The large increase in cassava area in 1962 followed by subsidence during the following few years is also explainable in terms of reaction to the 1960 61 famine

Geographic coverage may not have been consistent throughout the series Qinzhou Special District was transferred from Guangxi to Guangdong in 1955 then back to Guangxi in 1965 Qinzhou includes the entire current Guangxi coast and extends north from the current provincial border to the Yu River then angles southwest towards the

10 -

⁸Guangxi Jingji Nianjian Bianjibu [Guangxi Economic Yearbook Editorial Board] <u>Guangxi Jingji Nianjian, 1985</u> [Guangxi Economic Yearbook 1985] (Nanning Guangxi Jingji Nianjian Bianjibu 1985) p 530

border with Vietnam In 1976 area sown with foodgrains in Qinzhou covered 461 333 hectares Area planted with root and tuber crops in the western district of Guangdong circa 1957 (including Qinzhou Special District and Zhanjiang Prefecture) consisted of 28 3 percent of total area sown with foodcrops (excluding soybeans) a little less than 5 percent of which was planted with cassava and mao potatoes ⁹ These reports suggest that something on the order of 6 thousand hectares of cassava were transferred from Guangxi to Guangdong in 1955 then (potentially more extensive cassava area) back to Guangxi in 1965 This could explain the counter-trend movements of cassava area in the Guangxi series for 1955 and 1965

Data oscillations during the succeeding decade (1966-77) are less understandable as a function of nationwide economic developments and may be peculiar to cassava or to Guangxi Hypotheses for explaining these oscillations include the lagged effect of earlier shocks echoed via the rotation system (see below) and periodic reclamation initiatives In Guangxi cassava is often grown during the early years of a reclamation project in order to earn some economic return before reclamation is complete. When the quality of farmland construction and field preparation permits cassava is often phased out to make way for more highly valued crops

⁹Bruce Stone An Analysis of Chinese Data on Root and Tuber Crop Production pp 612 615

The low planted area figures for 1967 and 1968 and particularly the high average yield estimates for those years are especially anomalous Although fertilizer use accelerated during the 1960s widespread application to cassava as early as 1967-68 is very unlikely One is consequently motivated to hypothesize about a statistical quirk e g independent production and area estimates with the latter underestimated due to statistical confusion typical of the early years of the Cultural Revolution period (1966-77)

Even excluding 1967 and 1968 the data indicate a marked increase in yields from an average of 4 5 tons per hectare (1950 66) to 9 0 tons per hectare (1969-77) or 10 3 tons per hectare (1969 84) Some of this increase per unit productivity is explainable in terms of initiation of fertilizer application and cultivation of cassava on state farms with plentiful access to fertilizers But state farms in Guangxi occupied only 20 thousand hectares (1982) and large portions of this total were devoted to cultivation of grain crops and sugar cane 10 It seems unlikely therefore that increase fertilizer use alone can fully explain this yield increase

In the absence of definitive information what could explain a sudden doubling of average yields in the mid 1960s? One hypothesis would emphasize technical change Much of the important selection and breeding work was undertaken in the late 1950s and early 1960s The South China Tropical Crops Research Academy bred or selected many of the well-known varieties under current production representing significant improvement in aggregate speed and quantity of root production during the 1959-62 period The South China Agricultural Science Academy in Guangzhou bred or selected for multiplication and dissemination several other higher yielding varieties during the 1957-62 period ¹¹ Particular attention paid to cassava during this period may also have produced important results in improving field cultivation techniques

Another hypothesis would suggest that cassava cultivation on somewhat better land was initiated during this period The Cultural Revolution decade (1966-77) was marked by a policy of local self sufficiency in grain production and escalation of quota deliveries In some cases quotas were specified in terms of particular crops needed by the state In other cases quotas were specified only in terms of weight of staples leaving the choice of crops to each collectivity of farmers Although farmers received compensation for quota deliveries prices were notoriously low involving an implicit tax Land taxes amounting to roughly 5-13 percent of output during this period depending on location were also payable in kind Taxes and quotas were therefore obligations to be discharged with commodities achieving the highest bulk yield per unit area. Although fresh weight of root and tuber crops was divided by 4 for these

¹¹Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> pp 77-78

- 13 -

accounting purposes through 1963 and by 5 thereafter cassava may have been cultivated and even fertilized by a wider variety of localities in South China with the express purpose of expeditiously discharging these obligations ¹²

The determinants of variation during the final period (1978 84) are somewhat easier to identify with confidence The steady growth in yields is almost certainly related to an increase in manufactured fertilizer nutrient application. Although average application levels for cassava are not known with precision nutrient application within China as a whole tripled between 1976 and 1984 and doubled between 1978 and 1984 culminating with an average rate of 120 6 kg /ha of sown area. Efficiency of utilization also increased during the period. Although the average level in Guangxi was somewhat lower it grew even more rapidly than the national average between 1976 and 1982 (to 110 2 Kg /ha) then stagnated in 1983 (112 4 Kg /ha) and 1984 (109 7 Kg /ha) paralleling yield progress in Guangxi ¹³

¹²For further discussion of these issues see Bruce Stone China s 1985 Foodgrain Production Target Issues and Prospects in Anthony M Tang and Bruce Stone <u>Food Production in the People s</u> <u>Republic of China</u> IFPRI Research Report no 15 (Washington D C International Food Pol cy Research Institute 1980) pp 147 149

¹³Bruce Stone Chinese Fertilizer Application in the 1980s and 1990s Issues of Growth Balance Allocation Efficiency and Response in US Congress Joint Economic Committee (eds.) <u>China s</u> <u>Economy Looks to the Year 2000</u> vol 1 <u>The Four Modernizations</u> (Washington D C U S Government Printing Office 1986 pp 453 496 and State Statistical Bureau PRC <u>Statistical Yearbook of China</u> <u>1985</u> (Hongkong and Beijing Economic Information and Agency and China Statistical Information and Consultancy Service 1985) p 283

Application of manufactured fertilizers to cassava is likely to be much below the average level for all crops in Guangxi except on state farms but scattered survey reports ¹⁴ confirm that on farmers fields near cassava research institutions in South China yields which are comparable to the recent Guangxi provincial averages are only obtainable with fertilizer application or under good soil and climatic conditions atypical of most Chinese cassava growing areas One of the survey respondents however also indicated that the cassava research in China had made significant progress in developing improved varieties and low-cost cultural practices a decade earlier Yet the predominant varieties planted in the 1980s were among those selected (or bred) during the late 1950s and early 1960s (see below)

The rise and fall in cassava area during the 1978-84 period is attributable to a number of factors the most powerful of which has been the rise and fall of opportunities for export to the European Community With EC pressure on Thailand (the dominant and low cost supplier) to reduce exports during the late 1970s Chinese exports responded to the opportunity with rapid growth in 1979 1980 and 1981

UNIDAD DE INFORMACIUN Y 14 Delphi Survey for the Assessment of Potential DOFEMENTATION Cassava circulated to cassava breeding institutions in China and elsewhere by J S Sarma International Food Policy Research Institute 1986 The respondent who mentioned varietal and cultural improvement a decade ago was Liu Yingjing of the South China Institute of Botany in Guangzhou

(Table 3) before similar pressure eventually forced a deceleration beginning in 1982 (with 1981 fall sown cassava) ¹⁵

Other circumstances contributing to this responsiveness involve changes in rural institutions since 1978 79 farmers have been allowed more control over cropping and management decisions but are also afforded less market security from the government as a guaranteed buyer At the same time very poor locations typical of many Chinese cassava-growing areas have been released from tax and quota obligations while the government in response to substantial success in accelerating national foodcrop production growth began emphasizing higher quality in farm procurement items compared with the considerable previous period emphasis on cheaper bulkier products such as most root and tuber crops and the lowest quality grades of These considerations coupled with the overall cereal crops liberalization of economic activities in rural areas explains the fall in cassava area to a 1984 level below that typical of the pre-1978 period The decline in sown area cuts across most grain crops throughout China but is particularly noteworthy in proportional terms in the case of crops typically grown in poorer farmlands and characterized by low prices and weak markets such as sorghum white potatoes bean crops and no doubt cassava (Table 4) In Guangdong and Guangxi although unsuitable for such a warm moist climate

¹⁵Bruce Stone An Analysis of Chinese Data on Root and Tuber Crop Production pp 623-625 Bruce Stone An Examination of Economic Data on Cassava Production Utilization and Trade in China pp 16 22

			Dried (Cassava			<u>Cassava</u>	Tapioc	<u>a Cassa</u>	<u>va Starc</u> ł		talCa ports	assava s in
	LO EUI	opean	Snare of	r EC neu Immonto		cai					171 E	esn ł	100 1
	Commun		y cassava	Imports		Jorus) (<u> </u>		<u> </u>	uiva	ients .
	(metric	: tons)	(percer	17)	(metric	c tons) (metr	IC tons) (metr	ic tons)	(me	etric	tons)
1963	20	977											
1964	33	393											
1965	72	676											
1966	57	077											
1967	53	173											
1968	28	015											
1969	1	324											
1970	4	984											
1971	14	859											
1972	16	070											
1973	8	083											
1974	4	111	0	2	4	000			1	1 429			
1975	4	211	0	2,	4	000			1	1 429			
1976	i 7	253	0	2	7	000	6	500		2 000		60	657
1977		999	0	0	1	000	2	000				11	948
1978	8 1	327	0	0	1	000	1	000				7	403
1979	51	449	1	0_	51	000	5	800		2 060		183	522
1980	335	989	6	9_	336	000	20	500		2 500	1	067	070
1981	606	589	9	1	607	000	10	000		1 500	1	788	073
1982	440	181	5	4	445	000	14	000		1 500	1	343	397
1983	3 15	222	0	4	460	000					1	314	285
1984	143	000	2	7					1 31	4 285			

Table 3 PRC Cassava Exports 1963 1984

Notes and Sources

European Community data for dried cassava imports from China and other countries are compiled from EUROSTAT and NIMEXE Analytic Tables for Foreign Trade (which are in close agreement) Total dried cassava cassava tapioca and cassava starch export data are from Food and Agriculture Organization of the United Nations Supply Utilization Accounts Tape 1984 Rome 1985 The fresh root equivalents of all cassava exports aggregated together appear in FAO Standardized Commodity Balance Tape 1984 Rome 1985 The 1983 and 1984 data must be regarded as open to some question and may be revised in future compendia

	Rice	Wheat	Corn	Soybeans	Millet	Sorghum	Sweet and White Potatoes	Only Sweet Potatoes	Only White Potatoes	Other Cereals & Bean Crops	Total Foodgrains	
(thousand hectares)												
1976	36 217	28 417	19 228	6 691	4 501	4 329	10 366			10 994	120 743	
1977	35 526	28 065	19 658	6 845	4 477	3 759	11 229			10 841	120 400	
1978	34 421	29 183	19 961	7 144	4 271	3 456	11 796	6 800	5 000	10 355	120 587	
1979	33 873	29 357	20 133	7 247	4 173	3 173	10 952			10 355	119 263	
1980	33 879	29 228	20 353	7 227	3 872	2 693	10 153			9 829	117 234	
1981	33 295	28 307	19 425	8 023	3 888	2 610	9 621			9 789	114 958	
1982	33 071	27 955	18 543	8 419	4 039	2 783	9 370	6 916	2 454	9 283	113 463	- 18
1983	33 137	29 050	18 824	8 414	4 087	2 707	9 402	6 840	2 562	8 426	114 047	I
1984	33 179	29 577	18 537	7 286	3 797	2 384	8 988	6 426	2 562	9 136	112 884	
1985	32 070	29 218	17 694	7 718			8 571				108 845	

Sources Most data were converted from Chinese unit figures or were calculated from data appearing in State Statistical Bureau (SSB) PRC <u>Statistical Yearbook of China 1985</u> (Hong Kong and Beijing Economic Information and Agency and China Statistical Information and Consultancy Service Centre (CSICSC) 1985) p 253 1985 data were added from SSB PRC <u>China A Statistical Survey in 1986</u> (Beijing CSICSC 1986) p 37 1982-84 figures for sweet potatoes and for white potatoes are from He Kang et al. Zhongguo Nongye Nianjian Bianji Weiyuanhui [Chinese Agricultural Yearbook Editorial Committee] (ed.) <u>Zhongguo Nongye Nianjian 1983</u> [Agricultural Yearbook of China 1983] (Beijing Nongye Chubanshe [Agricultural Publishing House] 1984) p 40 He Kang et al. <u>Zhongguo Nongye Nianjian 1984</u> (Beijing Nongye Chubanshe 1985) p 88 He Kang et al. <u>Zhongguo Nongye Nianjian 1985</u> (Beijing Nongye Chubanshe 1986) pp 147 148 The estimates for sweet and white potatoes in 1978 are from Bruce Stone. An Analysis of Chinese Data on Root and Tuber Crop Production. <u>The China Quarterly</u> September 1984 p 628
wheat had been cultivated for import substitution purposes With relaxation of this uneconomic emphasis on wheat sown area declined in the two provinces Less drastically area sown with several other food crops such as paddy sweet potatoes sorghum and millet also fell in favor of economic crops especially sugarcane (Tables 5 and 6)

After 1979 is it possible to confirm that the trends indicated for Guangxi are representative nationally? Even without national data the addition of series for Guangdong would provide a reasonable proxy Unfortunately cassava series for Guangdong are unavailable but a very rough approximation may be discerned from Table 5 The left hand column is comprised of figures quoted for Guangdong specifically The center column is derived from data appearing in the 1984 and 1985 Guangdong Statistical Yearbooks These data are not estimates of cassava area per se but are formed by deducting data for sugar cane peanuts sesame jute kenaf and tobacco from figures for total area planted with economic crops. The estimates in parentheses to the right more closely approximate cassava plantings inasmuch as area sown with all oil crops all fibers and medicinal herbs have also been deducted from the economic crop area along with sugarcane and tobacco on the basis of recent Agricultural Yearbook of China volumes to arrive at the residuals During the recent decade at least cassava has been classified as an economic crop in production stat stics rather than as a foodcrop and the calculated residual should be predominantly

~ -

1691	1324		121 106 1040	230 230	219 30 208 5 3 80 5 80	7219 70 01 9127 01 9127		332 45 11 80 147 10 2 45		6 7	£
6261	19 3		1 & 7 12093 1 1070	- s	185 20 17 5 5 6 5 90	6836 0 6806 50	3 4 48	291 00 3 75 8 0 10 1 70		57 101	~ ₽ ₽ ₽_₽ ₽_₽
	F 1 15 2	ç		5.2	1174 ×	7728 5 72 8 45	469 Z6			-	5 5 54_5
+	1691	£	114 981 20	140	142 139 7 4 70 1	5276 90 276 90	464 28	276 60 13 70 16 16 70			1 1 4 1 6 F 1 851 1 851
~-	1 9		1150 10 70 2 1110	1 70 1 20	137 5 128 75 60 4 0	4)19 5 019	481 Z	2905		e	9 t ¹ 1983 x 1983 x
د ب د	1979		117 0 10070 9 985	356 346 0 0	5 2 4 7 4 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5	3319 00 3310 00	31 61	- 3 C3 - 3 C3 - 7 7 0 - 7 7 0		- - - - - - - - - - - - - - - - - - -	H 51
Ed bl F	1961		369 33 2661 07 14 87 0 7	223 60 210 67 63 87 1 67	1 7 1 1 2 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2	187		5 67 1 89	62 67 61 95 11 73		5 5
ĩ	1963		8 4 27 27 7 7 17 60 17 60	9 64 64 64 64 64 64 64 64 64 64 64 64 64	11 0 117 9 146 0 1360 18 20	1 1 93 151 9	1 4 20 120 b	c) + 1 - 7	6 6 6		1 1 1 53 4
ر.	5 15	1 4 P	5 7 80 7 0 1 0 16 7	27 L 227 67 59 67 1 9 4 91	a 27 173 20 14 80 14 80 19 87	127 127	187 E0 175 17	13	52 27 93 9 7 69	ند مہ بی مہ	۴ ~ ۳
	18 1	÷	5 07 1791 67 24 89 1	218 27 17 67 146 00 1 87 6 13	6 140 1200	127 00 127 60	200 87 190 9	4 9	19	د. ج	ب ع ع ه
5	C £1		57 51 20	17 00 16 0 273 75 2 50 8 7	167 47 1 1 5 16 60	111 33 111 3	111				ີ ະຕິ - ເຜີ
	£ 51		4094 28 D 7 10 7 6 93	15 8) 187 8) 2 5 80 8 80 8 80 8 80 8 90 8 90 8 90 8 90 8	28 1 1 2 1 2 1 2 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2 1 2 3 2 3	127 73 127 7	193 67 1 6 93		65 07 2 9	2 4 5 5	в ь 1961 г 1961 н 1961
				म						ם - 	- 5 * * * *
Р				1 - 1 	ы		7		1		
۹۶ د			1	بة م 11 م 12 م 12 م 12 م	ч <mark>ы</mark> т ч	ل ل	 	ب سے مر	<u>د</u> –	ະ 🗍 🗂 ບ	с б Г с б в ~
19 1				8 E C 2		A1) 5 5 9	ן י ק		1 5 7	ᆂᆝᆆᆝᆂ	cs.

				S A						P +		
	19 7	1	1981	1982	1993	1954	1979	1989	1981	1982	1983	1984
			th	ልኩ ኒ					th	1 t	t	
1 For	5 98	. 0 37	5 61 87	017 93	0 67	473	17 80	16985	16 5	19 0	1960	197
ł	• • • •	11	0 7 0	4904 60	40 8	5 7	145	16	14790	17.4	1791	177
		2 5 07	107 47	48 75	48 7	82 87	3	20	140	16	66	125
t	44 0	45 87	45 00	41 /	28 89	491	65	65	65	70	6	70
	130 07	139 27	1007	15 60	181	1.5 60	100	115	120	145	110	120
5 3≢tP (15t gt) <u>a/</u>	661	647 00	61 50	62 73	621 0	603 1	1390	1 65	1 50	1 0	1400	142
Dt i1 6 <u>b</u>	/ 80	E3 1	0 80	93	74 3	6 80	23	70	80	50	50	0
5 g	2	17	12	13	17	1 20	L	1				•
11	67	5)	4	2	2	2 1	3 50	4 0		ω		5 60
All C	917 0		964 93	100 40	833 RJ	9 83						
1 1 0 0	4 1 87	4 7	76	476-13	391 3	41 67	441-15	531 5	410.15	44 15	510.00	*** **
F	386 67	4 67	0.00	4 1 07	- K - K)	1 1	A A 45	519 .0	010 13	151 0	JIC 70	5/9 20
۶	2 >0	21 60	24 7	26 (7	1 4	19 87	7 15	7 60	, ,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	4 I F	11 13	8 80
	21	1 0	0.85	19 0	1.5	11 07	5	5 00	L 15	1 I K 16	30	6 40
S (1)	0 2			••••	• •		0 02	3 00		3 43	• 2	4 (8)
<u>All 5</u> C	101 B	I 87	2 80	278 47	28 26	16 13	8219 20	9225 50	13698 50	17 BO	12 00 00	17692 00
g C	181 EV	47	20 80	273 47	2B 6	21 12	8218 0	9226 0	13648 0	172 3 80	12 90 00	17692 00
<u>0</u> E <u>C</u>	Z1 60		200 60	194 60	1 7 80	1 7 13						
C C		(209										
<u>/11 F</u> t			1 67	139 27	141 87	191 7	8	322 35	418 40	512 45	570 20	792 4
Б				2)	4.1		5 80			1 4 90	143 0	
P							30		6 8	5	4	5 60
C				21 13	27	17	B7 20		119 5	17 95	178	267 5
F 1							45 50		91 00	66 70		
							6 65			9 63		17 70
5 C												
<u>рі</u> с	473 90		3 67	7	393 (7	4 5 60						
	16 (0		199 7	2 2 77	76 0	365 73						
ñ	,		10 7	10 73	17 47	21 47						
	•					A. 17						

t i i th di ti i i i

	2	Ep t	1	b1	ŧ	l d d	ATL	g b th	00	b	с	6	od -	•
ş		1	4					•		-	,	-		3

- ----
- lif il C L i d ld dyb Ld L i t ph F C i l g d d t ~~~
- ----

99 g T g G 3 g L9 T bì T bì 3 H 🏟 g ì i lìn gg g Z gg i E 4 g L g g Zh g gy H 198i H 4 g g t lí d Z g gy Z g 1983 E g t I g g Zh gg N g N 1983 H 4 g g t lí Z gg Zì g i E g t Lí Zong g Z gg N g N 1988 Zh 3 g Z T g 1981

comprised of but should overestimate area planted with cassava The estimate in the right-hand column is derived by deducting published Chinese estimates for area sown with cassava in Guangxi (1961) Taiwan (1961) Fujian (1961) Yunnan (1960) Guizhou (1961) and Hunan Zhejiang and Jiangxi (circa 1960s) from a published 1961 national figure The calculated figure substantially exceeds the residual based overestimates of cassava area in Guangdong for surrounding years in a period when cassava area in other Chinese provinces was undoubtedly small These data are evidently in conflict

An examination of 1950s Chinese material provides an impression that 1950s cassava area in Guangdong was greater than that implied by the residual based overestimates in the center column of Table 7 Guangxi cassava area in 1957 for example was around one-quarter of all Guangxi farmland planted with root and tuber crops. If the same proportion were relevant for Guangdong 1957 cassava area would total more than 300 thousand hectares. But whereas 36 21 percent of Guangxi root and tuber crop production consisted of crops other than sweet potatoes this figure was only 13 percent for Guangdong and included cassava taro white potatoes and mao potatoes primarily the first two categories. 16 Still 1957 Guangdong cassava area could easily have been in the range of 100-200 thousand hectares

¹⁶See data and Chinese sources cited in Bruce Stone An Analysis of Chinese Data on Root and Tuber Crop Production pp 609-616

·		
Guangdong Cassava area estimates in Chinese sources	Residual based estimates of other economi crops in Guangd	National estimate minus Guangxi Yunnan c Fujian Taiwan Guizhou ong Hunan, Zhejiang & Jiangxi
	(thousand hect	ares)
33 4		
	25	
	57	
		240
	25	
	149	
	201	
167 3		
	223	
	236	
	(2	15)
	237	
200	(2 243 (1 188 (1 206 (1	01) 95) 58) 59)
	Guangdong Cassava area estimates in <u>Chinese sources</u> 33 4 167 3 200	Guangdong Cassava area estimates in Chinese sourcesResidual based estimates of other economic crops in Guangd (thousand hect33 425 5733 425 57167 325 149 201167 3223 236 (2 243200(2 243201 1881 188 (1 206

Table 7 Estimates of Area Sown with Cassava in Guangdong Province 1943-1984

Data appearing in the left- and right-hand columns are based on Table 1 Sources except that the Taiwan Province figure deducted along with those from other provinces from the national estimate for 1961 (10 000 ha) was taken from the same source as the national figure Liang Guangshang (ed) Mushu Zaipei vu Livong p 9 Data appearing in the center column are based on data from Guangdongsheng Tongjiju [Guangdong Province Statistical Bureau] (ed) Guangdongsheng Tongji Nianjian 1984 [Guangdong Province Statistica] Yearbook 1984] (Xianggang Xianggang Jingji Daobao Shechuban [Hong Kong Economic Reporter Publishing House] 1984) pp 113-114 and Guangdongsheng Tongjiju Guangdongsheng Tongji Nianjian 1985 [Guangdong Province Statistical Yearbook 1985] (Xianggang Xianggang Jingii Daobao Shechuban 1985) pp 107-108 Sown area data for sugarcane peanuts sesame jute kenaf and tobacco were deducted from total area sown with economic crops Data for rapeseed and other oilcrops other fibers and medicinal herbs have also been deducted from the figures appearing in parentheses on the basis of Zhongguo Nongyebu [Chinese Ministry of Agriculture] Zhongguo Nongye Nianjian 1980 1982 1983 1984 and 1985 (Beijing Nongye Chubanshe [Agricultural Publishing House] 1981 1983 1984 1985 and 1986)

During the 1950s cassava was treated explicitly as shulei [including both tuber crops and tuberous roots] which in turn were classified as liangshi [staple food crops] occasionally as part of miscellaneous grains By the mid-1970s however it is clear that cassava was excluded from shule; and liangshi statistics and incorporated as a sub-category or as a residual within jingij zuowu [economic crops] The transition date has not been clearly 17 determined although 1964 and 1976 have been suggested as candidates In view of the trends exhibited for Guangxi in Table 2 and the foregoing discussion attempting to resolve the conflict implied in Table 7 it seems likely that the 1950s economic crop statistics appearing in the Guangdong Province Statistical Yearbooks though recently published are unlikely to have been adjusted for inclusion of cassava hence the center column cannot be used as a proxy for cassava area for the 1950s nor probably for 1962 From 1965 onward however these residuals may well provide the best indication of trends in (though not exact estimates of) Guangdong cassava area since cassava is likely to dominate the category It should be noted however in view of economic liberalization since 1979 that the divergence of this residual series and actual cassava area is likely to have increased especially since the decline in export opportunities in the early 1980s

¹⁷op cit pp 600 604

Unfortunately despite the availability of an official cassava series for Guangxi and a rough approximation of trends for Guangdong it is still not possible to be definitive about national trends for China It is clear that cassava was planted on less than 100 thousand hectares in the mid 1940s rising quickly to perhaps around 250 thousand hectares by 1957 and 355 thousand hectares (excluding Taiwan) by 1961 during the famine Total plantings on the Chinese mainland probably subsided to roughly 300 thousand hectares by 1965 and were certainly not much lower in 1972 when plantings in Guangdong and Guangxi alone totalled 292 thousand Official area sown with cassava in the two southern provinces seems to have risen to 370 thousand hectares in 1979 perhaps peaking in 1980 at 410-420 thousand hectares subsiding to 390 tha and 370 tha in 1981 and 1982 and plummeting to 275 tha and 250 tha in 1983 and 1984

But whether cassava area rose appreciably outside of these two southern provinces since the early 1960s is not clear. The (undated) total of 350 thousand hectares given to the CIAT delegation by Chinese cassava breeders in spring 1982 would imply that it has not while the (undated) Institute of Geography estimate (around 500 thousand hectares) published in 1980 suggests either considerable expansion into other provinces or more aggressive estimates of non field cultivation. Barring the unlikely event of relatively even distribution among other mentioned provinces officially recorded plantings of 120-190 thousand hectares outside of Guangdong and Guangxi implied by the Institute figure and the provincial estimates

- 25 -

would surely have been mentioned by the breeders or in cassavarelated publications while the 350 thousand hectare figure though purportedly including an estimate for cassava on private plots does not even appear to cover probable plantings in the two southern provinces

Part of the problem is that cassava area is undoubtedly more difficult to estimate than that of most field crops since considerable proportions are grown on private plots on narrow strips adjacent to roads and fields on hilly and incompletely cleared land not yet or normally considered farmlands and on tiny corners not even counted among private plot statistics. There is even some illegal cultivation under trees on state rubber plantations for example ¹⁸ The Institute of Geography figure probably incorporates a more aggressive estimate based on some survey evidence of these kinds of plantings which in large part elude official statistical coverage

All that can be claimed with near certainty is that national cassava planting reached another major peak in the late 1970s or early 1980s and then declined rapidly with the subsidence of opportunities for international trade increasing liberalization of rural economic activities and a probable cut back in the government s role in cassava marketing

18_{op} cit p 621

National production trends are even less discernible The only available figure for recent production is 3 million tons provided to the CIAT delegation in spring 1982 ¹⁹ although like the 350 thousand hectare figure provided at the same time it may well be an underestimate. The best indication of national yield trends is undoubtedly the Guangxi series in Table 2 with some reservations about a few of the years such as 1967 and 1968. The national average implied by the figures given to the CIAT delegation is 8 6 tons per hectare suggesting that average yields in Guangdong and elsewhere are lower than in Guangxi. But this comparison too cannot be taken too literally since the four to five tons per hectare 1981 Guangdong average suggested by such an exercise implies too great a divergence between Guangxi and Guangdong particularly in view of greater general availability of fertilizer in the latter province

Within these two southern provinces some of the principal cassava-growing areas can be identified. The first record of Chinese cassava cultivation was in 1820 in Gaozhou County part of Zhanjiang Prefecture in southwestern Guangdong ²⁰ Gaozhou is not a coastal county and earlier cultivation is entirely possible. In the 1950s there is continued record of cassava in Zhanjiang Prefecture where uplands constituted 27 5 percent of cultivated land a greater

²⁰Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 4

¹⁹James H Cock and Kazuo Kawano Cassava in China unpublished trip report International Center foi Tropical Agriculture Palmira Colombia June 1982 p 1

been grown there at least since 1912 when a well-known Malaysian variety was introduced into Dan Xian rubber plantations. According to 1951 statistics roots and tubers accounted for 38 5 percent of grain consumption in plains areas of the Island and 69 8 percent in hilly districts paddy rice providing most of the remainder in both cases ²²

In Guangx1 cassava was generally distributed in the Xunjiang and Liujiang Valleys (east central Guangx1) characterized by relatively barren drought-prone land Yet yields of 7 5 15 0 tons per hectare were cited It was used as food feed and to produce starch for cotton yarn in the city of Wuzhou in east central Guangx1 on the Guangdong border where Guangx1 s first starch factory was opened in 1952 Cassava was also widely planted in southeastern Guangx1 and along the southern coast especially Hepu County and the suburbs of Beihai on the southeast coast But although Beihai and Wuzhou remained major centers by the mid-to-late 1950s cassava starch factories and consequently expanded cassava cultivation had spread widely in the Autonomous Region including Ningming in the southwest Bama Yaozu Autonomous County toward the northwest and Wuming in the center of the Region ²³ In Yunnan cassava cultivation in 1960 was recorded in Hekou Yaozu Autonomous County in the south

²²op cit pp 137 138 and p 201 See details of varietal transfer below

²³op cit pp 258 and 333-334 Guangxi Jingji Nianjian Bianjibu <u>Guangxi Jingji Nianjian 1985</u> p 192

proportion than in other Guangdong Prefectures Suixi County and the Zhanjiang city suburbs (where uplands comprised 12 percent) in the center of the prefecture and Xuwen County on the southern tip of the Leizhou Peninsula are mentioned in 1950s literature on cassava but the crop may have been grown more generally throughout the grain deficient Leizhou Peninsula and in the uplands adjacent to the Jianjiang Plain where miscellaneous grains (80 9 percent of which were root or tuber crops) comprised 44 percent of staple foodcrop production in 1955 Throughout the Zhanjiang Prefecture and enclosed municipal areas root and tuber crops (valued at one-fourth fresh weight) constituted only 28 percent of staple crop production which occupied 95 percent of sown area Sweet potatoes were the principal root crop however with cassava and mao potatoes comprising a little less than 5 percent of root and tuber crop production ²¹

But cassava cultivation clearly was not limited to southwestern Guangdong in the 1950s There is also record in the <u>Economic</u> <u>Geography of South China</u> (1959) of cassava and taro being grown in the mountainous uplands surrounding the Sui and Xi River Valleys in West Central Guangdong notably Huaiji Guangning Sihui Gaoyao and Deqing Counties all in Zhaoqing Prefecture Cassava was not specifically mentioned in the discussion of Hainan Island but has

²¹Sun Jingzhi (ed) <u>Huanan Dichu Jingji Dili</u> [Economic Geography of South China] (Beijing Kexue Chubanshe [Scientific Publishing House] 1959) Translated in Joint Publications Research Service August 24 1969 no 14954 pp 137 138 and 178 179 When these statistics were gathered the region included the Qinzhou Special District encompassing known cassava growing areas such as Hepu County and the Beihai suburbs

along the Vietnamese border in Dehong Daizu Jingpozu Autonomous Prefecture in the west along the Burmese border and elsewhere ²⁴

By 1972 Zhaoqing Prefecture had taken over as the principal cassava growing region of Guangdong accounting for 57 thousand hectares or 33 9 percent of the provincial figure for that year Zhanjiang Prefecture was next with 33 thousand hectares or 19 5 percent The remaining 77+ thousand hectares were distributed throughout Guangdong including Hainan Island and Shaoquan Meixian Shantou Foshan and Huiyang Prefectures Some of these secondary regions increased cassava plantings rapidly in the late 1970s Cassava area in Meixian Prefecture for example in the northeast corner of the province grew from 10 800 hectares in 1977 to 40 000 hectares in 1978 ²⁵

In spring of 1982 a delegation of cassava breeders from the International Center for Tropical Agriculture (CIAT) visited a number of cassava growing areas in Guangdong including Baisha County and Haikou Municipality on Hainan Island three state farms in Zhanjiang Prefecture and Dongguan County (Huiyang Prefecture) on the Pearl River Delta Some impression of area trends on the Delta can be obtained from statistics for Dongguan Cassava plantings declined from 8 600 ha (1957) to 4 600 ha (1977) with much of the decline occurring in the 1970s Cassava area then fell even more rapidly to

²⁴Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 9
²⁵ibid

3 157 4 ha in 1978 then 3 100 ha (1981) and 2 816 8 (1982) But on the other side of the Delta in Taishan (Foshan Prefecture) cassava was not grown on a large scale until recently And Fucheng Commune (within Dongguan County) cassava area fell from 500 to 367 hectares between 1980 and 1981 but recovered to 434 ha in 1982 ²⁶

Yields observed by the CIAT delegation were generally in the 6 to 8 ton/ha range but 20-25 tons/ha was claimed for some state farms and experiment stations ²⁷ Average yields for Dongguan County on the Delta were 11 73 tons/ha in 1978 and 15 76 tons in 1982 Fucheng Commune within Dongguan County claimed around 15 tons/ha ٦n 1980 14 43 tons/ha in 1981 and 17 75 tons/ha in 1982 28 ln Guangdong generally with 1200 1800 mm of annual rainfall yields on farmer s fields with poor soils have been estimated by one Chinese breeder to fall typically between 5 to 7 tons per hectare and between 10 to 13 tons under good climatic conditions and soil conditions Throughout Southern China (800-2000 mm/yr annual rainfall) yields are estimated by another breeder to be 5 to 9 tons per hectare on poor soils and 15 30 tons/ha (avg 20 tons/ha) under good conditions Without fertilizer or irrigation however poor soil yields were reported to be 3 to 6 tons/ha (average 4 tons) and for good soils

²⁷Cock and Kawano Cassava in China p 1
²⁸Graham Johnson op cit

²⁶Cock and Kawano Cassava in Asia op cit The 1957 1977 and 1981 figures for Dongguan County are from p 13 The 1978 and 1982 data the Fucheng Commune data and the impressions for the 1970s and for Taishan are from Prof Graham Johnson Dept of Anthropology and Sociology University of British Columbia correspondence Sept 19 1983

with good weather 12 to 18 tons/ha In Zhaoqing and Shaoquan Prefectures (1450-1700 mm/yr avg rainfall) farmers yields without fertilizer and irrigation were reported by an agronomist specializing in cassava to average 6 4 tons/ha under poor conditions and 11 2 tons/ha under good conditions With fertilizer but without irrigation these averages rose to 11 69 tons/ha and 19 7 tons/ha with ranges of around 4 tons/ha Average yields on research stations run 2 to 10 tons per hectare higher than those quoted above for farmers fields ²⁹

These data in sum would seem to suggest that most cassava in Guangdong is grown on poor land especially uplands and until recently rarely received much fertilizer. Total cassava area has fallen during the past decade or so on better lands such as those typical of the Pearl River Delta (with scattered temporary exceptions due to the short-lived EC export opportunities) leading to some decline in the average quality of farmland growing cassava. This decline has been more than counterbalanced by the increase in fertilizer application to cassava in recent years such that average yields (though not necessarily total production) have increased sharply. The higher cassava yields on state farms and for private and cooperative farming in the Pearl River Delta locations like

²⁹Delphi survey responses sent to J S Sarma (IFPRI) for Shaoquan and Zhaoqing Prefectures by Huang Xi of the Institute of Drought Grain Crops Guangdong Province Academy of Agricultural Sciences Guanzhou June 28 1986 for Guangdong by Liu Yingjing of the South China Institute of Botany Chinese Academy of Sciences Guangzhou June 30 1986 and for South China Academy of Tropical Crops Pesearch Dan Xian Hainan Island June 20 1986

Dongguan County are partially explainable in terms of greater access to (and more attractive relative prices for) manufactured fertilizers as well as to often better soil and higher standards of But an additional important factor relates to varietal agronomy An especially small portion of cassava grown on state adoption farms and on the Delta is likely to be utilized for direct human consumption so there is little reason for managers and farmers to cultivate the lower yielding sweeter varieties characterized by low cyanide and higher protein content as well as greater overall palatibility (see below) The argument is at least partially relevant for Zhaoqing and Shaoguan Prefectures which are becoming one of Guangdong s major regions for processing industries utilizing cassava and for similar reasons east central and southern Guangxi historically among the principal cassava growing areas within the Autonomous Region

Cassava production systems

Cassava in China is grown both extensively and in small plots and scattered plantings Extensive cultivation is most notable on but by no means confined to state farms and is principally associated with starch production the domestic animal feed market and exports Outside the state farm sector with the formal dissolution of the communes in favor of the household production • responsibility system it is safe to assume that extensive cultivation has declined somewhat since the early 1980s However

Graham Johnson has pointed out ³⁰ that rural reforms have in some instances strengthened rather than weakened cooperation in South China so it cannot be assumed that extensive cultivation in the old cooperative sector has disappeared

Since the formation of agricultural producers cooperatives (1954-56) and the people s communes (1958) collective lands constituting the vast majority of Chinese farmlands have been cultivated communally However the 54 thousand communes have normally not been the principal cultivation unit. More often smaller units the 719 thousand brigades or most commonly the 5 6 million production teams have cultivated as cooperative groups. A production team normally consisted of around thirty farm families (an average of 139 people) that pooled usually contiguous land and shared cultivation responsibilities ³¹ The principal farm unit varied geographically in size but by the late 1970s averaged around 8 6 hectares in Guangdong and 8 9 hectares in Guangxi and certainly less in the very densely populated Pearl River Delta of Guangdong ³²

³⁰Graham E Johnson The Production Responsibility System in Chinese Agriculture Some Examples from Guangdong <u>Pacific Affairs</u> vol 55 no 3 (Fall) 1982 pp 430 449

³¹Zhongguo Guojia Tongjiju [State Statistical Bureau of China] <u>Zhongguo Tongji Nianjian 1983</u> [Statistical Yearbook of China 1983] (Beijing Tongji Chubanshe [Statistical Publishing House] 1983) p 147

³²ıbıd p 148 Dılı Yanjıusuo <u>Zhongguo Nongye Dılı Zonglun</u> pp 77-79

Since the early 1980s however cultivation of collective lands is no longer a communal responsibility but has been delegated to several specialized households. Normally it is the particularly skilled farmer who is entrusted with responsibility for farming collective lands. But in relatively advanced communes or in suburban areas non-agricultural activities with higher income earning potential attract the most able workers

Aside from collective lands individual farm families maintain private plots of normally 0 03 0 05 hectares which are used primarily for family production of food items especially vegetables and livestock products (and consequently fodder for the latter) Although no estimates are available for cassava cultivation on such lands the importance of cassava as a swine feed the considerable importance of swine in the livestock economy of South China and the dominance of family-owned and managed swine within the swine husbandry sector suggest that private plot cultivation of cassava in South China is not trivial

In addition to formally established private plots assigned to each family there appears to be cultivation of cassava on an even more fragmentary basis on narrow strips adjacent to roads and fields on steep hillsides and other areas not formally counted among cultivated lands and illegally in economic forests reclamation areas and other lands managed by the state The latter may be distinguished however from planned cultivation on such lands by the State Faim and Reclamation Bureau While land is being cleared and

- 35 -

reclaimed cassava is often grown as an intermediate crop for a few years until it is discontinued when field transformation progress allows cultivation of the principal crop 33

Finally cassava is planted as a field crop on state farms There its cultivation is especially extensive and is characterized by high standards of agronomy and abundant application of modern inputs particularly fertilizers Visitors interested in cassava are often brought to state farms to view extensive cultivation and high yields but state farm plantings remain a small proportion of total cassava Cultivated area on state farms in Guangdong varied between area only 60 and 64 thousand hectares from 1981 to 1984 and remained at 20 thousand hectares in Guangxi In 1984 state farm sown area in Guangdong was only 86 900 hectares or less than 1 8 percent of the provincial total of which 72 200 hectares were planted with cereals beans sweet and white potatoes oilcrops and sugarcane leaving a residual of 14 700 hectares which could have been planted with cassava vegetables green manure other fodder crops or other southern industrial crops such as sisal hemp. In Guangxi state farm sown area was only 17 400 hectares or less than 0 5 percent of the regional total of which the residual category including cassava

³³Bruce Stone An Analysis of Chinese Data on Root and Tuber Crop Production <u>The China Quarterly</u> September 1984 p 621 Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 36 Bruce Stone An Examination of Economic Data on Chinese Cassava Production Utilization and Trade

comprises but 3 300 hectares ³⁴ Thus private and collective plantings dominate cassava area in China

Available international data on cassava utilization in China is unreliable but it is clear that animal (especially swine but also cattle fish and silkworm) feed is associated with each of the cassava production systems Exports and starch production as well as less traditional industrial and processing uses are associated with collective production and the state farms while direct human consumption is associated with private production and the collective Machine cultivation is associated with a sector in poorer areas portion of the extensive plantings between 100 m and 300 m above sea level Between 300 m and 1 000 m cassava is grown in rotation with dryland crops as far as 30°N Most cassava in China is unirrigated but the climate provides adequate moisture in most years and locations This is especially true in the south where fall-planted cassava is common 35

Cassava is cultivated year round in South China with the principal plantings concentrated in spring and fall. The planting material may be either freshly cut stakes or stored material Storage is practiced by cutting long stakes which may either be left in the sun in bundles or placed under trees. Cuttings are fairly

³⁴China Agricultural Yearbook Editorial Board <u>China</u> <u>Agricultural Yearbook 1985</u> (Beijing Agricultural Publishing House 1986) pp 114 and 185-186

³⁵Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 36

short (10-15 cm) with minimal selection Planting is fairly deep (up to 10 cm and horizontal) Germination varies considerably by location but is frequently very poor and strands are not uniform Land preparation is generally acceptable and is done manually by draft animal or tractor-diawn implements 36

Spring cassava (e g in the Guangzhou area) is typically planted between January and March and harvested in the fall after at least 8 months especially from October although for fodder purposes cuttings may be taken continuously over an extended period of time The spring and summer seasons considerably aid leaf and stem growth of spring-planted cassava and fall arrives optimally for starch formation. Yields of spring-planted cassava tend to be large but are less reliable since typhoons in fall occasionally cause damage Furthermore low temperatures in spring extend the budding and sprouting period and thus the risk of insect damage. But springplanted cassava fits well into South Chinese intercropping and rotation systems facilitating the achievement of as many as three crops per year including one of cassava ³⁷

Fall- and winter-planted cassava is common in the most tropical areas with harvests starting the following fall. The peak period for both planting and harvesting is September to November - Fall planted

³⁶Cock and Kawano Cassava in China p 7

³⁷The discussion of spring- and fall planted cassava is primarily from material appearing in Liang Guangshang (ed) <u>Mushu</u> Zaipei yu Liyong pp 10 11 and 33 34

cassava is practicable from around Gaozhou County (21°56 N Zhanjiang Prefecture Guangdong Province) south where temperatures average about 22 7°C annually and the lowest average January temperatures exceed 15°C These areas also enjoy 1304-1718 mm of rainfall per year and 1941-2455 hours of sunlight higher than more northerly regions especially during the winter thereby providing more hospitable conditions for fall planting Of course fall-planted and spring planted cassava are not mutually exclusive Qijing Brigade for example in Dianbai County (within the coastal zone lying along the South China Sea well to the south of Gaozhou) planted 25 thousand hectares of cassava in 1972 approximately one-third fall planted two-thirds spring-planted

A principal advantage of fall-planted cassava is the potential for avoiding typhoon damage. This is particularly important on the Leizhou Peninsula and Hainan Island Insect damage to the sprouts is also lower since cricket populations decline rapidly in fall and the sprouting period is collapsed with sprouts and roots beginning within a week after planting Fall planted cassava can be more conveniently linked with sericulture since leaves are provided more opportunely without influencing root yield. With the longer season cassava planted in fall facilitates fuller utilization of production capacity in local starch factories and is convenient for on farm livestock development The principal draubacks are the slover winter growth and the inconvenience of the longer season for rotation and multiple cropping Thus even in the far south if the cropping intensity is high causava is apt to be planted in spring With

- 39 -

virtually all cassava north of 22°N and an important portion of the remainder planted in spring the majority of cassava in China is likely to be spring-planted

The Chinese are well aware of the necessity of rotation and intercropping for continued cassava cultivation. They estimate that yields decline by 20-30 percent in a second consecutive year of cassava cultivation and by 30-40 percent for three consecutive years ³⁸ The CIAT delegation noted however that cassava is grown as a monocrop in some areas ³⁹ South Chinese rotation systems are complex and varied those including cassava are no exception. Figure A presents notable 2-year through 6-year rotation systems for cassava and other dryland food crops. In newly reclaimed areas cassava is often grown for one or two years among jade cassia (Chinese cinnamon) mountain apricot bamboo tong oil tea oil rubber trees or in other economic forests. Chinese literature points out the importance of rotation of cassava with green manure crops in economic forests to avoid erosion.

Cassava is normally the principal crop in a small number of exceedingly poor localities and a very few state farms As Table 5 and 6 indicate the most important crop in South China is unquestionably paddy rice comprising 63 percent of sown area in Guangdong in 1984 and 59 percent in Guangxi Paddy fields occupy 63

³⁸Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 40 ³⁹Cock and Kawano Cassava in China p 8 Figure A Cassava Rotation Systems in China

2-year systems

cassava - upland rice sweet potatoes cassava - peanuts sweet potatoes spring peanuts fall-planted cassava - fall harvested cassava spring soybeans

3 year systems

cassava - sugar cane - sugar cane cassava peanuts wheat - upland rice sweet potatoes

4 year systems

cassava- mung beans sweet potatoes - sugar cane - sugar cane

5 year systems

peanuts wheat - upland rice sugar cane - sugar canesugar cane

<u>6 year system</u>

cassava - sugar cane - sugar cane - soybeans sweet potatoes - upland rice radishes - peanuts sweet potatoes

Notes and Sources

Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 40 In Cock and Kawano <u>Cassava in Asia</u> p 8 the authors noted that cassava was often grown with legume crops predominantly peanuts

percent of cultivated land in Guangxi and are similarly dominant in Sweet potatoes are second in order of planted area in Guangdong Guangdong and combined with white potatoes totalled 10 percent of Peanuts (6 percent) and sugar cane (5 percent) rank third sown area and fourth probably followed by cassava at around 3 percent Soybeans maize bast fibers and tobacco are also grown and until its de-emphasis in recent years wheat area exceeded cassava In Guangxi maize is second at 11 percent of sown area plantings followed by soybeans and sweet potatoes (5 percent each) sugar cane and peanuts (3 5 percent each) and green manure crops as a group (2 5 percent) Cassava at 2 1 percent is slightly below vegetables and When cassava area peaked in 1980 its share was melons as a group 4.3 percent ranking fifth behind rice maize soybeans and sweet potatoes and higher than all economic crops 40

<u>Yıelds</u>

Most available information on cassava yields was provided in the section on production trends and distribution. In that section it was suggested that the considerable increase in average yields during the latter 1960s (Table 2) was due to varietal improvement and to some extent improvement in cultural practices while yield growth since the late 1970s has been principally the result of increased fertilizer application to cassava complemented by some improvement in varieties and cultivation techniques. Mean cassava yields throughout China (8.6 tons/ha in 1980) approximate the average for

⁴⁰Table 5 and 6 <u>China Agricultural Yearbook 1985</u> pp 114 126 and Dili Yanjiusuo <u>Zhongguo Nongye Dili Zonglun</u> pp 77 79

the rest of the world but are somewhat higher than mean yields in the remainder of Asia Mean yields in Guangxi (13 1 tons/ha 1981-84 average) however are somewhat higher than the international average and the highest yields from field cultivation in China (average 20-25 tons/ha with a maximum of 30 tons/ha or more) are comparable to the very highest yields in the world 41 But Chinese cassava is also grown on poor soils with no fertilizer or irrigation where average yields have been characterized in the 3 to 8 ton range The average figures cited above suggest that those poor conditions are more typical of Chinese cassava cultivation than the state farm or Pearl River Delta private and cooperative farming experience However survey results suggest that even on poor soils without irrigation fertilizer application can increase yields on both research stations and operating farms by an average of at least 6 tons per hectare

Yield differences among farms are due not only to differences in soil fertility climatic conditions adopted varieties and applied fertilizers but to substantial differences in management as well Farmers in some areas use unselected planting materials giving very poor stands and low yields. On private plots management varies more than on collective lands within a single vicinity but the level of agronomy is often fairly high ⁴²

⁴¹ıbıd p 1 and 8 Delphı Survey responses and correspondence from James H Cock June 24 1983 Table 2

⁴²Cock and Fawano Cassava in China correspondence from James Cock June 24 1983

Among the responses of three Chinese cassava breeders surveyed low yield potential of existing varieties and unavailability of fertilizers were both listed by each respondent as important constraints on farmers vields But the survey results also suggest that output marketing problems storage and processing difficulties and general lack of production incentives may restrict application of labor and fertilizers to cassava in some areas 43 Although there is considerable variation in the quality of cultivated varieties. China has several popular varieties such as South China 205 providing reasonably high and stable yields. It is the provisional conclusion of one international breeder that like Thailand in the recent past and Malaysia currently rigidly selected CIAT clones could outyield the best Chinese cultivars only slightly This contrasts with Indonesia and the Philippines where the best local varieties are more easily dominated 44

Poor fertilizer response and inadequate extension were listed as a secondary constraint on yields as was inadequate moisture in some areas The 1982 CIAT delegation noted that fertilizer applications were not generally linked to soil analyses or recommendations made on the basis of experimental results Each of the surveyed breeders appeared to agree that pests and diseases were relatively unimportant

- 44 -

⁴³Delphi Survey results

⁴⁴Kazuo Kawano Trip Report to China (18-24 January 1986) unpublished trip report provided in correspondence from Kawano April 14 1986

in limiting cassava yields The 1982 CIAT delegation also found that although pests and diseases were not chemically controlled they appeared to be of very low incidence and harvest losses from such sources were concluded to be minimal. The most commonly observed disease was Cercospora leaf spots and during the dry months Tetranychus mites are reported to be a problem ⁴⁵

Costs of production and labor utilization

The 1982 CIAT delegation was told that labor use varied from 100 man days per hectare with mechanical land preparation to 270 days without machines and total production costs were estimated at \$550 170 days may be somewhat excessive for manual land US per hectare preparation but although the total of 270 days per hectare is higher than in some Asian countries it is not unprecedented The total cost figures are likely to have come directly from the production accounts of one or more Guangdong state farms where workers are paid set wages or from a small sub-group of more prosperous cassava growing collectives which happened to have kept good records and where yields Most of the implied cost per man day of around \$2 US would are high be labor A project prospectus for an agricultural credit application to the World Bank involving cassava cultivation implied a return to labor of \$1 25 US per day Much of the labor involved

⁴⁵Cock and Kawano Cassava in China p 7

especially where cassava is fertilized is for hand-weeding since herbicides are not used ⁴⁶

Much of the non-labor costs on state farms would consist of fertilizer application The highest per hectare application rates encountered by the CIAT delegation in 1982 were 20 tons of organic manures 375 kilograms of superphosphate (45-68 kg of P_2O_5) and 150 kilograms of muriate of potash (37 5 kg of K_20) 47 Such rates are likely to have existed only on state farms with plentiful access to fertilizers and/or few alternative uses Implied per hectare retail value of this level of manufactured fertilizer use alone would have US ⁴⁸ On collective lands with plentiful access to totalled \$ fertilizers use of manufactured products is less lavish but organic manure use with associated high labor requirements is very substantial In Fucheng Commune of Dongguan County on the Pearl River Delta average yields of 21-22 5 tons per hectare on 400 hectares of cassava were achieved with 225 kilograms of ammonium sulfate per hectare But in addition three organic manure applications were undertaken involving total per hectare use of 3 tons of swine and cattle manure 3-4 5 tons of human night soil and 15 tons of green manure (primarily legumes) mixed with 22 5 tons of soil On the Huashan State Farm in Lingshan County Guangxi per

⁴⁶Ibid pp 7.8 correspondence from John Lynam CIAT Cassava Program December 22 1983 Stone An Examination of Economic Data on Chinese Cassava Production Utilization and Trade pp 6-9

⁴⁷Cock and Kawano Cassava in China p 7
48

hectare applications of 255 kilograms of ammonium sulphate and 15 tons of organic manure yielding 19 62 tons per hectare were estimated to provide 141 kilograms of nitrogen 79 kilograms of phosphoric acid and 180 kilograms of nitrogen ⁴⁹

One of the 1986 Chinese survey respondents provided a combined per hectare estimate of farmer fertilizer use on poor soil cassava lands in Guangdong of 150 kilograms associated with average yields of only 5 tons per hectare while another respondent based on Hainan Island (Guangdong) implied that no manufactured fertilizers were used on cassava by farmers regardless of soil conditions ⁵⁰

It is very unlikely that much fertilizer has been applied to cassava on distant collectives and private plots This is due to low farmgate cassava prices a weak cassava market in many areas (see below) and to the higher prices and difficult access associated with fertilizer purchase unless such purchase is linked to sales to government procurement organizations of farm goods in particular state demand Private plot production of cassava employing household labor and without manufactured fertilizer use could be conducted for purposes of home consumption and hog feed at very low implied return to labor However with the low yields associated with most production such returns could be well under \$1 US per day and may have been sustainable only as a function of Chinese labor market

⁴⁹Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 86 ⁵⁰Delphi Survey responses

restrictions With increasing liberalization of economic activities in the 1980s labor opportunity costs have risen substantially in suburban and wealthier rural farm areas As export opportunities have declined these healthy economic movements have undoubtedly worked against cassava cultivation in such areas Opportunity costs would be less affected in poorer and more distant farm areas but the state s declining marketing role is less apt to be vigorously replaced by private market development in such areas

Technology development

Publication of Liang Tingdong s <u>Zhong Mufanshu Fa</u> [Cassava Planting Methods] in 1900 was a benchmark in the initiation of a formal process of cassava technology improvement in China which could span time and space As indicated in the first section cassava spread to Fujian and Taiwan in the 1920s roughly 100 years after its first known cultivation in neighboring Guangdong Introduction in Hunan and Jiangxi in the early 1940s may have been the first example of deliberate trans provincial dissemination by Chinese scientific institutions

The Peoples Republic agricultural science establishment gave attention to cassava as a bulky relatively drought-resistant crop which could be grown on poor soils and still provide growth in available calories per unit of farmland with some advantages in yield stability Alternatively it could also furnish raw materials for industry This orientation toward bulky cheaper food items and industrial crops was well within a tradition established early in the history of most socialist governments and still continues to distinguish the pattern of food production and availability although to a decreasing extent over time in the Soviet Union Eastern European countries and North Korea as well as in China Vietnam and other socialist nations more suited to cassava production ⁵¹

Although dissemination of cassava was emphasized throughout the 1950s broadening cultivation in the two southern provinces and initiating it in Zhejiang and Jiangxi cassava research began to show results in the late 1950s Between 1957 and 1962 the Agricultural Science Department s Grain Crops Laboratory of the South China Academy of Agricultural Science in Guangzhou (23°8 N) selected 10 varieties from a pool of 30 for dissemination at least six of which have been extensively cultivated including Zajiao [Hybrid] no 4 and γ inni Xiye [Indonesian thin leaf] exhibiting 11 percent and 23 percent yield improvements over widely planted Hongweizhong [Red Tai] Variety] and Mianbao Mushu [Bread Cassava] Zajiao no 1 and Nanwan Mushu [South Bay Cassava] yielding 70 86 percent of Hongweizhong but exhibiting other desirable characteristics such as superior edibility higher starch rates and/or yield stability Although breeding objectives for cassava have broadened considerably since the 1950s higher root yields and improved edibility remain as central

⁵¹Shigeru Ishikawa China s Food and Agriculture A Turning Point <u>Food Policy</u> 2 (May 1977) p 93 Bruce Stone China s 1985 Foodgrain Production Target Issues and Prospects in Anthony M Tang and Bruce Stone <u>Food Production in the Peoples Republic of</u> <u>China</u> Research Report no 15 (Washington D C International Food Policy Research Institute 1980) pp 92 96

Variety	Water Content	Starch Rate	Soluble Sugar	Protein	Fat	Fiber
Mianbao Mushu 101 [Bread Cassava 101]	64 0	29 2	1 29	0 61	0 20	0 74
Naomı Mushu 102 [Glutinous Rice Cassava 102]	63 0	29 0	2 15	0 81	0 20	0 80
Malaihuang 103 [Malay Yellow 103]	63 2	31 3	1 46	1 09	0 15	0 72
Wenchang Hongxın 104 [Wenchang Red Heart 104]	62 4	30 5	1 26	1 55	0 21	084
Maoming Baixin 105 [Luxuriant & famous White Heart	105]60 6	32 6	1 54	1 04	0 13	0 68
Haınan Hongxın 211 [Haınan(Island) Red Heart 211]	67 0	26 8	1 85	0 50	0 21	0 71
Huguang Chingjing 210 [Huguang Green Stem]	57 6	36 8	1 23	1 40	1 14	0 63
Hongweizhong 201 [Red tail variety 201]	71 0	23 7	2 22	0 59	0 32	0 68
Y l nnı Xıye 202 [Indonesıan Thın Leaf 202]	65 4	27 7	2 03	0 73	0 13	0 76
ל [Indonesian Big Leaf 203]	66 0	28 2	1 69	0 92	0 14	0 61
Nanyang Qingpi 204 [South seas Green skin 204]	66 0	28 8	287	0 60	0 17	072
Nanwan Mushu 205 [South Bay Cassava 205]	66 0	28 1	1 85	1 13	0 17	0 64
Huanan 206 [South China 206]	59 0	3 5 6	1 93	099	0 16	0 71
Huanan 207 [South China 207]	64 8	29 6	1 00	088	0 12	0 74
Zıjıngzhong 208 [Purple stem varıety 208]	70 1	21 5	3 43	0 47	0 19	0 90
Fanyu Zijing 209 [Fanyu (County)Purple Stem 209] Average of all vaileties	61 8 64 2	23 0 28 8	2 02 1 86	0 86 0 89	0 15 0 17	088 074

Table 9	Cassava	Root	Nutritional	Content
			(percent)	

- 51 -

<u>Sources</u> <u>Liang Guangshang (ed), Mushu Zaipei yu Liyong</u> [Cassava Cultivation and Use] Guangzhou Guangdong Kezhi Chubanshe [Guangdong Scientific and Technical Publishing House] 1981) p 108

foci of the Chinese breeding program 52

South China 201 is also known as Hongweizhong or Dongguan Hongwei [Dongguan Red Tail] A high yielding cultivar with high cyanide content it is the most popular variety for flour production Cultivated on plains hilly tracts and mountainous uplands this variety covers 70-80 percent of cassava area in many Guangdong and Guangxi Prefectures It is also experimentally cultivated in the Yangzi Valley

South China 202 or)Inni Xiye was introduced from Indonesia in 1956 by the South China Agricultural Science Department in Guangzhou It typically outyields Hongwei by a small margin but has the highest cyanide content of popular varieties and is thus also used in processing industries primarily for flour and starch production Plantings are concentrated on the Aoxi State Farms. There has also been successful experimental cultivation in Nanjing

South China 205 or Nanwanmushu was the shortest of the sixteen leading cultivars tested and is famous for withstanding the August 17 typhoon in 1963 It combines yield stability with high potential

⁵²Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> pp 10 and 77 Much of the succeeding discussion on varieties and institutions is based on pp 77 80 and Table 9 with a few additions from Cock and Kawaro Cassava in Asia

and is good for flour and especially starch production where it significantly outperforms other popular varieties As Table 9 indicates Huguang Effingjing [Huguang Green Stem] or South China 210 and South China 206 have by far the highest starch rates per unit weight but Nanwanmushu's respectable rate coupled with higher yield potential make it a clear leader in starch per unit of harvested area Following Nanwanmushu' South China 206 207 and finni Xiye feature the highest starch content per unit area South China 205 is an internationally recognized cultivar with similar characteristics to those of the Vassourinha variety of Brazil and the Philippines The greatest area of Nanwanmushu concentration is Zhongshan Dongguan and other counties in the Pearl River Delta but it is planted widely throughout Guangdong

South China 101 or Mianbao Mushu is also known as Malaihong [Malay Red] since it was introduced onto rubber plantations in Dan Xian from Malaysia in 1912 The variety combines yield stability with low cyanide content and reasonably high yield potential and is recognized as China s best tasting cultivar Plantings are concentrated on Hainan Island especially in Dan Xian Wenchang and Baoting Counties but bread cassava is also grown in most areas of Guangdong and has been experimentally cultivated in Hebei Province farther north than any other variety (39°20 N) Its characteristics are relatively similar to those of Aipin Valencia of Southeast Asia

South China 104 or Wenchang Hongxin [Wenchang Red Heart] is the highest yielding variety among the better tasting (sweeter) cult vars It has the highest protein content of the 16 leading

- 52 -

varieties also features low cyanide concentrations reportedly outyields Mianbao Mushu by 22 percent but is not typically preferred to the latter for direct consumption South China 104 is planted predominantly in Wenchang and Qiongshan Counties on Hainan Island with little cultivation elsewhere

Among other palatable varieties Maoming Baixin [Maoming White Heart] or South China 105 from Maoming Municipal Area near Guangdong s Leizhou Peninsula and Nuomi Mushu [polished glutinous rice cassava] or South China 102 are worthy of mention Both outyield Mianbao Mushu by 10-11 percent with substantially greater superiority in more northern areas Both are sweet and low in cyanide content with South China 102 lowest of the sixteen prominent varieties A variety known as 6068 is also famous for its excellent eating qualities and is planted on around 10 000 hectares despite its modest yields

In sum the South China Tropical Crops Research Academy concentrated not only on selection and dissemination of cultivars featuring higher and more stable root yields and improved edibility but has focused breeding attention in combining those characteristics and initiated research on starch content By focusing on faster as opposed to strictly higher root yields the Academy also brought to cassava breeding in this early period the beginnings of a quintessentially Chinese orientation breeding to fit rotational patterns and multiple cropping sequences

With the catastrophic famines of 1960 61 centered in North China and the Yangzi Valley efforts to spread cassava cultivation northward intensified considerably The focal institution in this effort was the Zhejiang Province Sub-tropical Crops Institute in Pingyang (27°38 N) Between 1962 and 1964 the institute introduced 31 varieties from Guangdong Guangxi and Fujian including Hongwei Nanwanmushu Inni Daye Shibei chingjing [stone tablet green stem] and Zajiao nos 1-6 But as Table 10 indicates there has been experimental cultivation much further north although the South China Tropical Crops Research Academy has indicated that good growth and yields are consistently obtained only up to around 26°N which cuts across southern Hunan Guizhou Jiangxi and Fujian

Aside from the above mentioned institutions some cassava related research is reportedly conducted in each of the provinces within which cassava has been introduced. In South China other relevant institutions are the Guangxi Province Asian Tropical Crops Research Institute in Nanning the South China Crop Research Institute and the South China Institute of Botany within the Chinese Academy of Sciences the Institute of Drought Resistant Grains and the Upland Grains Department in the Guangdong Agricultural Science Academy and the South China Agricultural College all in Guangzhou However cassava research is not reputed to be a significant current focus of any of the Guangzhou institutions

Cassava research and development in China is increasingly shifting its focus from the original narrowly defined goals of
Table 10

Results of Cassava s North Migration Cultivation Experiments

Experimenting Un	<u>it Location</u> (N latitude)	Vari	ety	Plant Date	ing e	Harves Date	st -	Total Growing Days	Fresh <u>Yie</u> (tons	Root 1d /ha)
Northwest Agricu tural Science Academy	1 29°30	A	В	Apr	25	Nov	25	216	33	0
Hubeı Dashahu Fa	rm 30°	АB	D	Apr	21	Nov	22	216	18	75 30 0
Anhuı Province Crops Institute	31°53		В	Apr	12	Nov	3	206	20	325
Nanjing Botanica Institute	1 32 04	ΑB	С	Apr	15	Nov	5	205	23	25 24 45
China Root and Tuber Institute	33°58	A	В	May	6	0ct	24	172	37	5-45 0
Shaanxı Province Grains Crops Ins	t 34°21	A	В	May	7	0ct	23	170	57	7 5-17 77
Shandong Provinc Crops Institute	e 36°41		A	Apr	15	0ct	24	193	22	5
Luda (Dalıan) no 1 Farm	38°54	A	В	May	6	Oct	23	171	12	75 19 5
Hebei Province Forestry Science Institute	38°20	A	В	Apr	21	0ct	24	187	37	5 45 0
Notes A= Naom B= Mıan C= Innı D= Mala	ımushu [Glutınous baomushu [Bread C Xıye [Indonesıan ıhuang [Malay Yel	Rıce assav Thın low]	Cassa a] Leaf]	ava]						

Sources Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> [Cassava Cultivation and Use] Guangzhou Guangdong Kezhi Chubanshe [Guangdong Scientific and Technical Publishing House] 1981) p 26 improving yield and edibility The main improvement efforts still include edibility but also emphasize cultivation techniques especially cassava is relation to other crops in various systems and the combined development of cassava and non-crop rural activities Breeding objectives also include early planting early ripening and rapid maturity goals as well as disease resistance high yields and high starch and protein content ⁵³

Research and development goals related to cultivation techniques feature improvement in rotation synergies seasonal cultivation intercropping and achievement of two or even three ripenings per year Bean crop and cassava rotations and intercropping are of particular interest as techniques for developing soil strength. The 1982 CIAT delegation observed that cassava was often intercropped with grain legumes in more intensively cultivated areas and estimated that yields of both crops were probably reduced by only 15-30 percent resulting in relatively efficient land use with good soil conservation properties. ⁵⁴

Since 1979 non-crop agriculture has been emphasized in China partially correcting for the substantial pre-1979 stress on food crops especially staples. Consequently a recent goal for cassava development has been to integrate cassava with forestry animal husbandry sericulture aquaculture and rural sidelines for

⁵³Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 10 ⁵⁴Ibid correspondence from James H Cock Cassava Program Director CIAT June 24 1983

cooperative production Investigation of additional and even novel industrial uses is also of increasing interest

Survey respondents among Chinese cassava breeders and agronomists ⁵⁵ appeared optimistic about the potential for growth in farmers yields during the next 4 and 14 years Respondents were instructed to base their assessments on existing varieties and those currently under development but their estimates differed considerably They were also optimistic about the prospects for increasing that potential via a doubling of research expenditures related to cassava with the most conservative assessments provided by the representative of the institution where most research on cassava is conducted. In his view farmers yields on poor soils could increase from currently 3 6 tons per hectare to 4 8 tons by 1990 and 5-9 tons by 2000 or 5-10 tons and 6-12 tons respectively with a doubling of research expenditures With good soil and climatic conditions farmers yields could increase from currently 15 30 tons/hectare with fertilizer to 18 35 tons by 1990 and 20 40 tons by 2000 or 25-35 tons and 35-45 tons with a doubling of research resources

It is clear that yields can improve especially in Guangdong via greater access to manufactured fertilizers analysis and extension related to its optimal use and to proper selection of planting materials Fertilizer pricing distribution and analytic systems are undergoing considerable structural change in China

⁵⁰Dolphi Survey responses

Proper resolution of remaining and newly emerging difficulties will be instrumental in achieving yield progress through growth in fertilizer use ⁵⁶

It also appears that there may be some limited potential exploitable with further international exchange of genetic materials ⁵⁷ State farms are technological leaders in cassava cultivation though not for most staple crops and careful selection of planting materials and quest for improved cultivars are evident on Yield progress on several state farms in recent years state farms has allowed continued profitability of cassava cultivation despite This means that new improved varieties can move declining prices rapidly into full scale production in China What may be called for are institutional links which can bring state farm developments into the private and collective economy more expeditiously A new variety must undergo regional testing for three years The results are presented to the provincial seed commission which may then recommend the variety to seed production companies for multiplication

Work on intercropping and rotational systems is something Chinese researchers do particularly well and is likely to lead to some further improvements Some of these may not immediately

⁵⁶For details see Bruce Stone Chinese Fertilizer Application in the 1980s and 1990s Issues of Growth Balance Allocation Efficiency and Response in U S Congress Joint Economic Committee (eds) <u>China s Economy Looks Toward the Year 2000, vol 1 The Four</u> <u>Modernizations</u> (Washington D C U S Government Printing Office 1986) pp 453 496

⁵⁷Cock and Kawano Cassava in China Kawano Trip Report to China (18 26 January 1986)

increase cassava yields <u>per se</u> but may improve the attractiveness of planting cassava and thus arrest its decline in area. What is singularly missing for cassava as well as for many other crops is socio economic research in cassava areas particularly poorer ones Lack of agro economic data and analysis for assessing constraints limiting farmers yields is recognized by the South China Tropical Crops Academy ⁵⁸

Finally with the reduction in export opportunities and the curtailed government role in marketing development of demand and market institutions are of particular importance for continued expansion of cassava production and use These issues will be undertaken in the following sections

MARKETS AND DEMAND

A synthesis of production and utilization

As indicated above production statistics for cassava in China are highly fragmentary except for Guangxi Zhuang Autonomous Region for which data are complete though even for Guangxi questions of reliability and comparability remain. Utilization data however are almost wholly unavailable with the exception of the international trade data compiled from European Community Analytic Tables for Foreign Tiade appearing in Table 3 Government procurement data for cassava assuredly exist but have not been made available in Chinese

⁵⁸Delphi Survey response from Tan Xuecheng breeder

statistical compendia on marketing and trade Production data from cassava flour and starch factories as well as from other industrial processors are certainly generated but are not of sufficient importance to appear among national statistical series in the relatively detailed <u>Guangdong Province Statistical Yearbooks</u> and the <u>Guangxi Economic Yearbook 1985</u> although the latter contains a single column of discussion of the starch market in which cassava is mentioned. As a regionally concentrated crop cassava has not turned up among published results from national farm surveys. Even Liang Guangshang s cassava-specific publication. <u>Mushu Zaipei yu Liyong</u> [Cassava Cultivation and Use] provides not a single statistic on aggregate utilization

In the past it has been clear that FAO estimates of cassava use were all based on constant percentages of estimated production 59 For example the FAO Supply Utilization Accounts Tape 1981 evidently incorporated the following percentages feed use (25 percent) waste (5 percent) food use (67 percent) processing (3 percent) use for tapioca (70 percent of processing) starch use (30 percent of processing) 60 Since the production series was mechanically generated from virtually no statistical base the utilization series were inevitably unreliable even if the percentage shares were roughly correct. Conversely regardless of the accuracy of the production estimates the utilization shares have assuredly not been

⁵⁹Bruce Stone An Examination of Economic Data on Chinese Cassava Production Utilization and Trade pp 13 22

⁶⁰Food and Agriculture Organization of the United Nations Supply Utilization Accounts Tape 1981 Rome 1982

constant over time with feed and processing use increasing in importance at the expense of direct human consumption Moreover shares for feed and processing would exceed the shares implied by the 1981 Utilization Tapes even for the 1960s ⁶¹

As an examination of Tables 11 and 12 will reveal FAO utilization series for China are now generated in a more complicated fashion but historical production area and yield figures are identical to those appearing on the older tapes. Aside from the international trade series which relates well to and is probably based on the EC Analytic Tables for Foreign Trade FAO series are still generated from an extremely weak statistical basis which probably consists of no more than the partner country trade data and the single production figure circa 1980 provided to the 1982 CIAT delegation

In these recent FAO series such as Supply Utilization Accounts Tape 1984 released at the end of 1985 unprocessed feed is set at 10 percent throughout the 1961-83 period and waste is dropped from 5 percent on previous tapes to 3 percent for the entire period Direct food consumption estimates have become trended values declining from 72 O percent of production in 1962 to 67 O percent in 1979 (Table 12) Processed uses have become monotically non decreasing trended values beginning somewhat arbitrarily at 15 O percent in 1962 and rising to 20 O percent in 1979 of which dried cassava (chips and

⁶¹Stone An Examination of Economic Data on Chinese Cassava This paper was provided to both CIAT and the FAO Statistical Division s Basic Data Unit in 1983 and provided part of the basis for subsequent adjustments

	Harvest	ed Area	Prod	uction		Yield
	1982 Tape	1984 Tape	1982 Tape	1984 Tape	<u>1982 Tap</u>	e 1984 Tape
<u> </u>	(1000 h	ectares)	(1000 me	tric tons)	(tons p	er hectare)
1961		80		940		11 750
1962		85		1000		11 765
1963		85		950		11 176
1964		90		1000		11 111
1965		90		1100		12 222
1966	95	95	1100	1100	11 579	11 579
1967	100	100	1200	1200	12 000	12 000
1968	120	120	1400	1400	11 667	11 667
1969	130	130	1500	1500	11 538	11 538
1970	140	140	1600	1600	11 429	11 429
1971	150	150	1800	1800	12 000	12 000
1972	160	160	1900	1900	11 875	11 875
1973	170	170	2000	2000	11 765	11 765
1974	170	170	2000	2000	11 765	11 765
1975	180	180	2100	2100	11 667	11 667
1976	180	180	2200	2200	12 222	12 222
1977	190	190	2200	2200	11 579	11 579
1978	200	200	2300	2300	11 500	11 500
1979	200	200	2500	2500	12 500	12 500
1980	226	226	3000	3300	13 274	14 602
1981	236	230	3120	3500	13 232	15 217
1982		235		3600		15 319
1983		240		3800		15 833
1984						
Source	FAO Supp Utilizatio	ly Utilization n Accounts Ta	on Accounts pe 1984	Tape 1981 Rome 1985	Rome 1982	FAO Supply

Table 11 FAO Estimates of Chinese Cassava Production Area and Yield 1961-1984

	Production	of which	<u></u>					
		Feed	Waste	Food	Processed	of which input to		
						Chips & Pellets	Tapioca	Starch
					(1000	tons)		
1961	940	QЛ	28	668	140	۹n	20	30
1962	1000	100	20	720	150	100	20	30
1963	1000 950	95	28	666	160	110	20	30
1964	1000	100	30	699	171	120	21	30
1965	1100	110	33	756	201	150	21	30
1966	1100	110	33	740	217	160	22	35
1967	1200	120	36	807	237	180	22	35
1968	1400	140	42	959	259	200	24	35
1969	1500	150	45	1014	291	230	26	35
1970	1600	160	48	1099	293	230	28	35
1971	1800	180	54	1246	320	250	30	40
1972	1900	190	57	1330	323	250	33	40
1973	2000	200	60	1384	356	280	36	40
1974	2000	200	60	1380	360	280	40	40
1975	2100	210	63	1467	360	280	40	40
1976	2200	220	66	1519	395	300	50	45
1977	2200	220	66	1519	395	300	50	45
1978	2300	230	69	1606	395	300	50	45
1979	2500	250	75	1675	500	400	55	45
1980	3300	330	99	1466	1405	1300	60	45
1981	3500	350	105	1545	1500	2000	65	45
1982	3600	360	108	1512	1620	1500	75	45
1983	3800	380	114	1 6 06	1700	1700	78	45

Table 12 FAO Estimates of Chinese Cassava Production and Use 1961-1983

Notes and Sources FAO Supply Utilization Accounts Tape 1984 Rome 1985 To reach quantities of processed products extraction rates of 35 percent for chips and pellets (dried cassava) 22 percent for tapioca and 18 percent for starch are applied in FAO data

ł

pellets for feed either for domestic use or export) starts at 2/3 of the processed amount in 1962 and rises to 80 0 percent in 1979 Cassava input to starch production begins at 20 0 percent of the processed amount in 1962 and declinesto 9 0 percent in 1979 The absolute quantities in FAO data form a step function remaining constant for five-year periods then increasing by 5 thousand tons in a single year then remaining constant again for five years Cassava input to tapioca production comprises the remainder with absolute quantities rising in similar monotically non-decreasing fashion but with shares declining slightly to 11 percent by 1979

FAO data appear in other formats but the statistical base or lack thereof remains the same For example the Standardized Commodity Balances Tape 1984 (Rome 1985) includes series for availability (production minus exports) food (direct food consumption plus cassava input to tapioca processing) and other uses (waste plus cassava input to starch processing) Because of the massive increase in exports in 1979-81 the post 1979 FAO series exhibit some peculiarities Dried cassava input on the Supply Utilization Tape increases from 20 0 percent to 42 6 percent of production from 1979 to 1980 (Table 12) for example and the program synthesizing these series generated large negative numbers for other uses in 1980 and 1984 on the Standardized Commodity Balance Tape

Nevertheless these series represent some improvement in credibility over the 1981 82 tapes. The waste percentage has been lowered (to what is probably the minimum parametric value used by FAO). The estimated production shares of processed cassava have been

raised very substantially and exhibit a rising trend including slightly rising then stagnating absolute quantities for starch production and a massive acceleration in dried cassava to parallel the appearance of lucrative export opportunities in the 1980s Food uses exhibit a plausible declining share of cassava production and the FAO trade data now includes the overwhelmingly important movements in the dried cassava trade since 1979 But it must be remembered that there is no actual statistical basis for these utilization shares save a very indirect one based on the foreign trade data and all series are essentially derived from the almost wholly unreliable production estimates

Of course it is much easier to criticize than to suggest superior alternatives since little quantitative information from China is available. But it may be reasonable to suggest that several of the improvements since the 1981-82 tape did not go far enough China has developed a considerable reputation for low food waste. As others have previously indicated this reputation may be somewhat exaggerated ⁶² But with a large proportion of the cassava crop allocated to same-farm animal feed and high labor application per hectare one may reasonably expect that at least cassava waste in China is quite low

The 1982 CIAT delegation observed that the primary use of cassava was as animal feed Of course their sample was biased toward more productive farms though they visited some very poor

- 65 -

⁶²e g Vaclav Smil China's Food Availability Requirements Composition Prospects <u>Food Policy</u> (May 1981) pp 67-77

communes where cassava was the principal human food source Visiting any of the state farms immediately biased the sample on such a brief trip Based on Table 1 and other figures provided above state farm cassava plantings could not have exceeded 3 5 percent of Guangxi cassava area in 1984 although probably totalling 5-10 percent of production In Guangdong the proportions could be slightly higher but state farm cassava is clearly a minor share of the total However the CIAT delegation found cassava primarily grown for animal feed on communes as well as on state farms

According to the extensive surveys (also biased toward more productive farms) conducted by Nanjing University students supervised by John Lossing Buck between 1929 and 1933 18 percent of the output of sweet potatoes (generally a food preferred by Chinese to cassava) was employed as animal feed in the region The proportion was almost half in the more productive areas of eastern Guangdong Only 60 percent of the taro crop was used for human food 63 Since the 1930s swine stocks and grain and sugar production have increased more rapidly than the human population in the region (Table 13) and per capita incomes have increased Oilseed and soybean production has declined in Guangxi but in Guangdong production increased at about the rate of population growth over the 5 decade period given that included 1930s figures are somewhat prone to overestimation Cattle stocks declined over the 1970s in Guangdong but due to their smaller numbers and diet preference for leaves and grasses over roots this

⁶³John Lossing Buck <u>Land Utilization in China</u> (<u>Atlas</u> and <u>Study</u>) (Nanking Nanking University 1937) <u>Atlas</u> pp 82 and 98

Table 13	
----------	--

Growth Indices for Human Population Livestock and Grain Sugarcane Peanut and Soybean Production in Guangdong and Guangxi 1930s-1984

		1070-04	Augazag	
		19/9-04	Average	
	Guangdong	Guangxı	Guangdong	Guangxı
	(1952 1957	avg =100)	(193	0s=100)
Human population	162 <u>a</u> /	181	174	221
Swine stocks	280 b/	257		
Cattle & buffalo stocks	74 c/	261		
Small ruminant stocks	15 c/	310		
Foodgrain production	171	181	178-199	205 249
Sugarcane production	246	691	1631	
Peanut production	285 <u>d</u> /	138	168	69
Soybean production	182 e/		156	469
Cassava production	_	757		

Notes

- <u>a</u>/ Based on a weighted average of midyear figures for 1954 and 1957 to approximate a midyear 1955 figure 1979 84 data are year end figures
- b/ Based on a midyear 1955 figure A weighted average of midyear 1953 midyear 1955 and a year end 1957 is slightly lower
- c/ Based on year-end 1984 and 1957 figures
- <u>d</u>/ Based on 1953 56 average The index number based on 1957 alone is 199
- e/ Based on 1952 56 average The index number based on 1957 alone is 94
- Sources Bruce Stone An Examination of Economic Data on Chinese Cassava Production Utilization and Trade paper prepared for the International Center for Tropical Agriculture (CIAT) IFPRI Washington D C August 1983 Table 11 Data have been supplemented from Guangxi Jingji Nianjian Bianjibu <u>Guangxi Jingji Nianjian 1985</u> pp 519 530 532 and 594 and from State Statistical Bureau PRC <u>Statistical</u> Yearbook of China 1983 <u>1984</u> and <u>1985</u>

decline would have less effect on the allocation of the cassava root itself than would the swine stock growth rate

According to a 1980 survey of 15 914 households an average of 94 4 kilograms of meat (mostly pork) 35 6 kilograms of grains and 126 kilograms of vegetables were produced on private plots Although hog feeding regimens in China have been concentrate poor historically the fattening process would still require around 82 kilograms of concentrate per hog and the requirement has been rising with greater peasant autonomy adjusted purchase price structure and growing acceptance that extremely concentrate poor diets are Uneconomic 64 In Guangdong and Guangxi a sizable proportion of this concentrate consists of cassava taro and sweet potato Of the three cassava would be the crop with the highest proportion allocated for feed One may conclude that even for domestically utilized cassava 20-25 percent (for feed use plus dried cassava) from 1961 79 is probably too small a proportion for feed and the trend must have been rising more rapidly over the period than assumed When one considers that from 1980 82 dried cassava exports bv FAO must have constituted 30-60 percent of what the 1982 CIAT delegation was told was national production and that exports may still exceed 30 percent of annual output even the current FAO feed proportions of 50-55 percent (dried cassava plus feed) may be too low

⁶⁴See Stone China s 1985 Foodgrain Production Target pp 99 103 The 1980 survey appeared in Xinhua [New China News Agency] news bulletin June 16 1981

	Number	of	St	arch	_	Req	uired	Proportion of Total
	<u>Operating</u>	Factories	Pr	<u>oductio</u>	n	Fre:	<u>sh Root</u>	<u>Cassava Output</u>
	Guangxı	Guangdong	Gu	langxi	_	Guai	ngxi	Guangx 1
				(met	ric	to:	ns) —	
1952	1		12	282		(1	500)	$\begin{pmatrix} 1 \\ (10) \end{pmatrix}$
1959	29		12	215	. (00	000)	(10)
1972		56	10	000	(40)-60	000)	(3-14)
1983	284		59	400	(242	500)	(15)
1984	240		49	000	Ċ	200	000)	(17)

Table 14 Development of Starch Production in South China 1952-1984

Notes and Sources Figures in parentheses are calculated estimates The FAO extraction rate of 18 percent was used for the 1950s data to calculate fresh root equivalent assuming also that all Guangxi starch was produced from cassava (Actually small amounts of corn are also used) For later years an extraction rate of 24 5 percent was used based on the statement that starch content of dried cassava is more than 70 percent (Guangxi Jingji Nianjian Bianjibu 1985) [Guangxi Economic Yearbook Editoria] Board] Guangxi Jingji Nianjian 1985 [Economic Yearbook of China 1985] (Nanning Guangxi Jingji Nianjian Bianjibu 1985) p If the FAO-adopted drying factor of 35 percent is used 192) this implies a starch extraction rate of more than 24 5 percent which is possible especially in view of substantial cassava selection and breeding in China for high starch content The 1982 CIAT delegation observed extraction rates of 25 29 percent with 5 10 percent residues for animal feed (Cock and Kawano p 8) It is not clear why the FAO-adopted Cassava in China extraction rate for tapioca (22 percent) is higher than for starch and exhibits as much as a 4 percent difference since tapioca production normally follows from starch production thereby achieving a very slightly lower extraction rate (correspondence from John K Lynam Cassava Program Centro Internacional de Agricultura Tropical (CIAT) December 22 1983)

The proportion allocated to starch production is probably also consistently underestimated by FAO Data assembled in Table 14 suggest that if the Guangxi record can be taken as representative of both southern provinces utilization of cassava for starch production during the 1960s and 1970s constitute not 10-20 percent of all cassava used for processing as assumed by FAO (2.3 percent of production) but closer to 10 percent of total production and potentially higher in several low production years Assuming the adopted extraction rates and the Guangxi series are roughly correct and that starch produced from raw materials other than cassava was indeed very minor in Guangxi then the starch industry claimed more than 15 percent of fresh root production in the Autonomous Region in 1983 and 1984 The proportion for Guangdong is probably somewhat lower but appears to be rising at present

All in all if forced to estimate current utilization of Chinese cassava might run 60-65 percent for feed (including dried cassava plus fresh feed exports and domestic use) 15 20 percent for the starch industry 2-4 percent for tapioca production and as little as 1-3 percent for waste leaving somewhere around 10-20 percent for direct human consumption. As suggested in earlier papers and as FAO seems to accept it is quite possible that the 3 million ton circa 1980 81 production figure is an underestimate but the production trend for the last few years is almost certainly downward

The Guangxi starch production figure listed somewhat arbitrarily for 1972 is based on the statement that starch production in Guangxi remained at around 10 000 tons during the 1960s and 1970s (<u>Guangxi</u> <u>Jingji Nianjian 1985</u> p 192) Most data in the table appeared in ibid The number of starch factories operating in Guangxi in 1962 and in Guangdong in 1972 are from Liang Guangshang (ed) <u>Mushu</u> <u>Zaipei yu Liyong</u> [Cassava Cultivation and Use] (Guangzhou Guangdong Keji Chubanshe [Guangdong Scientific and Technical Publishing House] 1980) p 9^r The proportion of total Guangxi cassava production was calculated from data appearing in this table and in Table 2

Cassava for direct human consumption

The previous section has concluded that cassava for direct human consumption probably comprises only 10-20 percent of current production. There appear to be four principal categories of direct human consumption of cassava in China consumption related to ethnic minorities where cassava has a traditional dietary role consumption related to forest cultivation in remote areas consumption associated with exceedingly poor and/or risk prone farming areas consumption related to particular cuisine and especially seasonal preparations These four categories are not mutually exclusive but seem to characterize the direct human consumption demand for cassava

Little recent ethnographic information on minorities in South China seems to be available but taro and cassava are known to be important food items among the Yao minority in northern Guangdong 65 The Nao people of Thailand are also habitual consumers of cassava Mao people in South China were likewise reported to eat cassava and mao potatoes during the 1950s 66 Even among Han Chinese (93 3 percent of China s population) home processed cassava flour is often used as a thickener in southern Chinese soups and in making special cakes at festival times such as New Year s Eve in Fujian for example 67

⁶⁵Buck <u>Land Utilization in China</u> (Atlas) p 98 ⁶⁶Sun Jingzhi (ed) <u>Huanan Dichu Jingji Dili</u> State Statistical Bureau PRC <u>Statistical Yearbook of China, 1985</u> p 195 ⁶⁷Cock and Kawano Cassava in China p 11 State Statistical Bureau PRC <u>Statistical Yearbook of China, 1985</u> p 195

- 71 -

Poorly developed and poorly integrated markets are almost a defining characteristic of developing countries and China is no exception In China market development was further retarded by a number of factors First for a thirty year period civil war and World War II combined to destroy normal market activity in many areas of China Although Guangdong and Guangxi were spared to a much greater extent than North China the Northeast and the Yangzi Valley they were not unaffected by war and nearby cassava-growing provinces such as Yunnan and Hunan were directly involved as was Fujian located directly across the straits from colonial Taiwan For example transport vehicles and draft animals were purchased or commandeered for the war effort War time inflation sent marketing back to a semi-barter era and credit facilities were severely affected

In the 1950s conditions stabilized but the government soon began to take over large segments of marketing activities. With grain crises in 1953 and 1955 and the difficulties the government was experiencing with procurement of foodstuffs for cities grain trading became a state monopoly in 1954 and by 1955 each unit of land in China was assigned a fixed quota of (usually) grain to be delivered to state purchasing organizations at low fixed prices. Taxes were also paid in kind but grain delivery obligations did not end there After retaining a provincially determined per capita quantity to meet immediate food feed and seed needs of rural farms and households and even after tax and quota obligations were met 80.90 percent of all surplus grain was also to be sold to the state. Not only was private grain trading illegal and most grain in excess of a modest

standard for home consumption soaked up by government purchasing organization but private traders were designated as class enemies

The state for its part was having enough trouble providing for urban and army consumption as well as reserving one-two million tons per year to export for foreign exchange For the most part only relatively prominent rural areas experiencing natural disasters received relief grain More remote and most very poor areas were left on their own without access to grain supplies from the outside After the famines in 1960-61 and especially during the Cultural Revolution period (1966-76) this situation was institutionalized as a policy of local self sufficiency with disastrous implications for gains from specialization and trade and for exceedingly poor riskprone areas historically dependent on trading and non agricultural activities to garmer enough to eat With procurement problems persisting the government further restricted non-farming activities and made migration illegal in order to limit the state s urban obligations but thereby binding many farmers even more closely to poor and risk prone agriculture ⁶⁸

- 73 -

⁶⁸See Bruce Stone Relative Foodgrain Prices in the People's Republic of China Extractive Rural Taxation Through Public Monopoly in John W Mellor and Raisuddin Ahmed (eds.) <u>Agricultural Price Policy for</u> <u>Developing Countries</u> (Baltimore Johns Hopkins University Press 1987) and Bruce Stone Chinese Socialism's Record on Food and Agriculture <u>Problems of Communism</u> vol 35 no 5 (Sept Oct.) 1986 pp 63-72 See also Tang and Stone Food Production in the People's Republic of China Kenneth Walker Foodgrain Procurement and Consumption in China (Cambridge Cambridge University Press 1984) and Nicholas Lardy <u>Agriculture in</u> <u>China & Modern Economic Development</u> (Cambridge Cambridge University Press 1983)

It is not difficult to imagine that with this institutional framework cassava at least in the south had a particularly important role to play Cassava was an ideal crop for insuring minimum levels of consumption because it is a relatively droughtresistant stable yielding easily stored crop providing high caloric levels per unit area and performs well relative to alternative crops even under poor agronomic practice and soil conditions As a crop cultivable on forest lands and hillsides it was also ideal for sustaining reclamation teams in remote areas

With the rapid increases in South Chinese rice production during the past decade (Table 5 6 and 13) the 1980s legalization of private grain trading and guaranteed state food deliveries for areas concentrating on the production of economic crops cassava is special institutionally-induced importance has been declining. However cassava is still grown in exceedingly poor areas in South China for essentially the same reasons food security and easy provision of needed calories under inoptimal conditions. It should be emphasized for example that seven counties in Guangdong and eight in Guangxi averaged per capita collective distributed income in 1977 of less than 50 yuan (\$20 25 U S at concurrent official rates) ⁶⁹ While this category excludes important income sources such as private plot and sideline production and some in kind payments from collective work it is indicative of the amount of cash available for farmers

74

⁶⁹Nongyebu Renmin Gongshe Guanliju [Ministry of Agriculture Bureau of People s Commune Management] Yijiuqiqi zhi Yijiuqijiunian Quanguo Qiongxian Qingxing [The Condition of the Nation s Poor Counties 1977 1979] <u>Xinhua Yuebao</u> [New China Monthly] no 2 1981 pp 117 120

from their principal assets in very poor localities ⁷⁰ The number of counties falling below this lowest benchmark increased to 11 in Guangdong in 1978 but declined to 7 in 1979 (in Guangxi 8 in 1978 and 6 in 1979) In Guangdong the very poorest regions appear to be in the northeast such as Wuhua and Longchuan Counties and on Hainan Island in the South including the known cassava area of Basuo (Dongfang County) In Guangxi such counties seem to be clustered in the north and west for example Du an Yaozu Autonomous County Luocheng Donglan and Napo Counties as well as Bama Yaozu Autonomous County where cassava is known to be widely cultivated ⁷¹

But with the exception of the exceedingly productive Pearl River Delta no part of South China can be excluded as a region where direct consumption of cassava is not important for some segment of the poorer rural population Areas were cassava is an important direct calorie source need not be remote Even within the Haikou Municipal Area on Hainan Island 11 percent of cultivated area in the Yong Sing Township for example is planted with cassava two-thirds of which is consumed directly as a staple ⁷² This is because only 4

⁷¹Nongyebu Renmin Gongshe Guanliju 1977-1979 Quanguo Qiongxian Qingxing <u>Xinhua Yuebao</u> no 2 1981

⁷²Cock and Kawano Cassava in China pp 10 11

⁷⁰Distributed collective income averaged around two thirds of the total including private plot and sideline income during those years according to a State Statistical Bureau (SSB) survey of 10 282 households (Zhongguo Guojia Tongjiju <u>Zhongguo Tongji Nianjian, 1981</u> pp 431) But this may have excluded in kind distribution of production from collective lands For a full discussion of Chinese distribution data and its problems see E B Vermeer Income Differentials in Rural China <u>The China Quarterly</u> vol 89 (March) 1982 pp 1 21

percent of the farmed area is suitable for rice cultivation the remainder being rocky hillsides upon which fruit tree horticulture is being attempted Cassava planting provides an economic hedge against heavy market dependence

The Starch Market

What little quantitative information is available on starch production in Guangdong and Guangxi has been recorded in Table 14 Historically a significant share of financing for capacity construction and an important share of sales deliveries have been associated with overseas Chinese especially in nearby Hong Kong and In 1952 the Wuzhou Charcoal Industry started Guangxi s first Macau starch factory (Jiulian Crude Starch Factory later renamed the Wuzhou Municipal Starch Factory) with financial assistance from the government and from overseas Chinese Its sanjiaopai [Triangle Brand] cassava starch was exported from Wuzhou in east central Guangxi to Hong Kong Macau Southeast Asia Japan and the Middle East Since the mid to late 1950s Beihai in the far south Bama Yaozu Autonomous County in the northwest Xijiang Farm in the east Wuming Overseas Chinese Farm in central Guangxi Ningming Overseas Chinese Farm in the southwest and other farming areas set up fixed scale factories ⁷³ The designation Overseas Chinese Farm is an indication that overseas Chinese financial resources are involved in the commune s development

⁷³Guangxi Jingji Nianjian Bianjibu <u>Guangxi Jingji Nianjian 1985</u> p 192

In Guangdong cassava starch production may have begun even earlier but at least by the early 1970s 56 factories had been set up in the province and hongpai [Red Brand] cassava starch from the Dongguan Flour and Starch Factory on the Pearl River Delta was sold widely in Southeast Asia and Eastern Europe ⁷⁴ During the 1950s 1960s and 1970s it seems that production economies and the price structure concertedly favored cassava as a raw material for starch production since despite the provincial self-sufficiency imperatives for the period Guangdong and Guangxi exported starch not only to Hong Kong Macau and foreign countries but to other Chinese provinces as well

With liberalization of rural economic activities since the late 1970s small scale starch processing plants have been established especially as township and village enterprises By 1983 the total number of starch factories in Guangxi had increased sharply to 284 though with combined fixed assets of only 25 million yuan ⁷⁵ But either production economies no longer so clearly favored the use of cassava as a raw material or cassava production in other provinces was expanding to meet their demands for starch. This combination of overdevelopment of production capacity and loss of part of the interprovincial market brought about a contraction in the South Chinese starch industry in 1984. In Guangxi, the number of enterprises declined by 17 percent and production fell by 16 percent (Table 14). However, part of this decline may be due to intensified

⁷⁴Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 9
⁷⁵Guangxi Jingji Nianjian 1985 p 192

- 77 -

competition from nearby Zhaoqing and Shaoquan Prefectures in Guangdong where starch production has been increasing rapidly ⁷⁶

A variety of industries use cassava starch in China the most traditional being the cotton yarn industry which provided demand for the first Guangxi factory in Wuzhou ⁷⁷ But the Wuzhou and Beihai factories have expanded and diversified to use cassava starch as a basis for glucose production. In 1984 Guangxi produced 7 800 tons of glucose primarily for the candy industry 80 percent of this total was produced in the Wuzhou and Beihai factories the latter exporting to Hong Kong. Thailand and other countries. The Wuzhou factory has also initiated trial production of denatured starch and with purchase of technically superior equipment from Japan has increased its extraction rate by more than 5 percent ⁷⁸

In Guangdong the Dongguan Factory has also diversified and now produces glucose brewer s yeast and wine ⁷⁹ As early as 1972 it exported cassava-leaf starch to Japan and to England large quantities of glucose partially based on millet as well as cassava ⁸⁰ In Shaoguan and Zhaoqing Prefectures in addition to

⁷⁷Sun Jingzhi <u>Huanan Jingji Dichu</u> pp 258 and 333 334

⁷⁸Guangxi Jingji Nianjian 1985, p. 192

⁷⁹Correspondence from Graham Johnson Professor of Anthropology Department of Anthropology and Sociology University of British Columbia Vancouver Soptember 19 1983

⁸⁰Liang Guangshang (ed) <u>Mushu Zaipei yu Liyong</u> p 9

⁷⁶Delphi survey response comments by Huang Xi agronomist Institute for Dryland Grain Crops Guangdong Province Academy of Agricultural Science Guangzhou June 28 1986

cassava starch factories a number of other processing industries have been established which utilize cassava including a monosodium glutamate factory molasses plants breweries and feed processing plants ⁸¹

⁸¹Delphi survey response from Huang Xi June 28 1986

IV INDONESIA

i

A Multi-Market Cassava Economy¹

In the 1960 s Indonesia and especially Java was portrayed as the epitome of the food crisis facing Asia The bleak prospects for increasing agricultural production on a very restricted farm-size base were most eloquently articulated in the agricultural involution thesis of Clifford Geertz (1963) in which a degrading resource base was accelerated by the increasing impoverishment of the agricultural population The low point for the agricultural sector was arguably reached in 1967 when per capita rice availability reached its lowest level in the decade a situation compounded by a tight international rice market and severe foreign exchange However during the next decade rice production grew by 4 2% constraints per annum allowing per capita consumption levels to increase from 91 to In the 1978-84 period growth in rice production 123 kg per year High yielding rice varieties accelerated even further to 6 7% per year investment in irrigation systems and subsidized fertilizer prices resulted in dramatic increases in rice yields the principal source of growth in production A revitalization of rice production together with the sound management of sharp increases in oil revenues resulted in an annual GDP growth rate of 7 6% throughout the 1970 s Indonesia had broken out of the low-income trap by focusing on domestic needs together with sound investment of export revenues

Rice has been the centerpiece of agricultural policy in Indonesia in the post-war period Rice is the principal source of farmer income the major food source the dominant expenditure item in the consumers budget and therefore the major component in consumer price indices Any policies directed to farmer incomes rural employment nutritional objectives food security or control of inflation had to consider rice (Dorosh 1986) The policy thrusts in rice in the last two decades has had two principal First through the BIMAS program there has been a concerted dimensions effort to create a profitable environment for adoption of yield-increasing rice technology A massive extension effort focused on the irrigated sector combined with subsidized fertilizer and production credit have led to rapid adoption of improved technologies The second component has been management of domestic rice prices through BULOG (the national logistics agency) through support price operations control over imports and development of a buffer stock scheme Both these policies impinge on carbohydrate crops such as cassava In the first instance secondary credit and extension systems are focused on the irrigated sector with few resources available for upland crops In the second place rice prices have a large influence on the demand for secondary staples such as cassava and The 1980 s nevertheless has witnessed some tendency toward a more maize comprehensive and thus diversified approach to food and agricultural policies as witnessed by the involvement of BULOG in the maize and soybean sectors

^{1/} This chapter draws heavily on the work of the Food Research Institute Stanford University Many parts of the chapter amount to summaries of the research found in Falcon et al <u>The Cassava Economy of Java</u> and it is hoped the citations are numerous enough to reflect this debt

While agricultural growth on a very limited farm-size base was achieved through a focus on raising rice yields on Java a complementary strategy was area expansion on the low populated outer islands This involved providing incentives for people to move off Java and gave rise to transmigration projects Indonesian economic planning the remains committed to transmigration to the outer islands and while the initial per family settlement costs appear high the autonomous secondary migration that is now apparent in some of the older projects on Sumatra appear to support this policy of developing the agricultural frontier in Indonesia

Ironically cassava has remained outside the purview of agricultural policy in Indonesia and yet the crop has played a significant role in underpinning key policy objectives (see Falcon et al p 165-69) This invisibility to policy-makers is interesting for a crop that is grown throughout Indonesia that has played a key role in transmigration projects that historically has been an important export crop and that is the second most important calorie source in the diet It is a mark of cassava s inherent productivity and versatility that it has flourished as policy focus shifts to upland without government support However crops particularly maize and where there is substitution between maize and cassava on both the supply and demand side then there is a need to bring cassava into the policy framework

Markets and Demand

Indonesia is the premier example of a well integrated cassava economy The multi-use characteristics of cassava are fully exploited Cassava is consumed as food both in a fresh and dry form it is exported and a significant portion is processed into starch (Table 4 1) Moreover а significant difference in utilization patterns exists between Java and the On Java utilization forms are fairly balanced between fresh outer islands roots for human consumption gaplek and starch On the outer islands on the other hand fresh root consumption is by far the largest consumption form a not surprising fact given the lack of infrastructure and a principal focus on subsistence consumption Understanding how cassava production is allocated to these various markets each with relatively different growth potential will aid in developing a more effective planning frame for cassava in the Indonesian agricultural sector

Cassava for direct human consumption

The food economy of Indonesia is based on rice While less preferred cassava is the second most important carbohydrate source than rice according to Susenas data (Table 4 2) although it still makes up no more than 10% of average calorie intake The successful extension in irrigated areas of the high yielding rice varieties resulted in increasing per capita availabilities of the grain during the last decade and a half Trends in cassava consumption are more difficult to interpret The food balance estimates follow production trends and suggest a distinct increase in consumption since 1973 on the other hand the Susenas estimates suggest more or less stable consumption over the decade (Table 4 3) What is clear TABLE 4 1IndonesiaSupply and Utilization of Cassava (on a Fresh
Root Basis) on Java and the Outer Islands 1978

Utilization	Java (000 t)	0ff-Java (000 t)	Indonesia (000 t)
Direct Food Consumption			
Fresh Roots	1 928 5	1 201 8	3 130 3
Gaplek	2 679 0	492 9	3 171 9
Gaplek Flour	80 0	-	80 0
Starah	3 064 3	1 076 8	4 141 1
Gaplek Experts	294 0	630.0	9 141 1
Waste	529 9	105 7	635 6
Total Utilization	8 575 7	3 507 2	12 082 9

Source 4 1

TABLE 4 A 1IndonesiaSupply and utilization Estimates for Cassava1978

Utilization	Primary Data Estimates	Implied Fresh Root Use (000 t)	Adjusted Fresh Root Use (000 t)		
Java					
Direct Food Consumpt	ion				
Fresh Roots	20 3 kg/cap	1 928 5	1 928 5		
Gaplek	9 4 kg/cap	2 679 0	2 679 0		
Gaplek Flour	-	80 0	80 0		
Starch	446 180 t	2 476 3	3 064 3		
Gaplek Exports	98 150 t	294 0	294 0		
Waste		529 9	529 9		
Sub-total		7 987 7	8 575 7		
Production			9 484 8		
Off-Java					
Direct Food Consumpt	ion				
Fresh Roots	20 2 kg/cap	1 070 6	1 201 8		
Gaplek	3 1 kg/cap	492 9	492 9		
Starch	215 350 t	1 076 8	1 076 8		
Gaplek Exports	209 642 t	630 0	630 0		
Waste		102 2	105 7		
Sub-total		3 372 5	3 507 2		
Production			3 507 2		

Sources See text

is that cassava continues to maintain a secondary but yet important role in the Indonesian food economy with this importance lying more in distribution of cassava consumption rather than in aggregate averages

Cassava is consumed principally in the form of fresh roots and gaplek with these two forms being prepared in a variety of forms in the home There is a marked regional variation in consumption patterns of both fresh roots and gaplek Although per capita consumption levels for cassava are the same for Java as the outer islands fresh consumption is much more important off-Java probably due to the less seasonal nature of root production and the greater difficulty in drying Gaplek consumption is concentrated in the eastern part of Java where soil and rainfall are more marginal (Figure 4 1) while fresh consumption on Java is relatively more evenly distributed $\frac{2}{2}$

The locus of cassava consumption is very much in the rural sector due not only to the bulk of the population residing in rural areas but also to the much higher per capita consumption of cassava in these areas There is a significant change in consumption of non-preferred staples between rural and urban areas (Table 4 2) Gaplek and maize are rarely consumed in an urban setting and yet are quite important in rural areas Fresh cassava consumption while higher in rural areas nevertheless is still at significant levels in urban areas even given the problems of marketing such a perishable commodity Unnevehr (1982) estimates that in rural areas about two-thirds of fresh cassava and one-half of gaplek are subsistence consumption Counting urban consumption only 37% of fresh cassava that is utilized for human consumption is marketed

Probably the most important component influencing the distribution of cassava consumption is income Gaplek consumption shows a consistently declining trend with income (Figure 4 2) Gaplek is a non-preferred food principally consumed by the poor Fresh cassava consumption at least in rural areas increases markedly with increasing income at low levels of income levels off at medium income levels and declines slightly at high income levels The overall tendency is for total cassava consumption (excluding starch) to decline with income

Approximately 40% of the population in Indonesia consumes less than 1900 calories per day (Table 4 4) This group is obviously constrained by income in the amount of food which they can purchase and thus must make more use of cheap calorie sources The poorer income groups principally in the rural areas substitute cassava and maize for the more expensive but more highly preferred rice (Figure 4 2) Cheap cassava allows the lower income segments of the population to achieve a higher calorie intake with their limited food budget than they would have been able to achieve with just rice Cassava is thus a potentially key commodity in policies focusing on nutrition and the related issue of rice import management

^{2/} The importance of cassava in the diet and the relatively ubiquitous distribution of fresh root consumption implies that quality characteristics cannot be sacrificed in a varietal development program

			197	76					19	78			
Commodity	Tot	tal	Rui	ral	Url	ban	Tot	al:	Ru	ral	Url	ban	
	(kg)		(kį	(kg)		(kg)		(kg)		(kg)		(kg)	
Indonesia													
Rice	111	2	110	5	114	3	109	2	109	2	109	2	
Corn	9	9	11	9	0	7	11	4	14	0	1	0	
Cassava	26	2	20	٩	٥	5	20	2	22	٥	Q	o	
Cassava	20	2	23	,	,	5	20	2	22	9	0	o	
gaplek	6	4	7	9	0	2	7	3	8	8	0	0	
Java													
Rice	103	3	102	4	107	3	99	8	98	8	104	0	
Corn	11	5	14	0	0	5	15	1	17	7	1	0	
Cassava													
fresh	21	6	24	9	6	7	20	3	22	9	7	8	
Cassava		~		-	0						•	~	
gaplek	8	0	9	/	U	ł	9	4	11	4	0	0	
<u>Off Java</u>													
Rice	124	8	124	4	126	6	130	0	130	0	119	6	
Corn	7	0	8	3	1	1	5	7	6	8	1	6	
Cassava													
fresh	34	2	36	5	14	4	20	2	22	4	10	4	
Cassava													
gaplek	3	8	4	6	0	3	3	1	3	6	0	0	

TABLE 4 2

Indonesia

Annual Per Capita Rural and Urban Consumption of Starchy Staples 1976 and 1978

		1969/70		1976		1978		
Commodity	FBS (kg)	Susenas IV (kg)	FBS (kg)	Susenas V (kg)	FBS (kg)	Susenas VI (kg)		
Rice	107 3	103 2	116 2	111 2	123 4	109 2		
Maize	19 1	22 0	18 3	99	27 2	11 4		
Cassava <u>a</u> /	53 9	41 1	76 0	42 2	74 0	38 5		
Sweet potatoes	17 4	88	16 0	10 8	13 4	57		

TABLE 4 3IndonesiaComparison of Food Balance Sheet and SusenasEstimates of Annaul Per Capita Consumption

^a Cassava is expressed in fresh root equivalent dried forms are converted to fresh root equivalent using a 1 2 5 ration

Monthly Expenditures Per Capita	Share of Total Population (%)	Calories Per Capita Per Day (Kilocalories)		
Less than Rp 2 000	15 3	1 381		
Rp 2 000- 2 999	23 8	1 870		
Rp 3 000- 3 999	19 5	2 034		
Rp 4 000- 4 999	13 6	2 084		
Rp 5 000- 5 999	88	2 288		
Rp 6 000- 7 999	94	2 533		
Rp 8 000- 9 999	4 2	2 794		
Rp 10 000-14 999	38	3 066		
More than Rp 15 000	1 6	3 284		
Average		2 064		

TABLE 4 4IndonesiaTotal CalorieIntake by Income StrataEstimated fromthe Susenas V Survey1976

The role of cassava within an overall nutrition policy follows from an analysis of demand parameters Estimates of income elasticities by Dixon (1982) show that among the poorer income strata there is a significant increase in cassava consumption both as fresh and gaplek with increases in income (Table 4 5) Such changes in cassava consumption could come from real increases in income or from changes in the rice price since expenditure on rice makes up such a large part of the consumer budget Substantial substitution between caloric staples would be expected depending on relative prices and in fact elasticity estimates suggest substantial responsiveness to price changes Timmer (1980) reports a cross price elasticity of fresh cassava with rice of 0 77 showing a very marked effect of rice prices on cassava consumption $\frac{37}{2}$

Cassava s role in the Indonesian food economy while not central is nevertheless critical to the support of that proportion of the population facing a risk of not meeting their caloric needs from rice supplies This population is essentially defined by low incomes and in years of poor rice harvest their nutritional status can be put further at risk by rising rice prices The government's policy has been to try to maintain stable rice prices and this task is vested in the government grain marketing agency BULOG which attempts to stabilize rice prices through rice imports and to a more limited extent through wheat imports

BULOG was aided in this effort in the last decade and a half by the widespread adoption in the irrigated areas of the high-yielding rice varieties Nevertheless rice imports have almost consistently exceeded one million tons up to 1980 and have occasionally reached two million tons At these levels Indonesia can account for as much as a third of the world having a pronounced affect on world rice prices and export market e foreign exchange costs necessary to meet import Since 1980 imports have been around half a million tons therefore the import requirements although levels rose to 1 2 million tons in 1983 As the benefits of the new rice technologies start almost certainly to plateau Indonesia will again be faced with high import requirements in a world rice market that is To resolve this dilemma Indonesia has increasingly turned to very thin which are cheaper and where Indonesia forms a minor wheat imports percentage of the world market

However Indonesia has on the whole failed to consider the potential role of the secondary staples cassava and maize Total consumption of both of these commodities has essentially been static over the past decade and a half implying a declining contribution to total caloric consumption since rice consumption has risen dramatically. Since there are real supply-side constraints on meeting future nutritional objectives with rice since the locus of wheat consumption is principally in urban areas and since cassava and maize are already important staples for the rural poor a strategy to increase production of these crops at lower prices (that is technical change) would contribute directly to increased calorie

<u>3/</u> Dixon (1982) on the other hand could find no significant cross price elasticities but based his estimation only on Java whereas Timmer s was based on Indonesia as a whole

	E	xpenditure Gro	oup		
Commodity	Low	Medium	Hıgh	Average	
Expenditure Elasticity					
Rice					
Urban	0 329	0 107	-0 121	0 194	
Rural	0 831	0 485	0 133	0 560	
Fresh Cassava					
Urban	0 094	-0 275	-0 654	-0 131	
Rural	0 849	0 117	-0 627	0 276	
Gaplek					
Urban	n e	n e	ne	ne	
Rural	0 833	-1 018	-2 90	-0 616	
Price Elasticity					
Rice					
Urban	-0 31	-0 56	ne	-0 48	
Rural	-1 28	-0 45	0 18	-0 84	
Fresh Cassava					
Urban	1 27	0 14	n e	0 44	
Rural	-1 09	-0 82	-0 67	-0 81	
Gaplek					
Urban	n e	n e	n e	n e	
Rural	-2 49	-2 06	-2 18	-1 86	

TABLE 4 5IndonesiaPrice and Expenditure Elasticities for Rice and
Cassava by Income Strata on Java 1976

Note n e means not estimated
consumption of the most vulnerable pupulation By integrating cassava into overall food policy BULOG would have considerable more flexibility in managing rice imports and prices However because of the overall inelasticity in food demand for cassava this flexibility is dependent on some diversification in end markets That is diversifying end uses as the production base expands not only provides a certain market stability for farmers but as well ensures alternative food supplies when rice is in short supply

The starch market

Starch is the largest single market (on a root equivalent basis) for cassava in Indonesia A cassava starch industry has existed on Java since the turn of the century Prior to World War II and independence this industry was based principally on plantations and was geared principally to export The recovery from the damage incurred during the war precipitated a shift from foreign to domestic ownership and from export to domestic markets Indonesia is currently the largest producer of cassava starch in the world and essentially all the production is destined to domestic markets Unlike other countries in Asia there is virtually no production of starch from maize $\frac{4}{2}$

The structure of the cassava starch industry is characterized by great diversity Starch factories are spread throughout Java and Sumatra but with a particular concentration in West Java Location of the starch industry is primarily dependent on access to a ready water supply to a sufficient concentration of root production to adequate transport infrastructure and to non-seasonality of root supply These factors have until recently given the edge to West Java as the center of starch However as transport infrastructure has improved on Sumatra production particularly in Lampung starch production has expanded rapidly This has been enhanced by the less seasonal supply of roots on Lampung From virtually no production in the early 1960 s the starch industry on Lampung has expanded rapidly especially in the 1970 s to become the second largest starch-producing province after West Java

Diversity is also a characteristic of the scale of processing Rudimentary household processing techniques co-exist with large-scale capital intensive factories with a significant range of plant sizes between these two extremes Nelson (1984) has recently analyzed the economics of starch production in Indonesia At 1980 prices all processing modes were found to be profitable (Table 4 6) The large mills were found to be most profitable but only because the tax incidence was much less than on household production and medium-scale factories To motivate investment the government has instituted tax holidays for three to six years for large-scale firms This together with a subsidy on diesel fuel and exemption from duty for imports of processing equipment give a distinct advantage to insuring the profitability of the large scale plant However from a social point of view Nelson finds that the household

^{4/} A single starch/corn oil plant Indocorn is operating in Indonesia It principally relies on maize imports for its operation and was not in operation in 1984

			Processir	ng Technique	<u>}</u>	
Cost Item	Household (Rp/t)		Medium-Scale (Rp/t)		Large-Scale (Rp/t)	
Variable Costs						
Cassava Roots	123 7	37	123	737	110	882
Labor	21 3	57	6	757	2	234
Fuel	6	63	3	049	7	386
Working Capital	54	05	2	858	6	292
Taxes	95	20	12	627	2	108
Miscellaneous	36	61	3	156	15	045
Sub-Total	164 3	43	152	184	143	947
Fixed Costs						
Depreciation	29	50	8	444	9	218
Capital Costs	37	90	13	290	19	134
Administration	-		4	330	2	495
Sub-Total	67	40	26	064	30	847
Total Costs	171 0	83	178	248	174	794
Revenue	178 9	40	178	940	184	395

TABLE 4 6IndonesiaStarch Processing Costs per Ton by Scale of
Processing Unit 1980

Source Nelson Gerald Implications of Developed Country Policies for Developing Countries The Case of Cassava 1982 production generates both the highest level of social profit as well as the most employment Nelson further reports that household starch production has expanded rapidly in the 1970's motivated by increased capacity utilization with the introduction of mechanical graters

The few figures on starch suggest that production has increased rapidly through the 1970's (Table 4 7) This growth was characterized by significant increases in household production on Java and very rapid growth of large-scale processing on Lampung The starch market was both large and growing providing quite strong demand for cassava roots Root production at least on Lampung responded accordingly

The factors that were driving this increased demand for cassava starch are less well documented Concensus seems to exist that the largest end use for starch is as krupuk a crispy wafer consumed as a snack food Nelson reports that this industry takes as much as 65% of total starch production -- this implies an annual per capita consumption figure of 2 9 kg -- while the rest goes into other food processing industries (15%) the industry (10%) glucose production textile and (3%) The only complementary data comes from the SUSENAS consumer budget surveys The 1976 survey reports an average annual per capita consumption level of starch of 1 4 kg on rural Java and 0 1 kg in urban areas of Java (Dixon 1984) However Dixon considers this to be a significant underestimate because it does not include direct purchases of krupuk or other bakery products using starch He suggests that a more reasonable per capita estimate for Java's is 2 4 kg for rural areas and 1 0 kg for urban areas ie an average of 2 1 kg These estimates however appear to discount the data from the 1978 survey for krupuk consumption which suggests per capita consumption levels of krupuk alone of 2 5 kg in rural Java and 6 6 kg in urban Java Per capita starch consumption may be as high as 5 kg per capita (see Appendix 4 1) which means that cassava starch is a more important food item than is often considered

Starch is the dominant end market for cassava in Indonesia moreover the limited evidence on demand suggests that this market will continue to grow for a significant period into the future Most of this growth comes from the use of starch as a food source with consumption in this case being skewed toward the higher income strata Dixon (1984) estimates income elasticities for krupuk of 1 56 in rural areas and 1 35 in urban areas Significantly consumption patterns for cassava starch skewed as they are toward the rich are the mirror image of those for gaplek which are highly skewed toward the poor Product differentiation and market segmentation allows cassava in this case to serve two very distinct roles as a basic secondary staple for the poor and as something of a luxury food for higher income groups

A feature of the cassava starch industry in Indonesia compared to that of some other countries in Asia is that there is no effective competition from maize starch even though maize is a major crop in Indonesia The situation is further confounded by the fact that maize is at least intermittently exported at world prices while gaplek while also exported competes at the higher price levels set in the European Community Maize should thus be more competitive as a raw material source

Province	Production			
	1974 (mt)	1979 (mt)		
West Java	188 220	239 220		
Central Java	126 020	149 180		
East Java	33 300	57 780		
Total Java	347 540	446 180		
Lampung	27 750	150 750		
North Sumatra	15 900	24 100		
Riau	30 900	30 900		
Other Provinces	9 600	9 600		
Total Indonesia	431 690	661 530		
Source Falcon et al T 1984	he Cassava Economy	of Java		

TABLE 4 7 Indonesia Estimated Production of Starch

1974 and 1979

for starch production than cassava However in the particular case of Indonesia starch substitution is limited by quality factors and in particular course sun-dried starch is necessary in preparing krupuk the dominant market The fine flashdried starch cannot be used in krupuk unless mixed with the coarser starch Thus maize starch is constrained to competing in the much smaller industrial market with cassava starch produced in the larger factories and given the scale economies in wet milling maize could not establish a large enough market to justify a factory

Nevertheless the competition between maize and cassava becomes a factor in the recent interest in the production of high fructose sweetners (HFS) Indonesia has over the past decade consistently increased its imports of sugar to the point that imports now total between 500 to 700 thousand tons a year Not only are imports increasing but Indonesia maintains high internal sugar prices to support producers on the one hand and to limit consumption on the other hand A policy directed at self-sufficiency in sugar is limited by the availability of land suitable for sugar cane and the competition between rice and cane for this land Therefore producing high fructose sweetners from either maize or cassava in upland areas holds some attraction

However the substitution of liquid high fructose sweetners for sugar occurs over only a limited range of end uses of sugar The largest market direct human consumption has limited possibilities for substitution at this stage of market development Development of the HFS market depends on exploiting industrial uses especially food processing and bottled beverages Estimates on the size of this market are based on scanty data two sources put the potential consumption at between 220 and 500 thousand tons per year (Argento and Wardrip 1983 Tate and Lyle 1981) Nevertheless this market is expected to grow at a estimated rate of 5% through the rest of the century (Pearson 1984)

Indonesia has already committed itself to producing high fructose A cassava-based factory is already in operation in Malang on sweetners Java Licenses for the construction of 4 more factories have been issued bring total production capacity to 110 thousand tons of HFS to Nevertheless two basic factors will largely determine the future of this the economic viability of high fructose sweetner industry First production will necessarily rest on the maintenance of the high domestic price level for sugar Domestic wholesale prices for sugar in 1984 were Rp 575 per kg (US\$0 57) compared to a world market price of US\$0 26 per kg (Pearson 1984) Second licensing procedures and subsidies on capital investments will be critical in determining whether sweetner production is based on cassava or maize This is because maize plants are based on very large capital investments whereas this is not necessary for cassava

The economic advantage of one crop over the other is difficult to project with any degree of certainty but the most complete cost analysis to date is that of Pearson (1984) Pearson concluded that maize would be a lower cost alternative than cassava in HFS production due to three principal tenets First there are significant economies of scale in the maize wet milling process while in cassava these are minimal Second the price distortions in the world market for cassava relative to maize are assumed to persist and will in turn influence domestic profitability Third the domestic marketing system and/or BULOG are able to assemble the supplies necessary to maintain a large-scale maize plant in operation BULOG s control over imports may provide the supply stability necessary for continuity of operation

Nevertheless planning of the HFS industry has been based on cassava for several practical reasons First HFS production based on cassava is profitable under present domestic sugar prices as set by BULOG Second expansion of cassava production does not depend on yield increases as is the case for maize but can be based on further area expansion in the off islands especially those with good infrastructure as in south Sumatra А supply response is much more assured in the cassava case Third capital requirements for HFS production are significantly less in the cassava case as a HFS production line can be added to existing cassava starch factories as was done in the Malang case Conversely the smaller scale maize well milling plant was not profitable at existing sugar prices (Pearson 1984) A focus on small-scale cassava plants allows a more evolutionary and less risky approach to market development since production can initially be based on relatively small scale plants that have alternative product lines and not on major capital investments in large-scale maize wet milling plants

The key factor in the choice between maize and cassava is the relative price of the raw material Pearson bases his analysis on relative prices in the world market that is a relative price of dried cassava to maize of 92 However as portrayed in Figure 4.3 only very rarely during the 1970 s and 1980 s has relative prices of the two crops been that high Cassava usually trades at a significantly larger discount to maize in Indonesia and is often at the break-even price ratio of 64 calculated by Pearson for cassava to compete with large scale maize wet-milling plants The reasons for this larger price discount are (1) maize prices are often not in line with world market prices (Dorosh 1986) and (2) world cassava prices have often been below the US\$110/t figure used in the analysis Because of the EEC import quota the prospect is for f o b cassava prices to be below this level in the medium term future (see Chapter VIII)

Basing HFS production on cassava allows significantly more flexibility in market development than does maize The profitability of cassava-based HFS does not depend on the economies of scale necessary for maize-based HFS to be profitable This allows greater flexibility in investments in For cassava-based HFS factories can be capacity and in plant location located in cassava production areas and based on starch slurries from the direct root processing or alternatively can be located next to major market areas and use processed starch as a raw material Relative transport costs and control over raw material costs will determine the choice Maize wet on the other hand will probably be located near to milling plants consumption points that is Jakarta and will depend on steady supplies of maize from major storage facilities or imports A single large-scale wet milling plant operating for 300 days per year requires about 275 thousand tons of maize per annum This greatly exceeds either annual export or import volumes over the past two decades and is far above total annual maize sales by BULOG Moreover maize-based HFS will be competing with the animal feed industry for raw material supplies most of which is currently supplied to the concentrate industry from BULOG stocks which are often imports (Table 4 8) Cassava s potential role in this industry will thus be based on BULOG s sugar price policy and on the future ability of the Indonesian maize economy to generate and assemble significant surpluses of this commodity (see Dorosh et al for such an assessment)

In summary the cassava starch market remains very dynamic and represents the largest end use for cassava in Indonesia (Table 4 1) With the high income elasticity for krupuk the potential in the high fructose sweetner market and any increases in the textile paper or plywood industries the demand for starch will continue to increase There is some indication that demand is outstripping supply since in both 1982 and 1983 Indonesia had to import over 50 thousand tons of starch each year (Table 4 9) These are very significant volumes which were primarily caused by below trend production levels in those two years but are nonetheless indicative of the relative size and importance of the starch market in Indonesia

Gaplek in Feed Markets

Gaplek forms an integral part of cassava production and market systems in Indonesia When properly dried gaplek is a stable commodity and provides the farmer the option of harvesting and storing his cassava especially when there is a time premium on harvesting the cassava to plant the next crop Moreover gaplek since it can be stored and transported provides a means of integrating cassava markets Finally gaplek has multiple uses it can be used directly for human consumption can be ground into flour for noodle production or can be a raw material source for feed concentrate production or even for manufacture of low quality starch and its derivatives such as glucose or fructose sweetners

Gaplek is currently used principally for human food especially by the lower income consumers in rural areas Indonesia is also a consistent although highly variable exporter of gaplek to the European Community This export market serves the very important function of setting a price floor under domestic prices for gaplek and in turn cassava in general (Unnevehr 1982) The export market is effective in setting this price floor even though this market rarely accounts for more than 10% of cassava production Only twice since 1970 have gaplek exports exceeded 400 thousand tons (Table 9) and export levels more generally oscillate between 150 and 350 thousand tons

Internal gaplek prices have in general followed the general rising trend in world prices (Figure 4.4) with exports being particularly responsive to the devaluation of the rupiah in 1978 A similar devaluation in 1983 did not produce such a response due to a tight domestic market This apparent tightening of domestic markets is especially evident in Lampung where the gaplek export market was the engine of growth for the cassava industry in the first half of the 1970 s Gaplek exports from Lampung stagnated after 1975 and have declined markedly since 1981 The gaplek industry has had difficulty competing with the expanding starch

		Origen						
Year	Tota (to	l Sales ons)	s Ing	port (7)	Da s Pra	omestic ocurement (/)	Ave	rage Sales Price (Rp/Kg)
1977-78	17	299		72		28		50
1978-79	44	455	-	73		27		120
1979-80	36	835	2	21		79		90
1980-81	72	308	:	15		85		105
1981-82	147	162		-		100		110
1982-83	224	653	ç	97		3		135
1983-84	46	110		9		91		130
Source	Mink Ste	phen	Corn in t	the	Indonesian	Livestock	Economy	1984

TABLE 4 8 Indonesia Maize Sales by BULOG to Feedmills

	Cassava	a Starch	Gaplek Exports ^a				
Year	Exports (000 t)	Imports (000 t)	Total (000 t)	Java (000 t)	Lampung (000 t)		
1970	1 3		337 9	264 7	70 5		
1971	1 3		458 3	365 7	86 9		
1972	11		343 5	240 7	100 8		
1973	1 3	16 1	75 3	42 2	32 9		
1974	75		394 9	190 0	198 3		
1975	0 1		303 3	89 1	206 7		
1976	58		148 6	98	138 2		
1977	-		183 2	37 5	142 0		
1978	0 1	06	307 8	98 2	193 9		
1979	1 0	0 2	709 6	495 3	191 7		
1980	24	14 2	386 1	219 8	160 6		
1981	30	10	372 6	159 6	194 2		
1982	-	53 9	211 3	143 0	54 8		
1983	16	63 9	256 9	1797	72 4		
1984	5 2	03	385 2	na	n a		

TABLE 4 9	Indonesia	International	Trade	in	Cassava	Starch	and	Gaplek
		1970-84						-

a Includes gaplek meal

Source Central Bureau of Statistics Exports Imports various years

industry on Lumpung even when world prices were recently relatively high This declining trend was exacerbated by the poor crop years in 1982 and 1983

The tightening of export supplies of gaplek have made the voluntary quotas formalized with the EC in 1982 rather superfluous The quota was set at 500 thousand tons in 1982 rising to 825 thousand tons by 1986 when the agreement ended Compared to the Thai quota which declined over the period the Indonesian agreement was very much largesse but in principal only There is very little potential for meeting the quota volumes even with the 1983 devaluation The advantages of the latter were negated by a bad crop year and the 1984 fall in the world price brought on by the effect of the quota on the Thai cassava industry

Netherless the current level of the gaplek export market undervalues its importance An export price floor set in the EC not only earns Indonesia a significant economic rent but also serves to maintain price incentives should future production growth increase New cassava production technology or further transport infrastructure development on Sumatra could bring about such growth and the export market could serve to buffer farmer prices were production growth significant The short term problem with current strong domestic markets for cassava is to maintain sufficient pelleting and export capacity to insure the world price linkage The medium term problem is to insure that a sufficiently large quota in the EC market is maintained to allow the cassava industry to expand without significant price instability should there be Certainly any renegotiation of the quota agreement the negotiations should balance the short-term constraints on exportable surpluses with the longer term gains from maintenance of export flexibility

The maintenance of this world price export floor for gaplek however would be expected to inhibit the development of gaplek as a carbohydrate source in domestic mixed feed production If gaplek prices are set in the EC and maize prices are linked to the world coarse grain market gaplek prices would be expected to be out of line with maize in domestic feed for example World Bank 1984) rations (see This argument however holds less often than not If a competitive ratio of relative prices of maize and gaplek is taken as 70 then gaplek should have been very competitive with maize through much of the 1970 s and 1980 s (Figure 4 3) As explained above the principal reason why price relatives have favored cassava is that domestic maize prices are not well linked to the international market and are often above implicit export prices (Dorosh Least-cost feed formulation models demonstrate that gaplek was 1986) competitive in poultry rations at 1984 prices (Table 4 10) However what is suprizing is that gaplek does not displace more maize at this price This is due to the high internal price for soybean meal ratio of 52 Since 1982 BULOG has been the sole importer of soybean (Nelson 1986) meal and since Indonesia has no soybean crushing facilities most soybean meal is imported Moreover soybean meal prices have been kept high to motivate a shift to domestic protein sources such as copra meal However in 1983 when BULOG cut soybean meal imports in half to save foreign exchange feed mills imported rapeseed and sunflower seed meals which were not under BULOG control Two additional factors militate against gaplek

TABLE 4	10	Indonesia	Least	Cost	Feed	Ration	for
			Poultr	y at	1984	Prices	

Feed Component	Price (Rp/Kg)	Feed Composition (%)	
Maize	134	45 7	
Cassava Chip	70	96	
Soybean Meal	335	21 4	
Fish Meal	575	75	
Kapok Meal	89	14 2	

Source CIAT

use in balanced feed rations First there is a preference for maize because of its carotene content which gives the eggs and poultry meat a yellower color Second BULOG can be relied on for maize supplies when these are not available on the local market especially since the major mills are located near to major urban areas especially Jakarta Since most gaplek surpluses on Java are generated in the eastern part of the island and since internal transport costs are relatively high marketing channels to the feed industry have not developed

The balanced feed/commercial livestock sector is not as well developed as similar industries in such countries as Thailand or the Philippines This is principally due to a relatively late start as the first feed factories were only established in 1972 However the other structural features of this industry are very similar Growth in mixed feed production has been spectacular rising from essentially no industry in 1972 to an estimated 400 thousand tons in 1982 (Alfred C Toepfer Company private communication) About 85 to 90% of production is poultry rations and the commercial poultry industry has grown in close association with the feed sector (Table 4 11) This growth in the poultry/mixed feed industry has been motivated by increasing demand for meat and eggs precipitated by rising per capita incomes during the 1970 s In sum a viable poultry/mixed feed industry has been established in Indonesia with prospects for very significant future growth as is reflected in the high income elasticities for animal products (Table 4 12)

A factor that may be a constraint on growth in the poultry industry and by implication for the mixed feed industry is the presidential decree limiting the size of layer units to 5000 birds and of broiler operations to 750 head per week The objective of the decree is the maintenance of a labor intensive poultry industry and a more equitable distribution of income opportunities The principal effect will be on costs of eggs and poultry meat since larger producers are usually able to achieve higher feed conversion rates and fewer losses -- although with effective extension programs and access to inputs there is no necessary reason why this should continue Mink (1984) estimates the result of such a shift to small producers will be an annual reduction of 35 000 tons in demand for carbohydrate sources

The potential role of cassava in the balanced feed market thus depends on a number of interrelated factors First the continuing growth in the starch market and maintenance of direct food consumption will limit potential surpluses and bid cassava away from the feed market unless there is a significant increase in production Second the Indonesian feed industry requires some experience in the appropriate handling of cassava in mixed feed rations and in developing gaplek marketing channels to Jakarta A similar lag existed in using cassava in the Thai feed industry but this inertia has now been overcome Third any major increase in cassava feed use will require more certainty in supply of soybean meal and some rationalization of protein prices Finally as has happened in Thailand maize will form the principal carbohydrate source in feed rations but cassava can come in and out of the diet depending on relative prices Currently between 450 (World Bank 1984) and 700 thousand (Mink 1984) tons of maize are used as animal feed in Indonesia representing about 15% of

	I	Poultry Population					
Year	Village Chickens (000)	Commercial Layers (000)	Commercial Broilers (000)	Layer (000t)	Broiler (000 t)		
1979	66 305	474	_	— па	 n a		
1971	71 575	1 291		na	na		
1972	88 700	1 685	_	na	na		
1973	97 457	2 234	-	па	па		
1974	100 721	3 499	-	na	па		
1975	112 593	3 695	_	па	па		
1976	123 520	5 185	-	n a	n a		
1977	122 798	7 001	_	141 6	86 4		
1978	126 741	11 599	-	168 2	102 6		
1979	127 918	15 412	-	203 5	124 2		
1980	134 693	21 658	4 030	241 9	147 6		
1981	145 678	27 837	8 032	n a	n a		
1982	143 258	41 65	55 ^a	n a	na		

TABLE 4 11IndonesiaGrowth in Poultry Population and Industrial FeedProduction1970-82

a Combined figure for commercial layers and broilers

Source Poultry population is from Mink Stephen Corn in the Indonesia Livestock Economy 1984 and Feed Production is from Hertropf Joachim The Feed Industry in Overseas Countries 1985

TABLE	4	12	Indonesia	Income	Elasticities	for
				Animal	Products	

	Data S	ource
Product	SUSENAS	DGLS ^a
Eggs	1 6	1 2
Chicken Meat	2 2	1 3
Pork	14	1 0

^a Directorate General of Livestock

Source Mink Stephen Corn in the Indonesia Livestock Economy 1984

	Java			Sumatra
	Trenggalek (Rp/Kg)	Gunung Kidul (Rp/Kg)	Kediri (Rp/Kg)	Lampung (Rp/Kg)
Assembly Agent				
Farmer price	34 0	45 0	45 0	22 0
Moisture loss	45	-	20	18
Transportation	50	2 0	15	3 0
Profit	15	1 0	15	32
Wholesaler				
Assembler sale price	45 0	48 0	50 0	30 0
Transportation and loading	60	55	37	48
Moisture loss	30	15	03	27
Profit	1 0	1 0	1 0	75
Purchase Agent				
Wholesaler sale price	-	-	-	45 0
Management fee	-	-	-	10
Profit	-	-	-	30
Factory-Gate Price	55 0	56 0	55 0	49 0
Total Margin	21 0	11 0	10 0	27 0
(% of Factory Price)	(38 2/)	(19 6%)	(18 2%)	(55 1%)

TABLE 4 13IndonesiaGaplek Marketing Margins from Farm to PelletingFactory1980

Source Java is from Falcon et al The Cassava Economy of Java 1984 Lampung is from World Bank Indonesia Policy Options and Strategies for Major Food Crops 1983

	Java		Sumatra
	Garut (Rp/Kg)	Kediti (Rp/Kg)	Lampung (Rp/Kg)
Assembly Agent			
Farmer price	20 0	18 0	99
Harvesting	1 0	-	-
Porterage	30	_	-
Transportation and Loading	42	32	67
Moisture loss	04	07	22
Profit	I 4	1 1	12
Factory-Gate Price	30 0	23 0	20 0
Total Margin	10 0	5 0	10 1
(% of Factory Price)	(33 3%)	(21 77)	(50 5/)

TABLE 4 14IndonesiaFresh Root Marketing Margins from Farm to StarchMill1980

Source Java is from Falcon et al The Cassava Economy of Java 1984 Lampung is from World Bank Indonesia Policy Options and Strategies for Major Food Crops 1983 the total maize crop As depicted in Figure 4.3 cassava is periodically competitive with maize in balanced feeds The feed ration industry is perfectly adaptable to such short-term response to changes in price and availabilities As the domestic feed industry expands it will be arguable whether the feed industry or export market provides the most beneficial price floor for cassava

Pricing and Market Efficiency

The Indonesian cassava economy represents in many ways the ideal development of the crop that is cassava is deployed within diverse and complex cropping systems across a range of agroclimatic conditions and is fully utilized in a broad spectrum of end uses Such full exploitation of the production and utilization potential of the cassava crop relies fundamentally on well functioning markets and in particular on integrated markets in which prices serve to allocate cassava between the range of end uses That is farmers are receiving a price for their cassava roots that reflects its best end use in the country Such a situation requires that cassava prices be linked spatially across the country and linked vertically across different forms The development of such linkages for a highly perishable bulky commodity is difficult and is dependent on the existence of either a highly developed transport refrigerated storage and marketing vegetables in the US) or processing of the roots to a system (eg stable storable commodity Since the first does not exist in Indonesia the role of gaplek can be singled out as crucial to well integrated cassava markets in the country

Unnevehr (1984a) (1984b) has analyzed market integration and price transmission on Java and what follows is drawn directly from that research The key to her analysis is the concept that cassava prices within Java are set by domestic supplies of staple foodstuffs and demand for cassava products subject to a lower bound set by export parity the local demand curve for cassava has two portions -- a downward sloping domestic curve and a perfectly elastic export floor (Unnevehr 1984a) A demand curve was estimated to test for this kink When East Java prices were at export parity the correlation with world market prices was 0 95 Gaplek prices at the East Java port Surabaya in the 1971-79 period were at export parity 79% of the time This demonstrates the effective operation of the price floor and the fact that the export market was a principal determinant of domestic prices throughout this period This is seen in Figure 4 4 charting Thai and Indonesian gaplek prices

Effective price transmission and adequately linked markets implies relatively competitive price formation throughout the country This however does not imply that all farmers face the same price since transport and marketing costs will differ depending on location relative to markets and the level of development of transport infrastruture. In fact marketing and transport costs make up a very significant portion of the wholesale or retail price for both fresh roots and gaplek. Assembly costs of fresh roots for starch plants and gaplek for pelleting plants are relatively high compared to the eventual farm level price (Tables 4.13 and 4.14) On Lampung assembly costs alone consume half of the factory price paid for roots and 55/ of the price paid for gaplek. This significantly

YEHRS

Figule 44 Indonesia Comparison of Gaple Prives

reduces price incentives for farmers since the complete marketing margin (farmer to retail) for money alternative grain crops on Lampung is only around 20 to 30% (Word Bank 1983)

The effective operation throughout Indonesia of the export price floor under domestic cassava prices however depends critically on spatial integration of the various cassava markets Such integration relies on two components first integration between fresh root and gaplek prices and second between gaplek prices in different markets throughout the country In terms of the linkage between fresh root and gaplek prices variation in fresh root prices explained over 90 percent of the variation in gaplek prices in 7 of 19 markets on Java and over 80 percent of the variation in 18 of the 19 markets (Unnevehr 1982)

Not only were gaplek and fresh root prices strongly linked but there was also a strong linkage of gaplek prices between markets across Java and this linkage was principally due to the operation of the export price Thus when domestic prices were at export parity the correlation floor coefficient of gaplek prices in the 19 different markets was greater than or equal to 0 90 for 106 of 171 potential pairs On the other hand when domestic prices were above export parity only prices in 27 pairs of markets were correlated at the level of 0 90 (Table 4 15) When domestic prices were at export parity domestic price variation of gaplek was due almost completely to variation in the export price (Unnevehr 1982) Since there was a generalized price linkage both between markets and between roots and gaplek the operation of an effective price floor was demonstrated for Java as a whole

When domestic prices rose above export parity price variation was much more influenced by regional supply and demand conditions for cassava Moreover internal transportation costs tended to lower the export floor for more remote markets increasing the influence of local supply and demand conditions Thus the number of months the prices at 19 internal markets were at export parity varied from 32 to 70% of the time all less than the 78% at Surabaya

Nevertheless what is remarkable is how often domestic prices have been at the price floor In the period 1971 to 1979 monthly prices in major markets were at export parity between a third to four-fifths of the time Production in this period grew at an annual rate of approximately 2 8% at a time when population growth was 2 0% and income growth was 5 3% Normal growth in food demand for cassava (assuming a combined income elasticity of 0 1) and the rapid growth in starch production should have put some upward pressure on cassava prices Moreover never more than 15% of domestic production was exported and the figure was usually less than 10% Surpluses at export prices thus were never that large Part of the reason was that there was a general upward trend in export prices

However the other major factor affecting cassava prices is the domestic price of rice and over this period the real price of rice fell substantially (Figure 4 5) due to the impact of improved rice technology and import policy Timmer (1980) finds a cross-price elasticity between cassava and rice of 0 77 indicating significant decreases in cassava

	Number of Markets Correlated When Prices Were			
Correlation Greater than or Equal to	Above Export Price Floor	At Export Price Floor		
0 80	102	149		
0 85	63	137		
0 90	27	106		
0 95	2	32		
Total Possible Pairs	171	171		

TABLE 4 15 Indonesia Gaplek Price Correlations Among 19 Producing Area Markets

SOURCE Unnevehr Laurian Cassava Marketing and Price Behavier on Java 1982

consumption for a decline in rice prices During the period of rapid expansion in rice supplies the cassava export market served a critical function of providing an effective price floor and thus maintaining incomes of cassava farmers As Indonesia exploits most of the yield gain possible from the rice technology domestic rice prices and rice imports are again likely to become important policy issues Cassava because of this price linkage to rice allows additional flexibility in meeting rice price policy objectives In the future improving cassava production may be a far less expensive means of maintaining rice prices than rice imports

Any cost reductions in transport or scale economies in assembly will tend to favor cassava over other crops On the other hand to assembly costs must be added processing costs Both the gaplek and starch processing industry has been found to be socially efficient (Nelson 1982) Less than a quarter of the export parity price for both starch and pellets is consumed by processing costs (Table 4 16) The cassava processing industry is relatively dynamic and as well permits a significant degree of Labor intensive household starch production co-exists with diversity large scale factories All are profitable capital intensive although government tax and capital credit policies tend to favor the large-scale plants when the household units are socially more efficient and employ significantly more labor (Nelson 1982)

Cassava marketing systems in Indonesia have evolved in response to transport infrastructure development and changes in market demand There has been almost no intervention by government agencies apart from the tax credits for large scale processing plants and the import tax on starch As the evidence suggests cassava markets function very efficiently in Indonesia given the constraints imposed by infrastructure There is not only little need for government involvement in cassava markets but unlike rice any such intervention in a commodity with multiple markets would be counter-productive without a comprehensive policy and this would be Unlike many other countries in Asia difficult to attain Indonesian cassava markets reflect national supply and demand conditions with a buffer provided by the export market Further development of cassava in Indonesia will be relatively easy given such a well functioning marketing system

PRODUCTION

Demand for cassava remains very dynamic in Indonesia especially as markets have continued to diversify and cassava demand is not dependent on just food demand for fresh roots and gaplek Potential markets in the area of high fructose sweetners and balanced feeds remain untapped due to lock of sufficient production and Indonesia has not come close to meeting the import quota set in the EEC With such a strong demand situation the questions naturally turn to production and the means of increasing an already significant growth rate

Production trends and distribution

Cassava was introduced into Indonesia through early Portuguese trade with the Spice Islands but did not become well established as a major crop until the mid to late 1800 s The spread of cassava was promoted by the

	Starch			Gaplek		
	Household (000 Rp/t)	Medium Scale (000 Rp/t)	Large Scale (000 Rp/t)	Chips (000 Rp/t)	Pellets (000 Rp/t)	
Export Parity Price	178 9	178 9	184 4	81 9	82 5	
Root Costs	122 5	122 5	110 9	58 9	58 9	
Processing Costs	39 2	45 0	66 7	52	18 8	
Social Profit	17 2	11 4	68	178	48	

TABLE 4 16 Indonesia Social Costs and Profits in Starch and Gaplek Production 1980

Source Nelson Gerald Implications of Developed Country Policies for Developing Countries The Case of Cassava 1982 Dutch as a famine reserve Also by the turn of the century the Dutch had developed a large cassava starch industry on Java directed towards export which also provided incentives for expansion of cassava production By the mid-1960 s area sown to cassava on Java reached a peak of 1 4 million hectares and has since declined (Table 4 17) Since 1975 cassava area on Java has been relatively stable at an even one million hectares Cassava area on the off-islands remained static through the 1960 s and early 1970 s Only in the later part of the 1970 s has area in the off-islands shown a significant increase due to the transmigration projects and the expansion of the gaplek trade and starch on Lampung

The distribution of cassava production in Indonesia to a large extent corresponds with the distribution of population About 70% of the cassava is produced on Java Java is followed by Sumatra which accounts for a little over 10% The rest of the production is distributed throughout the other islands (Table 4 18) Cassava is thus grown throughout Indonesia almost wholly in upland areas and has established itself as a major palawija (secondary upland food) crop in Indonesia Over the decade of the seventies cassava production grew at annual rate of 2 7% per annum in However this production growth was marked by very different Indonesia On Java cassava production grew at an rates of growth between regions annual rate of 1 8% while off-Java the growth rate was 5 2% Even on Java growth occurred only in Central and Eastern Java while production was stagnate in Western Java By far the most rapid rate of growth occurred in Lampung on Sumatra where production grew at a 12 2% annual rate tripling in the space of a decade

The faster rate of growth on the off-islands than on Java would be expected particularly given the severe land constraint on Java versus the outer islands and the policy to settle populations on the outer islands The 1 8% growth rate in production on Java in the 1970 s was due to a declipe in area of 0 9% per year and an annual increase in yields of $2.8\% \frac{J}{2}$ Historically yields on Java had been static at a little over 7 t/ha since the 1920 s (Roche 1983) and only since 1973 have yields levels shown a consistent rising trend The natural question is what are the factors that have precipitated this relatively sudden and rapid rise in yields? A corrollary however would be the identification of the factors that have kept yields on Java much lower than other major producing countries in Southeast Asia that is about half the yield levels in India and Thailand The intensity of production systems on Java and the favorable agro-climatic conditions would suggest similar or higher yield These issues shall be explored in the following two sections potential

Production growth on the outer islands during the 1970 s showed a distinctly different pattern to that on Java The principal factor responsible for the 5 2/ production growth rate was the 3 2% annual expansion in area This is similar to the population growth rate off-Java of 3 0% in the 1971-80 period However most of this expansion was

^{5/} See Roche (1983) for a discussion of factors contributing to declining area planted to cassava

	Area (million ha)		Production (million tons)		Yields (tons/ha)	
	Java and Madura	Indonesia	Java and Madura	Indonesia	Java and Madura	Indonesia
1951	75	87	53	71	71	82
1952	77	93	51	75	66	81
1953	87	1 04	65	90	75	87
1954	87	1 07	64	96	74	90
1955	88	1 08	65	94	74	87
1956	90	1 12	64	91	71	8 1
1957	99	1 22	72	10 1	73	83
1958	1 08	1 34	8 1	11 3	75	84
1959	1 19	1 46	90	12 7	76	87
1960	1 14	1 42	8 6	11 4	75	8 0
1961	1 14	1 48	84	11 2	74	76
1962	1 14	1 45	8 1	11 4	7 1	79
1963	1 28	1 56	87	11 6	6 8	74
1964	1 26	1 58	91	12 3	7 2	78
1965	1 40	1 75	97	12^{-2} 6	6 9	7 2
1966	1 17	1 51	8.3	11 2	7 1	74
1967	1 18	1 52	8 3	10 8	70	71
1968	1 16	1 50	8 8	11 4	76	76
1969	1 14	1 47	8 2	10 9	72	74
1970	1 09	1 40	80	10 5	73	75
1971	1 10	1 41	8 1	10 7	74	76
1972	1 13	1 47	79	10 4	70	71
1973	1 06	1 43	8 1	11 2	76	78
1974	1 16	1 51	96	12 9	8 3	8 5
1975	1 02	1 41	93	12 3	91	87
1976	1 00	1 35	8 8	12 2	88	90
1977	99	1 36	91	12 5	92	92
1978	1 01	1 38	95	12 9	94	93
1979	1 02	1 44	99	13 8	97	96
1980	1 00	1 41	98	13 7	98	97
1981	99	1 40	99	13 7	10 0	98

TABLE 4 17 Indonesia Cassava Area Production and Yields Java and Indonesia 1951-81

l

L

Source Falcon et al The Cassava Economy of Java 1984

concentrated on Sumatra and particularly in Lampung Area and production expansion thus appeared to be related more to expanding infrastructure and market possibilities than to expanding population However expanding area was not extensive in nature since cassava yields as well rose at a rate of 2 0% per annum on the outer islands

Thus trends in cassava production in Indonesia over the past decade have been favorable particularly given the severe land constraint on Java where the bulk of the cassava is produced Nevertheless cassava production on the outer islands is growing much faster due in part to the unexploited land resources there This creates something of a dichotomy in any further expansion of cassava which as will be seen in the succeeding analysis is reinforced by other major differences in production systems between Java and the outer islands

Cassava production systems

Cassava production systems in Indonesia unlike other major cassava producing countries in Asia are complex Complexity in this case introduces diversity and across Indonesia there is substantial variation in production systems based on agro-climatic conditions land availability and market access (Table 4 19) Unfortunately there has been only one major attempt to study these production systems in depth and as a result this section will by necessity principally summarize the research of Roche (1983) in his analysis of cassava cropping systems in three regions of Java Moreover because of the differences in land/labor ratios between Java and the outer islands production systems on Java will be considered independently of those off-Java

The complexity of cassava production systems on Java derives from intercropping and rotation systems and from double-cropping with rice in certain land types Because median farm size on Java is only 0.4 hectares farmers seek to optimize returns to this limited resource Over half of cassava grown on Java is intercropped (Table 4.20) with the principal intercrops being maize and upland rice and in West Java legumes such a peanuts and soybeans In certain areas close to urban areas where fresh market prices are sufficiently high cassava in monoculture will follow rice on irrigated land particularly where there is not sufficient water for a second rice crop Finally although cassava will in most cases not complete for land with rice it will have to compete for labor and capital resources so that appropriate timing of cassava cultural practices is a major factor in production systems

Agro-climatic conditions particularly rainfall distribution soil type and soil fertility together with irrigation availability are determining factors in the choice of cassava cropping system Rainfall is adequate for cassava all over Java but in certain rainfed areas is limiting for other crops Thus as rainfall reliability declines from west to east (Figure 4 6) cassava production tends to be concentrated more in the eastern part of Java and on the island of Madura (Figure 4 7) even though cassava is grown throughout Java apart from the irrigated areas of the northern plains IV - 17 -

Soil type topography and the eroded state of soils define the other major constraint on adaptation of upland crops Soils with major fertility acidity or toxicity problems such as Ultisols are principally found on the outer islands The principal soil constraints on Java are highly eroded unterraced hillsides Such areas tend to be most common in the south-central coastal zone an area where cassava production is most highly concentrated Whereas rainfall distribution principally affects timing and whether one or two intercrops can be planted land type determines the range of crops that can be grown At the extreme where soils are highly eroded cassava is the crop of last resort

In general as soil and rainfall constraints become more severe first legumes leave the intercropping system followed by upland rice and finally maize leaving cassava as the sole crop on highly eroded soils Where soil and rainfall are not limiting all of these crops can be included in one system as shown in Figure 4.8 However generally upland rice is the principal intercrop in the wetter western part of Java while maize is the principal intercrop in the central and eastern regions. In most systems the land is prepared before the start of the heavy rains normally around October or November. The upland rice and/or maize are planted first and after establishment in two to four weeks cassava is planted. Where soil conditions are not limiting this system provides effective ground cover until cassava reaches full canopy which in turn aids in controlling erosion under the high rainfall conditions of Java

The resource structure of the systems vary substantially (Table 4 21) Labor use is high even in those areas where bullocks are used in land preparation and inter-row cultivation Fertilizer use tends to be higher in the more productive land types principally because more responsive crops are planted in the intercrop system and relatedly such systems probably give the higher marginal return to fertilizer use Cassava yield levels thus vary substantially between systems

Over 70% of cassava is planted in the major rainy period from September to January (Figure 4 9) This introduces two principal constraints on cassava production systems First this coincides with the major rice planting season which creates competition for labor resources Second the crop must be harvested and the land cleared by the start of the next rains Where cassava is dried into gaplek the harvest must be earlier to take advantage of the dry season In those systems were cassava follows a rice crop timing is crucial since the crop has only six to eight months before harvest

Nevertheless the longer maturity of the cassava complements the harvesting pattern for rice (Figure 4 10) The major portion of the cassava harvest occurs in the June-October period after the principal rice harvest insuring a more stable supply of carbohydrate sources. This tends to coincide with the dry period so that cassava roots can be processed into gaplek where markets for fresh cassava are not assured. Roche (1983) presents evidence which suggests that cassava continues to grow and add root weight during the dry season -- this would not be the case were soil moisture limiting. Farmers thus face a trade-off between timely harvest for either gaplek drying or early land preparation and eventual cassava yield

Province/Region	Production (000 t)	Percentage of Total (%)	Per Capita Production (kg/cap)
Java	9 795 8	71 4	107 3
Jakarta West Java Central Java Jogyakarta East Java	4 0 1 975 3 2 970 7 655 7 4 190 2	14 4 21 6 4 8 30 5	0 6 71 9 117 1 238 9 143 6
Sumatra	1 601 5	11 7	57 2
Lampung	984 4	72	212 9
Kalimantan	303 4	2 2	45 1
Sulawesi	581 7	4 2	56 1
Nusa Tenggara Timu	852 9	62	313 3
Other	591 0	4 3	71 2
Total	13 726 3	100 0	93 1

Table 4 18 Cassava Distribution by Island and Per Capita Production 1980

Source Central Bureau of Statistics

Where cassava principally supplies starch factories or urban markets there is a demand for more continuous supplies of roots However staggered planting is only possible where rainfall is sufficient to support the intercropping system during most of the year such as in West Java or where land types are suited only for pure stand cassava In general providing for more continuous supplies of cassava roots is heavily constrained by rainfall distribution and the complexity of the cropping system on the small farms of Java

the factors which determine Moving from Java to the outer islands cassava production systems change dramatically rainfall distribution soils farm size and markets all change quite significantly The initial striking difference is in rainfall distribution In general the outer islands have a more continuous supply of rainfall than Java On Sumatra Kalimantan and to a slightly lesser extent Sulawesi the major portion of area is suitable for continuous cropping as compared to only 20% of the area of Java (neglecting the irrigated areas) Interestingly per capita production of cassava in Indonesia is highest in those areas -- Java and Nasa Tenggara -- where there is a significant part of the area with constraints on water availability during the year (Table 4 18)

Soils in general also vary markedly between Java and the outer islands Whereas rainfall is not as limiting on the outer islands soils in these areas impose much more severe constrains on cereal and legume crops although not on cassava The soils are in general ultisols being quite acidic of a low fertility status and occasionally having relatively high levels of exchangeable aluminium Because of these soil problems together with the erodability on slopes much of this land area has been classified as marginal for cereal and legume crops Cassava however is well adapted to these soils but continuous cropping of such soils requires appropriate crop and soil management to maintain productivity levels

Cassava production systems on the outer islands have in many ways been conditioned by the dictates of the transmigration schemes Before the advent of the transmigration schemes much of cassava on the outer islands was grown in a shifting agricultural system Such a system was very the extensive particularly since abandoned fields returned to alang-alang (Imperata cylindrica) rather than the original forest fallow The transmigration schemes superimposed a fixed farm size structure over the original shifting system Farmers were in general given 3 5 hectares to exploit and apart from the Lampung area the settlement areas were chosen where the soils were not ultisols Farmers however could not effectively utilize the whole 3.5 hectares On the one hand laborintensive cropping patterns were brought from Java to an area where labor needs relied solely on family availability and there was no bullock power On the other hand infrastructure was limited and there was no effective surpluses to be produced market even were Until sufficient infrastructure was developed such as happened on Lampung there was little -... incentive to sow over 0 6 to 1 0 hectares sufficient to meet family food needs

			South- Central		
	West Java	Central Java	Java	East Java	Madura
Cassava as a percent of total major food					
crops harvested	157	18%	357	14%	24%
Range of cassava yields (tons/ha)					
1977-79	10-12	9-11	7-9	10-11	7-9
Field surveys					
1979/80	6-20	5-12	2-10	10-40	4-8
Level of soil erosion	High	High	Severe	Moderate to high	Moderate
Principal intercrop with cassava	Upland rice legumes	Corn	Upland rice corn	Corn	Corn
Principal end use of cassava	Starch	Gaplek sales	Staple food	Gaplek sales staple food	Staple food gaplek sales
Direct human consumption of cassava					
Quantities	Low	Low to moderate	High	Moderate to high	High
Form	Fresh	Fresh gaplek	Gaplek	Gaplek	Fresh Gaplek

TABLE 4 19 Characteristics of the Five Major Cassava-Producing Regions of Java and Madura

Source Falcon et al The Cassava Economy of Java 1984

	Percentages of Farms Harvesting Intercrop				
Farm Size	Cassava (%)	Upland Rice (%)	Maize (%)		
0 1-0 3 ha	52 9	57 7	51 1		
03-05 ha	53 3	61 5	51 5		
0 5-0 75 ha	54 8	64 6	52 7		
0 75-1 0 ha	55 6	67 7	53 5		
1 0-2 0 ha	56 6	69 2	44 2		
2 0 + ha	54 4	66 3	52 4		
ALL FARMS	54 2	63 1	54 4		

TABLE 4 20Farms Containing Intercropped Annual Crops as
Percentages of all Farms on Which These
Specific Crops Were Harvested 1973

Source Roche Fredrick Cassava Production Systems on Java 1983

Inputs and Outputs per hectare	Garut		Gunung !	Guming Kidul		Kediri	
	Pure-Stand Cassava	Intercropped Cassava Maize Upland Rice	Intercropped Cassava Maize	Intercropped Cassava Maize Rice Legume	Intercropped Cassava Maize	Pure-St <i>a</i> nd Cassava	
Soil Type	Terraced Hillsides	Terraced Hillsides	Unterraced Hillsides	Level Vale Soils	Level Tegal	Late Season awah	
Labor Use (Days)							
Male Female	200 9 99 4	278 0 161 6	188 8 157 0	305 2 246 4	203 0 20 2	225 4 1 8	
9 Labor Hired	34 4	39 9	0	14 8	68 8	91 8	
Bullock Power (pair days)	0	0	0	28 2	18 8	20 9	
Fertilizer (kg)							
Chemical Manure	0 143 3	168 8 1370 0	0 0	241 5 3520 0	356 8 4410 0	310 5 0	
Yields (00 kg)							
Cassava (roots) Rice (paddy) Maize	706 -	79 4 7 2 3 1	26 4	69 0 4 6 3 5	195 0 - 9 0	152 0 	
Legumes	-	J I 	-	58	-	-	

TABLE 4 21 Indonesia Resource Structure of Cassava Cropping Systems in Three Survey Sites 1980

Source Falcon et al. The Cassava Economy of Java 1984

Cassava provides a certain production without purchased inputs and for this reason cassava has been crucial in meeting the food needs of newly arrived settlers in the transmigration projects at least until rice paddies can be established in those areas where rice production is On the poorer soil areas cassava remains in the cropping feasible pattern Cassava in the outer islands is grown only on rainfed soils and usually in association either with maize and upland rice or in the establishment of tree crops or between the rows of shorter tree crops like It is tree crops that are becoming the major cash crops on the coffee outer islands and it is only in Lampung where cassava has so far carved out a place as a primary cash crop first as gaplek for export and currently for starch Even though rainfall is relatively well distributed farmers still prefer to plant upland rice and maize during the months with the highest rainfall so that there continues to be some seasonality in cassava production (Figura 4 11)

Because of this seasonality of supply and the history of plantation systems in Indonesia cassava plantation systems have also been developed on the outer islands These have usually been developed in conjunction with large-scale starch plants of which there are at least eleven in Lampung (Nelson 1982) There is little information on these systems There is substantial mechanization even in the harvesting of roots McIntosh and Effendi (1979) suggest that after opening new land yields are high the first year but decline over time Fertilizer is used only after the third or fourth year or the land is left fallow and new land is opened up These plantation systems provide continuity of supply but the factories still depend for most of their needs on small-scale production systems

Cassava production systems in Indonesia as compared to other producing countries in Asia are characterized by considerable diversity depending on rainfall land type and market and a fair degree of complexity due to the intensive nature of such small size farms Focusing on just a single crop such as cassava would fail to define the determinants of the system Improving productivity of cassava will necessarily have to focus on improving the productivity of the whole cropping system

Yields

Yields of cassava in Indonesia in 1980 averaged 9 7 t/ha compared to average yields of 13 1 t/ha in Thailand and 18 3 t/ha in India Soils and rainfall are probably on average better in Indonesia than the other two countries Labor and input use are in general on a par with India These comparisons would tend to imply that apart from variety cropping systems in Indonesia have a substantial affect on cassava yield Probably three principal factors are influencing yield plant density in intercrop systems delayed planting of cassava in the intercrop system and a shorter growth cycle

Zandstra (1978) has shown a decline in cassava yield with delayed planting of cassava in intercropping rice and maize Planting cassava is delayed from 3-4 weeks (Roche 1983) to two months (McIntosh and Effendi 1979) after the planting of the rice and maize Such systems tend to increase the rice yield and decrease the cassava yield Plant densities also vary in these systems particularly if a second crop is to be intercropped after the rice and maize harvest In such cases plant densities are as low as 4 500 plants/ha On the other hand in the common rice-maize-cassava system the cassava population can be maintained at 10 000 plants/ha Depending in part on variety trials in general show very little response to increased plant population after 10 000 plants/ha (Wargiono et al 1979) Finally there is substantial evidence to suggest a trade-off between early harvest and yield Nevertheless Roche (1983) among others has shown that intercropping systems even with lower cassava yields are more productive than monoculture cassava

The issue again arises as to what has been responsible for rising which then leads to the question of what is the vields of cassava potential for further increases in yields in these systems Roche suggests that increased fertilizer use has been the principal factor Since the early 1970 s there has been steady development of fertilizer marketing channels first for irrigated and then for upland areas Moreover there has been a policy of subsidizing the price of fertilizer Application of fertilizer on cassava has thus steadily increased over the 1970 s (Table Nevertheless average application rates only stand at little over 4 22) 20 kg/ha well below application rates on other upland crops Yet since cassava is often intercropped with upland rice and maize cassava is also benefiting from the increased applications to these crops Moreover Roche found virtually all farmers who applied fertilizer to their cassava used it in conjunction with manure This was necessarily not the case with other crops such as maize or legumes Thus manure may have been diverted from other crops to cassava as fertilizer application on these other crops This reinforces the point that cassava appears to respond much increased better to manure then most other crops

Another avenue to increasing cassava yields would be to favor cassava over other crops in the system Farmers can make marginal adjustments in planting dates harvest dates spacing or density of the intercrops to increase cassava yields in many cases at the expense of yields of other However if anything cassava prices have declined crops in the system moderately in relation to the prices of the other upland crops (Roche 1983) over the decade providing little incentive to favor cassava over The only other incentive would be improved market access other crops With the rapid expansion in starch production both at the household and the factory level more stable market conditions may have developed resulting in a decrease in risk of marketing the perishable root Since cassava is more profitable than crops such as maize (Figure 4 12) reduced market risk could have resulted in a favoring of cassava in the system

The other major characteristic of cassava yields in Indonesia is their variation between systems Aggregate statistics suggest relatively similar yields between regions but Roche (1983) found average cassava yields varying from 2 3 t/ha to 19 5 t/ha depending on the system The variability depended in part on rainfall conditions management and intercropping system but seemed to be most related to land type Yields were lowest on eroded hillsides and highest on the level rainfed soils or in the dry season bunded land even though in the latter the growth period was very short The yield range was further widened because fertilizer TABLE 4 22 Indonesia Application of Chemical Fertilizers to Cassava Maize and Upland Rice Java and Madura 1970-79

Year	Cassava (kg/ha)	Maize (kg/ha)	Upland rice (kg/ha)
1970-71	6 2	30 3	14 2
1971-72	78	38 0	65 1
1972-73	8 1	45 1	46 5
1873-74	66	34 6	40 4
1974-75	88	49 8	45 9
1975-76	12 6	53 6	58 0
1976-77	18 2	58 1	66 8
1977-78	17 4	69 7	83 0
1978-79	21 7	71 2	82 3

Source Falcon et al The Cassava Economy of Java 1984 The use rates are averages over all farmers sampled (both users and nonusers of fertilizer) tended to be applied to the better soils Two points arise in regard to the yield variation between systems First rising yields could be due to a relative shift in area to the more productive systems Again this would be motivated by changing market conditions for the cassava crop Second yield constraints in these systems are so different that increasing yields will in large part depend on adapting technology to distinct land systems -- this is a principal feature of IRRI s cropping systems research methodology (Zandstra et al 1981)

Costs of production and labor utilization

Compared to other countries in Asia labor use in cassava production systems in Indonesia is high in general double or triple per hectare labor inputs in most other countries This reflects the very low land/labor ratios on Java on the one hand and the more complex cropping systems on the other hand Nevertheless even in monoculture cassava systems where bullocks are used in land preparation labor input exceeds 200 mandays/ha (Roche 1983) Even more striking is the fact that labor input off-Java remains high In a survey by Hambrect (personal communication) labor input in Gedony Tatson district in Sumatra averaged 354 mandays/ha of which 61 mandays were for peeling and drying into gaplek Wardhani (1976) of 424 man-days cites а figure per hectare for the upland-rice-maize-cassava system found in southern Sumatra Even on the off islands labor intensity of the production systems is not radically altered

Labor thus forms a major component in costs of production however the proportion varies markedly with the inherent productivity of the land system On the eroded hillsides of Gunung Kıdul labor is practically the only input while on the level rainfed soils of Kediri labor costs are higher than Gunung Kıdul but still form less than half of total variable costs (Table 4 23) Higher levels of purchased inputs are applied to the more productive land systems so that naturally higher yields are achieved with higher per hectare costs

The costing of cassava production on Java is complicated by the characteristics of the agricultural economy particularly the substantial underemployment in labor markets the high priority given to subsistence needs and the diversity in land and cropping systems How the farmer judges the relative profitability of crops determines to a significant extent his choice of cropping pattern The central issues in this regard are how the farmer costs family labor (i e the opportunity cost of family labor in a labor market where the costs of job search can be high relative to the wage) and how the farmer evaluates a normal return to land (i e rental rates may be high but assuring subsistence needs is a priority objective) Roche (1984) and Mink (1985) both calculate alternative measures of either profitability or returns on farmer-owned resources in order to evaluate the relative profitability of different cropping systems

As is apparent in the summary of Roche s data in Table 4 23 cassava based systems provide a significant return on cash outlays (Profit I) often higher than returns on other <u>palawija</u> crops (Roche 1983 Mink 1985) Moreover these systems also provide positive returns for land and management after family labor has been costed out at market wage rates
	Ga	rut	Gunung K	lidul	Kediri		
Costs and Profits (000 Rp)	Pure-Stand Cassava	Intercropped Cassava Maize Upland Rice	Intercropped Cassava Maize	Intercropped Cassava Maize Rice Legume	Intercropped Cassava Maize	Pure-Stand Cassava	
Total Output Value	141 2	264 2	67 9	328 5	457 5	304 0	
Non-Labor Cash Costs	0	23 5	16	59 2	41 7	44 1	
Labor Cash Costs	55 4	94 0	0	16 6	92 3	114 8	
Imputed Family Labor Cost	81 7	120 1	58 9	71 4	41 7	28 9	
Profit I ^b	85 8	146 7	66 3	252 7	322 5	190 1	
Profit II ^c	4 1	26 6	74	181 3	281 8	161 2	
Cassava Production							
Cost per ton ^d	30 0	18 4	17 3	15 8	14 5	20 0	

Indonesia Costs and Profits of Different Cassava Production Systems ^a 1980 TABLE 4 23

а See Table 4 21 for a description of the cropping systems ь

Represents returns to land capital family labor and management Represents returns to land capital and management

С

d Includes rental cost of land but not cost of capital

Source Falcon et al The Cassava Economy of Java 1984

(Profit II) Finally if the opportunity costs of land are added and costs of cassava production are calculated on a per ton basis these per ton costs (except in one case) $\stackrel{0}{-}$ are in general equal to or less than the 1980 farm-level price $\stackrel{0}{-}$ Cassava-based systems generate sufficient profit to cover the market costs of the factors of production a fact of some significance in such intensive systems The maintenance of normal profit levels for cassava is reflected in both the importance of the cassava as a cash crop and its relative stability in the cropping systems of Java and Southern Sumatra over the last several decades

Technology development

Since the constraints on cassava yields are both not fully understood and vary substantially across Indonesia a research program to develop yield-increasing cassava technology needs both a close linkage to farmer production systems and a quite extensive testing system Moreover raising cassava yields will have to be done within intercropping systems and it will not be possible to heavily sacrifice yields of other crops in increasing cassava yields especially that of upland rice Finally yield potential will be heavily circumscribed by climatic and soil conditions so that any yield gap analysis will have to be defined in terms of location and land system

Such a research focus requires a certain critical level of resources yet research resources for palawija crops have traditionally been limited as most resources have been devoted to rice Agricultural research is relatively centralized in Indonesia and comes under the responsibility of the Agency for Agricultural Research and Development (AARD) AARD is divided into seven major research centers of which cassava comes under the Central Research Institute for Food Crops These central research institutes are in fact a coordinating body for a set of regionally based research centers of which there are seven under the Central Research Institute for Food Crops Cassava research in Indonesia is centered in the Root Crop Improvement Program which is under the Bogor Research Institute for Food Crops There is some consideration of plans for decentralizing decision-making and making the seven research research institutes semiautonomous which could mean that cassava research could be done in more of these institutes However currently cassava research is centered at Bogor which focuses on more basic research Thus all of the cassava breeding research is done at Bogor Agronomic research and advanced selection of clones are done at some of the other research centers

^{6/} The one exception is one of the terraced hillside systems in Garut Since this system was unfertilized monoculture cassava this probably indicates land of inferior quality and therefore of a lower opportunity cost Nevertheless a constant rental value was applied to all systems thereby probably overestimating costs for this system

^{7/} The 1980 price was exactly equal to the average (on a deflated price basis) of the period 1969-81 This is based on the rural market price series for fresh roots for Java and Madura published by the Central Bureau of Statistics

Cassava technology development in Indonesia in the postwar period has principally focused on varietal development and fertilizer trials Two varieties Adira I and II were released in 1978 Adira I has a lower HCN content shorter maturity higher starch content and about the same yield potential (35 t/ha) as Adira II Adira I is apparently grown quite widely on Lampung (Roberto Soenaryo private communication) but its adoption on Java has not been widespread Understanding why farmers have not adopted Adira I could offer valuable insights into whether the problem is the variety or its extension Clearly in Indonesian cassava systems yield is only one criterion among many that will motivate farmer adoption

Roche (1983) argues that the most immediate avenue to increasing cassava yields is through a combination of the Adira I variety and appropriate fertilization In the longer term more finely tuned varietal development together with integrated fertilization rotation seed management and intercropping practices designed for homogenous land systems will probably be the principal means to achieving significant increases in cassava yields Certainly the objective will be a stable continuous cropping system in upland areas with cassava as a significant component

Another consideration is whether a distinction should be made in a casssava research strategy for Java versus the outer islands Resolution of this issue to a large extent will depend on whether research is decentralized and on land policy and the availability of labor-saving technology in the transmigration schemes Currently cassava and other food crop production on the outer islands depends on the very labor-intensive production systems developed on Java Farmers usually cannot utilize all the land allocated to them because of the lack of labor and/or tenant markets (Wardhani 1976) Research in the outer islands to date has focused primarily on further intensification of intercropping systems with principal focus on resolving particular soil constraints A broader setting of research objectives might consider whether higher farmer incomes could be achieved with a continued focus on just land productivity or whether the focus should be on technologies that require less intensive labor use leading to the cultivation of more land

A focus on less-labor intensive cropping systems for the outer islands would reinforce cassava s role as a cash crop at least in those areas sufficiently well developed where infrastructure is However the important role of cassava as a food crop where it is principally consumed in the fresh form should not be sacrificed A singular focus on mechanization and varieties for the industrial starch market would favor primarily the plantation systems without attendant benefits for food consumption of cassava A research strategy for cassava in Indonesia significant level of diversification and a clearly defined linkage between requires a production constraints and end use In particular in any varietal development the focus should be on the development of dual-purpose varieties where food quality parameters are maintained in the selection This is critical to the maintenance of price integration which process has been so important to the growth of cassava in Indonesia

Conclusions

Growth in the Indonesia economy has been impressive over the decade of the 1970 s continuing through to 1982 GDP growth averaged 7 6% per annum in the 1970 s and was above that mark in 1980 and 1981 These growth rates were well above the average for either industrial or developing countries Only in 1982 did the economy start to be affected by the international economic recession and GDP growth fell to 2 3% rebounding to around 4% the The decline in oil prices and demand for agricultural following year exports led to a significant decline in the foreign exchange reserve position culminating in a devaluation of the ruplah in 1983 and 1986 and Future growth in the Indonesian economy 15 tighter controls on imports highly dependent on what happens in the petroleum export market nevertheless the economy is projected to grow by 5% per year through the rest of the decade (World Bank 1984)

Such significant growth in incomes have a marked impact on food demand Estimated annual per capita consumption of rice increased from 107 1970 to 145 kg in 1983 Fortunately rapid demand growth kg in corresponded with the rapid adoption of short stature rice technology and rice production almost doubled in this period even with very minor change in the land area planted to rice Nevertheless Indonesia remained a major net importer of rice importing as much as 2 million tons in 1980 Growth in production of rice is expected to slow somewhat through the end of the decade as the growth rate in yields declines Nevertheless Indonesia is expected to remain at or near self-sufficiency in rice while continuing to maintain some capacity to import when production deviates from trend (World Bank 1984)

Indonesia has been relatively successful in attaining self-sufficiency in the production of basic foodstuffs and in maintaining relatively stable consumer prices especially for rice While the government has been successful in meeting two of its food policy objectives impact on raising farmers incomes the third principal food policy objective has been less widespread This is because the income generation from the new rice technologies was directed almost exclusively toward the irrigated sector The benefits from the new rice technology have been inequitably distributed between regions and since the bulk of the population continues to depend on agriculture for their income continued neglect of the upland areas will further increase these disparities

Two principal concerns should govern policy toward the upland sector The first is the relative priority between development of the upland areas on Java and those on the outer islands Java accounts for 47% of Indonesia's GDP 62% of the population and only 7/ of the land area The soils on Java are relatively fertile transport infrastructure is relatively well developed and very labor intensive production systems have evolved to suit the extremely small average farm size On the outer islands on the other hand the soils tend to be infertile and highly acidic and infrastructure is not as highly developed Land is relatively The population distribution between Java and the outer islands plentiful creates a situation where both land and labor resources are underutilized and the transmigration projects were established to remedy this imbalance

Between 1971 and 1980 approximately 2 1 million migrants resettled in the islands of which one million were resettled outer through the transmigration program This program had a significant impact on agricultural employment Of the 1.8 million increase in agricultural employment in this period 1 4 million was off Java (World Bank 1982) Certainly any increase in area planted to crops will have to come on the outer islands and the government is currently attempting through agricultural research estate development and the transmigration projects to establish a base for future growth on the outer islands

The second issue is the choice of crops where technology can be expected to raise productivity and markets are sufficiently expansive to absorb the increases in production thereby leading to increases in farmer income Certainly cassava must be considered as a principal choice for both Java and the outer islands Maize is an alternative choice on Java and tree crops -- and maize in selected areas -- are an alternative on the outer islands Cassava could have a significant potential impact given a higher committment of resources to support research on the crop

As a crop for development of the upland areas cassava has several Most importantly the cassava marketing system in Indonesia 1s advantages probably the best developed in Asia with the possible exception of the larger but more specialized system in Thailand Prices efficiently allocate cassava between regions across different end uses and over time Moreover an effective price floor is provided by the gaplek export market Efficient markets together with the multiple end uses for cassava particularly the high consumption of gaplek and fresh cassava by the poor allows the introduction of improved production technology to achieve the dual policy objective of increasing farmers incomes and improving calorie intake of the rural poor Moreover the rapidly growing starch market with potential under current policies for the development of high fructose sweetners provides scope for the absorption of significant increases in production and any further surpluses could be exported at least upto the 825 thousand ton quota

Nevertheless the very uncertain situation in the EC market for cassava pellets will continue to affect the Indonesian cassava economy if not in lower import quotas after 1986 then in the impact on world prices and the impact that lower world prices will have on Indonesia farmers There is some opinion (World Bank 1984) that Indonesian will be in a surplus position in both maize and cassava by the end of the decade with little hope of absorbing these production increases in domestic markets For cassava the report overlooked the large and dynamic starch market but certainly any major productivity increases will probably result in internal prices remaining effectively tied to the export price with the accompanying need to maintain some flexibility in the export market

More than anything else a dynamic cassava sector provides flexibility in Indonesia s food and agricultural policy When rice yields start to plateau out at the end of the decade cassava can add flexibility to price and import policy for rice Moreover the starch high fructose sweetner and when necessary the export and/or domestic feed markets can be a basis for expanding cassava on the outer islands agricultural areas where a well adapted cash crop for smallholders has been difficult to identify This type of flexibility will be key for balanced agricultural and industrial development in Indonesia s future

Appendix 4 1 A synthesis of production and utilization

This appendix reviews the consistency between production and consumption estimates for cassava in Indonesia and develops a supply and utilization table for the year 1978 The table disaggregates the data for Java and the outer islands Two other estimates of cassava supply and distribution exist one is the food balance sheets for Indonesia put out by the Central Bureau of Statistics and the other is an estimate by Laurian Unnevehr (1982) for Java only These estimates will be used as a point of reference in developing the supply and distribution estimates

Food uses are a dominant form of utilization of cassava in Indonesia The most systematic estimates of cassava consumption patterns comes from the periodic National Socioeconomic Expenditure Survey (Susenas) -- see Dixon (1982) for a discussion of the structure of the surveys The 1978 survey (Susenas V) found an average per capita consumption of 20 3 kg of fresh roots and 9 4 kg of gaplek on Java and 20 2 kg of fresh roots and 3 1 kg of gaplek on the outer islands This resulted in an average for Indonesia as a whole of 20 2 kg of fresh roots and 7 3 kg of gaplek or an average of 42 1 kg of cassava on a fresh equivalent basis

A standard rate for converting fresh roots to gaplek is more complex in Indonesia than Thailand because roots are peeled and gaplek is not dried to a standard percentage This introduces peeling loss moisture content and dry matter content as variables in the determination of the conversion Field observations suggest a peeling loss of 20% (Unnevehr 1982) rate which is in accord with standard percentages of peel to root weight of 15 to 20% found at CIAT (Rupert Best private communication) Moisture content of gaplek is apparently highly variable Field observation by Unnevehr suggests levels as high as 25% Studies at CIAT (Rupert Best private communication) have found problems of continuing physiological deterioration and heavy fungal growth on cassava chips with higher than 18% moisture even after one week Drying to moisture levels of 20% or above the storage life of cassava is not substantially extended unless there are alternative means of controlling fungal growth Unnevehr did find relatively high losses in gaplek storage but only after relatively long What average moisture content of gaplek is at the point of periods consumption remains somewhat of a question So also does the average dry matter content of cassava roots

Dixon (1982) and Unnevehr (1982) both employ a conversion rate of roots to gaplek of 2 5 to 1 Assuming a 20% weight loss due to peeling gaplek at a 25% moisture content implies a dry matter content of 37 5% while at 18% moisture a 41% dry matter content is implied These dry matter percentages are above the normal range at least when compared to different genotypes evaluated at Bogor A more reasonable assumption is a 18% moisture content and a 33% dry matter content which gives a conversion rate of 3 0 to 1 for fresh roots to peeled gaplek

The 42 l kg average level of cassava consumption from the expenditure surveys compares to an estimate from the food balance sheets of 74 0 kg per capita Food consumption in the food balance sheets is estimated as a residual after all other uses have been deducted The discrepancy between the two estimates is significant and provides the first indication of some inconsistencies in either the production estimates or the estimates of other end uses To evaluate such discrepancies the data on the different end uses is first reviewed

The estimates of gaplek and fresh cassava consumption from the SUSENAS surveys are accepted as the best estimate of direct food consumption although if anything these should probably be seen as minimum estimates Gaplek is not only used directly for human consumption but is also exported and Unnevehr (1982) found some gaplek being milled into flour by wholesalers and used in bakery products Gaplek exports from Indonesia are highly variable and in 1978 exports particularly from Java were on the low side Nevertheless export levels for the year 1978 were used Cassava flour on the other hand is assumed to be produced only on Java and Unnevehr s estimate is used

Starch is a major utilization form in Indonesia and although it principally goes into food uses starch consumption is not included in the human consumption estimates Utilization of cassava as starch comes from starch production estimates The most rigorous evaluation of these estimates is provided by Nelson (1982) for the years 1973 and 1979 His estimates for 1979 are used as the best measure of roots being processed for starch

Animal feed provides the only other possible end use of cassava Roche s (1983) survey of cassava production systems suggested no feeding of fresh roots to animals Given the limited importance of swine the dominance of ruminant animals and their ability to utilize lower cost feedstuffs and cassava s role either as a cash or food crop any on-farm feeding of cassava roots would be expected to be limited although there are no reports to confirm this assessment Incorporation of gaplek into balanced feeds is also thought to be limited given that market channels for gaplek are directed principally to export Unnevehr in her study of gaplek marketing channels mentions no movement of gaplek into what is in many respects a very limited feed concentrate industry The assumption will be made then that any use of cassava in animal feed is limited

Assessing a waste component is problematic Given the intensive nature of production systems the close integration with markets and because of the very limited incomes the tendency for both farmers and middlemen to be very conscious of loss waste on Indonesia would be expected to be lower than in other countries In marketing channels for fresh roots Unnevehr (1982) reports losses of around 8% The more significant losses occur in the storage of gaplek from the main production period for consumption in the period of high rice prices Unnevehr reports losses in this context of from 10 to 20/ A figure of 87 losses is applied to marketed cassava and 15/ to all gaplek for human consumption -- the lower moisture and better storage facilities would militate against such losses in the export trade

Utilization figures are compared to production figures in Table 4A l For the outer islands there is a reasonable correspondence between production and utilization figures The slight discrepancy is probably due to estimates for fresh cassava consumption Applying this difference to fresh human consumption yields an annual per capita consumption estimate of 24 7 kg This is only slightly above the 1978 SUSENAS estimate of 20 2 and well below the 1976 estimate of 34 2 kg

On Java however the production estimate is almost 20% higher than the consumption estimate Unnevehr (1982) in her estimate of cassava utilization on Java for 1976 found an even larger difference Roche (1984) suggests a number of problems with the absolute values of the production estimates but cannot deduce any basis for either an upward or downward bias Village level record keeping and crop cutting surveys probably provide one of the more accurate estimates of cassava production Further disaggregation of supply and utilization of cassava on in Asia Java reveals that the unexplained production occurs essentially in East and Roche (1984 Table 2 6) provides some evidence to suggest Central Java that yields may be overestimated in Central Java Moreover Mink (1984) found an overestimation of maize yields in official statistics in East and Central Java Attributing all the difference to yield overestimation implies a reduction of yield of 30% from 9 4 to 7 2 t/ha in Central Java and a reduction of 20% from 9 15 to 7 6 t/ha in East Java For maize in 1978 Mink found an overestimation of yield of 14% in Central Java and 29% in East Java Reduction in yield levels are not completely out of the question

On the other hand the other major area of uncertainty is the size of household starch production The 1976 and 1978 SUSENAS consumer budget surveys show high rates of starch consumption in rural areas of Central and East Java (Dixon 1984) implying consumption from home or nearby production units In other areas direct consumption is low implying purchases of krupuk If the higher figure for rural consumption is assumed and it is also assumed that this comes solely from household production then household starch production is at the minimum underestimated by 40 thousand tons in Central Java and 58 thousand tons in East Java This assumes that no household starch production goes into markets for krupuk production This would account for one third and one half of the discrepancy in Central and East Java if a conversion rate of 6 to 1 were assumed Making this adjustment in starch production results in a discrepancy of about 900 thousand tons Attributing this to yield overestimation implies a reduction in average yields on Java from 9 4 to 8 5 t/ha a not unrealistic adjustment On the other hand 900 thousand tons represents only a 7% error in the total production estimate and could as easily be attributed to underestimates in consumption At this point the choice is arbitrary and Table 4A 1 reflects the adjustment in yield levels

V MALAYSIA

Cassava vs Tree Crops in the Competition for Land

The agricultural economy of Malaysia like that of Thailand has traditionally been export-oriented Export growth has relied on the fact that Malaysia has always been a land surplus economy and at several points in its history even had to rely on immigration of both Chinese and Indians to meet rising labor demand in agriculture and mining Export orientation within a land surplus economy put a premium on the development of an effective land policy In this aspect Malaysia differed from Thailand in that the focus of land policy was on promoting large-scale plantation agriculture with a secondary emphasis on the development of smallholder agriculture both for the production of rice and export crops A focus on plantation agriculture has remained a primary component of agricultural policy to the present

Cassava was the first of the series of export crops that have spread The establishment of the first taploca across Malaysian agriculture factory in Malacca in the early 1850 s coincided with the rapidly expanding use of commercial steamships The evolution in sea transport together with the opening of the Suez Canal in 1869 opened European markets to agricultural commodities other than just high valued spices The tapioca industry expanded rapidly and relied on cassava s particular advantages as a frontier crop The forest was cleared to feed the steam engines of the processing plant while cassava was planted in a shifting cultivation system characteristic of a land-surplus labor-scarce economy This production system which ostensibly took place within a plantation-type land concession but where the land was abandoned to lalang when soil fertility declined to unprofitable levels gave cassava the image of a soil-depleting crop especially compared to the rapidly increasing tree Although soil depletion was due more to the shifting cultivation crops system than to the crop itself this image has remained upto the present resulting in controls on cassava expansion through restrictions on land concessions and leases The oscillations in the export market for tapioca and starch land policy and competition with export-oriented tree crops have remained the key factors influencing the Malaysian cassava industry to the present

Production Trends

Cassava production in Malaysia has never repeated the boom period of In Malacca cassava area climbed from virtually nothing to 1860-1890 around a peak of 30 thousand hectares in 1882 In the 1870 s cassava area had also began to expand into neighboring Negri Sembilan reaching its peak areas in the 1890 s (Jackson 1968) Area planted to cassava in this early period probably did not exceed 45 thousand hectares The cassava industry fluctuated with the prices on the world market through to the turn of the century but then got caught in a squeeze between the rapidly expanding rubber industry in Malacca and the development of an export oriented cassava industry on Java These trends were remarkably rapid In 1906 there was 15 thousand hectares planted to rubber in the Straits Settlement Provinces (Malacca and Province Wellesley and Penang) versus 43 thousand hectares planted to cassava In the same year Java exported a little over 19 thousand tons of cassava products By 1913 rubber area had expanded to 64 thousand hectares in the Straits Settlements and Javanese exports had increased to over 90 thousand tons Cassava area in the Straits Settlements declined to only 6 thousand hectares (Greenstreet and Lambourne 1933)

After this major structural shift cassava area oscillated between 10 and 20 thousand hectares over the next 70 years till the present (Table 5 1) The other major element in this stagnation of the cassava industry was the restrictions on land concessions and actual planting of cassava by many of the states Thus Negri Sembilan prohibited planting of cassava in 1912 Perak restricted plantings in 1909 and Selangor did the same in 1925 In Kedah in 1905 cassava was allowed only as a catch crop for tree crop establishment (Greenstreet and Lambourne 1933) Thus in the period between the two world wars the cassava industry shifted to Johore where there were no restrictions on cassava and Kedah where it was grown as a catch crop

The shifting nature of the cassava industry continued since following the Second World War and especially after the 1958 Emergency cassava rapidly shifted to Perak which is the locus of the industry today Nevertheless land policy continued to play a dominate role in the organization of production In particular Aw-Yong and Mooi (1973) estimated that in the mid-1960 s approximately 75% of the cassava in Perak was planted illegally on unalienated state land or forest railway or mining reserves As a result shifting cultivation remained the dominant production system for cassava

Shifting cultivation systems and the uncertainty of access to land for cassava are possibly reflected in recent trends in production (Table 5 2) In cassava area there is significant variation around a relatively stable trend of 16 thousand hectares Yields also are highly variable ranging from 11 to 37 t/ha with no necessary tendency for variation in area to compensate variation in yield Production as a result is highly However this year-to-year variability is not reflected in the variable output of cassava products Converting starch and chip production to fresh root equivalent shows a consistent rise in root utilization through the early seventies and a decline from the 1976 peak over the latter part of the decade (Table 5 3) A comparison of the two series suggests much more stability in the utilization series and a consistent underestimation of utilization when using the production series Given the large percentage of illegal plantings the production series probably does not capture all the actual area planted to cassava On balance there is probably much more stability underlying the Malaysian cassava industry than is reflected in production statistics on the other hand over the last half of the decade of the 1970 s there has been a persistent declining trend in cassava production

Cassava Production Systems

Cassava s principal comparative advantage vis-a-vis other crops is its adaptation to relatively marginal agro-climatic conditions and therefore its exploitation of land with a low opportunity cost Because there is no climatic constraints on crop production in Malaysia and tree crops are well

Year	Malacca (000 ha)	Wellesley and Penang (000 ha)	Pe: (000	rak ha)	Selar (000	ngar ha)	Joha (000	re ha)	Kec (000	lah ha)	Paha (000 1	ng ha)	Total (000 ha)
1890	25 5	3 1		-		-		-		<u>.</u>		·	28 6 ^a
1900	22 5	3 3			-	_	-	-		-	_		25 8 ^a
1905	26 7	4 9		-	-	_	-	-	-	_	-		31 6 ^a
1910	7	4		_	-		-	-	-	_	-		17 0
1930	b	Ъ		4	2	4	8	9	3	6	8		15 0
1947	06	02	3	1	2	1	4	0	2	1	20		16 9
1965	Ъ	10	8	9	1 2	2	0	9	0	5	05		14 7
1970	0 1	03	8	8	1 4	4	2	2	0	5	24		17 5
1980	neg	neg	10	9	0 1	1	0	2	0	7	neg		12 5

TABLE 5 1	Malaysia	Area Planted	to	Cassava	Ъv	Province	1890-1980
	HALAYDIA	med rinced		Vabbava	~ J	I LOVINCO	10/0 1/00

а Includes only Malacca Wellesley and Penang Not disaggregated b

Source

1 ω I

V

Year	Area Planted (ha)	Production (t)	Yield (t/ha)
1960	12 235	n a	
1965	16 344	n a	n a
1970	17 667	207 200	11 7
1971	14 857	161 768	10 9
1972	13 151	279 400	21 1
1973	11 820	238 720	20 2
1974	11 553	254 326	22 0
1975	15 112	218 710	18 6
1976	20 908	241 840	11 6
1977	20 502	357 345	17 4
1978	17 815	197 425	11 1
1979	16 635	225 057	13 5
1980	12 512	254 309	20 3
1981	9 599	211 178	22 0
1982	7 654	285 953	37 4
1983	6 757	252 442	37 4
1984	5 390	201 385	37 4

TABLE 5 2MalaysiaArea PlantedYieldandCassava RootProduction1960-1984

Source Annual Report Extension Branch Ministry of Agriculture Kuala Lumpur

TABLE 5 3MalaysiaComparison of Root Production Serieswith Root Equivalent of StarchPearland Chip Production1971-83

Year	Starch Pearl Chip Production (t)	Root Production (t)
1971	161 768	220 679
1972	279 400	294 520
1973	238 720	314 303
1974	254 326	309 824
1975	281 710	369 773
1976	241 840	444 821
1977	357 345	411 240
1978	197 425	383 621
1979	225 057	393 588
1980	254 309	316 716
1981	211 178	310 449
1982	285 953	304 347
1983	252 442	302 788

Source Appendix 5 l and Annual Reports Extension Branch Ministry of Agriculture Kuala Jumpur adapted to a wide spectrum of tropical soils cassava has no particular niche to exploit in the agricultural economy and must compete with tree crops for land Thus of the 25% of Malaysian land under cultivation well over 80% is planted to the three principal tree crops rubber oil palm and coconut Paddy land accounts for another 10% leaving under 10% for all other crops Tree crops are by far the most profitable agricultural activities and in fact cassava is primarily grown in those areas where farmers do not have the option of planting oil palm or rubber Land tenure primarily influences where and the type of production system that cassava is grown under in Malaysia

The more minor area where cassava is cultivated is as a catch crop in the establishment of oil palm or rubber This is done principally by smallholders although some planting of cassava as a catch crop by tree crop estates has also been reported (Lulofs 1970) The cassava is planted for 2 or 3 seasons as a source of income until the tree crop is established However this is not a widespread practice and is limited to those areas which have access to cassava processing plants

The major portion of the cassava is grown in monoculture This is in part due to the fact that a large portion of the crop is planted on land where the grower has no usufruct rights Aw-Yong and Mooi (1973) in a study of cassava production in Perak in the mid 1960 s found that over 70% of cassava area was planted illegally Illegal planting of cassava is done on a much more extensive basis than legal cultivation (Table 5 4) Area planted is often done on a large-scale sometimes exceeding 50 hectares Where virgin jungle is cleared all work is done by hand However with the rising costs of labor areas covered with lalang which have the possibility of mechanized land preparation are now cultivated more generally than virgin forest This early study reports that most illegal cultivation is done within a system of shifting agriculture where the land is planted two or three times to cassava without application of fertilizer and then a new area is opened up and brought under production Whether the rising labor costs of opening new land has caused even illegal planting to shift to a more permanent cultivation system is only open to hypothesis but certainly the incentives are increasingly to shift to more continuous cropping even within an insecure tenure situation

Legal production on the other hand is concentrated in the hands of smallholders Area planted in casssava averages less than 2 hectares and cassava is usually only one of several crops cultivated Even in this situation cassava is often grown on rented land or on state land with temporary occupational licences That is there is sufficient uncertainly in tenure not to plant tree crops Also cassava is often a component in the initial cropping system in those areas where farmers have recently been settled but have not yet invested in tree crops Thus even for the legal planting cassava is only planted in that land where investment in tree crops is risky

Nevertheless production systems are much more stable Rotational systems with other annual crops are often practiced along with application of fertilizer or manures Over the last couple decades fertilization has apparently shifted from farmyard manure and woodash (Aw-Young and Mooi 1973) to reliance on chemical fertilizers (Tunku Mahmud 1979) Moreover with the rising cost of labor farmers have as well moved to the application

Year	Legal Planting (ha)	Illegal Planting (ha)	Total Area (ha)
1964	3846	10 413	14 259
1965	3887	10 324	14 211
1966	3939	10 364	14 303
1967	4502	12 923	17 425

TABLE 5 4MalaysiaLegal and Illegal Planting of Cassava in
Perak 1964-67

Source Aw-Yong Kong Keong and Mooi Soong Wooi Cultivation and Production of Tapioca in Perak 1973

of herbicides in order to control weeds Rising labor costs and the competition with tree crops for land have put a premium on achieving low costs of production per ton Land preparation is often mechanized and in Perak ridiging is widely practiced to control root rot under these high rainfall conditions More intensive production methods are now more economic than extensive production methods as the emphasis has shifted to lower labor costs and higher yields In effect shifting production systems have become increasingly uneconomic in Malaysia making cassava s reputation for soil impoverishment more of an historical red herring rather than a point in fact

The other major production system for cassava is plantations In the early stages of the cassava industry these systems had their impetus in the form of land concessions allocated by the state governments However root production operated on a basis of shifting agriculture and it was not till the advent of rubber at the turn of the century that plantations based on permanent production systems were established At this stage production of cassava on a large scale declined However in the post-war period more permanent cassava plantations have been established usually under government sponsorship The motivation for plantations is usually to assure regular supplies to relatively large-scale starch factories However the operations of large-scale cassava plantations have not met with much success Of four plantations that have been operating in the last decade only one is still operating High labor and overhead costs make plantation production much more costly than smallholder production within an industry that is highly competitive both from other domestic producers and international competition from Thailand

Yields

Cassava is grown purely as a commercial crop in Malaysia and moreover must compete with tree crops for both land and labor Yields are therefore a primary determinant of cassava s economic viability in the country s agricultural economy Not surprisingly average yields in Malaysia are high by world standards or even by comparison to other Asian National production statistics suggest an average yield in the countries range of 11 to 37 t/ha As has been suggested the reliability of these Nevertheless the few surveys of cassava estimates are open to question producers that have been carried out do support the higher end of this range of yield estimates Tunku Mahmud (1979) found an average yield of 28 t/ha in the Manong area of Perak Rahman Binti Adam (1974) found an average yield of 18 t/ha in a survey of farmers in Pahang Chan et al (1983) report average yields of 12-20 t/ha in Perak and 20-35 t/ha in Kedah

The point where these survey areas reside within the overall yield distribution for the country cannot be specified Aw-Young and Mooi (1973) suggest in Perak a very broad yield variation of from 7 to over 40 t/ha based on differences in soil and production system where the production system as well reflects principally variation in soil fertility (Table 5 5) Chan et al (1983) report that in Perak less efficient farmers achieve yields in the 6-10 t/ha range while the better farmers plots yield 22 5-37 t/ha occasionally reaching levels as high as 45-60 t/ha The fact that cassava is not grown in continuous production sytems as in other parts of Asia contributed to the high yields obtainable in Malaysia

TABLE 5 5	Malaysia	Representative Cassava Yields by Soil
	-	Type and Production System

	Yield (t/ha)
Soil Type	
Virgin Jungle Soil	37 3 - 44 8
Laterite Soil	26 9 - 29 9
Clay Loam	29 9 - 32 9
Sandy Clay	22 4 - 29 9
Sandy Soil	14 9 - 17 9
Mine Tailings	75-90
Production System	
Shifting Cultivation on Jungle Land First Crop Second Crop Third Crop	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Regenerated Jungle First Crop Second Crop	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
Small-Farm Rotational System	29 9 - 32 9

Source Aw-Yong Kong Keong and Mooi Soong Wooi Cultivation and Production of Tapioca in Perak 1973 Other factors are the favorable rainfall and growing season the existence of relatively high yielding varieties and the apparently wide use of fertilizer on cassava However defining the gap between average yields and the potential productivity of the crop remains uncertain due to lack of sufficient farm-level data -- see Tan and Chan (1986) for a very good first approximation

Costs of Production and Labor Utilization

Cassava is a highly commercialized crop in Malaysia The crop is fully marketed usually for industrial processing Moreover cash costs form a high percentage of total costs because most labor is hired land preparation is mechanized and input use is relatively high Cassava farmers are thus responsive to changes in input or output prices and likely to adopt technical innovations Production costs and root prices are therefore principal indicators of economic incentives that cassava producers face

Technology development and the evolution of costs have reflected the relative scarcity of labor in the agricultural economy Where possible land preparation is mechanized and tractor services are provided by herbicides have assumed farmers cooperatives Moreover increased importance in cassava cultivation in order to reduce labor costs Weeding and harvesting are usually done on a contract basis With this tendency to reduce labor use as much as possible labor input is relatively low А survey in Perak (Tunku Mahmud 1979) found an average labor use of 62 mandays/hectare (Table 5 6) Any further reductions will require the mechanization of the harvest

Labor costs make up just less than half of total production costs for Malaysia provides a counter example to the normal tendency for cassava labor to make up the major portion of total production costs in cassava Moreover weeding is one of the more minor costs items again running contrary to normal patterns Land preparation fertilizer costs and harvesting all are usually larger cost items (Table 5 7) The tendency toward labor substitution is clear in the cost structure however the scarcity of land forced both by government land policy and by high opportunity costs has also put a premium on yield per hectare as is reflected in the high costs for fertilizer

High yields low labor input and moderate input use which is often subsidized by the farmer cooperatives result in a very low variable cost of production per ton of roots comparable to that of Thailand However farm-level prices of roots are normally higher in Malaysia than in This is principally due to the high opportunity cost of land Thailand The annual net income for rubber was M\$3651 (at a rubber price of M\$2 40/kg) and for oil palm was M\$5030 (at an oil price of M\$1200/ton) (Tunku Manour and St Clair-George 1979) This compares to an average net income for cassava in Perak of M\$979 (at a root price of M\$74/tons) (Tunku High supply prices for cassava in Malaysia reflect the Mahmud 1979) profitability of alternative crops which has provided some impetus to the search for higher yields and lower production costs but is primarily reflected in the utilization of land with a relatively low opportunity cost

TABLE 5 6	Malaysia	Labor Use in Cassava
		Production in Perak

Land Preparation	1	2
	-	
Planting	/	9
Weeding and Herbicide Applicatio	m 13	3
Fertilizer Application	2	7
Harvesting	27	2
Fransport	9	9
Total	62	2

Source Tunku Mahmud Bin Tunku Yahya Agronomic Study of Tapioca Smallholders in Manong Perak 1979

Cost Item	Te: (M\$,	a (ha)	Kam) (M\$1	par ha)	Man (M\$,	ong /ha)
Land Preparation	147	7	184	8	222	3
Planting	88	9	86	5	74	1
Stakes	27	2	27	9	19	3
Weed Control	242	6	258	1	146	0
Fertilizers	540	9	450	5	168	7
Harvesting	197	3	223	0	222	3
Root Transport	247	0	223	0	271	2
Land Rental	15	1	14	6	14	8
Total Costs	1506	7	1468	4	1138	7
Total Revenue	2124	2	1778	4	1580	8
Net Return	617	5	310	0	442	1

TABLE 5 7 Malaysia Costs and Returns for Cassava Root Production in Perak 1979

Source Chan Seak Khan et al A Sp in Penisular Malaysia 1983

A Special Report on Cassava 1983 Research of a rather sporadic nature has been carried out on cassava since at least the 1920 s The focus of this research was principally oriented a to evaluation and characterization of imported clones and to appropriate fertilization of the crop In the 1970 s a cassava research program was established within the Malaysian Agricultural Research and Development Cassava research broadened in scope at MARDI but Institute (MARDI) continued to maintain traditional lines of emphasis Germplasm evaluation was expanded to include a major crossing and selection program The principal breeding objectives were high yield and high starch content of roots reflecting the demands made by the starch and chip markets Agronomic research continued the long tradition of focusing on plant nutrition and maintenance of soil fertility Long-term fertility trials and evaluation of nutritional requirements of cassava grown on peat soils The few diseases of any potential became principal lines of investigation significance were incorporated into the program as secondary screening objectives (Tan and Chan 1986)

Little direct impact of this research is yet visible on cassava Fertilizer and herbicide use by farmers has significantly vields increased but this is due as much to subsidies on these inputs as to the research that has been carried out Breeding on the other hand is a longer term investment and while some lines have been identified which give superior yields to the dominant variety Black Twig none of these as yet has been released as a new variety Emphasis on increasing yields is a well justified strategy under Malaysian conditions given the need to achieve higher returns to land A complementary strategy on which there has been some research is to direct technology to low opportunity cost Peat soils have been one area where there has been some land areas The other area is as a catch crop in the establishment of tree research Little research exists on competitive interactions between these crops two crops in association and the means to minimize them Certainly shade tolerance will be a principal issue in such research

Markets and Demand

Cassava has been cultivated primarily as an industrial crop since its The crop is grown as a food source by a few of the hill introduction tribes such as the Seroi Semai (Hohnholz 1980) but in general a food market for cassava has not developed in Malaysia Moreover cassava markets have historically been export oriented as internal demand did not provide a significant base on which to build a cassava industry However with Malaysia s recent industrial growth and rising per capita incomes the 1970 s has seen a shift from dependence on export markets to meeting rising demand in domestic markets This shift coincides with a recent emphasis in Malaysian agricultural policy in meeting domestic requirements in key sectors principally rice and to a certain extent sugar Nevertheless such a focus on domestic markets must still recognize the dominance of the export tree sector on factor prices in the Malaysian agricultural sector

The Domestic and Export Market for Starch

Starch has always dominated the cassava economy of Malaysia Moreover starch production has traditionally been oriented toward export in line with most of the rest of the agricultural economy Finally the history of the starch industry in Malaysia has been one of constant movement in search of areas where cassava roots could be produced most cheaply i e where competition with tree crops was least or where illegal land use was not rigidly enforced In the post-war period the starch industry settled in Perak and the following analysis will focus on starch production in that state

Only two starch factories existed in Perak prior to 1945 By 1968 19 plants were operating in the state with most of the growth coming in the 1950 s when 10 factories were set up (Table 5 8) At this point starch production depended primarily on the sedimentation method as only two plants were using centrifuges Production from these latter plants was higher than for the sedimentation plants (Table 5 9) even though the centrifugal plants were only operating at 30% capacity Also the centrifugal plants obtained an extraction rate of between 20 to 23% while the sedimentation plants averaged between 13 to 18% (Onn and Yet 1971) With continuing problems with root supply and increasing competition from Thailand it is not surprizing that a shake-out of the industry would occur in so competitive an environment Thus by 1982 only eight starch factories were operating in Perak (Table 5 10)

What is clear however is that this shake-out did not occur until the late 1970's Prior to that -- and contrary to the root production statistics -- the starch industry showed steady growth in the post-war Starch exports increased steadily through the 1950 s and 1960 s period and peaked in 1976 (Table 5 11) The shorter series on starch production complements these export trends and suggests that total starch production also peaked in 1976 at 68 thousand tons Production declined from that level and has been stable at about 50 thousand tons through the 1980 s Exports however declined much more dramatically and Malaysia became a net Two factors were responsible for importer of starch in 1981 (Table 5 12) this reversal rapidly increasing domestic consumption and increased price competition from Thailand

Domestic starch consumption in Malaysia increased very rapidly during the 1970 s rising from less than 20 thousand tons in 1971 -- Onn and Yet (1971) estimate domestic consumption at 16 3 thousand tons in 1967 -- to about 50 thousand tons by the end of the decade Major users of cassava starch are monosodium glutamate and glucose producers and the textile industry As industrialization proceeds in Malaysia starch demand is certain to continue to increase Particularly any future developments in either the plywood or paper industry should lead to significant increases in consumption

A market with significant potential is the sweetner market This market has expanded rapidly in Japan and Taiwan while Indonesia is currently starting a sweetner industry Malaysia imports about 85% of its consumption requirements of sugar even though domestic sugar prices are maintained at levels well above world market prices in order to cover TABLE 5 8 Malaysia Distribution of Starch Factories in Perak According to Year of Establishment 1968

Period of Establishment	Number of Factories
Before 1945	2
1945-1949	2
1950–1954	6
1955-1959	4
1960–1964	3
1965–1968	2
Total	19

Source Chye Kooi Onn and Loh Wee Yet The Tapioca Processing Industry in Perak 1974

Monthly Starch	Separation Method			
Production (t)	Sedimentation (number)	Centrifuge (number)		
Less than 12 0	1	-		
12 1 - 24 1	2	-		
363 - 483	4	-		
484 - 604	1	-		
60 5 - 72 5	1	-		
847 - 977	1	-		
96 8 - 108 8	2	-		
133 0 - 145 1	2	-		
145 2 - 157 2	-	1		
157 3 - 169 3	1	-		
181 4 - 193 5	-	I		
Total	15	2		

TABLE 5 9 MalaysiaDistribution of Starch Factories in PerakAccording to Output and Processing Method1967

Source Chye Kooi Onn and Loh Wee Yet The Tapioca Processing Industry in Perak 1974

TABLE 5 10	Malaysia	Distribution 1982	of	Starch	and	Pearl	Factories

Province	Starch	Pearl	Starch and Pearl
Peninsular Malaysia			
Perak Butterworth Kedah	4 - -	- -	4 4 2
Sarawak	-	3	-
<u>Total</u>	4	3	10

Source Federal Agricultural Marketing Authority Kuala Lumpur

Year	Exports	Imports		
	Starch and Pearl (t)	Chips (t)	Starch and Pearl (t)	Chips (t)
1955	7051	-	3460	_
1956	6645	-	883	-
1957	6455	-	443	-
1958	6418	-	80	-
1959	13 068	-	51	-
1960	16 625	-	12	-
1961	21 536	-	13	-
1962	18 128	neg	37	-
1963	22 140	-	89	-
1964	24 967	197	207	neg
1965	23 291	11	39	na
1966	18 443	-	n a	n a
1967	16 483	neg	n a	n a
1968	18 527	-	n a	na
1969	20 379	21	281	2
1970	28 176	9	193	-
1971	17 295	53	727	25
1972	24 982	115	667	6
1973	26 116	800	2033	231
1974	18 289	156	2055	3807
1975	20 979	152	577	1269
1976	27 499	283	273	140
1977	10 831	320	268	8
1978	7 544	44	674	3232
1979	16 912	18	410	59
1980	5 942	5	3965	-
1981	5 663	n a	5711	n a

TABLE 5 11 Malaysia Export and Imports of Cassava Products

Note Trade 15 Malaysia only and does not include Singapore

Source Import and Export Trade in Food and Agricultural Products Ministry of Agriculture V - 19 -

TABLE 5 12MalaysiaProductionTradeandDisappearanceofCassavaStarch and Pearl1971-82

Year	Production (t)	Imports (t)	Exports (t)	Disappearance (t)
1971	35 879	727	17 295	19 311
1972	46 872	667	24 982	22 557
1973	50 134	2033	26 116	26 051
1974	50 091	2055	18 289	33 857
1975	52 738	577	20 979	32 336
1976	68 085	273	27 499	40 859
1977	62 400	268	10 831	51 837
1978	57 588	674	7 544	50 718
1979	59 481	410	16 912	42 979
1980	49 828	3965	5 942	47 851
1981	48 929	5711	5 663	48 977
1982	48 517	103	1 331	47 289

Source Monthly Statistical Bulletin Department of Statistics Kuala Lumpur

ļ

Malaysian costs of production Sugar imports of 561 thousand tons in 1984 and a protected domestic sugar market offer scope for the development of a high fructuose sweetner industry based on cassava starch Moreover development of this industry requires relatively moderate investment since present starch processing factories can form the basis for an integrated starch-sweetner operation However domestic starch production is the limiting factor in the development of this industry

The other factor influencing recent production and export trends is increasing price competition from Thailand This price competition is amply portrayed in Figure 5.1 Before 1976 wholesale starch prices in Ipoh Perak were well below Thai wholesale prices This coincided with the period of expanding starch production in Malaysia From 1976 to 1981 Malaysia starch prices in Perak were more or less on a par with Bangkok wholesale prices During this period Malaysia lost export markets even though prices in general were rising In 1981 Malaysian starch became more expensive than Thai starch and Malaysia become a net importer of starch The situation was compounded by a falling price level Thus after two decades of growth the Malaysia starch industry stagnated caught between the high supply price for roots and the prices of imported Thai starch For Malaysia to remain competitive in starch would require further cost reductions in the production of cassava roots

The Domestic Animal Feed Market

The development of the Malaysian livestock industry is typical of that of Japan Taiwan and South Korea in that to meet rising meat demand Malaysia has developed an intensive pork and poultry industry based on balanced feed rations these feed components in turn are essentially imported In Malaysia s case the reason for import dependence rests with the export orientation of its agricultural sector and its comparative advantage in tree crops The agricultural economy continues to respond principally to international rather than domestic markets and coarse grains are virtually not produced Thus Malaysia has met its growing demand for feed components through rapidly rising imports of maize

Malaysia s animal industry never relied on a large production capacity at the village level essentially because there were limited grains or grain by-products available to sustain a large village-level anımal population Swine production for example was usually associated with larger scale units linked to the by products of processing plants such as cassava starch plants The swine industry was thus the first to develop dependent only on the domestic Chinese market The principal growth occurred during the 1960 s as the industry switched to low-fat imported breeds and there was a significant increase of scale in production units The major growth in the poultry industry on the other (Hertrampf 1985) occurred in the 1970 s with the rise of intensive large-scale hand production systems Although the domestication of the chicken occurred in Malaysia not until the 1970 s did poultry start to become an important component in the diet

The development of the livestock-feed sector over the last decade and a half (Table 5 13) demonstrates the dominance that the poultry sector can achieve even where the swine sector has already undergone significant technical change Part of this difference in growth is due to the larger

market for poultry in Malaysia since pork consumption is restricted exclusively to the Chinese population The other factor however is the larger efficiency gains possible with poultry especially for the principal cost component feed These efficiency gains are further reflected in the location of the poultry and feed ration industry The poultry industry is are imported These two coincide in Kuala Lumpur Malacca and Penang where both the feed and poultry industries are concentrated Transport assembly and distribution costs are kept to a minimum

The growth in production of balanced feeds over the period 1970-83 has been at a rate of 7 9% per annuam which is somewhat below the 10 4% growth rate in feedgrain imports In fact feedgrain imports are larger than industrial feed production due to the growth in feed mixing by the animal production units More than half of feed production is in independently mixed in swine and poultry units Malaysia is already the largest feedgrain importer in tropical Southeast Asia and with trends in livestock production likely to continue through the end of the decade feedgrain import levels will continue to increase relying on maize imports from Thailand

Cassava has been used in the animal feed industry since the mid-1960 s but its role has always been minor Use of cassava chips in animal feeds reached a peak of 23 thousand tons in the mid-1970 s but has since declined from that point (Table 5 14) Although the market for feedstufs has witnessed tremendous growth the cassava chip industry has failed to The reason for this was the price squeeze between the price of respond roots which was determined principally by the starch market and the output price determined by the price of maize As shown in Figure 5 2 the price of chips varied significantly in relation to the maize price from as low as 43% of the maize price in 1972 to as high as 86% in 1984 As implied by these statistics cassava chips because less and less competitive in feed rations over this period

Cassava enters into least cost broiler rations -- the most exigent for cassava -- at about 68% of the maize price Through most of the 1970 s cassava was competitive with maize in poultry rations Cassava use in animal feeds made two big jumps in 1972 and 1975 at periods when the cassava-maize price ratio was low Cassava sold at significant discounts to the maize price in these two periods in order to motivate initial use -some adjustments in equipment are usually necessary to effectively utilize cassava in feed plants Cassava feed use stabilized from 1976 through 1979 as the cassava price remained at about 65% of the maize price The year 1980 witnessed the sharp rise in starch prices and a resultant rise in root Even though cassava chip prices remained more or less in line with prices maize prices due to increases as well in the maize price chip production fell due to a lack of cassava roots and competition with the starch In 1983 the maize remained constant chip prices increased and industry the soybean meal price rose due to the initiation of tariff and import licensing to protect a nascent soybean crushing industry (U S D A 1986) Cassava chip prices became uncompetitive and production levels reverted to pre-1972 levels The cassava chip industry much like the starch industry was caught between a relatively high supply price for roots and increasing price competition from imports as the international maize price fell in the mid-1980 s

| | |

1

ł

ł

ł

ŧ

TABLE 5 14 Malaysia Production Trade and Disappearance of Cassava Starch and Pearl 1971-1983

Year	Production (t)	Imports (t)	Exports (t)	Disappearance (t)
1971	3658	25	53	3 630
1972	7145	6	115	7 036
1973	7371	231	800	6 802
1974	5765	3 807	156	9 416
1975	22 629	1 269	152	23 746
1976	16 842	140	283	16 699
1977	16 786	8	320	16 474
1978	17 050	3 232	44	20 238
1979	16 606	59	18	16 647
1980	8 972	-	5	8 967
1981	8 600	n a	n a	na
1982	7 202	2 053	3	9 252
1983	4 039	1 639	5	5 673

Source Monthly Statistical Bulletin Department of Statistics Kuala Lumpur

Pricing and Market Efficiency

The Malaysian agricultural economy is driven by international commodity markets and the small cassava sector is no different Over the post-war period the Thai export price for starch has been the dominant influence on domestic cassava prices (Figure 5 1) since starch was the

concentrated around the major population centers and the feed industry around the principal ports since the major portion of the feed components principal market and upto 1980 Malaysia was a net starch exporter What is of interest here is the influence of this market structure on formation of root and chip prices

The hypothesis is that starch prices -- set in the international market upto 1980 and in domestic markets after that point -- set within a competitive market environment will together with processing costs and conversion rates determine root prices Thus regressing starch prices in Perak on root prices in Perak yields the equation

Root = 1 406 + 0 1448 Starch R^2 = 9049 (0 189) (0043)

The intercept term (in Malaysian Dollars per 100 kg) should measure the normal profits and processing costs and in this specification should be negative (see Chapter VII) The price transmission equation thus reflects low conversion rates (6 9 to 1) and resultant operating losses This conversion rate is well below the 17 - 18 estimate for sedimentation plants and 20 - 23 for centrifugal plants given by industry sources This difference in conversion rates would compensate for the losses in the operating margin Thus the price transmission equation captures the nature of the price formation process but does not exactly distinguish the real values of the parameters in the profit equation

Price formation in the chip market however is much better defined The hypothesis in this case in that the chip industry must take the root price as given In this case the estimated equation is as follows

Chips = $4\ 28 + 2\ 34\ Roots$ $R^2 = 926$ (0 47) (0 06)

The equation reflects a technically very efficient conversion rate -in line with the high dry matter content of Black Twig -- and a competitive operating margin (US\$17 per ton of chips) Chip producers thus face a highly competitive market situation caught as they are between the starch market and the maize market It is not surprizing then that chip production has not expanded given both the low average profitability and the uncertainty in the size of the operating margin In fact many chip plants are an extension of a starch operation where the starch operators will move into chip production when margins are adequate

The issue currently facing the Malaysian cassava industry is the impact of the shift to the domestic market as the principal determinate of cassava prices However this shift does not represent a break with the international market but a widening of the band with Thai export prices as Malaysia shifts to being a net importer Thus in 1984 Malaysia imported 10 5 thousand tons of starch from Thailand and in 1985 5 1 thousand tons (Thai Tapioca Trade Association 1985) In the 1980's it will be the starch import price that will be the principal determinant of price formation in the Malaysian cassava sector
V - 27 -

Conclusions

Malaysia much like Thailand has based its post-war agricultural economy on exports and yet in the 1980 s finds domestic markets for agricultural products reaching significant size due to rising incomes industrialization and urbanization. Three export crops palm oil rubber and coconut make up 85% of cultivated area moreover. Malaysia is by far the largest exporter of both rubber and palm oil and thus has a significant impact on world price levels. An interesting policy question for Malaysia is the extent to which growth in the agricultural sector will continue to be based on a few export corps in which the country has a comparative advantage or whether attention should be turned to meeting rising domestic demand for a diversity of agricultural products

Malaysia has much more flexibility in its agricultural policy than Export markets are well developed other Asian countries The population pressure on land does not exist since only 25% of the country s land area is cultivated Moreover transport infrastructure is relatively well developed Therefore it is somewhat ironical that in an agricultural economy where labor is the limiting constraint that an estimated 46% (in 1980) of the agricultural population falls below the official absolute Most of these agricultural households exist in poverty line the smallholder rubber and rice sectors Policy has been directed to resolving this poverty problem -- the incidence of poverty fell from 68% in 1970 to 46/ in 1980 -- through two principal avenues through resettlement schemes in large land development projects and through production subsidies -fertilizer credit agricultural chemicals -- through farmer cooperatives Both avenues however focus on increased production of export crops -- and in certain cases rice -- as the means of generating increased incomes

Although Malaysia has been very successful with its export strategy this success now brings certain uncertainties because of its dominant Malaysia accounts for 44% of the world s rubber exports and market share two-thirds of palm oil exports Palm oil is quite substitutable with other vegetable oils but palm oil is now the major oil that moves in world trade and Malaysian palm oil makes up over 20% of the world vegetable oil market Future expansions in production and exports must thus consider the impact of world prices and demand In this Malaysia has adopted a two prong diversification and increased productivity in existing crops strategy Diversification has continued to focus on tree crops particularly cocoa and to a certain extent bananas and coconut However all of these are crops where there are a large number of competing exporters

National Agricultural Policy Through the Year 2000 Malaysia s focuses on enchancing its comparative advantage in tree crop exports through increased productivity with a particular focus on mechanization Malaysia s strategy is thus to capture a larger market share in principal exports Malaysia is aided in this by its proximity to the growing markets For example Malaysia has a transport advantage to the two of Asia largest vegetable oil importers India and Pakistan Thus expansion in production area will be based on export crops but with an emphasis on labor and land productivity Land allocation policy will continue to play a dominant role in the rate of expansion in production and as in the past will provide the government with some control over regulating future growth in export supplies

The mark of this policy committment to export crops is the dropping of the long-held goal of self-sufficiency in rice in the National Agricultural Plan Moreover planting crops for animal feed are discouraged in the plan Malaysia will thus rely on imports to service growing domestic markets It is symptomatic of cassava s future in Malaysia that it has turned from an export crop to supplying only domestic markets and in doing so has lost its ability to compete in international cassava markets Given Malaysia's agricultural policy this fact would seem to seal the fate of cassava in the future of the country s agricultural sector

However the mere fact that a profitable cassava industry has operated in Malaysia throughout this century is some testimony to cassava s inherent productivity since cassava had to compete not with grain crops but with much more productive tree crops Cassava was disadvantaged by the production structure which favored centrally processed tree crops Cassava production is not well suited to plantation systems and yet smallholder cassava systems could not compete with smallholder tree crop production Cassava could have potentially competed within a semi-mechanized medium-scale (20 hectares) production system along the lines of that existing in Thailand This type of production scale seems to dominate in the illegal plantings in Perak Cassava was thus relegated to a particular niche in this land surplus agricultural economy formed by pockets of smallholders with constraints on access to land The growing urban sector -- two-thirds of the growth of the rural labor force in the 1970 s was absorbed in the urban sector -- and the continued expansion of land development projects should continue in the future to reduce this niche In the end the future of cassava in Malaysia will depend on the international market for palm oil and rubber and in this Malaysia s agricultural policies insure that the country will be a dominant player in these markets to the end of the century

Appendix 5 1 A synthesis of production and utilization

Collection of accurate production statistics for cassava in Malaysia is hampered by the illegal nature of a significant percentage of the area planted to the crop In consequence a suspected downward bias exists in estimates of area and production However since basically all the crop is sold for processing and data are collected on production of cassava starch and chips an alternative production series can be constructed (Table 5A 1) The utilization series in fact is consistently higher than the root production series Since the downward bias in the production series can be identified there is sufficient reason to suggest that the utilization series gives a much more accurate picture of cassava production trends in Malaysia

The two series offer quite contrasting views of trends in cassava production The series developed by the extension department shows little trend and very substantial variability On the other hand the utilization series displays a steady increase in the first half of the 1970 s to a peak of almost 450 thousand tons of roots in 1976 Production then declined to about 300 thousand tons in 1980 where it has remained through 1983 The latter series explains very well trends in exports and prices The utilization series is therefore considered as the best estimate of cassava production in Malaysia

VI PHILIPPINES

Inertia in Market Development

Like Indonesia the Philippines is a multi-island economy yet unlike Indonesia the Philippines has major population concentrations on all the major islands although Luzon still figures as the economic center The agricultural economy is dominated by two grains rice and maize and two principal export crops coconut and sugarcane Grain and food production in general are concentrated in the small farm sector while the export crops tend to be dominated by plantation systems although smallholder production of copra is also important The Philippines has an apparent comparative advantage in the production of copra and is by far the dominant exporter of This agricultural structure has created something of a dual this product approach to policy The export crops have attracted increasing government involvement since the early 1970 s particularly as a source of tax revenue and as a means of controlling consumer prices at least for sugar and Moreover the government has attempted to stimulate the vegetable oil coconut industry to develop its own crushing capacity often with significant protection The government has generally reduced incentives to the export sector

In the food sector on the other hand incentives have in general been Three themes run through agricultural policy for grains positive а commitment to self-sufficiency in grain production apart from wheat very heavy intervention in setting domestic prices and commitment to increasing smallholder productivity in the sector The achievement of self-sufficiency is seen as being dependent on price policy and small farm Control over domestic prices is in the hands of the National programs Food Authority (NFA) which has authority to control imports and exports to buy in the domestic market and to set both support prices and ceiling Trade in foodgrains and domestic prices as a result are to a large prices extent administratively determined Policy toward the small farm sector on the other hand has included land reform investment in irrigation infrastructure and specialized credit and extension schemes

The stage was thus appropriately set for the advent of the high yielding rice varieties Under the Masagana 99 Program the Philippines went from a consistent net importer to a net exporter of rice in the mid-1970 s This success has led to the recent development of the Maisan 99 Program which hopes to achieve self-sufficiency in maize in three years Concern also runs to the large and growing wheat imports and identifying means of either controlling such imports or substituting for wheat flour

Cassava fits well into this policy context The crop is essentially grown by smallholders although some plantation production does exist Moreover cassava can be a domestically-produced substitute for imported grains This concern for self-sufficiency has even extended to the development of a national alcohol program based on sugarcane and cassava however with the recent fall in world oil prices the program has been scrapped Nevertheless cassava is seen as a crop that can contribute to meeting the increasing demand for carbohydrate sources Since cassava is only a very minor crop in the Philippines and since the crop has received little government support the question to be pursued is what difference government involvement can make in developing cassava as a commercial crop in the Philippines

Production

Production trends and distribution

The official production series for cassava in the Philippines is presented in Table 6 1 The series shows relatively stable area production and yields from 1960 to 1974 followed by very dramatic increases in both area and yields Such increases led to more than a tripling in production in three years and to over a quadrupling in five years This remarkable growth immediately begs the questions of what was responsible for this sudden take-off

As is discussed in the section on markets and demand there is no corroborating evidence on either consumption or price levels to suggest that such production increases took place On the other hand alternative estimates of area and yield are limited The agricultural census of 1971 estimated cassava area at 47 061 hectares yields of 5 75 t/ha and production of 270 714 tons Even at this stage there were major discrepancies between the census estimate and the Bureau of Agricultural Economics (BAE) estimate The major difference between the two production estimates is due to the reported area figures the yield estimates are similar at this date This discrepancy with the census figure raises some doubt about the adequacy of the sampling and estimation techniques for cassava estimates This is not surprising given that cassava is such a minor crop in the Philippines

The only data which correspond to the BAE s estimate of increasing yields from 1976 to 1979 is the Special Study Division s survey of 901 cassava farmers in the period 1977-79 Average yields for this non-random sample were 4 3 t/ha however this average was biased downward somewhat because the major growing area of Central Mindinao was not included in the survey However even this would not raise yields to the BAE estimate of 11 7 t/ha

A regional breakdown of production and area provides insight into the regional locus of this supposed growth in cassava production (Table 6 2) Cassava is produced throughout the Philippines but most is produced in the southern islands. There is little production on Luzon apart from the Bicol region lying at the southern tip of the island. The major producing areas are the Visayas region and Mindinao. The production data suggest that cassava production increased at an annual rate of 20 4/ on the island of Mindinao in the period 1970-81 while increasing in the rest of Philippines at a 9 67 annual rate

Mindinao accounted for 78% of the increase in cassava production in the period The years 1975 and 1976 are particularly striking Production in 1975 was 134 thousand tons and in 1976 656 thousand tons This increase almost doubled national production. In a single year area increased from 20 to 44 thousand hectares and yields from 6 8 to 14 8 t/ha In just the Central Mindinao region production increased from 14 thousand tons in 1975 to 1 1 million tons in 1979. These data suggest either

Crop Year	Area	Production	Yıeld
	(ha)	(tons)	(t/ha)
1960	79 460	442 413	5 57
1961	100 310	546 611	5 45
1962	92 980	494 805	5 32
1963	80 280	457 769	5 70
1964	93 540	596 156	6 37
1965	93 280	645 720	6 92
1966	89 700	614 386	6 85
1967	86 520	528 727	6 11
1968	83 880	481 928	5 74
1969	85 690	482 327	5 69
1970	82 620	442 223	5 35
1971	81 820	427 055	5 22
1972	82 680	439 697	5 32
1973	87 420	444 710	5 09
1974	96 710	480 015	4 96
1975	119 310	684 507	5 74
1976	144 650	1 153 958	7 98
1977	179 270	1 710 767	9 54
1978	181 770	1 781 961	9 80
1979	192 360	2 253 824	11 72
1980	204 190	2 277 338	11 15
1981	211 370	2 255 115	10 66

Table 6 1 Philippines Area Production and Yield of Cassava 1960-1981

Source Bureau of Agricultural Economics published in National Economic and Development Authority Philippine Statistical Yearbook Manila 1981

Table 6 2	Philippines	Area	Production	and	Yield l	by	Region	1972-81
-----------	-------------	------	------------	-----	---------	----	--------	---------

		Cagayan	Central	Southern		Western	Central	Eastern	Western	Northern	Southern	Central
Year	Ilocos	Valley	Luzon	Tagalog	Bicol	Visayas	Visayas	Visayas	Mindinao	Mindinao	Mindinao	Mindinao
Area (000 ha)											
1972	12	16	10	57	15 4	53	13 0	10 2	11 1	41	42	99
1973	1^{-2}	17	10	62	16 4	45	14 6	10 7	12 2	55	95	39
1974	19	0 7	09	58	25 8	4 3	25 7	16 9	11	62	40	3 5
1975	19	12	08	72	33 4	53	25 9	23 8	13	77	59	50
1976	19	10	09	82	27 3	78	23 9	29 3	10 2	12 8	66	14 6
1977	21	11	11	85	27 7	10 7	28 6	31 0	20 4	13 8	75	26 6
1978	22	1 0	11	82	27 8	10 2	28 6	24 4	23 9	16 0	93	29 6
1979	23	1 0	11	79	28 8	10 7	29 6	25 9	22 9	23 4	90	29 0
1980	24	09	15	85	32 4	11 5	30 7	28 3	23 3	26 4	88	29 4
1981	23	09	16	84	33 3	12 0	38 0	27 4	25 8	24 1	85	29 2
Produc	tion (000 t	.)										
1972	97	14 7	50	33 7	63 3	25 4	39 7	57 0	78	25 5	37 7	56 2
1973	10 4	14 6	56	38 9	61 3	22 2	33 1	53 5	78 0	47 8	60 3	19 2
1974	98	68	42	54 9	139 4	23 9	54 0	52 5	59	56 7	41 5	30 5
1975	11 1	61	46	54 2	237 6	30 3	85 2	120 8	85	77 0	34 7	14 2
1976	18 3	31	29	42 3	220 6	39 2	86 9	84 3	190 9	50 8	40 9	373 8
1977	16 3	33	22	46 1	230 6	42 2	92 8	98 2	349 9	56 9	40 7	732 5
1978	16 3	27	23	44 0	269 8	30 8	94 8	114 2	333 8	679	42 5	762 8
1979	17 4	51	35	40 6	308 7	44 6	116 5	116 0	297 0	129 5	48 0	1126 9
1980	18 4	39	45	43 1	293 0	60 8	89 5	126 9	303 6	153 2	53 6	1125 2
1981	16 8	44	46	44 0	287 0	64 3	75 3	133 5	325 0	135 3	47 2	1117 8
Yıeld	(t/ha)											
1972	7 91	9 29	5 00	5 93	4 12	4 76	3.06	5 60	0 70	6 15	8 99	5 66
1973	8 36	8 36	5 44	6 31	3 72	4 93	2 26	5 00	6 40	8 69	6 35	4 89
1974	5 26	9 45	4 73	9 45	5 40	5 61	2 09	3 11	5 58	9 09	10 42	8 59
1975	5 79	5 15	5 85	7 56	7 11	5 66	3 29	5 07	6 67	10 04	5 93	2 81
1976	9 29	3 15	3 36	5 16	8 06	5 02	3 63	2 87	18 66	3 96	6 17	25 65
1977	7 65	2 95	2 02	5 40	8 27	3 95	3 24	3 16	17 14	4 11	5 42	27 50
1978	7 51	2 58	2 03	5 34	9 71	3 02	3 31	4 67	13 95	4 23	4 58	26 25
1979	7 46	5 13	3 16	5 13	10 70	4 17	3 93	4 47	12 96	5 54	5 31	38 07
1980	7 71	4 32	2 93	5 06	9 03	5 29	2 91	4 47	13 02	5 81	6 08	38 29
1981	7 31	5 10	2 88	5 27	8 61	5 36	1 98	4 87	12 60	5 62	5 54	38 30

explosive structural change in cassava production on Mindinao or a major revision of the data The starch industry based on plantation systems is concentrated on Mindinao but the data on cassava starch production suggest no major changes in the industry in 1975-1980 Thus it appears that this major increase in cassava production in the last half of the 1970 s was in major part artefact (Independent comparison of production data with the utilization data is found in Appendix 6 1)

Cassava production systems

Cassava in the Philippines is grown in both plantation and smallholder production systems There are few estimates of the percentage of cassava grown in these two systems However plantation systems are associated only with starch mills and at least three factories on Mindinao and one in Eastern Visayas operate estates As much as 6 500 hectares may be grown in plantation systems This would imply that the greater portion of cassava is grown by smallholders Smallholder systems will thus be considered in most detail

Cassava while it is grown throughout the Philippines has never achieved the status of a major commercial crop even on a regional basis Maize is the most prominent upland crop for smallholders The reason for this follows principally from the relatively favorable agro-climatic conditions that exist throughout the Philippines and the relatively universal distribution of paddy lands across the different regions A short maturity crop which produces relatively consistent yields under upland conditions fits better than a long maturity crop in smallholder systems especially since rice production requires substantial resources during critical periods of the year

In general shortage of rainfall is not a limiting factor in cassava production nor for the production of other upland crops Because of cassava s better adaptation to poorer soils cassava is often found on the more infertile hillside areas Cassava is planted throughout the year and the only constraint on planting time is conflict with rice production activities Such constraints are accentuated because very little hired labor is used in cassava production In the Special Studies Division (SSD) survey about 75% of labor use in cassava comes from family labor (Table 6 3)

Cassava producers according to the SSD survey operate farms of a little over 3 hectares of which only 6 of a hectare is devoted to cassava Rarely are plots of over 2 hectares planted and of the 916 farmers in this survey only about 40% actually owned their land Yet even on cassava producing farms only about 11% of total cash income was derived from cassava Other crop sales accounted for far more income than cassava even though over 80/ of the cassava that was produced was sold Cassava was thus grown as a minor cash crop by essentially small-scale producers on land not typically suited for other crops

Land is typically prepared by animal traction although some small plots may be prepared by hand Because of the relatively high rainfall the land is either furrowed prior to planting or ridging is done at the time of the first weeding usually by interrow animal cultivation Ridging is apparently necessary to control root rot as the crop matures This type of

	Hired p	baid in		····		- · · · - · - · - · - · - · - ·
Region	Cash	Kınd	<u>Operator</u>	<u>Family</u>	Exchange	Total
Ilocos	37		24 4	11 6	02	39 9
Central Luzon	45	-	28 0	11 5	15 0	59 0
Southern Tagalog	15 0	-	24 9	25 9	-	65 8
Bicol	14 2		24 0	25 0	03	63 5
Western Visayas	35	03	14 1	80	03	26 2
Central Visayas	12 2	21 8	17 5	13 7	-	65 2
Eastern Visayas	22 8	-	26 6	10 3	32	62 9
Western Mindinao	14 9		39 0	16 8	1 3	72 0
Northern Mindinao	85		29 9	10 2	08	49 4
Average	11 1	28	24 8	15 6	07	54 9

Table 6 3 Philippines Type of Labor Used in Cassava Production by Region (man days/ha)

Source E B Mejia et al Cassava Socio-economic and Marketing Study Philippines Special Studies Division Ministry of Agriculture No 79 26 Oct 1979 weeding limits any type of intercropping and cassava is usually found planted in monoculture

Although a substantial range of varieties are found in the Philippines --the SSD survey found 22 different varieties-- about half the farmers in the survey grew a variety named white while two-thirds of farmers grew either white or yellow (Table 6 4) These varieties are apparently selected for their good eating quality

The one peculiar feature of cassava production systems in the Philippines is the very low labor input devoted to weeding (Table 6 5) This partly reflects the use of animal cultivation but animals can be used at most twice for weeding and are often ineffective at controlling weeds within the rows Moreover weed control would be expected to be a problem under such relatively high rainfall conditions. Low labor input for weeding thus reflects other factors including the reliance on family labor competition with other crops for labor resources and the relatively low commercial status of cassava

This same phenomenon applies to other input use In the survey only 18 of 916 farmers or 2 percent used fertilizer on their cassava plots For those farmers who did apply fertilizer the average application rate was about 125 kg/ha of chemical fertilizers For smallholder cassava production cash expenses were kept to very low levels which may reflect the risky nature of marketing the crop

The riskiness is as well reflected in harvesting patterns Cassava in general in the Philippines can be harvested anytime after six or seven months Farmers in general harvest in small lots partly for home consumption but principally as a means of insuring disposal at a remunerative price in the market Substantial labor is as well expended on trimming cleaning and packing the roots for sale At least one study has shown that there is no loss in yield when harvesting in small lots between 6 and 9 months as compared to a single harvest at nine months (Villamajor 1980) -- the border effect may act as a yield compensation mechanism

Cassava plantation systems in the Philippines are normally in the range of one to 1 5 thousand hectares in size Planting and harvest are staggered to provide a continuous supply of cassava to the starch factories This production is as well supplemented by purchases from smallholders However in such large estates it has been difficult to achieve any significant economies of scale in cassava production The only significant changes are that land preparation is done by tractor rather than by animal traction and that herbicides are used in weed control The rest of the operations are performed by hand labor usually on a piece rate by farmers contracted in the area A 1978 survey of starch plants suggested that the higher overhead costs resulted in substantially higher own production costs as compared to purchase prices from local farmers -249 pesos/t versus 174 pesos/t (Villanueva and Laguna 1979)

<u>Yields</u>

Compared to standards elsewhere in Asia cassava yields in the Philippines are low even though agro-climatic conditions are in general more favorable The 1977-79 survey of 916 smallholder found an average

	· - · · · · · ·			Var	iety				
Region	White_	Yellow	Red	Native	Golden Yellow	Hawaııan	Java Brown	Other ¹	
Ilocos	105	-						3	
Central Luzon	36	36	-	1	-			5	
Southern Tagalog	29	-	-	14	29	-	-	13	
Вісој	13	-	86		9	6		27	
Western Visayas	27	8		57	-		-	46	
Central Visayas	35	45	-	-			8	10	
Eastern Visayas	61	41	-	7	-	-	-	-	
Northern Mindinao	48	42	-			-	-	5	
Western Mindinao	72		-	-	37	7	3	7	
Total Farms	426	172	86	79	75	13	11	116	
% Farms	44	18	9	8	8	1	1	11	

Table 6 4 Philippines Cassava Varieties Reportedly Grown on 916 Farms 1976 1979

¹ Includes 15 other varieties

Source E B Mejia et al Cassava Socio Economic and Marketing Study Philippines Special Studies Division Ministry of Agriculture No 79 26 October 1979 harvesting and marketing Little labor is expended on maintenance of the cassava crop

The impression is that resources with a low opportunity cost are principally employed in cassava family labor and animal power in the slack seasons and either marginal land or excess land which cannot be planted to more labor intensive crops given the stock of family labor Scarce resources such as capital are used only when absolutely necessary Cassava is able to yield under such extensive conditions although not at high levels If this is so then the costs of production derived by the SSD may be overestimated since family labor and land were costed at average market prices

Just less than 80% of variable production costs is made up by labor charges (Table 6 6) of the wage bill 70% is imputed to family labor The rest of variable costs are principally delivery and transport charges and for the 19% of farmers who were share tenants the payment in kind to landlords The other principal cost is the interest charged against fixed assets devoted to cassava In the SSD study land was not costed at its rental value but rather as an interest payment (12%) on its value This interest charge to land forms the other major cost component For per hectare production costs there is a certain stability in total cost across the different regions

What is substantially more variable between regions is yield levels and this results in a substantial variability in per ton production costs from 160 pesos/t in Western Mindinao to 338 pesos/t in Bicol Ir fact four of the nine region were producing cassava at a higher production cost per ton than farmers were receiving as a market price (Table 6 6) However in all cases except region VIII cash income was greater than cash expenses Costing indigenous farm resources at their opportunity cost could make cassava profitable in these other regions as well However what is striking is that farm-level prices to a substantial degree natched production costs and that profit or loss depended critically on yield A yield less than 3 5 t/ha was just not remunerative at least when level costed at market prices

Technology development

Designing appropriate technology for cassava in the Philippines will not be an easy task since the process is dependent on answers to several The basic question is why cassava is grown in such extensive unknowns production systems when the average farm size of cassava producers is just over 3 hectares If cultural practices are the principal constraint on yields modifying cultural practices is going to require either providing farmers with further incentives to grow cassava (either higher prices or more assured markets) and/or relieving what may be significant resource constraints within the farm Answers to these questions can only come from a more extensive study of cassava within the complete farm system Moreover although cassava is clearly a commercial crop in these systems what is not clear is the type of market toward which increased production can be directed The two issues of farming systems and markets together define the appropriate design parameters for the development of improved technology

				F	Region					
	I	III	IV	٧	VI	VII	VIII	IX	X	Average
Labor Utilization (man days,	/ha)									
Land Preparation	11 6	2 0 0	21 9	27 0	10 8	10 8	22 4	16 9	16 3	17 6
Furrowing	28	22	1 1	39	02	20	34	26	15	22
Planting	10 4	61	10 5	73	50	85	10 2	88	68	8 1
Weeding	36	52	11 1	14 9	29	59	14 0	19 2	63	95
Harvesting	59	63	15 7	78	53	278	87	92	75	98
Packing and Transport	67	42	46	19	20	18	39	57	10 0	44
Peeling and Drying	-		-		-	83		42	1 0	1 3
Total	41 0	44 0	64 9	62 8	26 2	65 1	62 6	66 6	49 4	52 9
Farm Sıze (ha)	2 25	2 25	2 93	3 72	4 29	2 82	2 38	3 15	2 50	3 03
Cassava Area (ha)	0 65	0 54	0 60	0 79	0 49	0 85	0 47	0 58	0 52	0 61
										· · · · · · · · · · · · · · · · · · ·

Table 6 5 Philippines Labor Use Farm Size and Average Cassava Area in Cassava Production Systems 1977 79

Source E B Mejia et al Cassava Socio-economic and Marketing Study Philippines Special Studies Devision Ministry of Agriculture No 79-26 Oct 1979 yield of 4 02 t/ha (Table 6 6) a figure comparable to the pre-1975 BAE estimates of around 5 t/ha There was some variation in yields between regions but in general yields were uniformly low throughout the Philippines The immediate question is why especially if agro-climatic constraints (except for soils) are not an issue

Since the Philippines has had no cassava research program until just recently a potential cause of low yields may be the lack of well adapted high yielding varieties The principal evidence that may be brought to bear on this hypothesis is that the first varietal releases by the Institute of Plant Breeding (Lakan 1 and Datu 1) were selections that went by the more common names of golden yellow and Hawaii 5 These varieties were already being grown by farmers (Table 6 4) and yet the yield trials prior to release of these varieties gave an average yield of 42 t/ha for Datu 1 and 32 t/ha for Lakan 1

Lack of adequate cultural practices thus appears to be the principal constraint on yields Two principal factors appear to be involved lack of appropriate soil fertility management and insufficient weed control As in other parts of Asia (except India) diseases and pests do not appear to be a major problem in cassava apart from the occasional incidence of cassava bacterial blight One other possible limiting factor is lodging given the frequency of high winds in the Philippines Of these factors the very limited labor input in weed control is probably the major constraint on higher yields Overcoming this constraint requires a closer study of labor utilization on the farm and the value of the production gain from further labor inputs in weeding of cassava

Yields on plantations are considered to be substantially higher although there are practically no published reports of yield levels on One estate on Mindinao reports average yields of 18 t/ha (field estates 1982) There is continuous planting of cassava on this estate and notes apparently there has been problems in maintaining yield levels Yields on newly opened land without fertilizer averaged about 30 t/ha Yields have declined from this level and stabilized around the 18 t/ha average while at the same time fertilizer application increased from zero to 400 kg and finally to 600 kg/ha On another estate in Eastern Visayas the maximum yield obtained in large fields was 29 t/ha on former rice land without fertilizer application (field notes 1982) On this same estate as a whole average yields are in the neighborhood of 20 t/ha with the flat former sugarcane land averaging 25 t/ha and the hilly areas averaging 10-15 t/ha

Cost of production and labor utilization

If cultural practices are a principal constraint on yields this should be reflected in low rates of labor utilization Labor input 1n is very low (Table 6 5) even by Thai standards fact where land preparation is performed by tractor At an average of 53 mandays/ha the cassava plots can only be quite extensively managed unless purchased inputs that substitute for labor are used and this is not the case The extensive nature of cassava cultivation is particularly reflected in labor expenditure for weeding In more usual labor profiles for cassava weeding usually forms the largest single activity In the Philippines most of the labor is utilized in land preparation and planting and secondly in

				R	egion		• • •			
Cost Item	I	III	I۷	V	VI	VII	VIII	IX	X	Average
				(pe:	<u>sos/ha)</u>					
Variable Costs										
Labour										
Hired	29 1	26 6	103 5	124 8	28 0	181 6	167 0	113 3	75 1	98 8
Food	10 4	10		21	10 3	$10 \ 1$	56 9	51 8	92	15 6
Family	288 2	322 6	280 2	363 4	165 9	179 2	267 9	368 8	266 2	282 8
Land Preparation										
Tractor	15 6				-	32 0	-	-	-	70
Anımal	15	-		05	09	56	27	23 5	34	42
Planting Material	-	-	-	06			-	-		0 1
Fertilizer	0 1	34	-	02	09	-	-	-	-	0 1
Landlord										
In kınd	28 5	87	16 8	17 2	14 9	31 3	33 2	13 1	52 8	23 3
Cash	232 2		-	-	-	-	-	12 3	46	30 7
Transport	41 9	732	-		36	19 6	2	18 9	35 9	21 1
Interest 1/										
(Working Capital) "	40 9	18 8	14 1	16 8	79	19 4	28 3	277	22 4	21 7
Sub total	688 2	444 2	414 6	524 8	232 2	479 6	556 1	629 4	469 7	505 5
Fixed Costs										
Depreciation	19.2	28.2	24 2	20.4	12 5	30.2	15 5	11 0	82	18 9
Repair	5 7	21 3	13 9	29	16 5	34	3.6	6 1	21 1	9 1
Interest $\frac{2}{}$	322 1	470 9	447 5	293 5	344 6	386 1	227 3	217 7	271 7	325 2
Sub total	347 0	520 4	485 6	316 8	373 7	419 7	246 3	234 8	301 0	353 1
	1005 1								330 3	050 5
lotal Costs	1035 I	964 6	900 1	841 5	605 8	899 3	802 4	864 2	//0 /	858 6
Yıeld (t/ha)	6 19	5 84	3 36	2 49	2 21	546	2 16	539	4 03	4 02
Cost per ton	167 2	165 2	267 9	338 0	274 1	164 7	317 5	160 3	191 2	213 6
Farm Price	250	260	190	230	250	190	300	240	220	230

Philippines Per hectare Production Costs Yields and Costs per Ton 1977-79 Table 6 6

 $\frac{1}{2}$ Interest on cash expenses with interest rate of 12% $\frac{2}{2}$ Land costs for land owners included as interest on land value i e implicit land rent is 12% of land value

Source E B Mejia et al Cassava Socio economic and Marketing Study Philippines Special Studies Division Ministry of Agriculture No 79 26 Oct 1979

Table 6 7 Philippines Cassava Varieties Selected for Release by the Philippine Root Crop Research and Training Center

Variety	Months to harvest	Yıeld (t/ha)	Dry matter (१)		
PR-C13	10-12	42	34		
PR-C24	8-10	43	39		
PR-C62	10-12	46	33		

Source The Radix Volume 2 (1) Jan-June 1980

Re	gion	Rıce (kg/capı	Ma ta) (kg/ca	Maıze (kg/capıta)		eat apıta)	Cass (kg/ca	sava apıta)	Sweet Potatoes (kg/capıta)	
110	ocos	139 8	1	3	7	7	1	6	6	2
Ca	gayan Valley	101 2	20	4	6	9	1	8	5	7
Ce	ntral Luzon	120 1	1	6	8	8	0	2	2	0
Me	tro Manıla	103 4	1	6	17	3	0	4	2	0
S	Luzon	118 0	1	3	10	8	1	6	2	6
Bi	co1	114 0	3	0	7	5	4	9	15	6
W	Visayas	120 7	7	5	6	0	6	0	4	3
С	Visayas	45 6	83	2	7	1	7	6	6	7
Ε	Visayas	104 7	19	9	7	4	5	4	15	9
W	Mindinao	82 0	25	0	6	2	5	1	8	5
N	Mindinao	77 5	54	9	6	9	2	9	6	4
Ε	Mindinao	101 4	28	7	7	0	1	8	7	1
C	Mindinao	113 4	12	7	8	0	9	5	7	4
Ph	ılıppınes	105 8	17	7	8	5	3	5	6	5

Table 6 8 Philippines Annual Per Capita Food Consumption Patterns by Region 1977 1980

Source Aviguetero et al 1981

There had been little research on cassava in the Philippines until the formation in 1977 of the Philippines Root Crop Research and Training Center (PRCRTC) The center is located on the campus of the Visayas State College of Agriculture and besides a staff of 15 researchers the center draws on the staff of the College to assist on research projects Besides cassava the center does research on sweet potatoes yam and taro There is no cassava program as such since the different disciplines divide their time between the different root crops except for a breeder whose sole responsibility is cassava breeding Research on cassava extends from breeding through crop protection and management to post-harvest utilization

The center in its few years of operation has principally been involved in defining research strategy and research priorities between root crops Research by each discipline is defined on a project basis which can be influenced by outside funding especially the funding from the Philippine Council for Agriculture and Resources Research (PCARR) Policy development can have a marked influence on research direction such as was the case with the abortive alcohol program

The center still is in the process of completing the development of a fully structured breeding selection and varietal testing program Α germplasm bank has been assembled and evaluated and at least three selections have been suggested as recommended varieties for release (Radix 1980) A crossing and selection program has been started The breeding focus is on higher yield with starch content being a secondary objective This program is complemented by some cassava breeding which is done at the Institute of Plant Breeding (IPB) at the University of the Philippines at Los Baños A national varietal testing system has recently been set up with varietal input from PRCRTC IPB-UPLB and the Bureau of Plant Industry Trials are carried out on six different experimental stations

Definition of the potential yield gap that may be exploited remains as yet relatively undefined The yield data on the first three selections released by PRCRTC (two are already grown by farmers) show the almost traditional yield of promising varieties under experimental conditions of over 40 t/ha (Table 6 7) Defining what potential yield levels are at the farm level is more difficult as well as the even more critical question of how to increase farm-level yields within farmer resource availabilities What probably can be said is that a target of 15 t/ha for smallholders is realistic which for the Philippines amounts to a tripling in average yields

Markets and Demand

Cassava is grown throughout the Philippines but only in Central Mindinao may it be said to be a major crop Moreover production tends to be larger in areas where there is access to well developed markets. In the Philippines cassava appears to be constrained by what could be termed market inertia. That is production incentives are weak due to poorly developed markets for cassava leading to extensive production systems and low yields. In turn high per ton production costs provide little incentive for further market development. Defining the mechanism for breaking this inertia requires an evaluation of the present and potential markets for cassava in the Philippines

Cassava for direct human consumption

Where cassava is consumed as a food source in tropical Asia it is usually in areas where there is a shortfall in rice availabilities either because of limited purchasing power and/or insufficient production levels Cassava has not been incorporated as a major component in the Philippine diet because rice production is in general relatively evenly distributed throughout the islands and in regions where rice supplies are short carbohydrate requirements are supplemented by maize (Table 6 8) Moreover consumption of wheat products has steadily increased in the post-war period and has reached quite significant levels in urban areas

Root crops are of secondary importance as carbohydrate sources in the diet with cassava and sweet potatoes being of more or less equal rank There is some difference between sources in estimates of actual consumption Bennagen (1982) reviews these estimates (Table 6 9) and finds of cassava an average annual per capita consumption lying somewhere between 4 and 9 The locus of cassava consumption is essentially off-Luzon kg in the southern islands (Table 6 8) and in rural areas (Table 6 10) Still even in the high consuming areas cassava is still of only secondary importance in the diet Cassava consumption in general coincides with the Thus rural households eat twice the amount consumption pattern for maize of less-preferred staples (maize and root crops) than urban households (Bennagen 1982)

There is something of a duality in consumption forms for cassava In most rural areas cassava is consumed as a caloric staple The roots are either cubed and steamed in the same manner as rice is prepared or peeled and boiled Prepared and eaten in this way cassava is a substitute for rice On the other hand the roots is milled fresh and used to produce a type of cake or other processed snack items The latter is probably the principal form in which cassava is consumed in urban areas and reflects the fact that the price of cassava is much higher in urban compared to rural areas Demand for cassava should behave more as a caloric staple in rural areas and as a vegetable crop in urban areas

The staple nature of cassava demand is reflected in the seasonality of prices and consumption In the main rice growing areas on Luzon there is little seasonality to either cassava prices or consumption and consumption levels are relatively low However to the south in Visayas and Mindinao where there are shortfalls in rice production there is a more seasonal pattern to both prices and consumption (Table 6 11) 0n Mindinao cassava consumption sends to be highest in September while on Visayas it tends to be higher in March These are periods which lie outside the rice harvest which occur principally in the May-June period Cassava consumption tends to be lowest in the main rice and in December There thus appears to be substitution between rice harvest in December and cassava depending on availabilities

This substitution by rice and the fact that rice is the preferred staple is fully reflected in demand parameter estimates for cassava (Table

TABLE 6 9 PhilippinesComparison of Data for Average Per CapitaConsumption of Basic Staples1978

Food Group	FNRI (kg)	SSD (kg)	IAPMP (kg)
Cereals and cereal products	134 0	135 7	148 3
Rice	109 5	107 9	109 5
Corn grits	13 9	14 7	24 7
Wheat and wheat products	77	89	11 6
Starch roots and tubers	13 5	18 2	_
Sweet potatoes	51	99	99
Cassava	55	4 0	93

Source Eugenia Bennagen Staple Food Consumption in the Phillippines 1982

TABLE 6 10PhilippinesAverage Per Capita Consumption of Starchy Staples by
Urban/Rural Residence and by Island Group1978

				Residence				Island Group					
	Phili (k)	ppines g)	Urban Rural (kg) (kg)		Luzon (kg)		Visayas (kg)		Mındanao (Kg)				
Cereals and Cereals Products	134	0	117	9	142	4	131	0	139	10	137	2	
Rice and Products	112	4	97	1	120	1	118	2	103	3	102	6	
Maize and Products	13	9	6	6	17	9	2	6	31	4	31	4	
Other Cereals	7	7	14	2	4	4	10	2	4	4	3	3	
Starchy Roots and Tubers	13	5	7	3	16	8	10	2	14	2	26	6	
Cassava and Products	5	5	1	5	7	3	2	2	8	0	15	0	
Sweet Potato	5	1	3	3	6	2	5	5	3	3	6	9	
Potato and Products	0	7	1	1	0	4	0	7	0	7	1	1	
Others	2	2	1	5	2	9	1	8	2	9	4	0	

Source First Nationwide Nutrition Survey Food and Nutrition Research Institute (FNRI 1978)

6 12) The elasticity estimates in general suggest that cassava is an inferior good i e that consumption actually declines with increasing income and that there is a very strong substitution between cassava and rice and to a more minor degree substitution between cassava and maize These results conform to expectation and coincide with results for the other less-preferred staples Maize in fact appears to be even more inferior a good than cassava (Bennagen 1982)

These demand parameters underlie trends in consumption of basic staples in the Philippines (Figure 6 1) The trend in per capita consumption of rice has been relatively constant with a marked tendency for there to be less year-to-year variability The principal effect of the high-yielding rice varieties has not been on average consumption levels but rather to shift the Philippines from a net importer to a net exporter of The constancy in consumption could represent an increase in rice consumption by the poorer income strata and a decrease by the higher income However Bennagen (1982) presents data that does not support this strata there was a shift in relative prices of rice in relation to the Also non-preferred staples The effect in the 1970's has been to induce a declining trend in per capita consumption of both cassava and maize Maıze consumption in fact has declined more rapidly than cassava consumption The Philippines food economy appears to be reaching that stage where there is a diversification in the diet away from a basic dependence on caloric staples

The fresh food market is currently the dominant market for cassava in the Philippines In the best of circumstances it is difficult to build a relatively expansive production base purely dependent on the fresh food market Given the long history of cassava in the Philippines it is highly unlikely that cassava will ever develop as a major staple In part this was because agroclimatic conditions were not poor enough to favor cassava in any part of the Philippines maize a short cycle crop could always be grown as a secondary staple to rice Recent trends in consumption of non-preferred staples including cassava indicate limited future growth in this market Developing cassava as a major commercial crop will thus depend on the development of other alternative markets for the crop

The starch market

The principal existing alternative market for cassava in the Philippines is for starch production Cassava starch production through the last decade has been relatively stagnant (Table 6 13) At the same time net imports of cassava starch while never large have declined to relatively insignificant levels Viewed in isolation these trends would appear to imply a relatively stagnant market for starch yet while cassava starch production has been stationary maize starch production has been increasing (Figure 6 2) indicating quite significant growth in total starch demand At issue then is the competition between maize and cassava starch for a growing but not expansive market

The major part of the cassava starch industry is located on Mindinao together with part of the maize starch industry The industry is by nature large-scale and in 1984 consisted of ten plants with a combined annual

	Jan	March	April Ju	ne	July-Se	ot	Oct-Dec		
Region	Consumption (kg/capita)	Price (pesos/kg)	Consumption (kg/capita)	Price (pesos/kg)	Consumption (kg/capita)	Price (pesos/kg)	Consumption (kg/capita)	Price (pesos/kg)	
I	14	0 53	15	0 53	18	0 62	14	0 51	
II	19	0 53	1 0	0 60	17	0 50	18	0 55	
III	19	0 52	15	0 61	2 1	0 53	24	0 53	
IV	23	0 41	19	0 45	23	0 54	22	0 54	
V	39	0 43	28	0 44	4 1	0 48	32	0 54	
VI	26	0 47	32	0 70	2 1	0 49	29	0 48	
VII	8 1	0 31	52	0 47	35	0 41	46	0 53	
VIII	59	0 34	48	0 64	54	0 38	28	0 81	
IX	6 1	0 31	45	0 66	10 9	0 29	47	0 42	
Х	48	0 40	4 4	0 77	5 1	0 37	47	0 46	
ΧI	54	0 38	5 1	0 33	4 0	0 36	42	0 40	
XII	55	0 43	58	0 41	11 5	0 35	39	0 42	

Table 6 11 Philippines Per Capita Consumption¹ of Cassava and Prices² by Quarter and Region 1973-76

¹ Per capita consumption expressed on an annual basis

² Constant 1972 prices

Source Calculated from unpublished consumer food consumption surveys carried out by the Special Studies Division Ministry of Agriculture

TABLE	6	12	Philippines
-------	---	----	-------------

Estimated Demand Elasticities for Cassava

Source			Cross	Price
	Income	Price	Rice	Maize
FNRI	-0 08		_	-
IAPMP	0 20	-0 20	-	-
Binongo	-0 82	-0 68	1 18	0 33

Source Food and Nutrition Research Institute Integrated Agricultural Production and Marketing Project Salome Binongo An Economic Analysis of the Demand for Fresh Cassava and Cassava Products in the Philippines 1985

		Tra	ade
Year	Production	Exports	Imports
<u> </u>	(t)	<u>(t)</u>	<u> (t) </u>
1968	22 044		1 201
1969	18 204		350
1970	22 771	193	10
1971	29 277		404
1972	27 867		3 722
1973	15 616	-	2 211
1974	18 375	-	4 229
1975	17 425	-	4 220
1976	17 391	1	2 004
1977	16 576	3	5
1978	17 024	3	3
1979	17 371	1	5
1980	N A	14	4

Table 6 13 Philippines Production and Trade of Cassava Starch 1968-80

Source National Census and Statistics Office

Year	Capacity (+)	Production (+)	Capacity Utilization (7)	Capacity (+)	Production (+)	Capacity Utilization (%)
1976	31 826	10 888	34 2	147 810	58 416	39 5
1977	36 326	14 558	40 1	147 810	65 739	44 5
1978	51 326	16 371	31 9	147 810	74 393	50 3
1979	66 326	16 289	24 6	147 810	72 985	49 4
1980	66 326	13 604	20 5	147 810	55 956	37 9
1981	66 326	18 712	28 2	147 810	65 127	44 1
1982	66 326	19 898	30 0	147 810	68 708	46 5
1983	111 726	38 058	31 4	147 810	72 143	48 8
Source	Fortunato Ja	yme A Report on	the Philippine St	arch Industry	1982	

TABLE 6 14 Philippines Rated Capacity and Production of Cassava and Maize Starch 1976-83

capacity of 125 thousand tons of starch $\frac{1}{2}$ What is impressive is the recent expansion in processing capacity for cassava starch at a time when the cassava starch industry was operating at 39/ capacity and the maize starch industry at about 45% (Table 6 14) The maize starch industry went through an expansion phase in the early 1970 s and has maintained itself at five plants ever since The cassava starch industry appears to be going through a similar expansion in the early 1980 s after having little new This expansion represents a significant investment for over a decade diversification away from Mindinao since two of the new plants are on Luzon and the largest is on Bohol This has come at a time when the overall growth rate in the economy has slowed dramatically and growth in the industrial sector has even been negative The need to cover recent capital investments will be constrained by excess capacity in the industry and a certain downturn in aggregate starch demand

The profitability of cassava starch production is determined principally by the price of roots the output price and the capacity The output price (and the market share) are largely set by utilization the competition with domestic maize starch prices and not by import prices (Table 6 15) There is a 70% ad valorem duty on cassava starch imports In turn the price of both starches is set by the raw material price In this respect cassava root prices have not increased at as fast a pace as maize prices especially since 1980 In 1981 this caused a large differential to open between maize and cassava starch prices in turn causing cassava starch production to increase and maize starch production to decline What is clear is that the price competition between maize and cassava starch will depend essentially on what happens in raw material prices

Even for large-scale plants the costs of producing cassava starch depends principally on the cost of the root Fuel is another large cost component in large-scale plants As can be seen in Table 16 the costs of production are not substantially different from the selling price Small changes in the root purchase price would thus substantially affect the profitability of cassava starch production

Increasing capacity utilization depends principally on securing continuity in the supply of roots As is not the case with maize the cassava processing plants must rely on a continuous harvest of roots rather than on stored supplies or imports For the starch industry there appears to be a distinct seasonality to cassava supplies Table 6 17 shows the monthly production of five of the seven starch mills operating in 1978 Only two of the five plants could operate the year round and for these two plants production in the first part of the year was about half of the production in the latter part This coincides only to a limited extent with the seasonality in the human consumption of fresh roots but is reflected very clearly in seasonal price variation in Central Mindinao (Figure 6 3)

^{1/} There are reported cases of household production of cassava starch There are no data to suggest how large such production is but it is assumed to be minor

	Ма	ize	Cas	sava	Cassava S	tarch
Year	Grain (P/kg)	Starch (P/kg)	Root (P/kg)	Starch (P/kg)	Philippines (US\$/t)	Bangkok (US\$/t)
1976	1 15	2 12	0 28	2 43	326 6	173 4
1977	1 16	2 24	0 30	2 27	306 0	181 0
1978	1 14	2 32	0 32	2 08	282 8	151 6
1979	1 17	2 35	0 37	2 17	293 0	281 3
1980	1 60	2 76	0 44	2 47	329 3	282 1
1981	1 90	3 25	0 47	2 85	361 2	213 5

TABLE 6 15PhilippinesTrends in the Price of Maize and Cassava and the Respective Starches1976-81

_

Source Survey of the Starch Milling Industry in the Philippines Business Research Department Development Bank of the Philippines 1982

Table 6 16	Philippines	Annual	Costs	of Production	of Cassava	Starch	for	a	Factory
	with a Capac	ity of a	20 t/da	y of Starch	1978				

Cost Item	Total (ooo Pesos)	Per ton of starch (Pesos)
Variable Costs		
Cassava Roots Labor Fuel Gunny Bags Interest on Working Capital Transport (delivered ex factory)	6300 108 1692 420 96 960	1050 18 282 70 16 160
Total Variable Costs	9576	1596
Fixed Costs		
Depreciation Interest on Fixed Capital	1002 1200	167 200
Total Fixed Capital	2202	367
Total Costs	11 778	1963
Selling Price		2100-2400

Source M F Constantino Cassava Market Study and a General Strategy of Implementation for the Cassava Program unpublished M B A Thesis Asian Institute of Management 1979

						Firn	n									-
Month	(1 t)	2 (t)		3 (t))		4 (t)			(5 t)	T(otal (t)	
January		-	203	2	1	098	8		656	9			-	1	954	
February		-				741	0		283	9				1	025	
March	42	8	-			576	4		399	9		•	-	1	019	
April	123	3	-			437	7		350	9					912	
May	173	3	-			678	5		258	9		•	-	1	111	
June	180	8	-			753	2		242	5		69	1	1	246	
July	166	1				707	6		412	7		239	8	1	526	
August	195	7			1	028	5		689	1		113	6	2	027	
September	171	1	-		1	091	8		644	6		118	9	2	026	
October	166	3	81	1	1	110	6		683	7		159	5	2	201	
November	161	7	161	3	1	272	0		671	5		165	9	2	432	
December	76	7	129	0	1	121	7		704	7		140	4	2	172	
Total	1 458	0	574	7	10	612	9	5	999	2	1	007	1	19	652	

Table 6 17 Philippines Monthly Production of Starch by Five Starch Factories 1978

Source C D Villanueva and R G Laguna An Intensive and Critical Survey of Existing Industrial Processing of Root Crops and Projection for the Next Decade PRCRTC Annual Report 1979

	Own Plan	tation	Fa	rmer	Midd	leman
F1rm	Percent (%)	Unit Cost (Pesos/kg)	Percent (%)	Unit Cost (Pesos/kg)	Percent (%)	Unit Cost (Pesos/kg)
1	-		60 0	0 23	40 0	0 23
2	90 9	0 28	91	0 18	-	-
3	15 0	0 18	85 0	0 18	-	-
4	10 0	0 24	90 0	0 16	-	-
5	88 6	0 37	12	0 15	10 2	0 60 <u>1</u> /
Average	18 2	0 25	78 3	0 17	35	0 28

Table 6 18 Philippines Sources of raw material and unit costs of cassava roots purchased by five starch factories 1978

<u>1</u>/ Gaplek

Source C D Villanueva and R S Laguna An Intensive and Critical Survey of Existing Industrial Processing of Root Crops and Projection for the Next Decade PRCRTC Annual Report 1979 The rationale of plantation production is to plan supplies in relation to processing needs Ironically the two plants which remained closed for the longest period during the year were exactly those which relied principally on their own production from their estates The other plants relied to a large extent on purchases of smallholder production (Table 6 18) Moreover according to the companies own estimates it was cheaper to buy cassava from smallholders than to produce the roots in estates Without further efforts at mechanizing cassava production the evidence suggests that it is very difficult to achieve economies of scale in cassava production even with such a large yield margin between smallholder and estate production in the Philippines

1

1

As in most countries the market for starch is not understood in any detail One survey of 64 industrial users showed a relatively broad use in both food and industrial uses (Table 6 19) If the total cassava starch production figures are correct this sample would appear to account for about one-third of total consumption The use of cassava starch in monosodium glutamate production used to be a substantial part of end demand About 1972 m s g producers invested in new equipment which utilized the cheaper molasses as the raw material eliminating most of this demand for cassava starch Constantino (1979) also estimates that about 30 to 35% of cassava starch goes into the manufacture of tapicca pearl

The starch market is currently small relative to processing capacity and growth in that market is uncertain. This produces something of a quandary in planning the future direction of cassava development. That is the first constraint on the expansion of the cassava starch industry is the limited capacity to produce sufficient cassava roots at a competitive price. Indications are that smallholder production is both a more economical as well as socially preferable means of increasing cassava production. Yet the nagging question remains that if smallholder productivity and production are increased is starch demand sufficient to absorb major increments in production? The export market will not be an option for surplus starch production unless the world market price is quite high

The starch processing capacity that is now in place represents about double the current national production of cassava roots Since cassava plants will now be distributed through most regions in the Philippines the starch industry could provide the basis for major expansion in cassava production given an increment in farm productivity The starch industry thus provides an initial base on which to develop cassava production $\frac{2}{2}$ However this market does not provide the certainty for major expansion in cassava production nor since large-scale plants are the rule does every farmer have access to this market Analysis of other market alternatives would thus appear warranted

^{2/} Planning is critical to these large-scale plants The farmers in the Bohol region were contracted to supply a new 60 000 ton plant on that island For such a large plant production was increased by a major increment over previous levels The plant did not open as projected and farmers had to chip their production and sell at prices which were less than half of the previous year s level The plant s ability to contract for the next few year s production was now badly compromised

The dried chip market

dried chips are produced in the Philippines but Gaplek-type production has never been large enough or sufficiently continuous to allow the development of a broad-based market Chip production is based in the Visayas and Mindinao areas and principally serves as a means of venting fresh root surpluses where there are constraints on access to fresh Prices tend to be cheaper than their fresh root equivalent and markets chips are absorbed as cheap substitutes in industries such as feed starch (for making glucose) and flour (for noddles and concentrates non-leavened bakery products) In general prices are too low at current yields to provide incentives for increases in chip production Currently chips are the market of last resort for roots that need to be harvested or

once harvested have no ready market High fresh market prices have tended to inhibit the consoladation of a cassava chip market

the question is what would be the potential market for However cassava chips if market channels were better developed and root yields were increased? Like a host of other tropical wheat-importing countries the Philippines has for a long time had a law which required that wheat flours be substituted with domestically produced flour up to a minimum of 10% Cassava flour was assumed to be the alternative flour with the most The law prompted the establishment of at least one cassava flour promise mill on Luzon The mill never operated at capacity and it was never possible for the wheat flour industry to meet the requirements of the law since sufficient cassava flour at a remunerative price was never available As with similar laws in other countries the market was potentially large but cassava flour could not be produced at a competitive price

The composite flour market offers potential if cassava chip prices can be reduced but experience has shown that basing a cassava chip industry on mixed feeds presents far fewer organizational constraints (as well as quality problems) than developing cassava chips for a composite flour industry In the last decade there has been a structural change in the poultry industry as production has shifted from small-scale units to large vertically integrated commercial operations Meat production from these operations has tripled in the last decade (Table 6 20) Such structural change has spawned rapid growth in the feed concentrate industry and the production of mixed feeds has increased at an annual rate of 12 2% over the last decade (Table 6 21) Of total production of the mixed feed industry 70% goes to poultry while the other 30% is swine feed (Table 6 22) A principal feature of the industry however is it locus on Luzon where 90% of mixed feeds are produced Since the locus of cassava chip production is in the South inter-island transport costs will be a major cost component affecting the farm-level chip price

Growth in industrial demand for maize has caused a fundamental change in the structure of the maize market (Table 6 23) Although maize production has increased at the very respectable rate of 4 3% per annum over the last decade increased use of maize for feed and for starch even with declining per capita consumption of maize has entailed a rising level of imports Moreover maize production has stagnated over the past three to four years raising concerns that imports will have to increase even

Final_Product	Number of Firms	Quantity (t)	Percent (%)
Kropeck	22	97	19
Noodle	23	41	8
Glucose	2	175	34
Adhesıve	3	4	1
Cardboard	12	46	9
Monosodium Glutamate	1	113	22
Detergent	1	38	7
Total	64	512	100

Table 6 19. Philippines Average Monthly Consumption of Cassava Starch by Type of Final Product for a Sample of Firms 1978

1

1

1

1

1

ł

Source C D Villanueva and R S Laguna An Intensive and Critical Survey of Existing Industrial Processing of Root Crops and Projection for the Next Decade PRCRTC Annual Report 1979

Year	Poul Stc (000	head)	Sla (000	ughter) head)
1970	46	448	34	576
1971	52	526	42	221
1972	52	555	42	276
1973	44	373	32	777
1974	60	609	48	728
1975	69	851	60	928
1976	77	877	64	768
1977	90	315	71	622
1978	103	528	87	813
197 9	117	964	101	353
1980	125	362	110	480

Table 6 20Philippines Poultry Stock and Slaughter in Commercial Operations

Source Bondad et al 1981
Year	Total Production (mt)
1968	263 744
1969	357 881
1970	314 415
1971	285 143
1972	312 341
1973	387 680
1974	421 266
1975	654 665
1976	625 345
1977	756 877
1978	873 499
1979	935 900
Annual Growth Rate	12 2%

Table 6 21 Philippines Production of Mixed Feed 1968 1979

Source Lincangeo-Lopez 1979

1

1

1

	Location					
Type of feed	Philippines	Luzon	Visayas	Mindinao		
Poultry						
Production (000 t)	598 4	556 7	41 7	neg		
% of total by region	100 0	93 0	70	-		
% of total by feed type	69 0	70 0	75 0	-		
Нод						
Production (000 t)	262 5	225 1	13 7	22 6		
6 of total by region	100 0	86 0	50	90		
% of total by feed type	30 0	28 0	25 0	100 0		
Other						
Production (000 t)	12 6	12 3	03	-		
% of total by region	100 0	98 o	20	-		
% of total by feed type	10	2 0	-	-		
Total						
Production (000 t)	873 5	795 1	55 7	22 6		
% of total by region	100 0	91 0	60	3 0		

Table 6 22 Philippines Volume of mixed feed production by type and region 1978

Source Lincageo-Lopez 1979

			Utilization				
Crop Year	Production	Imports	Food Consumption	Feed	Starch	Seed	
	(000 1)	(000 1)	(000 1)	(000 1)	(000 L)	(000 1)	
1970	2005	31	1248	669	52	39	
1971	2013	193	1250	750	73	40	
1972	1831	90	1259	680	89	38	
1973	2289	94	1337	750	92	45	
1974	2568	159	1712	850	96	50	
1975	2767	54	1835	900	103	53	
1976	2843	160	1669	1150	112	54	
1977	2855	134	1647	1230	119	52	
1978	3167	56	1600	1338	122	54	
1979	3176	94	1657	1580	136	56	
1980	3170	351	1604	1699	146	55	

_

Table 6 23 Philippines Supply and Utilization of Maize 1970 1980

-

SOURCE Bondad et al 1981

TABLE 6	24	Philippines	Optima	1 F	Poultry	Rations	in	Least-
			Cost F	eed	I Formul	lation	1981	

Ingredient	Price (P/kg)	Entry (7)
Maize	19	40 3
Cassava Chip	1 3	22 2
Soybean Meal	29	25 8
Fish Meal	4 0	75
Coconut Meal	1 2	0
Meat Meal	39	4 4

Source CIAT

further Stagnating maize production and rising imports thus open the policy question of whether cassava chips can be developed as an alternative carbohydrate source for feed rations

The principal question in the potential development of this market is whether cassava can compete with maize in feed rations This is primarily answered in terms of whether cassava enters into a least-cost feed ration Binongo (1982) finds that cassava enters into both swine and poultry rations at ruling prices for maize and cassava from 1975 to 1984 However since there are not quoted prices for cassava chips in the Philippines Binongo is forced to use some multiple of fresh root prices Her assumption of 2.5 appears low at first glance However as Janssen (1986) has shown root prices formed in the fresh food market tend to overestimate root costs to processing plants (essentially for quality reasons and the percentage of rejects for size) Nelson (1986) assumes a factor of 3 0 --a conversion rate of 2 5 and raw material costs being about 80% of i e total processing costs -- which because of the overestimate of root costs is more like an upper ceiling Unnevehr (1982) found gaplek to fresh root price ratios in Indonesia usually to be below 2 5 although these reflected village market prices and therefore differences in relative marketing Assuming a multiple of 2 75 cassava still enters the more exigent costs poultry feed ration (Table 6 24) indicating that cassava can compete with maize even at currently low yield levels There is thus a basis for expanding cassava production and productivity by developing the market channels to feed manufacturers

1

Private profitability however is not the only basis for a major Social profitability offers a policy emphasis on cassava more comprehensive basis for assessing crop priorities Gonzales (1984) computes domestic resource costs (DRC s) for principal crops produced in the Philippines and finds that cassava offers the highest social However Gonzales used as a border profitability of all crops considered price the export price for high grade cassava starch which is not the market to which increased cassava production should be primarily directed However the analysis does suggest that the breakeven border prices for cassava is US\$101/mt of dried cassava evaluated at an average yield of 2 1 This price is quite competitive both with the import t/ha on a dry basis price of Thai cassava and with the import price for maize (US\$157/t)Given the obvious potential for increasing average yield levels and the fact that at current yield levels cassava is already socially profitable to produce further development of dried cassava for the animal feed market would appear to be warranted

The Philippines is currently pursuing a self-sufficiency program in maize along the lines of their successful rice program Maize yields at less than one ton per hectare are low and the heart of the Maisagana program is a tropical maize technology in particular a hybrid maize resistant to downy mildew The focus on maize self-sufficiency reflects Bouis (1983) modeled the rice the growing concern about rising imports and maize sector in the Philippines and projected maize imports rising from 244 thousand tons in 1981 to 545 thousand tons in 1990 and to 1 45 million tons in the year 2000 Moreover this assumed increases in average maize 97 t/ha in 1981 to 1 41 t/ha in the year 2000 vields from As Bouis concluded only under the most optimistic assumptions as to technological

change will the Philippines be self-sufficient in total cereal production Development of the cassava chip market therefore offers a more diversified strategy in the policy goal of self-sufficiency in cereal grains

However development of the cassava chip market will not be easy and raising farm level yields will probably be the easiest component in the expansion of the chip market A cheap drying technology will be a critical It is not clear how and whether this can be solved under the constraint generally high rainfall and humidity conditions prevalent in the Philippines Possibly the locus of cassava production could be shifted to the drier areas on Luzon or coconut and rice drying units could be adapted Second internal transport costs will play a critical role in to cassava determining cassava s ability to compete Inter-island transport is relatively expensive for a bulky commodity like cassava chips and with most of the cassava production area in the south and the feed industry on Luzon transport costs will capture a not unsubstantial portion of the output price This however may be counterbalanced by a recent trend to locate new feed mill capacity in Visayas and Mindinao Finally given the Philippines policy focus on improving the welfare of the rural poor development of the cassava crop should take place within the smallholder sector rather than within a plantation system Such a focus would require institutional support to develop production and processing systems and market linkages One such pilot project has recently been developed by the Visayas State College of Agriculture

A national cassava production program has been formulated by the Ministry of Agriculture The plan focuses on raising cassava yields in all regions in the Philippines Where starch plants are already in operation increased production will be directed at servicing the plant For those cassava production regions that lie outside the effective transport radius increased production will be chipped and dried of a starch plant Production credit and loans for financing of chipping and drying capacity will be extended through farmers associations The credit will also be extended only on the basis of a marketing contract between the association and an accredited buyer either a starch or feed mill or the National Food Authority The program as currently conceptualized focuses on both production and marketing and foresees the principal market to be for use in feed concentrates

Pricing and market efficiency

Apart from the supply areas of the starch plants prices for cassava are principally determined by demand in the fresh food market Cassava varies between a vegetable and a staple food in the Philippines Retail prices nevertheless are high and do not consistently follow staple grain prices (Table 6 25) The ratio of retail milled maize prices to retail cassava prices over the period 1970-79 varied from 1 4 to 2 4 and varied significantly from year to year For prices of fresh cassava and milled maize to be equal on a caloric basis the ratio should be around 3 5 Calories derived from cassava are thus expensive compared to maize principally due to the high marketing margin for fresh roots

Farm prices make up as little as 30/ of the eventual retail price (Table 6 26) These marketing margins are broadly typical for cassava

Year	Maize (pesos/kg)	Cassava (pesos/kg)	Maize Cassava (/)
Farm-level			
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980	0 33 0 49 0 54 0 56 0 91 0 94 0 94 1 00 0 97 1 01 1 14	0 12 0 15 0 15 0 21 0 29 0 29 0 29 0 29 0 28 0 30 0 32 0 37 0 44	275 327 360 267 314 324 336 333 303 273 259
Retail			
1970 1971 1972 1973 1974 1975 1976 1977 1970 1979 1980	0 47 0 80 0 80 0 90 1 24 1 44 1 43 1 48 1 50 1 60 1 79	0 32 0 38 0 46 0 53 0 70 0 71 0 71 0 80 0 74 1 19 1 28	147 211 174 170 177 203 201 185 203 134 140

Table 6 25. Philippines Prices of Cassava and Shelled Yellow Maize at the Farm and Retail Level 1970-1980

ļ

ŧ

Source Bureau of Agricultural Economics

Year	Farm (pesos/kg)	Wholesale (pesos/kg)	Retail (pesos/kg)
Nominal			
1970 1971 1972 1973 1974 1975 1976 1977	12 15 15 21 29 29 29 28 30	19 24 29 32 40 41 43 53	32 38 46 53 70 71 71 80
1977 1978 1979 1980	30 32 37 44	53 57 74 85	74 1 19 1 28
Real (1975 pri)	ces)		
1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980	25 27 25 30 31 29 26 26 26 26 25 25	40 43 48 46 43 41 40 46 46 51 49	67 69 76 76 76 71 67 70 60 81 74

Table 6 26 Philippines Nominal and Real Prices of Cassava at Farm Wholesale and Retail Level 1970-80

Source	Bureau	of	Agricu	ltural	Economics
--------	--------	----	--------	--------	-----------

Middleman	Average Buying Price (Pesos/kg)	Average Selling Price (Pesos/kg)	Gross Margın (Pesos/kg)	Marketing Cost (Pesos/kg)	Net Return (Pesos/kg)
Contract Buyer	0 23	0 32	0 09	0 04	0 05
Agent	0 23	0 28	0 05	0 02	0 03
Assembler wholesaler	0 16	0 27	0 11	0 09	0 02
Wholesaler	0 28	0 35	0 07	0 04	0 03
Wholesaler retailer	0 33	0 42	0 09	0 04	0 05
Retailer	0 29	0 40	0 11	0 03	0 08

Table 6 27 Philippines Marketing Margin for Fresh Cassava Root for Various Types of Middlemen 1977 79

Source E B Mejia Cassava Socio-economic and Marketing Study Philippines Special Studies Division Ministry of Agriculture No 79-26 October 1979 consumed in urban areas where transport from farm to urban center is relatively expensive However the SSD surveyed 222 cassava middlemen throughout the Philippines and found the gross margins between farmer and wholesaler as well as between wholesaler and retailer to be much smaller than that reflected in the average price data (Table 6 27) Moreover actual marketing costs (without accounting for losses) were low There is thus some doubt as to the extent to which the gross margins as reflected in the BAE price data can be generalized to cassava market channels Nevertheless margins for fresh cassava remain high

To evaluate whether cassava is going to compete with grains in alternative markets the relevant price is the farm and not the retail price The price ratio between maize and cassava at this level is much more favorable (Table 6 25) Accepting a minimum price equivalent ratio of 3 1 2/ farm-level prices were in general competitive with maize over the This would be expected if cassava starch or chips were to be period competitive with maize-derived products However what is clear is that there is as yet no consistent market integration between maize and cassava prices This is due to the more fragmented nature of cassava markets and the often specialized nature of these local markets Thus root prices are much lower in the southern regions as compared to Luzon often by as much as half

The fresh market can operate at higher price levels than the starch or chip market and has been the principal demand factor in price formation However there is very limited capacity to absorb additional supplies and marketing is risky for farmers There has thus been no incentive to intensify production practices and no effective demand for new technology Pricing in the cassava root market will have to be linked to the coarse grain market creating better price stability and more integrated cassava Cassava chip production will be key to such market integration markets The fresh root market is small enough that making this transition that is driving prices downward in the fresh market to the maize equivalent price should be easily accomplished As a broader based chip market becomes market efficiency and better market integration between established regions should be vastly improved

Conclusions

The Philippines was the first country in Asia to receive cassava from the New World Cassava was brought by the Spanish from Mexico in the 17th century Yet cassava never established itself as an alternative carbohydrate staple to rice Given the generally favorable rainfall and soil conditions this role was captured by maize Moreover maize while at first being grown as a cheap foodgrain alternative to rice provided the raw material base for the development of both a starch and feed concentrate industry The Philippines is now undergoing a rapid expansion in domestic demand for carbohydrate sources especially the increasing demand for feed components This demand is principally being met through rising maize imports even though internal maize prices have been kept above their import price and should have acted as a damper on maize demand

 $[\]frac{3}{}$ The ratio assumes a conversion of roots to chips of 2.5.1 and that dried cassava is competitive at 80% of the maize price

Projections indicate imports levels of almost one and a half million tons by the year 2000 a level which runs counter to a policy objective of self-sufficiency in cereal grains

The future of cassava in the Philippines is clearly dependent on capturing a share of the growing animal feed market Under current maize price policy cassava is already competitive in least cost feed rations although processing capacity and marketing channels for cassava chips are as yet not well developed Several factors will influence the development of this market particularly pricing of maize imports which is in turn tied to setting of the exchange rate and the relative rate of technical change in cassava production versus maize production However the first hurdle is the development of production processing and utilization linkages

The cassava sector in the Philippines is caught in a market inertia induced by the dominance of the fresh food market Price formation depends on local supply and demand conditions local markets are thin and there is little spatial or product price integration Incentives for investment in processing capacity and development of market channels for chips are constrained by the small production base price variability and uncertain operating margins due to the independence of fresh root and maize prices On the other hand farmers have little incentive to intensify cultural practices and expand area because of uncertainty of market access and price variability due to thin markets Expanding the production of cassava chips is the solution to the development of better integrated cassava markets and of a price linkage of maize and cassava markets

The potential yield gap in cassava that can be exploited in the Philippines is much larger than in other Asian countries A closer study of cassava within current farm systems is needed to identify the types of technology required to raise yields Increasing productivity however will require appropriate incentives and thus implies simultaneous development of processing capacity and marketing channels In this regard the national cassava program is a step in that direction with its integration of extension of both processing and production technology the opening of credit lines for development of processing capacity and the basing of production credit on marketing contracts

Development of a broad-based cassava market will depend on the ability to produce cassava chips Drying technology is potentially the major constraint on future development of cassava Various alternatives will have to be tested under various climatic conditions and costs will need to be assessed Given drying constraints and relatively high inter-island transport costs consideration of pelleting in southern production areas should be considered at an early stage However processing technology for chips should be maintained small in scale thereby facilitating linkage to small-farm production reducing transport and assembly costs for roots and allowing a more evolutionary growth in relation to the capacity of marketing channels Feed demand in the south will be filled first before there is movement of dried cassava to Luzon

The Philippine cassava economy lies between that of Indonesia and Thailand In Indonesia alternative markets developed because of the breadth of the production base and the market integration acheived through

ł

gaplek production for food use In Thailand on the other hand the cassava industry could start from scratch relying on pure cost assessments in evaluating profitability In the Philippines the fresh food market makes cassava a non-tradeable and limits market integration Gaplek never developed as a food source because of maize availability and a tradeable market for cassava never emerged Price signals have not provided the information to producers and processors relevant Knowing these constraints and given the potential for yield increases an appropriately designed pilot program where there is an integration of credit for processing investment extension of production technology and development of market channels could provide the base on which dynamic growth in cassava production and utilization could be launched Certainly such a program fits very well into Philippine agricultural policy with its emphasis on small farmer incomes and self-sufficiency in grains

Appendix 6 1 A Synthesis of Production and Utilization

The BAE cassava production series raises several questions about the accuracy of the estimates particularly when they are compared to alternative production or yield estimates Another test of the production series is a comparison with data on utilization of cassava Two studies have attempted to reconcile production and consumption data for cassava E Constantino (1979) compiled known estimates of cassava consumption Μ and found that between 1971 to 1976 these consumption estimates accounted for between only 50 to 80% of estimated supply (Table 6A 1) The total consumption estimate of 252 thousand tons in 1971 compares favorably with the agricultural census estimate of 271 thousand tons She reconciled the series by accepting the production series and assuming human two consumption as the residual Per capita consumption thus increased This however is not supported by SSD estimates for human dramatically consumption of cassava

The Policy Analysis Staff in the Ministry of Agriculture adopted a different tactic Area estimates were assumed reliable and yields were re-estimated based on long-term trends (Table 6A 2) Per capita consumption figures were estimated on the basis of a consumption function The production series human consumption series and starch series were then put together and feed use was estimated as a residual The results shows rapidly rising feed use of cassava in the period 1975-81 There are no other corroborating data that feeding of cassava on-farm has increased dramatically nor that major increases in the use of dried cassava in concentrates has occurred

There is thus no corroborating evidence for the BAE s rapid rise in production since 1975 Real farm level prices in the period 1975-80 were very stable and they were only slightly lower than during the first half All things considered it is probably best to base the of the decade production estimate on known consumption data This is attempted by region These regional consumption estimates (Table 6A 3) assume no inter-regional trade in fresh roots Given the bulkiness and perishability of cassava roots this is a reasonable assumption The SSD production and marketing survey in fact found very little inter-regional trade except on Luzon where there was movement of cassava from regions I III and IV to Manila

In the development of the consumption estimates several assumptions were made concerning wastage on-farm feeding of cassava and production of Waste was assumed to be a straight 15/ of total consumption chips On-farm animal feeding followed in part from the results of the SSD survey which found that about 5/ of production was used in on-farm feeding and that this occurred essentially off-Luzon It was assumed that 10/ of small-holder production in Mindinao and Visayas was fed to swine on farms Production of dried chips was more difficult since there is essentially no data on this consumption form The SSD survey found production of cassava chips in only Central Visayas and Western and Northern Mindinao These areas were in general areas without access to a starch plant and with ready access to either Cebu City or Cagayan de Oro cities where either flour or concentrate mills are located Chip production in these three regions was assumed to be 25/ of total small-farm production

The regional utilization estimates more or less follow the regional distribution of production as presented in the 1975 BAE production statistics except for the Bicol region in southern Luzon Up to 1976 the Bicol region was always represented in the production statistics as the major producing region in the Philippines Yet on the consumption side there is no evidence to suggest what this production is utilized for although there is occasional mention of chip production in Bicol This region remains something of a question mark as far as cassava production and utilization are concerned

The utilization estimate suggests that cassava is grown throughout the Philippines but that production is larger in the southern islands than on Luzon For most regions there is little alternative to the fresh market for human consumption except in Central Mindinao where the starch industry is concentrated

	1971 (000t)	1972 (000t)	1973 (000t)	1974 (000t)	1975 (000t)	1976 (000t)	1977 (000t)
Supply							
Production	424 7	450 4	444 7	480 0	684 5	794 4	1011 1
Imports	20	18 6	13 8	21 3	21 0	10 0	-
Total	426 8	468 9	458 5	501 3	705 5	804 4	1011 1
Demand							
Starch	148 4	157 9	91 9	113 1	108 2	97 0	103 6
Anımal Feed	18 3	19 4	19 1	20 6	29 4	34 1	42 5
Available for							
Human Consumption 1	260 1	291 7	347 5	367 5	567 8	673 3	865 1
Human Consumption ²	86 2	125 3	195 2	282 0	237 2	253 0	231 0
Total 1	426 8	468 9	458 5	501 3	705 5	804 4	1011 1
Total 2	252 8	302 6	306 3	415 8	374 9	384 1	377 1

Table 6A 1 Philippines Supply and Utilization of Cassava as Estimated by M E Constantino 1971-77

_

¹ Calculated as a residual

² Calculated from SSD food consumption surveys

Source M F Constantino Cassava Market Study and a General Strategy of Implementation for the Cassava Program unpublished M B A thesis Asian Institute of Management 1979

		Demand					
			Total	Feed and		Foo	d Use
Year	Production	Imports	Supply	Waste	Starch	Total	Per Capita
	(000t)	<u>(000t)</u>	<u>(000t)</u>	<u>(000t)</u>	<u>(000t)</u>	(000t)	<u>(kg)</u>
1969	490	2	492	53	111	328	92
1970	448	-	448	41	137	270	73
1971	426	2	428	26	173	229	6 1
1972	440	21	461	17	165	279	72
1973	489	16	503	34	97	372	93
1974	545	24	569	75	112	382	93
1975	643	23	666	167	103	396	94
1976	750	11	761	247	107	407	94
1977	859	-	859	344	102	413	93
1978	910		910	380	104	426	93
1979	928		928	394	110	424	90
1980	948	-	948	402	112	434	90

Table 6A 2 Philippines Supply and Utilization of Cassava as Estimated by the Policy Analysis Staff 1969-1980

Source Policy Analysis Staff Ministry of Agriculture

Region	Per Capita Consumption (kg/capita)	Total Human Consumption (t)	Starch (t)	Dried Chips (t)	Animal Feed (t)	Waste (t)	Total (t)
Ilocos	15	4 904	10 370	-	-	2 695	17 969
Cagayan Valley	19	3 673			-	648	4 321
Central Luzon	16	6 736				1 189	7 925
Southern Tagalog	23	11 992	-		-	2 116	14 108
Вісої	76	24 274	-	-		4 284	28 558
Western Visayas	55	22 803	18 000		4 420	7 981	53 204
Central Visayas	75	25 402	-	12 701	5 080	7 621	50 804
Eastern Visayas	13 7	35 620		-	4 749	7 124	47 493
Western Mindinao	10 0	20 480		10 240	4 096	6 144	40 960
Northern Mindinao	82	18 975	15 000	13 800	5 520	9 405	62 700
Southern Mindinao	49	13 304	-	-	1 774	2 661	17 739
Central Mindinao	11 0	22 770	47 340	-	6 665	13 549	90 324
Manıla	25	12 425		-	-	-	12 425
Philippines	54	223 358	91 710	36 741	32 304	65 417	449 530

Table 6A 3 Philippines Estimates of Supply and Distribution of Cassava by Region 1975

Source CiAT estimates

VII Thailand

Rapid Growth Driven by Export Markets

Thailand has developed the premier agricultural export economy in the tropics at least in terms of its exports of carbohydrate sources This export orientation dates to the 1850 s when the signing of the Bowing treaty removed a ban by the Thai king on exports of rice The market stimulus to a subsistence economy with surplus land resources was immediate and rice exports became the driving force in the Thai agricultural economy upto the Second World War The beginning of the post-war period marked the diversification of the Thai agricultural economy into upland crops again almost entirely directed to export markets Development of the upland sector has been the principal growth element in the Thai agricultural economy in the post-war period and has been based on expansion in maize kenaf cassava and sugar cane

The upland sector in the post-war period has gone through a series of commodity booms These were based on area expansion within a land and labor surplus agricultural economy i e the limited size of domestic markets or the lack of export infrastructure was the most binding The success of these constraint on agricultural production booms resulted in a relative shortage of labor in the 1970 s inducing the development of a market for tractor-hire services The motor of this growth process thus was the opening of market channels for export and relative price incentives in these markets However this growth process also reflected the vagaries of world market demand as is epitomized by the rise and collapse of the kenaf industry

Cassava is the most recent of Thailand s commodity booms which is not to say that cassava is a recently introduced crop. The exact date of introduction to Thailand is not known but cassava was apparently being grown as a food crop in the 18th century. However, unlike countries such as Indonesia and the Philippines. Thailand was always able to meet its starchy staple requirements solely through rice. Cassava, thus never became more than a speciality food in the country. The genesis for growth in the crop has always been non-food markets almost solely directed to export. The initial development of such a market was in the 1930 s when cassava pearl was produced in the South for export through Malaysia (Scheltema 1938) $\frac{1}{2}$

The Thai cassava industry was based on the starch export market up to about 1960 World War II briefly curtailed this market in Southeast Asia in the late 1940 s but following the war modern processing machinery was introduced into Chonburi in the eastern region A healthy starch industry was operating in this region by the mid-1950 s supplanting the starch industry in Indonesia and in the south of Thailand However it was starch wastes that became the basis for the real expansion in the crop when a

 $[\]frac{1}{}$ Thai export statistics for cassava do not start until 1950 and the only suggestion of such an industry is Malaysian import statistics

West German importer in 1956 introduced cassava waste as an animal feed to Germany (Phillips 1974 Titapitnatanakun 1979) Low freight rates in this period its lack of alternative uses and high feedgrain prices in Germany made cassava waste particularly price competitive in Europe Since cassava waste was a by-product of starch manufacture shortages resulted and led to the importation of cassave meal starting in 1960 With the introduction of the Common Agricultural Policy in 1962 and the favorable tariff binding on cassava in the 1968 GATT negotiations the Thai cassava industry shifted to animal feed as its principal market Cassava chips became the dominant export in 1964 native pellets in 1969 and hard pellets With this external stimulus Thailand went from a relatively minor in 1983 producer of cassava in the 1950 s to the second largest (if not the largest) producer of cassava in the world

Production Trends

Production of cassava has increased from around 400 thousand tons in the mid-1950 s to almost 20 million tons in 1984/85 (Table 7 1) This represents a sustained growth rate of 16% per annum for over 25 years These sharp increases in production have been based exclusively on expansion in area planted and have been concentrated in a relatively limited number of regions within the country Production has continued to expand in the old starch producing region of Chonburi and Rayong However the bulk of cassava production has shifted from this zone to the Northeast Whereas the Northeast made up less than 10% of the total up to 1969 by 1979 the Northeast was producing over 60% of total cassava This represented a shift to relatively drier production conditions and a movement from the red-yellow podzolic soils to the more acidic latosols Cassava in part displaced kenaf in the Northeast and in part was planted on newly cleared forest areas

Cassava has grown from a relatively minor crop in the 1950 s to be the second most important crop after rice in terms of production volume (as measured on a dry weight basis) and in terms of foreign exchange earned As in previous commodity booms rapid production increases have been based on area expansion led by demand in international markets Capacity and growth in domestic markets would never have sustained the growth rates that have occured in cassava and the other major agricultural commodities. To understand the cassava industry in Thailand the analysis first reviews the factors on the production side that formed the basis for such high growth rates and then turns to an analysis of the demand side which must necessarily consider the changing nature of international cassava markets

Cassava Production Systems

Agricultural development in Thailand has been based on exploitation of an agricultural frontier and reliance on international markets as a surplus vent Unlike Malaysia access to new land has been relatively uncontrolled although a ceiling on the size of land holdings fomerly in the public domain was set at 8 ha in 1936 With the expansion in international markets following World War II planted area expanded rapidly in many cases at the expense of forest lands A satellite census showed that forest land had been reduced from 57/ of total land in 1961 to 37/ in 1974 a loss of 10 million hectares in 13 years (Bertrand 1980) Whereas the pre-war expansion was based principally on rice for which there was already a large production base diversification into upland crops has been the hallmark of post-war agricultural growth Crops such as maize sugarcane mung bean kenaf and cassava have expanded rapidly from relatively small production bases The final component of this extensive growth pattern was relatively rapid mechanization of the agricultural sector based on either animal or mechanical equipment Thus in 1963 68% of farms were using animal traction and 14% were using mechanical power or some combination of animals and tractors By 1978 33% of farmers were utilizing tractors

Cassava production systems therefore must be understood essentially in the context of rapid expansion of previously uncultivated land Certainly in the Northeast there was some substitution for kenaf whose area by 1981 had declined by about 330 thousand hectares from its peak in 1967 However cassava area in the Northeast increased by over 780 thousand hectares in the same period at the same time as maize production also expanded quite dramatically Given cassava s adaptation to the drier growing conditions of the Northeast and the profit levels as maintained by EC grain prices the crop expanded rapidly principally by opening up new obviously introduces dynamic element land The process а into characterizing cassava production systems especially ín terms of adaptation of management practices as farmers learn the responsiveness of a new crop and the effects of continuous cassava cultivation on soil fertility

Using the agricultural census of 1963 and 1978 as reference points cassava expansion was based on a sizeable increase in the number of cassava growing farms (from 58 to 450 thousand) and in an increase in the average size of cassava plantings per farm from 1 4 to 2 1 ha In 1978 21% of the farmers in the Northeast grew cassava and in most instances probably depended on cassava as their principal source of income By 1978 the modal farm size stratum for cassava farmers was between 3 2 and 6 4 ha (Table 7 2) This is large by overall Asian standards but still relatively small given the agro-climatic potential of most growing areas Moreover such a farm size has supported a market for tractor hire services but not actual tractor ownership The adoption of tractor hire services has in turn released grazing land formerly needed to support draft animals for cultivation

Given the very dynamic nature of the upland sector especially in the Northeast the degree of competition between cassava and other upland crops is difficult to define If crop area data are disaggregated by agroeconomic zone (Table 7 3) certain hypotheses at least emerge In the old cassava growing area of Chonburi and Rayong (agroeconomic zone 15) cassava made up 40/ of total farm area with the only other upland crop being sugarcane Cassava dominates this zone so thoroughly that it appears blanketed by monoculture cassava In the Northeast the situation is more In agroeconomic zones 1 and 5 cassava potentially competes with diverse maize and kenaf In agroeconomic zone 3 cassava competes only with kenaf In none of these latter zones does cassava dominate the agricultural economy Moreover only in agroeconomic zone 5 do maize and cassava production areas really overlap In the two largest maize producing zones only very little cassava is produced In general in the Northeast there is

Crop Year	Area (000 ha)	Production (000 t)	Yield (t/ha)
1956-57	39 2	396 0	10 1
1957-58	38 4	418 0	10 9
1958-59	44 1	487 0	11 0
1959-60	62 5	1 083 2	17 3
1960-61	71 5	1 222 3	17 1
1961-62	99 3	1 726 2	17 4
1962-63	122 7	2 076 9	16 9
1963-64	140 0	2 111 1	15 1
1964-65	104 9	1 556 7	14 8
1965-66	102 0	1 474 7	14 5
1966-67	130 3	1 891 7	14 5
1967-68	140 9	2 062 8	14 6
1968-69	170 6	2 611 5	15 3
1969 - 70	189	3 079	16 3
1970-71	224	3 431	15 3
1971-72	220	3 114	14 2
1972-73	328	3 974	12 1
1973-74	415	5 443	13 1
1974-75	497	6 765	13 1
1975-76	475	7 094	13 6
1976-77	692 4	10 230 0	14 8
1977-78	846 8	11 839 7	14 0
1978-79	1 165 0	16 357 8	14 0
1979-80	845 8	11 101 0	13 1
1980-81	1 159 9	16 540 0	14 3
1981 - 82ª	1 243 1	17 744 0	14 3
1982-83	1 087 2	17 787 9	16 4
1983-84	1 017 8	18 988 5	18 7
1984-85	1 335 1	19 985 3	15 0

TABLE 7 1 Thailand Cassava Area Production and Yields 1956-85

^a Starting 1981-82 area figures changed from planted to harvested area this caused an artificial rise in yield figures

Source Center for Agricultural Statistics Office of Agricultural Economics Ministry of Agriculture and Cooperatives

Farm Size	Cassava Farmers				Cassava Area			
Strata (ha)	Nı	ımber	Pero	cent	Hect	tares	Perc	ent
Less than 32		115	0	3		19		-
3 - 10	26	213	5	8	13	429	1	4
10-16	29	770	6	6	21	721	2	3
16-32	103	824	23	1	112	212	11	9
32-64	167	328	37	2	297	336	31	7
64 - 96	69	799	15	5	192	920	20	5
96-224	48	523	10	8	222	699	23	7
More than 22 4	4	759	1	0	78	732	8	4
Total	450	331	100	0	939	069	100	0

TABLE 7 2ThailandDistribution of Area Planted to Cassava by
Farm SizeFarm Size1978

Source National Statistical Office 1978 Agricultural Census Report Thailand Bangkok

Cassava			<u></u>	Maize			
Agroeconomic Zone	Area (000 ha)	Percent of Total Farm Area	Percent of Cassava Area	Area (000 ha)	Percent of Total Farm Area	Percent of Maize Area	
Northeast							
1 2 3 4 5	57 3 8 2 107 5 53 4 180 6	3 1 0 8 5 7 3 5 12 7	7 7 1 1 14 4 7 1 24 1	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	5 7 0 4 0 2 2 0 13 5	8 4 0 3 0 3 2 4 15 1	
North							
6 8 9 10	5 4 12 2 1 1 1 6	0 4 1 1 0 2 0 2	0 7 1 6 0 1 0 2	434 6 107 2 62 6 26 4	34 6 9 4 8 4 4 0	34 2 8 4 4 0 2 1	
Central Plain							
7 11 12 13 14 15 16	3 8 12 8 19 4 73 4 176 0 28 2	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 & 5 \\ 1 & 7 \\ 2 & 6 \\ 9 & 8 \\ \hline 2 & 3 & 8 \\ \end{array} $	259 5 10 7 13 4 7 0 - 5 8	38 7 0 7 1 8 1 0 - 2 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
South			5.0		2.0	0.2	
17 18 19	37 26 14	0 3 0 6 0 5	05 03 02	6 1 -	0 4 -	0 5 -	
Total	748 6	6 1	100 0	1269 6	70	100 0	

TABLE 7 3 Thailand The Relative Importance of Area Planted to Maize and Cassava by Agroeconomic Zone 1974-78

Source Pongsrihadulchai Apichart Supply Analysis of Important Crops in Thailand 1981

still significant scope for expansion of cassava area if not at the expense of other crops then in terms of currently under-utilized land already in farms or in the public domain

The rainfall pattern in the Northeast and Central Plain is unimodal with a dry season from November to April and a wet season of varying intensity for the rest of the year as reflected in average annual rainfall for different sites from the Northeast to the South ranging from 900 to Moreover moving to the Northeast rainfall becomes more variable 3000 mm Since most of the cassava is solar dried this rainfall and uncertain pattern creates a trade-off between optimum drying period and optimum planting period The drying season starts in November and farmers rarely leave the cassava in the ground for longer than 12 months though it could be left much longer Where rainfall is more secure that is the Rayong and Chonburi area farmers plant in the dry season as well as the wet season Further to the northeast farmers tend to plant exclusively in the March to June period that is at the beginning of the rainy season (Figure 7 1) Experimental trails have shown that planting at the beginning of the rains gives significantly higher yields (Sinthuprama 1980)

Given a eight-to-twelve month growth cycle planting ın the November-December period and harvesting in the same period coincide better with market demand Prices are at their seasonal high the in September-November period before declining to their seasonal low in March-April Also root starch content is much higher at the beginning of the dry season resulting in a further price premium There is greater demand for roots at this period because of the significant increase in through-put and thereby lower costs in the chipping plants due to shorter drying periods There is thus a significant increase in root sales in the dry season (Table 7 4) although harvest occurs throughout the year

Cassava production systems in and of themselves are relatively simple The land is prepared either by animal traction or by tractor hire services with the latter being increasingly common The cassava is planted either horizontally (sandy soils) or vertically (loamy soils) depending on the potential drought risk of the soil Planting material comes from recently harvested plants keeping stake storage time to a minimum Cassava is grown in a very strict monoculture system in that no other crop species are interplanted and a single variety tends to dominate throughout Thailand Rayong 1 In weeding hand labor is employed with some animal interrow cultivation Nevertheless in the these activities labor use is kept to the minimum necessary to adequately maintain the crop

The most critical issue in the rapid expansion of cassava production and the resultant extensive production systems is the maintenance of soil fertility In general fertilizer application is low in Thailand when compared to other Asian countries Fertilizer prices are not consistently subsidized in Thailand $\stackrel{2}{-}$ and are generally applied to those crops in which marginal returns are highest Of the major crops sugarcane has the

^{2/} There are some programs which provide a credit subsidy for the purchase of fertilizer These programs are primarily oriented to rice

	No	rth	Northeast		Central		Thailand	
	1973	1984	1973	1984	1973	1984	1973	1984
0ct	_	04	79	12 4	90	64	8 1	10 2
Nov	-	-	43	84	74	16 1	58	96
Dec	-	-	27	8 1	12 9	12 2	79	85
Jan	-	46	57	15 2	39	15 5	45	14 5
Feb	-	44 1	198	24 1	79	27 3	12 8	26 2
Mar	-	47 0	14 9	17 0	20 4	13 5	17 1	18 4
April	-	18	14 5	42	80	60	92	44
May	-	20	55	18	52	15	51	17
June	-	-	99	04	67	04	78	04
July	_	_	75	36	50	03	87	26
Aug	-	-	54	4 1	61	0 1	68	30
Sept	-	-	48	07	76	09	6 1	06

TABLE 7 4 Thailand Percentage Distribution of Monthly Farmer Sales of Cassava Roots during the Crop year 1973 and 1984

Source Center for Agricultural Statistics Office of Agricultural Economcis Ministry of Agriculture and Cooperatives Bangkok

highest application rate followed by rice According to the 1978 census rice consumes fully two-thirds of fertilizer availabilities Sugarcane vegetable and tree crops consume an additional quarter leaving less than 10% or less than 70 thousand tons available for all other major field crops

Fertilizer application on cassava is low In 1973/74 average fertilizer application per cultivated hectare of cassava was only 69 kg/ha (Koomsup 1980) On that area where fertilizer was actually applied (16% of cultivated area) rates were 43 kg/ha Recommended application rates are about 15 times this level By 1980/81 average application rates remained at the same level (Table 7 5) As would be expected fertilizer application is much higher in the old production zones around Chonburi and Rayong while in many areas of the Northeast fertilizer use on cassava is non-existent The very low fertilizer use in cassava raises two critical First has continuous cassava cultivation with only minimal levels issues of fertilizer use resulted in a declining yield trend? Second what would be the yield gains were fertilizer application to increase? To answer partially these issues the analysis turns to an evaluation of cassava vields

Yields

Average cassava yield levels of 13 to 14 t/ha in Thailand are high even by Asian standards Only India and Malaysia consistently have higher yields than Thailand Moreover Thailand has been able to maintain this level of productivity through the period of rapid expansion in the crop The national statistics suggest that yields have declined somewhat since 1960 In the early sixties average yields were around 17 t/ha and declined quite rapidly to 14 t/ha by the late sixties Yields have remained at about this level ever since having fallen below 13 t/ha only once These relatively high yields have been a significant part of Thailand s dominance of the international trade in cassava

The difference in agro-climatic conditions between the Northeast and the Central Plain is only partially reflected in yield differences The older production regions on average maintain a one-to-two ton yield advantage over production areas in the Northeast However yields have shown something of a rising trend in the Northeast especially if extended back to 1960 Yield trends in the Central Plain on the other hand initially declined in the 1960's and over the past half decade have been remarkably stable at around 15 t/ha Yield levels as expressed in the aggregate production statistics thus present a picture of relative stability and give no indication of progressive soil exhaustion

The micro-level data are only suggestive of the factors underlying the dynamics of cassava productivity To start with average yields of cassava mask a very wide yield dispersion The yield distribution is skewed with the largest segment of farmers producing quite normal yields by world standards of from zero to nine t/ha and with a very extended right-hand side where some farmers produce over 19 t/ha (Table 7 6) The second set of data is long-term fertility studies (Figure 7 2) These data show the expected decline in yields with continuous cropping after opening up new land However the decline is gradual and in one site yields only declined

Agroeconomic Zone	Application Rate (kg/ha)			
Northeast				
1	-			
2	2 2			
3	1 7			
4	19			
5	-			
Central Plain				
7	0 7			
11	06			
12	4 4			
13	_ a			
15	37 ^a			
16	-			

TABLE 7 5	Thailand	Average Fertilizer Application
		Rates on Total Cultivated Area
		1980-81

^a The survey shows quite high average application , rates for organic fertilizers

b rates for organic fertilizers b Fertilizer expenditures by farmers were divided by an average fertilizer price of Baht 5 1/kg

Source Survey of Cassava Production Costs and Returns 1980-81 Office of Agricultural Economics Ministry of Agriculture and Coooperatives 1982

TABLE 7 6 Thai	land Distribution	of Cassava	Yields	1974-75

	Percent of Farmers				
Yield Level (t/ha)	Chonburi Rayong Nakhonrachsıma	Other Changwats	Thailand		
0 to 9 4	35 7	31 1	33 2		
9 4 to 12 5	20 6	23 1	21 9		
12 5 to 15 6	21 4	14 0	17 4		
15 6 to 18 8	10 1	17 8	14 3		
More than 18 8	12 2	14 0	13 2		

from around 30 t/ha to 20 t/ha in a sixteen year period One thorough study found that from an initial yield of 20 to 30 t/ha yields decrease by half within 9 to 20 years (Interim Committee for Coordination of Investigations in the Lower Mekong Basin 1979) With such rapid opening of new land as has occurred in the case of cassava the yield decline in older plots has been offset by the higher yields of new production areas As yield in older plots fall cassava supply becomes more sensitive to price changes particularly since more than half the farmers operate at below average yields

Mining of soil fertility has a longer-term social cost of enhanced erosion potential and a permanent decline in the productivity of the land This therefore puts prime importance on motivating increased resource application of organic and inorganic fertilizers as apparently already is happening in the Chonburi and Rayong area Two factors however complicate increased use of fertilizer on cassava First in most areas cassava must compete with either rice or sugarcane for capital resources Second cassava responsiveness to fertilizer application for fertilizer is not as certain as in these other two crops There is often no response in the first two to three years after opening up new land (Table 7 7) After that while responses can be shown they cannot be demonstrated consistently (Table 7 8)

What remains extraordinary in Thailand is the high yields that farmers achieve in even depleted soils Suttibursaya and Kummarohita (1978) report cassava being grown continuously for 25 years without fertilization and yet yields have declined to only 16-17 t/ha A fertility restoration experiment selected four farmers fields which had been continously cultivated for 15 years and the average yield of the check plots was 21 t/ha (Interim Committee for Coordination of Investigations in the Lower Mekong Basin 1979) This suggests that the dominant variety Rayong 1 is very efficient in the utilization of limited soil nutrients Moreover thirty years of experimental work both on the experiment station and in fields suggest that 30 t/ha is an achievable target with an farmers appropriate fertilizer regime

The results have made fertility management the principal research thrust in cassava in Thailand What is the advantage of a large investment in breeding if 30 t/ha is imminently achievable with the current variety? However defining a recommendation that gives a consistently profitable response has eluded researchers and inhibited adoption of fertilizer use in cassava Indeed farmers in Thailand utilize fertilizer they however do not apply it to their cassava Until the profitability of fertilizer response can be significantly increased probably by linking application rates to other environmental variables no effective extension program for fertilization of cassava will be successful except possibly in the very badly degraded soils such as now exist in Chonburi and Rayong

Thus the relatively high prices for cassava products obtained in the European Community was only part of the profit engine that resulted in the rapid expansion in cassava area. The other component was the very high initial yields obtained by new adopters of cassava cultivation. Initial yields in the 25 to 30 t/ha range provided a powerful stimulus to expand cassava area and lack of a viable crop alternative kept farmers in cassava However this raises the question of the longer term viability of cassava

	First Site			Second Site			
Year	Zero Fertilizer (t/ha)	Low ^a Application (t/ha)	Medium ^b Application (t/ha)	Zero Fertilizer (t/ha)	Low ^a Application (t/ha)	Medium ^C Application (t/ha)	
1964	32 5	29 4	29 4	_	_	_	
1965	22 5	22 5	21 3	25 0	25 6	25 0	
1966	20 0	22 5	18 8	23 8	18 8	20 0	
1967	14 4	26 3	28 1	23 1	26 3	31 3	
1968	21 3	31 3	28 7	22 5	26 9	31 3	
1969	22 5	29 4	28 7	17 5	21 3	25 6	
1970	19 0	36 0		_		-	

TABLE 7 7 Thailand Cassava Yields in Long-term Fertilizer Experiments at Rayong 1964-70

а Yearly application of 50-50-25 kg/ha of N P and K Yearly application of 75-75-120 kg/ha of N P and K Ь

С Yenrly applicaton of 50-50-50 kg/ha of N P and k

Interim Committee for Coordination of Investigations of the Lower Mekong Basin Source Agricultural Research Efficiency in Thailand Volume III Cassava 1979

		Probab	e to ^a	
Soil Series	No of Trials	N	Р	K
Huai Pong	14	+	-	-
Pattaya	25	+	-	-
Sattahip	82	++	±	<u>+</u>

and

TABLE 7 8ThailandSummary of 121 Fertilizer Trials Across ThreeDifferent Soil Types1968-70

^a The probabilities are as follows

- not	probable	<pre>(< 25% of</pre>	tr	ials showed	response	2)
+ prol	bable	(25-49/ of	tr	íals showed	response	2)
+ fai:	rly probable	(50-67% of	f t	rıals showed	response	3e)
++ high	nly probable	(>67% of	tr	ials showed	response	2)
Source	Sittibusaya	Chote and	к	Kurmarohita	Soil	Fertility

Fertilization 1978

٩

as the industry stabilizes as overall yields decline to a low level equilibrium and as output prices come under downward pressure The task is to transform a dynamic industry that has been fueled by private costs being lower than social costs to a sustainable industry where farmers must pay the full cost of soil nutrient extraction

Costs of Production and Labor Utilization

As yields decline the farmer s initial means of maintaining profits are by reducing costs By Asian standards cassava production systems in Thailand are relatively extensive in terms of labor and input use which in turn reflects the relatively high land-labor ratio existent in the country Moreover the existing agricultural frontier and the relatively liberal land policy have further reinforced extensive production practices The process has thus favored technologies that substitute for labor rather than those that substitute for land

Labor is the major cost component in cassava production systems Estimates of labor input per hectare range from 70 to 100 man days Only maize and broadcast rice have a lower labor input (Table 7 9) Additionally because cassava can be planted almost anytime of the year and can be harvested over a relatively long period labor activities can be scheduled in relation to other demands for labor Since upland crops must compete with rice for labor this flexibility in labor use gives cassava an advantage over other upland crops Finally cassava gives the highest average returns per manday of labor input (Boobst <u>et al</u>) Cassava thus is very well adapted to the labor economy of Thailand

The trend is toward further reductions in labor input Land preparation through tractors has rapidly spread through the Northeast With movement to planting in rows interrow cultivation with animals was employed in those areas that still maintained draft animals Increases in sales of herbicides have been reported in the major cassava producing area of Chonburi especially since there were no such sales prior to 1973 (Interim Committee for Coordination of the Lower Mechong Basin 1979) Thus farmers have been very responsive to technologies that have substituted for labor they have not been responsive in the adoption of land substituting technology

Labor or mechanization costs make up over 85/ of total cassava production costs (Table 7 10) Input and fixed costs make up the remainder Moreover normally about half of production costs are paid in cash the rest reflects the opportunity costs (evaluated at market prices) of farmer-owned resources The cost structure reflects some flexibility in absorbing price declines at least in the short-run since price declines can be absorbed in terms of lower returns on farmer-owned resources Major increases in fertilizer costs would significantly shift this balance again highlighting the importance of a consistent yield response for adoption

Supply Response

The reasons behind the rapid expansion in cassava area in Thailand over the last two decades can now be summarized First and foremost the crop was very profitable During the 1974-1984 period average returns to

Crop	Labor Requirements (Man-Days/Hectare)	Returns per Man-Day Net of Nonlabor Variable Costs (Dollar/Man-Day)
Rice	87 56	1 18
Cassava	100 65	2 02
Kenaf	161 36	0 55
Peanuts		
Rainy season	161 78	1 08
Cool season	112 67	0 93
Dry season	155 60	1 24
Vegetables	772 05	0 48

TABLE 7 9ThailandAverage Labor Requirements and Returns by CropEnterpriseNortheast1973-74

Source Bobst Barry et al Enterprise Selection and Farm Employment in Northeast Thailand 1980

Average per Hectare Costs of Production of Cassava Roots Northeast 1980-81

Cost Item	Cash (Baht/ha)		Non-Cash (Baht/ha)		Total (Baht/ha)	
Variable Costs	2810	6	2054	3	4864	9
Labor Costs	2590	1	1290	6	3880	7
Land Preparation	1875	3	882	9	2758	2
Man	58	6	97	6	156	1
Oxen	52	9	93	5	146	4
Tractor	921	6	65	8	987	4
Seed Selection	8	7	31	3	39	9
Planting	251	5	154	8	406	3
Weeding						
Man	575	6	439	1	1014	6
Oxen	1	8	-		1	8
Harvesting	572	1	334	6	906	8
Transporting						
Man	69	1	72	6	141	6
Oxen	2	6	0	5	3	1
Tractor	71	0	-		71	0
Input Costs	207	0	242	0	449	0
Stakes	134	1	242	0	376	1
Agr Equipment	26	1	-		26	1
Gasoline and Oil	26	0	-		26	0
Chemical Fertilizer Other Costs	20	8	-		20	8
Repair Agr Equip	18	3	-		18	3
Working Capital	-		521	8	521	8
Fixed Costs	58	0	673	2	731	2
Land use	58	0	647	5	705	5
Depreciation Agr Equip	-		25	7	25	7
Total Cost	2868	6	2726	6	5595	2
Cost per ton (Baht/t) Price (Baht/t)	-		-		406 510	

Source Survey of Cassava Production Costs and Returns 1980-81 Office of Agricultural Economics Ministry of Agriculture and Cooperatives 1982 cassava never dropped below 25% and were as high as 145% (Table 7 11) Second the kenaf industry was in decline and even further land was available on which to expand Given the high yields on uncultivated land cassava as an income source was unmatched and led to a major increase in incomes in the relatively depressed area of the Northeast Third farmers did not face a labor constraint as tractor hire services expanded rapidly in the cassava producing areas

All of these factors are reflected in cassava supply response Pongsrihandulchai (1981) has estimated supply equations for cassava by agro-economic zone and as might be expected found a very high short-run price elasticity of between 0 58 to 2 78 (the median was 1 77) Price responsiveness in cassava was much higher than in rice (0 27) maize (0 70) kenaf (0 87) or sugarcane (0 62) Moreover the supply equations suggested that cassava principally competed for land with kenaf except in the Rayong-Chonburi region where there were no competing crops with These equations were estimated while cassava prices were on the cassava The question arises whether farmers would be equally whole increasing responsive to declining prices and the answer would probably be no There is limited effective competition between cassava and other CTODS reflecting few other cropping alternatives for land in cassava Farmers would only significantly reduce area if they were operating at a cash loss

Technology Development

Research on cassava in Thailand started in 1956 with the creation of the Huai Pong Experiment Station in Rayong The station comes under the Field Crop Division of the Department of Agriculture and since 1956 has beeen the principal locus of cassava research although research on other field crops is also done at the station As research on cassava has increased with the expansion in the crop other field crop research stations in the northeast have also conducted experimental work on cassava all of which is coordinated by the Root Crops Branch within the Field Crop Division of the Department of Agriculture

For the first two decades cassava research focused on soil management and fertilization (see Sittibursaya and Kurmardrita 1978 for a summary of this research) The principal features of this work are well summarized by the Committee for the Lower Mekong Basın (1979) namely high yearly yield fluctuations probably related to rainfall conditions rapidly declining yields of unfertilized plots and variable response to fertilizers While the research has led to a set of fertilizer recommendations broken down by soil type and while a series of farm level demonstration trials were also carried out only minor adoption of fertilizer has occurred Some research in this area continues to be done even though it follows virtually the The few deviations have been toward evaluation of green and same approach organic manures These have shown promising results (Table 7 12) but have not led to any recommendations

Lack of progress in the area of fertilization gave impetus to the development of a varietal improvement program Local clones were collected in 1956 These were evaluated for agronomic characters and yielding ability but were found not to show significant differences One was selected and named Rayong 1 which was used as a check variety in all
	I	Per Hectare Cost	ts	Per Hectare	Per Ton	Farm Price ^a	
Crop Year	Cash	Non-Cash	Total	Yield	Cost		
	(Baht/ha)	(Baht/t)	(Baht/ha)	(t/ha)	(Bath/t)	(Bath/t)	
1974-75	1593	1558	3151	13 0	242 4	290	
1975-76	1854	1674	3528	13 7	256 9	410	
1976-77	1701	2390	4091	12 6	325 6	460	
1977-78	1696	2116	3812	12 9	294 9	450	
1978-79	2059	2089	4148	14 9	282 6	370	
1979-80	2217	2227	4444	10 7	415 9	770	
1980-81	3114	2757	5871	14 3	411 8	750	
1981-82	2820	3221	6041	14 0	432 4	450	
1982-83	3399	3018	6417	13 9	446 0	540	

TABI E	7	11	Thailand	Average	Costs	of	Production	and	Returns	for	Cassava	1974-1983	3
--------	---	----	----------	---------	-------	----	------------	-----	---------	-----	---------	-----------	---

a Average price for the crop year Oct-Sept

Source Production Economic Section Office of Agricultural Economics Ministry of Agriculture and Cooperatives Bangkok

succeeding experimental work While some selection from collected open-pollinated seed started in 1971 a controlled hybridization program did not begin till 1974 (Sinthruprama 1978) Initial crosses were between Rayong 1 and other local cultivars In 1977 varieties from CIAT were introduced as well as seed from controlled hybridization This served to significantly expand the germplasm on which the crossing program was based

Initial selection is based on high root yield and high starch content In later evaluations earliness and appropriate plant type for intercropping are introduced as selection characteristics Promising materials are evaluated for drought tolerance resistance to the few cassava diseases and pests that occur in Thailand and in some cases for edible quality characteristics A testing program of regional and on-farm trials resulted in the release in 1983 of the first promising variety Rayong 3 Its principal advantages over Rayong 1 are a higher starch content and a higher response to chemical fertilizer As yet it is too early to evaluate the adoption of this variety

New production technology has not been necessay to the rapid expansion in cassava cultivation The high yields obtained with the local variety as new land was cultivated and the high prices set by the European Community were sufficient to maintain high profits in cassava cultivation These profit levels are now coming under pressure from two sources the decreasing yields as soil fertility declines and uncertain access to the European Community as the EC attempts to reduce cassava imports The latter will require lower price levels as Thailand looks to alternative international markets which in turn will result in a cost-price squeeze at the farm level effectively increasing the demand for improved technology The research program is in a position where a new variety in and of itself will not have a high probability of markedly improving yields This will occur only if the variety is combined with a viable soil fertility management strategy The first signs of farmer adoption of fertilizer are occurring in the old production areas of Chomburi and Motivating this trend will provide the base for yield gains though Rayong new varieties

Markets and Demand

The development of the Thai cassava economy (together with that of Malaysia) has followed the reverse of the normal pattern That is growth in production was initially driven by export market development Only after export market channels were well in place did domestic markets of any size begin to develop Price formation was always based on cassava as a tradeable good in international markets and Thai farmers and cassava processors based their decisions on price incentives set in these markets An analysis of the Thai cassava economy in thus dependent on an evaluation of cassava demand in international markets (see Chapter VIII) and of price formation in these markets

The Cassava Pellet Export Market

The export market for cassava chips and pellets dominates the Thai cassava economy High grain prices in Europe first in West Germany and

Treatment	Yield (t/ha)
Crotalaria juncea	26 8
Dolichos biflorus	29 6
Vigna sinensis	32 2
Phaseolus mungo	27 3
Phaseolus calcaratus	25 5
N-P-K (50-50-25)	27 3
No green manure	20 4

Source Interima Committee for Coordination of Investigation of the Lower Mekong Basin Agricultural Research Efficiency in Thailand Cassava 1979

TABLE 7 12ThailandYield Effect of
Various Green Manure Crops
on Succeeding Crop of
Cassava 1970

later within the larger EEC have provided the genesis for Thai chip and pellet exports These markets have been able to absorb the rapid expansion in export volumes to the extent that Thailand has not had to diversify its markets that is uptil 1983 Thai success however has given rise to European discontent and in 1982 a agreement for voluntary export restraint was negotiated and signed between the two parties (a lengthy discussion of the structure of the European market of the history of cassava imports into Europe and of the details of the quota is found in Chapter VIII) The quota while slowing growth in Thai exports nevertheless has not stopped it completely (Table 7 13)

The pattern of growth in the Thai cassava industry is relatively unique when compared to cases of rapid expansion in other agricultural commodities especially the grains The difference comes in the fact that cassava has to be processed very close to the production point because of its bulkiness and rapid perishability Sugar cane and palm oil have similar characteristics and in their case relatively large scale processing units have usually been linked to core plantations though if properly planned smallholders can provide a certain percentage of the raw material production However in the case of cassava the expansion in root production and processing has been based on linking small-scale producers to relatively small-scale processing capacity Decentralized small-scale processing is thus a solution to the problem of minimizing transport costs where in the case of sugar cane or palm oil the solution is plantations Moreover growth in production can be more easily syncronized with needed investment in processing capacity This is typical of cassava development other examples are gari in West Africa and farinha de mandioca in Brazil This development pattern allows cassava both to maintain a small-farm focus to maximize the employment generation in production and processing and to distribute more equitably income growth as the industry expands

The development of investment in processing capacity is portrayed in Table 7 14 The data suggest a pattern that first depends on concentration of investment in a few limited areas About 78% of all chipping plants in 1973 were located in only four changwats 60% were located in only two Rayong in the Central Plain and Nakhon Ratchasima in the Northeast By 1978 these same four changwats accounted for just 41/ of all chipping plants Root production followed much the same organic growth process development of the industry was based initially on the That is establishment of growth nodes where increasing density of production made for a more efficient cassava root market This concentration in turn allowed the orderly evolution of market channels to the export points By 1978 the next phase in this growth process is apparent i e rapid expansion of processing capacity into other changwats especially in the Northeast and expansion in processing scale in those original areas where production density had reached a certain critical point such that transport costs were not a constraint on scale expansion A certain production density is necessary to support efficient large-scale cassava processing

This organic development of the Thai cassava industry has induced a continual search for cost reductions especially in processing storage and transport. In the 1960 s this was policy induced as the EEC varied its tariff rates on meal versus chips (see Chapter VIII) The binding of the duty in 1968 provided the market security to justify investments leading to other cost reductions. The first large investments came in the form of

Year	Chips (000 t)	Meal (000 t)	Pellets (000 t)	Waste (000 t)	Total (000 t)
1960	3.0	64 6		25 fl	93.6
1961	84	188 4	_	18 6	215 4
1962	12 7	267 7	_	96	290 0
1963	93 4	189 8	_	22 4	305 6
1964	339 4	202 3	_	45 5	587 2
1965	400 5	79 0	-	97 8	577 3
1966	359 8	65 8	_	107 9	533 5
1967	337 4	174 8	_	70 2	582 4
1968	323 2	388 8	<u> </u>	33 1	853 7
1969	56 4	27 7	752 7	16 9	1 181 9
1970	8 1	4 0	1 163 9	59	972 1
1971	2 5	15	963 9	4 2	1 181 6
1972	2 4	06	1 177 4	12	1 659 0
1973	18 2	06	1 638 7	15	2 139 6
1974	105 3	1 0	2 031 5	18	2 240 5
1975	70 6	-	2 168 7	12	3 484 9
1976	43 4	02	3 441 3	-	3 752 9
1977	65 6	05	3 686 7	0 1	6 052 3
1978	255 6	02	5 796 1	04	6 052 3
1979	142 0	04	3 695 8	03	3 838 5
1980	159 2	27	4 811 2	-	4 973 1
1981	334 4	06	5 620 2	06	5 955 8
1982	523 1	97	6 892 8	05	7 426 1
1983	280 0	48	4 545 1	03	4 830 2

TABLE 7 13	Thailand	Exports of	E Cassava	Products	Destined	for	Animal
		Feed Use	1960-83				

Source Center for Agricultural Statistics Office of Agricultural Economics Ministry of Agriculture and Cooperatives Bangkok

		Chip		Pellet				
Changwat	1973 (number)	1978 (number)	1985 (000 t capacity)	1973 (number)	1978 (number)	1985 (000 t capaci		
North	88	95	90 0	10	24	2312 4		
Kamphaeng Phet	80	35	24 3	6	5	360 0		
Nakhon Sawan	5	34	18 4	1	10	943 2		
Chiang Rai	-	10	71	_	1			
Phitsanulok	-	6	35 5	2	4	345 6		
Uthai Thani	2	4	0 1	1	2	532 8		
Northeast	421	1 777	7 860 7	24	305	20 736 0		
Kalasin	36	159	625 0	2	5	381 6		
Khon Kaen	-	252	775 0	-	58	4 406 4		
Chaiyaphum	2	41	632 5	-	17	1 044 0		
Nakhon Phanom	6	28	172 3	1	7	871 2		
Nakhon Ratchasima	356	617	3 934 2	10	114	7 855 2		
Buri Ram	4	108	543 7	4	21	1 036 8		
Maha Sarakharm	1	60	284 3	-	23	396 0		
Roi Et	3	97	221 1	-	7	475 2		
Nong Khai	1	45	203 4	2	9	410 4		
Udon Thani	4	18	234 1	3	235	1 540 8		
Surin	-	24	22 2	-	10	1 483 2		
Central Plain	641	1 375	1 812 3	141	287	19 843 5		
Kanchanaburi	25	58	63 9	4	5	158 4		
Suphan Burn	29	62	47 9	4	8	828 0		
Chachengsao	40	134	315 8	-	29	3 420 0		
Chon Buri	113	348	991 2	115	126	8 553 6		
Trat	27	58	21 8	-	-	15 6		
Prachin Buri	32	230	120 4	-	33	1 785 6		
Rayong	345	328	176 6	11	62	2 368 8		
Total Thailand	1 152	3 254	13 698	175	618	42 892		

TABLE 7 14 Thailand Evolution of Processing Capacity for Cassava Chips and Pellets by Changwat 1973-85

Source Division of Factory Control and Industrial Economics Ministry of Industry Bangkok

pelleting capacity The objective here was to reduce transport costs by increasing the density (Table 7 15) These were first based on the importation of European pelleters but this was shortly followed by the manufacture of pelleting machines in Thailand This gave rise to a quality distinction of brand versus native pellets with the latter having a lower density being softer and not having a pure composition (Mathot 1974 explores in detail the technical and economic factors determining pellet quality in Thailand)

According to export statistics Thailand converted from exporting meal and chips in 1968 to exporting virtually all pellets in 1969 that is 750 Reports suggest the first pelleters were established in thousand tons 1967 Investment in pelleting capacity was thus rapid and was independent of chip processing Investment in pelleting relied on a significant chip production capacity and a margin defined by transport cost advantages both internally and in the export trade Nevertheless pelleting plants were A 1974/75 survey identified three types of plants not large а small-scale plant with an annual capacity of 1260 tons a medium-scale plant producing 3310 tons and large-scale plants with a capacity of 7280 Interestingly these were not much larger tons (Titapıwatanakun 1979) than the average production capacity of chip plants and thus suggest no economies of scale in pelleting That is since chipping and drying gets over the perishability and transport constraint and since chip production was relatively concentrated any economies of scale in pelleting would have suggested investment in larger centralized plants

There were no economies of scale in native pellets however for hard pellets produced with steam and/or a vegetable oil binder scale economies The cost savings on the utilization side in hard did seem to exist pellets are three First density is greater so there is a transport Second for feed concentrate manufacturers hard pellets do not savings require as much modification in factory transport systems i e essentially adapted for grains Third hard pellets can be stored longer allowing Also there was a significant decline in dust fewer storage losses pollution which previously had remained an externality and was dealt with by public funds in ports such as Rotterdam The price differential resulting from these savings however was through the 1970 s never sufficient to motivate a larger production of hard or brand pellets Most major cassava users in Europe especially in the Netherlands made the necessary investments to handle the higher meal content of native pellets in the feed plants and the ports

Investment in hard pelleting capacity started to increase in 1982 at the start of the quota and by 1985 over 80% of pellet exports were in the form of hard pellets What is ironical is that investment came at a time when prospects in the EEC market were very uncertain Two factors prompted this conversion First the quota resulted in a large stock build-up initially due to the quota restriction and beginning in 1983 as a means for the Thai government to allocate the quota (see Chapter VIII) Storage costs (pellet density) and storage time thus become key constraints leading to an internal demand for hard pellets Second the quota allocation procedure forced the big shippers [transnational corporations in the international grain trade (see Titapiwatanakun 1982) who managed the European end of the market] to secure more certain control over supplies in order to guarantee their forward contracting in Europe They did this by backward integration into large-scale hard pelleting plants usually of European manufacture Thai manufacturers did follow with their own cheaper models to upgrade native pelleting plants These produced a quasi-hard-pellet an intermediate product between native and hard pellets

As the industry developed large investments were also made in storage and loading facilities at export points A reflection of this investment is the change in size of ship that carried cassava Table 7 16 charts the progressive change to larger bulk-cassava carriers which in turn implied investment in loading facilities in Thailand In 1980 the average cargo size for a ship hauling cassava was 87 thousand tons This compares to an average size of 41 thousand tons for ships hauling grains of North American The Thai cassava trade was able to capture significant economies origin of scale in ocean transport with Rotterdam being the only port that could take advantage of these scale economies Prices of cassava pellets in Hamburg for example are as much as 50 deutsche marks more expensive per ton than in Rotterdam Moreover cassava shipments to the United Kingdom are usually unloaded in Rotterdam and sent on lighter to U K ports

As in biology so in economics growth is a far more complex process than surface -- or macro -- appearances would suggest Thailand in many ways offers an idealized growth pattern for cassava Early growth based on small-scale production and processing insures syncronization between the two in the growth process Economies of scale are possible then when critical market size and production densities are reached It is important to visualize cassava in this more dynamic sense when the comparative advantage of cassava versus grains is discussed later in the chapter Also what is important about the Thai cassava case is the rapid growth in investment in a industry characterized by relatively small-scale plants and the forward linkages that were made to domestic manufacturing capacity Investment in small-scale rural based industries is a particular characteristic of Asian agriculture -- one is tempted to attribute this to the constrained land resource base and the need for alternative employment in the rural sector the history of investment in the rural sector particularly irrigation and generally low incomes which makes even margins in small-scale processing attractive Cassava is in more ways than one well adapted to Asian conditions (see Chapter IX)

Price is the trottle that has controlled growth in Price Formation the Thai cassava industry Understanding how prices for cassava pellets are formed will thus provide a basis for assessing both future prospects and an appropriate response to the EEC quota Because the major portion of Thai pellets are exported of which almost all go to the EEC the price of pellets in Thailand and the price of pellets in Europe are interdependent The policy history of cassava in the EEC is discussed in Chapter VIII but suffice it here to say that since the binding in GATT of cassava at a 6/ ad valorem duty in 1968 cassava has had a competitive edge over grain which must enter under the EEC s variable levy system imports Since domestic grain prices in the EEC are normally well above world grain prices and through the Common Agricultural Policy inselated from international market conditions the cassava price is formed within the relative confines The implications for the cassava price is shown in of the EEC market Figure 7 3 where the Rotterdam cassava price and the maize threshold price

Product	Weight/Volume (g/cm ³)	Percentage Increase in Density (%)
Chips	412	-
Native Pellets	569	38
Hard Pellets (Steam)	808	96

1

l

TABLE 7 15 Thailand Weight per Unit Volume for Different Cassava Products

Figure 70 222 Concerteon of Tills Threshold Frice and Solare Gif Fills Usesting Frice Frice

	Pe	у	
Year	Twin Deck Vessel (/)	Bulkcarrier Less than 60 000 tons (7)	Bulkcarrier More then 60 000 tons (/)
1967	100	0	0
1970	100	0	0
1975	43	57	0
1980	2	8	90

TABLE 7 16 Thailand Size of Ship Unloading Cassava in the Rotterdam Port 1967-80

Source Craan Elevator Maatschappij (g e m) b v Rotterdam

are compared to the cif price of maize in Rotterdam World market maize prices and internal EEC maize prices have significantly diverged over the last decade and a half However although cassava prices have remained above world market maize prices (at least on a feed equivalent basis) cassava has gotten relatively cheaper compared to EEC priced grains Export demand for Thai cassava and therefore the export price is determined by the prices for feed components in the EEC -- import demand for cassava in Europe is analyzed in Chapter VIII -- however supply side factors may as well be affecting price formation in cassava

The structure of the pellet market argues for the formation of cassava prices in the EEC feed component market with European prices being transmitted back to Thailand The carriers or shippers are key agents in price formation and transmission They are the interface between the European and Thai markets Moreover cassava is sold on an fob basis in That is the shippers assume ownership of the cassava until its Rotterdam unloading in Europe Grains on the other hand are sold on a cif basis where the feed compounder has assumed ownership in say the Chicago market As well the major portion of cassava is sold on a forward basis That is a compounder contracts a certain quantity of cassava at a specified price for delivery some months forward and the shipper in turn buys in Thailand in order to lock in the margin on his sale The shipper obviously must be in a position to monitor market conditions in both Thailand and Europe and companies such as Krohn & Co Peter Cremer and Alfred C Toepfer are European-based companies with significant investments in Thailand

To demonstrate the price linkage between the two markets and to evaluate the locus of price formation European and Thai cassava prices are analyzed in a framework which evaluates "causality between the two price series The concept of Granger causality is used in the sense that European prices cause Thai prices if the European prices lead the Thai prices in a sense defined by correlation between lags in the two series (see Bessler and Brandt 1982 Spriggs Kaylen and Bessler 1982 and The methodology rests on prefiltering Adamowicz Baah and Hawkins 1984) any autocorrelation in each series using an ARIMA estimation In this case the series of residuals could be reduced to a white noise series using the same prefilter -- this allows a valid test of Granger causality (Sims 1972) The residuals were then cross-correlated with varying lags The correlations then suggest the degree to which European prices lead (cause) Thai cassava prices

Four European price series are utilized representing two markets Rotterdam and Hamburg and representing spot market prices and the two-month forward contract price All European prices are from the German agricultural market intelligence paper <u>Ernahrungsdienst</u> These series are analyzed in relationship to the Bangkok wholesale price for cassava pellets published by the Thai Tapioca Trade Association in their Tapioca Products Market Review Prices were available on a bi-weekly and a monthly basis and a series of both time periods are analyzed from 1974 through 1985 The period is divided into two pre-quota and post-quota in order to assess the impact of import restrictions on price relationships between the two markets

The cross-correlations between the Thai and European price series are presented in Table 7 17 First considering only the bi-weekly series two

Thailand		Two Month Forward Price									Spot Price					
Leads(+) or $Lags(-)$ over	Rotterdam			Hamburg			Rotterdam			Hamburg						
Europe	Jan Sept	1974 1982	Oct Dec	1982 1985	Jan Sept	1974 1982	Oct Dec	1982 1985	Jan Sept	1974 1982	Oct Dec	1982 1985	Jan Sept	1974 1982	Oct Dec	1982 1985
Biweekly																
+3 periods	01	0	0 0	16	0 (03	0 0	4	-0 0)3	0 0	2	-0 0	6	0 ()5
+2 periods	0 0	7	0.0	1	0 ()9	0.0	3	0.0)7	0.0	1	0 0	9	0 0	0
+1 period	02	1**	-0 0)7	0 4	44**	01	2	0 1	9**	02	0*	01	8**	0 2	<u>25</u> *
simultaneous	05	2**	02	9**	0 3	32 **	02	21*	04	4**	02	6*	04	4 **	0 2	26*
-l period	0.0	6	02	9**	0	11	02	:0*	0 0)7	01	3	-0 0	1	-0 ()7
-2 periods	0 0	9	0.0	15	0 0	01	0 0	6	0 0	4	-0 0	2	0 0	6	0 0)2
-3 periods	00	8	01	1	0 0	33	-0 1	0	0 0)3	-0 0	9	-0 0	5	0 0)8
Monthly																
+3 periods	0 0	5	-0 1	0	0.0)6	-0 1	.7	0 1	.5	-02	0	0.0	6	-0 1	9
+2 periods	01	9*	01	.1	0 (03	03	3*	0 0)7	0 0	0	0.0	5	0 ()6
+l period	01	5	01	.3	0	14	0 2	<u>9*</u>	0 ()6	01	1	-0 0	9	0 0)1
simultaneous	05	1**	02	:3	0 (52**	0 2	27	0 5	54**	03	0**	04	8**	0 4	i3**
-l period	02	2**	03	8*	0 3	22**	-0 0	8	0 2	25**	02	7	02	3**	0 0)3
-? periods	0 0	7	01	2	0 0	70	02	22	0 0)8	-00	2	-0 0	2	0 1	4
-3 periods	-01	1	02	:3	0 :	23**	03	9*	-0 2	23	04	0*	-0 2	.3	0 2	24

TABLE 7 17	Thailand	Cross-Correlations between Prefiltered Price Se	eries for Thailand and Europe 1974-85

Note ** implies significance at 17 level and * implies significance at 10% level

Source CIAT

 -

structural features of the market are confirmed that is the forward price generally gives a higher correlation between markets than the spot price and in the case of the forward price the Rotterdam market is more closely linked to the Thai market then is the Hamburg market (for the spot price the correlations are virtually the same comparing Rotterdam and Hamburg) Considering then only the case of the forward price Bangkok and Rotterdam prices in the 1974-82 period are significantly instantaneously correlated i e within the two-week time frame This represents relatively efficient flows of information between the two markets and therefore relatively close price integration Somewhat contrary to expectation there is also some residual tendency for the Bangkok price to lead (cause) the Rotterdam In the very short-run this indicates that the short-term supply price situation in Thailand 1 e the ability of the shipper to fill his forward influences the price negotiated in Europe This situation is contracts even more marked in the case of Hamburg and again indicates that Hamburg is not as rapidly integrated with the Bangkok market as is Rotterdam

The quota has radically changed this situation The strength of integration between the two markets has declined as reflected in the lower correlation coefficients As will be shown later this has resulted in a widening in the margin between the two price series Moreover although instantaneous causality between the two series is still apparent European prices under the quota lead Bangkok prices Under the quota short term supply needs are adequately met by stocks while in Europe cassava supplies are constrained by the quota Cassava does not have to sell at much of a discount to grains in order to move available supplies Therefore short-term price formation shifted over to demand side factors but with a decline in the strength of the direct price transmission back to Thailand

Price transmission between Europe and Thailand in the past has run in both directions but for monthly data at least the analysis suggests that Europe leads the Thai price The price transmission process is then analyzed by making Thai cassava prices a function of European prices at varying lags the transport costs and a dummy variable for the quota The results in Table 7 18 suggest that only 49% of price changes period in Europe is passed back to Thailand in the first month and another 29% in The transport cost variable was negative as expected the second month This was due to the inability to construct a series but not significant that reflected the change in scale of shipping during the period the variable as specified assumes the same size ship Finally the dummy variable for the quota period is negative implying that the margin between Europe and Thailand has widened under the quota This is to be expected with upward pressure on cassava prices in Europe due to a constrained supply and downward pressure on prices in Thailand due to rising stock As is explained in Chapter VIII Thai quota management policy has levels utilized this larger margin to finance third-country exports rather than allowing a widefall profit to accrue to cassava export companies

The previous analysis argued that the locus of price formation in this cassava market occurs either at the level of negotiations between the shipping company and European feed manufacturer or between the shipping company and Thai suppliers the type of supplier depending on how far back into the market the shipping company is integrated This implies that root and chip prices are determined by pellet prices whether set in Europe or

	Dependent Variable				
	Europe	an Price	Thai	Price	
Intercept	8	36	-1	66	
	(2	05)	(2	31)	
Price (no lag)	0	64	0	48	
-	(0	08)	(0	06)	
Price (one month lag)	0	11	0	28	
	(0	09)	(0	06)	
Price (two month lag)	0	14	0	02	
-	(0	08)	(0	06)	
Transport Cost Index	0	07	-(0 03	
•	(0	02)	(0	02)	
Quota Dummy	4	30	- 1	173	
. ,	(0	98)	(0	99)	
R ²	0	62	0	55	

TABLE 7 18	3 Thailand	Estimates of Price	Transmission	Equations
		between Europe and	Thailand 192	74-8 4

Note European prices were monthly two month forward cassava pellet prices in Rotterdam Thai prices were monthly wholesale Bangkok prices for cassava pellets Extimates were corrected for second-order autocorrelation Numbers in parentheses are standard deviations

Source CIAT

in Thailand This pattern is distinct from grains were normally processing is a mark-up on grain prices set in bulk wholesaling markets In the cassava situation the standard accounting for the chip and pelleting processing are

$$P_{c} = c_{c}P_{r} + C_{c} + R_{c}$$
 and
$$P_{p} = c_{p}P_{c} + C_{p} + R_{p}$$

where P represents price c is conversion rate C is operating cost and R is operating profit and the subscripts refer to roots(r) chips(c) and pellets (p) However given the assumptions on price formation price transmission equations for cassava chips and roots are as follows

$$P_{r} = \frac{1}{c_{c}} P_{c} - (C_{c} + R_{c}) \text{ and}$$
$$P_{c} = \frac{1}{c_{p}} P_{p} - (C_{p} + R_{p})$$

Making the variables stochastic and assuming an error term the above equations were estimated and the results are presented in Table 7 19 The pellet equations follow expectations with the estimated conversion rates being within a reasonable range of but somewhat below the figure of 976 cited by industrial sources The estimated operating margin (per 100 kg) however is significantly below the actual budgeted costs of pelleting (see below) Nevertheless what the price transmission equations for pellets do suggest is quite restricted margins and therefore a very competitive industry

The chip equations on the other hand only partially confirm The conversion rates in Chonburi and Rayong are very close expectations 372 figure used by industrial sources while the estimated to the conversion rate in Korat 1s unreasonably high suggesting a far higher level of efficiency than can be expected to be the case On the other the operating margin estimates cover a wide range from being hand reasonable in Korat to being significantly positive in Chonburi 1 e reflecting operating losses The equations suggest a delicate balance between operating margins and conversion rates a binding charactistic in the profitable operation of a chipping plant The equations again demonstrate the limited margins within which the chipping plants have to operate to turn a profit Given the chip price competition within the industry has generated relatively high root prices and limited operating margins

Price formation in summary in the Thai-European pellet market is efficient reflecting the very competitive nature of the Thai cassava industry Any excess profits when they occur either accrue to cassava farmers or result in inflated margins for the shipping companies (Figure 7 4) The later has occurred as a result of the imposition of the quota but Thai policy has issured that these windfall profits are directed towards opening up new markets for cassava pellets Figule 74 Troidrid Margin Development in Cosso o Feler Filles between Europe and Falrimiele

<u>Profitability of the Cassava Pellet Industry</u> The very marked rate of growth in the Thai cassava industry was driven by the relative profitability of the industry especially since prices set in Europe were efficiently transmitted to cassava root producers The profitability of cassava at the farm level is shown in Figure 7.4 which presents a graphic picture of margin development in the cassava industry Farm-level profits were highly variable but even in years with low prices profits were significant Not surprisingly root production showed continuous growth even with quite significant variability in prices

Another major characteristic of the cassava industry is that the farm-level root price makes up only between 40 to 50% of the eventual f o b price By comparison farm level production costs make up 83% of f o b costs of maize in the U S A (Ortmann Stulip and Rask 1986) The ability of cassava to compete with grains thus lies in its relatively low production costs and an efficient processing industry As seen in Figure 7 4 the processing margin did not vary significantly over the 1975-84 period

Cassava is very profitable for Thailand A complete cost accounting for 1981 is summarized in Table 7 20 (see Appendix 7 2 for details) The costs are disaggregated by domestic factor costs foreign import costs and government taxes including tariffs All costs are at 1981 market prices with interest rates being at the commercial loan rate of 19% There are no indications of any market imperfections that would cause market prices of factors to deviate from their opportunity cost (see Bertrand 1980 and Lokaphadhana 1981) Nor until the quota was there any intervention by the government in the cassava export trade The Thai cassava industry was one of the few examples of an industry that functioned without government intervention Deducting taxes and tariffs thus closely approximates social costs of producing cassava

The cost breakdown suggests that root production costs are two-thrids of total f o b costs of cassava pellets Chipping pelleting and export costs relatively equally divide the other third Labor is by far the largest cost component making up 47% of total costs Import costs are relatively low making up only 11% of production costs Comparing costs to 1981 prices implies that almost 30% of the f o b price was garnered by the economy as social profit with almost two-thirds of that going to the cassava farmer From a social point of view cassava was very profitable to the Thai economy and especially for the incomes of the population in the poorest sector of the economy the rural Northeast

The quota has made apparent the political underpinnings of the international market for cassava pellets Uncertainty about long-term access to the European market has raised the question about the ability of the Thai cassava industry to compete in the larger international feedgrain market. The first point to emphasize is that because Thailand did not sell cassava in the international feedgrain market up till the quota does not necessarily imply that cassava could not compete in that market. The analysis to date and that presented in Chapter VIII clearly shows that Thailand could sell all its production in Europe at prices above what could have been obtained on the world feedgrain market obviously it was more profitable for Thailand to sell all its production in the European market This situation has changed with the quota and the issue of cassava s

]	Chips to Pellets			
	Chonburi	Rayong	Korat	Chomburı	Korat
Margin (Baht/100kg)	8 63 (2 19)	0 53 (2 05)	-18 09 (3 35)	-6 39 (1 81)	-8 41 (2 12)
Conversion Rate	0 35 (0 01)	0 37 (0 01)	052 (002)	0 94 (0 01)	091 (001)
R ²	0 77	0 82	0 79	0 98	0 97

TABLE 7 19ThailandEstimated Equations for Margin Determination for
Chips and Pellets1974-84

Note Numbers in parentheses are standard deviations

Source CIAT

	Farm (Baht/t)	Chipper (Baht/t)	Pelleter (Baht/t)	Exporter (Baht/t)	Total Costs (Baht/t)
Purchase Price		1480	1792	1958	_
Sales Price	1480	1792	1958	2471	2471
Factor Costs					
Land	140 4	-	_	-	140 4
Labor	655 1	45 4	51 1	43 7	795 3
Capital	251 8	74 9	119 1	131 4	577 2
Foreign Exchange					
Costs	76 4	48 0	59 2	-	183 6
Total Costs	1123 7	1648 3	2021 4	2133 0	1696 5
Government Tax	22 7	23 6	27 9	18 4	92 6
Rent	333 6	120 1	-91 3	319 5	681 9

TABLE 7 20 Thailand Social Cost Accounting of Cassava Pellet Exports 1980-81

Source Appendix 7 2

		Cassava		
	U S A (\$/t)	Argentina (\$/t)	Brazil (\$/t)	Thailand (\$/t)
Production Costs				
Variable Costs Fixed Costs Total Costs	60 0 59 8 119 8	37 9 32 9 70 8	66 6 68 2 134 8	52 6 7 7 60 3
Marketing and Processing	24 7	25 3	33 9	33 8
F O B Costs	144 5	96 1	168 7	94 1
Freight to Japan	26 0	32 4	34 2	10 0
C I F Costs	170 5	128 5	202 9	104 1
Yield (t/ha)	6 25	3 36	2 22	5 22

TABLE 7 21	Comparison of Costs of Maize from Major Exporters and Cassava
	(on a maize equivalent basis) from Thailand cif Japan

- Note All costs are at 1985 prices and exchange rates Thai cassava costs represent 1981 costs multiplied by wholesale price index and divided by 1985 exchange rate Costs are then put on a maize equivalent basis by dividing by 0 7
- Source Maize Ortmann G U J Stulp and N Rask International Trade and Economic Development Examples of Comparative Costs in International Commodities 1986 and Cassava CIAT

ability to compete in the wider feedgrain market is now a policy concern (In Chapter VIII the issue is addressed of how Thailand develops this wider market while continuing to garner the social profits from the quota allotment)

International comparative advantage has commonly been analyzed within a domestic resource cost framework (Pearson Akrasanee and Nelson 1976) This methodology takes border prices (f o b prices for exporters and c i f prices for importers) as the measure against which comparative advantage is A good summary statistic is the resource cost ratio (Page and assessed 1981) where any country with a ratio less than one has a Stryker comparative advantage in the production of that commodity For cassava in 1981 using Thai f o b prices the RCR was 71 inducating significant comparative advantage in supplying cassava to the European market То evaluate social profitability of selling on the international grain market the break-even price (the f o b price at which the RCR is one) is calculated This price is \$77/t Assuming that under normal circumstances cassava competes with maize at about 7 of the maize price (see Chapter then the maize equivalent price is \$110/t This compares very VIII) favorably to the f o b price of maize in Thailand and in the U S in the 1980 s

The issue can be taken one step further and f o b costs compared to f o b costs of major maize exporters (Table 7 21) Comparing Thai cassava costs on a maize equivalent basis with those developed by Ortmann Stulip and Rask (1986) shows that cassava is very competitive with major maize exporters How much cassava Thailand will produce at currently declining world market maize prices is another issue but the same could be asked of countries such as the United States and France if price and income support policies were eliminated

In summary the Thai cassava industry has shown itself to be very responsive to export opportunities and to the vagaries of policy changes in The EEC became virtually the sole market for Than pellets import markets essentially because it was the most profitable outlet Moreover because of efficient price transmission between the two markets Thailand could respond very quickly to the changing needs of the European market The imposition of the quota in 1982 has forced Thailand to begin to restructure its export markets a subject discussed in Chapter VIII What that analysis shows is that Thailand has adjusted to the quota by opening new markets in East Asia thereby allowing domestic production to continue to grow

The growth of the Thai pellet industry also offers a more general lesson about the development of comparative advantage in the crop Comparative advantage of cassava versus grain substitutes is based on certain physical characteristics particularly the availability of land with low opportunity cost and an agricultural sector with a relatively small farm-size structure However there is also a time and scale dimension to comparative advantage because of the critical importance of the processing component since it makes up from a third to a half of the total costs In cassava economies of scale in processing develop over time in relation to the concentration of production on the one hand and the size of the output market on the other Malaysia and Indonesia have attempted to force the issue through plantation development but in cassava these have not been notably successful The social equity benefits from cassava development (marginal agricultural areas small-scale producers and rural employment in small-scale agro-industry) provide strong support in certain circumstances for an infant industry argument to support cassava in the initial development of its processing capacity In Thailand this initial protection was provided by the EEC market The Thai case suggests that cassava can compete with grains but in the evaluation of the comparative advantage of cassava in the feedgrain market a time perspective should be incorporated for processing costs

The Cassava Starch Market

The cassava industry in Thailand developed initially on the basis of the market for starch Starch production and exports have continued to grow throughout the post-war period but the industry has declined in relative importance having been eclipsed by the cassava pellet market Nevertheless the cassava starch industry in Thailand vies with Indonesia as being the largest in the world It continues to be dynamic suppling starch to both an expanding export market and an increasing domestic market

Constructing a supply and utilization series for cassava starch must rely on data from different sources and this produces some inconsistencies The series in Table 7 22 is developed from independent export production and utilization estimates and represents the author s efforts at achieving consistency between the estimates What the data suggests is quite significant growth in starch production driven through the 1970 s by rising domestic consumption and in the 1980 s by a sudden spurt in the export market

Cassava starch has a wide number of end markets in Thailand The principal use is as a raw material in the production of monosodium glutamate In this industry starch competes directly with molasses which is interchangeable with cassava starch Starch is also important in the expanding pulp and paper industry in textile production and in food industries All of these are growing industries and cassava starch will continue to enjoy an increasing domestic market throughout this century However unlike other starch markets in East Asia one market which cassava starch has not entered is the glucose and sweetner market This is principally because Thailand is a producer and net exporter of sugar High fructose sweetners derived from cassava have been advocated as another possible market since 52/ of industrial sugar consumption is for beverage production (Frankel 1981) Moreover the Thai government has a policy of subsidizing sugar exports when world prices are low and taxing exports when Nevertheless the price variability prices are high (Lokaphadhana 1981) in cassava starch prices has made the investments needed in large-scale plant and capacity too risky and there has been no development in this market

Thailand is virtually the sole exporter of cassava starch and the largest exporter in the world of starch in general The export market was relatively stable through the 1960 s and 1970 s but increased dramatically in the 1980 s as new non-traditional importers came into the market (see

Chapter VIII) Thailand between 1980 and 1985 was able to expand exports by 50% in two years and virtually to double export volumes in four years without too much affect on domestic consumption levels. This suggests the investment in significant excess production capacity for starch on the one hand and the ability of the starch industry to compete effectively with the pellet industry for roots -- in 1984 and 1985 root prices were relatively low due to the quota

The starch industry needs to be very competitive in the sense that its margins are defined by root prices principally set by the pellet export market in the EEC and starch export prices set principally by international the dominant cost in maize starch production (see maize prices i e Chapter VIII) The starch industry very early began a search for scale economies in processing essentially based on large-scale plants but with equipment manufactured in Thailand -- in Indonesia on the other hand these scale economies in starch production do not exist (Nelson 1984) Based on the development of this market Thailand is a now net exporter of cassava starch equipment including complete plants However with this competition to invest in order to lower processing costs excess processing capacity was created allowing the industry to respond so quickly to new export markets

<u>Price Formation and Profitability</u> Like other cassava processing industries profitability in starch production is primarily dependent on the conversion rate and the margin between the root buying price and the starch selling price Unlike the pellet industry where the price of the processed product leads the price of roots the starch industry must take the root price as a given The starch industry rarely has been able to underbid the chipping plants The root price thus sets the price of starch Competition for limited markets in turn insures both downward pressure on margins and the search for reductions in processing costs

The above scenario for price formation is adequately captured in the price transmission equations in Table 7 23 and the processing cost analysis Note that contrary to the chip industry starch price is in Table 7 24 the dependent variable in the regression equation The estimated conversion rates are only slightly higher than the estimate of 4 34 tons of roots for every ton of starch given by industrial sources Even the estimated rates suggest very high technical efficiency in starch The estimated operating margin compares favorably with the extraction budgeting analysis in Table 7 24 Again the evidence suggests a very competitive industry where there is no indication of excess profits Moreover a domestic resource calculation would be redundant in the case of Thai starch since Thailand sets the world price for cassava starch and apart from import duties on starch processing equipment there is no government intervention in the starch market

Continued growth in the starch industry is dependent principally on the supply price of starch which in turn is dependent on the root price and the changing dynamics of the pellet market The tendency in the medium term is for cassava starch prices to come in line with maize starch making cassava starch more competitive The other major factor of course is growth in export markets Prospects in the international starch market are

		Domestic Consumption						
Monx Year Glut ((Monosodium Glutamate (000t)	Paper Industry (000t)	Textile Industry (000t)	Food Industry (000t)	Other (000t)	Export (000t)	Total Disappearance (000t)	Production (000t)
1970	23 4	68	68	36 0	71	144 7	224 8	173 6
1971	29 0	79	84	37 1	81	149 8	240 3	157 6
1972	33 3	10 4	90	38 2	10 7	129 2	230 8	201 1
1973	34 6	10 3	10 1	39 3	13 9	176 7	284 9	286 8
1974	34 6	13 3	10 0	40 4	17 4	252 5	368 2	315 7
1975	366	11 2	10 8	41 5	20 5	144 7	265 3	409 9
1976	33 5	15 4	13 1	42 5	24 6	236 3	365 4	513 0
1977	37 2	18 9	13 5	43 6	28 8	200 8	342 8	538 5
1978	40 8	20 1	14 3	44 7	33 2	235 9	389 0	411 0
1979	38 2	24 7	14 5	45 7	387	122 5	284 3	305 0
1980	37 2	26 2	15 8	46 0	43 1	243 6	411 9	432 9
1981	57 7	31 3	14 3	46 9	36 1	308 1	494 4	504 1
1982	54 7	37 3	14 8	478	42 9	387 0	584 5	590 1
1983	60 8	44 4	15 3	48 8	47 2	363 5	580 0	573 9

TABLE 7 22 Thailand Cassava Starch Production and Disappearance 1970-83

ł

~

Note Disappearance and production data are derived from different sources Moreover change in stocks are not included There is a definite discrepancy in the 1970-72 period

Source Production Industrial Economics and Planning Division Ministry of Industry Bangkok Domestic Consumption Titapiwatanakum Boonjit 'Domestic Tapioca Starch Consumption in Thailand 1982 Exports Center for Agricultural Statistics Office of Agricultural Economics Ministry of Agriculture and Cooperatives Bangkok

TABLE 7 23 Thailand Estimated Equations for Margin Determination in Starch Processing 1974-84

	Chonburi	Rayong
Margin	108 7 (25 6)	116 4 (20 3)
Conversion Rate	473 (035)	491 (029)
R ²	0 61	0 70

Note Numbers in parentheses are standard deviations

Source CIAT

Cost Item	Cost			
	(Baht/t of starch)			
Variable Costs				
Roots	2608 7			
Labor	142 0			
Electricity	366 7			
Fuel for drier	235 0			
Fuel for vehicles	16 0			
Repair and maintenance	264 8			
Transport to Bangkok	120 0			
Working capital	30 6			
Sub-total	3783 8			
Fixed Cost				
Administration	41 8			
Capital depreciation	116 3			
Fixed capital costs	251 7			
Sub-total	409 8			
Total Costs	4193 6			
Costs no including roots	1584 9			
Starch Price	3750			
Value of Cassava Waste	365			

TABLE 7 24	Thailand	Costs of Production of	Starch in
		Large-Scale Processing	Plant
		1981	

Note The capacity of the plant is 100t of starch per day and produced 15 5 thousand tons in average year The conversion rate is 4 35 tons of roots for 1 ton of starch

Source CIAT survey

analyzed in Chapter VIII and suggest that markets open only where the country loses the ability to meet its own domestic needs

The Animal Feed Market

There is no better illustration of the lack of integration between world market maize and cassava prices than the comparative role that these two export crops have played in the development of Thailand s domestic feed concentrate industry Maize has formed the carbohydrate base for this rapidly growing industry basically because it has been more profitable to export the cassava On those relatively rare occassions when the prices of the two commodities have come into line cassava has been used domestically in the manufacture of animal feeds This has happened more often since the imposition of the quota and given the current size of the domestic market the animal feed market could start to play a larger role in putting an absolute floor under cassava prices

Starting in the late 1960's basic structural changes in the production of both swine and poultry have formed the basis for the rapid expansion in the feed concentrate industry Prior to this time both swine and poultry were raised in small-scale integrated crop-livestock systems Swine continues to be raised principally in the central plain This region is relatively close to the Bangkok market and forms the main rice growing where rice bran and other by-products provide a plentiful feed area Commercial operations of over 50 hogs have increased their source production share from approximately 12% in 1974 to 14% in 1978 to around 15% in 1983 (Chesley 1985) Development of commercial swine operations however has been constrained by the Animal Slaughtering and Meat Control 1959 only local authorities Act of which allows to establish slaughterhouses and prohibits shipment of carcasses outside the legally defined market area of each slaughterhouse This has resulted in local in slaughter facil_ties resulting monopsonies in high costs and inefficient wholesaling of carcasses (see Chesley 1985 for further A high percentage of the slaughter is done illegally but this discussion) is difficult for large commercial growers Nevertheless swine numbers have continued to increase especially since the mid-1970 s (Table 7 25)

Structural change in the poultry industry has been even more rapid often motivated through vertical integration of feed (Table 7 25) companies backwards to commercial poultry production units The broiler industry has been by far the most dynamic animal sector in Thailand increasing nine-fold in the 1974-82 period Partly this arises from the restrictions on the pork sector and partly from the very rapid technical The later is reflected in the declining change in the poultry sector relative price of chicken compared to other meats (Figure 7 5) and a virtual doubling of per capita consumption of chicken over the course of The only limits on growth in this industry a technically the 1970 s efficient industry with access to cheap feed sources is the size of the With total per capita meat consumption still at domestic market relatively low levels and population and income still projected to grow there is no hint yet of a downturn in growth Moreover Thailand is developing as a major exporter of poultry in the East Asian and Middle Eastern market

		Poultry						
			Commercial					
Year	Swine (thousand)	Village Chickens (million)	layers (million)	Broilers (million)	Total (million)			
1970	3215				136 3			
1971	3348				150 7			
1972	3335				166 8			
1973	3004				182 2			
1974	3256	<u></u> 154 2 -		36 4	190 6			
1975	3866	156 9 -		41 6	198 5			
1976	5201	148 2 -		58 2	206 4			
1977	5420	126 2	74	78 0	211 6			
1978	6713	105 9	70	104 0	216 9			
1979	7343	83 1	89	130 0	222 0			
1980	6589	92 9	90	200 0	301 9			
L981	6448	76 9	96	234 0	320 5			
1982	n a	61 1	10 4	286 0	357 5			

Source Derived from Chesley Merritt The Demand for Livestock Feed in Thailand 1985

The dynamism in the meat sector has been integrally linked to a dynamic industrial feed sector Production of balanced feeds have increased from a mere 64 thousand tons in 1968 to 2 1 million tons in 1984 Although initially based on swine feeds the real growth in production has This expansion in the feed sector has induced rapid come in broiler feeds increases in the derived demand for carbohydrate sources This demand has been met almost exclusively by domestically produced maize The maize sector has also been very dynamic in the last two decades (Table 7 26) increasing from a production level of just over half a million tons in 1960 to well over 4 million tons in 1984 Production growth in the 1960 s went However since about 1970 a growing share almost exclusively into exports has gone to meet the needs of the domestic feed sector and since that point exports have been relatively stable at around 2 million tons

Cassava s potential as a carbohydrate source in the animal feed market is defined in Table 7 27 and Figure 7 6 Cassava comes into the least cost feed ration when its price is about 67 of the price of maize This ratio is somewhat low because the prices of soybean meal which is principally imported are maintained relatively high through import taxes These taxes have risen from 5 to 6 percent in the late 1970 s to 8 5 percent in 1983 (Chesley 1985) Thus cassava came into the ration in 1981 and again in 1984 Over the period 1971-85 cassava was never competitively priced with maize for any extended period of time (Figure 7 6) Thus cassava has never been a feature of the domestic feed market Nevertheless in 1985 feed manufacturers for the first time began to use significant volumes of cassava in their feed mixtures An estimated 625 thousand tons was used in However these competitive price relationships did not last feeds in 1985 through the end of 1985 and cassava again moved out of the ration

This situation is in fact quite favorable for cassava producers The animal feed industry has a solid raw material supply in maize but when substitutes are cheaper manufactures can profitably mix them in their rations Price is the determining factor for these feed components not continuity of supply Since cassava is readily avallable feed manufacturers can easily move into cassava when price relatives are As domestic feed manufacturers gain experience in using favorable initially in swine feeds the domestic feed market could put an cassava absolute price floor under the cassava market At these times cassava will essentially be competitive with world market feedgrain prices but the logical market on which to sell is the domestic rather then the export When cassava prices are above maize prices the cassava producer market is much the better off The domestic animal feed market is now large enough that it can play such a role in supporting cassava prices

Conclusions

Cassava led the rapid post-war expansion in upland agriculture in While maize and sugarcane expanded principally in the Central Thailand Plain provinces cassava area increased first in the East and then expanded rapidly in the poorest area of Thailand the Northeast Thailand was able agrıcultural to base exploitation of an frontier aided by labor-substituting technologies in the 1970 s on development of export This was as true for maize as it was for cassava markets The expansion in cassava started in the 1950 s and continued through the early 1960 s

			Domesti	c Use	Total Domestic Use as	Feed Use As % of Total	
Cropyear ^a	Total ^b Production (000 t)	Exports (000 t)	Total (000 t)	Feed Use (000 t)	% of Total Production (%)	Domestic Use (7)	
	·	(<u>1000 t</u> a	ons)				
1960-61 1961-62 1962-63 1963-64 1964-65 1965-66 1966-67 1967-68 1968-69 1968-69 1969-70 1970-71 1971-72	544 598 665 858 935 1021 1122 1315 1507 1700 1938 2300	519 589 722 923 896 1132 1180 1214 1289 1502 1663 2111	10 15 20 25 29 35 55 104 176 220 280	2 4 6 10 10 13 25 75 140 180 235	2 3 2 2 3 3 3 4 7 10 11 12	20 27 27 30 40 34 37 45 72 80 82 84	
1972-73 1973-74 1974-75 1975-76 1976-77 1977-78 1978-79 1979-80 1980-81 1981-82 1982-83	1315 2339 2500 2863 2675 1677 2791 2863 2998 3449 3002	1039 2112 1872 2442 1982 1297 2155 1825 2418 3079 2244	295 348 608 313 787 397 614 652 797 846 971	270 300 560 250 730 365 560 590 749 821 942	22 15 24 11 29 24 22 23 25 24 31	92 86 92 80 93 92 91 90 94 97 97	

TABLE 7 26 Thailand Maize Production and Utilization 1960-61 1982-83

All data are for July-June cropyears

Does not include beginning or ending stocks therefore exports and domestic consumption do not add up to production

Source Chesley Merritt The Demand for Livestock Feed in Thailand 1985

1

	1981		1982		1983		1984	
Ingredient	Price (Baht/kg)	Entry (7)	Price (Baht/kg)	Entry (%)	Price (Baht/kg)	Entry (%)	Price (Baht/kg)	Entry (%)
Cassava	1 91	96	2 11	0	2 51	0	1 70	25 0
Maize	2 91	45 8	2 87	56 7	3 15	56 7	3 08	25 3
Soybean Meal	7 74	21 4	7 46	14 4	7 46	14 4	7 50	24 9
Fish Meal	11 09	75	10 54	75	10 99	75	11 00	75

TABLE 7 27ThailandOptimal Composition of Poultry Rations Derived in Least Cost Feed
Formulation 1981-84

Note All ingredients are not shown here Kapok meal entered at a significant level in 1982 and 1983

Source Prices are wholesale Bangkok and are from the Office of Agricultural Economics the model was developed by CIAT

being based principally on the starch export market It is a mark of Thailand s ability to take optimum advantage of changes in international market conditions that with the GATT binding of the cassava tariff in 1968 creating a hole in the EEC's variable levy system Thai cassava exports could respond so rapidly Thus the Thai cassava boom should not be seen as uniquely determined by a favorable tariff rate in the EEC but equally important was the dynamism of upland agriculture and the additional land and labor resources that could be brought into production in response to profitable export markets

Thai success in cassava however has been at the expense of the EEC s political objectives The resulting voluntary export quota has created an air of uncertainty as Thailand has had to rapidly develop its own policy response and control procedures It is ironical indeed that Thailand s only policy intervention in the cassava sector is a negative one even though forced by the EEC The uncertainty however should not be interpreted as portending eminent decline in the cassava industry Rather a period of structural adjustment has been forced on the industry which in the end will lay the basis for more diversity in end markets and even more The short-run policy problem for Thailand has been efficient production to develop a policy that allows the country to capture the social profits earned in the EEC and to the extent possible to transfer these benefits to cassava producers especially in the Northeast The solution requires an analysis of alternative export markets and this is left till Chapter Suffice it to say that Thailand has managed to make the adjustment VIII and expand its export markets principally in East Asia Moreover root production has even increased during the quota period Future growth will be based on continued penetration of these new export markets

Nevertheless there has been downward pressure on farm-level prices under the quota and the more the need to export to third-country markets the more the downward pressure on root prices Over the past twenty years Thailand has significantly reduced cassava processing costs Farmers have also adjusted to rising labor costs by adopting labor-saving technologies What has not happened and what is becoming critical as root prices come down is the adoption of yield-increasing technology Yields have remained relatively constant over the past twenty years even though area has expanded into more marginal areas and fertilizer has not been used in traditional growing areas Under current monocropping conditions yields will eventually decline catching farmers in a cost-price squeeze Α fertilization and soil management strategy that quarantees a profitable return is needed to complement improved varieties This will insure the ability of Thai cassava to compete in the wider feedgrain market allowing Thailand the required flexibility in restructuring its export markets Most important of all cassava will then have achieved parity with grains in international markets establishing a new claim for carbohydrate exports from the tropics a role palm oil has recently carved out in the world vegetable oil market

Appendix 7 1 A Synthesis of Production and Utilization

Cassava production has grown rapidly in the last two and a half decades with most of the root production being processed for export Domestic consumption of cassava is limited to starch and the occasional use of chips in animal feed concentrates Thailand should be a country therefore where cassava utilization and production data are relatively consistent

A production series is produced both by the Division of Agricultural Economics (DAE) and the Department of Agricultural Extension (AEX) both of which form part of the Ministry of Agriculture and Cooperatives Both the DAE and AEX maintained the same series through the 1968/69 crop year but diverged then when the DAE changed procedures In general the DAE series is most utilized in the literature and is the one reported by FAO Both series show the same basic upward trend but in any particular year can diverge by as much as 25%

Converting exports to a fresh weight basis and comparing this export series to the production series (Table 7A 1) shows that the production data tended to be consistently underestimated in the case of the AEX before 1973/74 and in the case of the DAE before 1982/83 Titapiwatanakun (1979) reviews this discrepancy in some detail and attributes the difference to a failure to accurately monitor the rapid expansion in area especially where cassava was being planted in more frontier-like conditions in the Northeast The DAE production series thus provides a relatively consistent underestimate of actual production and the export series probably provides a more accurate minimum estimate of actual production

The Ministry of Commerce has developed supply and utilization estimates for cassava (Table 7A 2) These clearly highlight the dominance of the export market but also identify a not unimportant domestic market for both starch and animal feed The other dominant component is the very high stock levels being held in this period The production estimate constructed from utilization data is about 11% larger than the DAE estimate of production Thus Thailand provides one of the few cases (Malaysia is the other) where cassava production tends to be underestimated

Year	Agricultural Economics (000 t)	Extension (000 t)	Export Series (000 t)
1960	1083	1083	1109
1961	1222	1222	1706
1962	1726	1726	1298
1963	2077	2077	1341
1964	2111	2111	2089
1965	1557	1557	1864
1966	1475	1475	1850
1967	1892	1892	2265
1968	2063	2063	2487
1969	2611	2611	2684
1970	3079	2474	3645
1971	3431	2432	3169
1972	3114	3673	3575
1973	3974	4436	4995
1974	5443	7770	6554
1975	6765	9503	6238
1976	7094	11 638	9778
1977	10 230	13 554	10 242
1978	11 840	13 024	15 953
1979	16 358	12 877	10 023
1980	11 101	13 864	13 442
1981	16 540	17 204	16 160
1982	17 744	n a	20 147
1983	17 788	n a	13 718
1984	18 989	na	17 014
1985	19 985	na	18 812

TABLE 7 A 1

Thailand Comparison of Root Production Series with Implied Production from Export Series 1960-85

Source Office of Agricultural Economics Ministry of Agriculture and Cooperatives and Department of Agricultural Extension Ministry of Agriculture and Cooperatives
TABLE 7 A 2	Thailand	Supply and Disappearance of Cassava
		(fresh weight basıs) 1984-85

· · · · · · · · · · · · · · · · · · ·	Fresh Root Equivalent (000 t)
Disappearance	
Domestic Consumption	
Starch	1 100
Animal Feed	625
Export	
Starch	2 435
Pellets and Chips	15 365
Change in Stocks	1 731
Total	21 256
Production	
Harvested	21 256
Unharvested	1 000
Total	22 256

Source Ministry of Commerce Bangkok

VIII World and Asian Markets for Cassava Products

World trade in cassava products has increased rapidly over the last three decades rising from about 200 thousand tons (in product weight) in the early 1950 s to a peak of 8 4 million tons in 1982 The latter represents a little less than 20% of total world production of cassava a very significant figure when compared to a commodity like rice where only 4% of production moves in world trade While the volume traded is sizeable by world commodity standards eg world rice trade amounts to a little over 8 million tons the number of countries involved is relatively small In fact over 90% of trade is accounted for by exports of Thailand to the European Community For a commodity trade of such volume this is a particularly narrow base

Trade dominates the cassava economy only of Thailand and in the 1980-82 period China Trade achieves a more limited importance -although rarely exceeding 10% of domestic production -- in Indonesia and In all other cassava producing countries international trade has Malavsia rarely been an option and is currently of only marginal importance This relatively unique trade structure raises a number of issues which will be explored in this chapter Most importantly the reasons surrounding the relatively narrow participation in world cassava trade will be examined This analysis will then lead to an evaluation of the potential for broadening the import markets for cassava followed by some prognosis for increasing the number of exporting countries The discussion will be rooted in an historical evaluation of the changing determinants of comparative advantage an approach which will allow some speculation on the future role of cassava in world trade in carbohydrate sources

Protectionism and Substitution Decline in the World Starch Trade

World trade in cassava started with starch exports from the Malayan peninsula in the mid-1800 s Early trade relied on cassava s advantage as a starch source the higher value-added of starch compared to other processed cassava products and the proportionately lower freight costs for starch compared to dry cassava Starch was the major cassava product in value terms moved in world cassava trade throughout the present century up The market for starch is relatively small in comparison till the 1960 s to trade in wheat or feed grains Moreover while this market exhibited moderate growth from the turn of the century to the Second World War there has been little growth in the post-war period while the grain trade has grown at historically high rates However underlying these trends in starch trade 1s a market structure undergoing significant change influenced by shifting comparative advantage dynamic technical change rapidly shifting end markets and trade barriers It is in these terms that the world market for cassava starch will be analyzed

Demand for starch is marked by the product's versatility Almost every major industry has found a use for starch and as a result the process of industrialization normally coincides with a significant increase in the demand for starch This industrialization affect is partially reflected in the historical series on imports of cassava starch over the present century At the turn of the century the United Kingdom was the largest importer of cassava and other starches By the 1920 s the United States although a major producer of starch itself became the largest importer In the late 1970 s the U S was overtaken by Japan and in the early 1980 s Japan was superceded by Taiwan This pattern closely tracks the industrialization process characterizing the world economy over the present century

However a possibly more important phenomenon is the eventual decline of imports of cassava starch into principal markets This decline in imports is not due to any falling off in overall starch consumption but rather the substitution of imported starch by domestically produced starch Over time this substitution process has been accelerated on the one hand by advances in starch chemistry and the ability to chemically modify thereby making starches more substitutable and starches on the other by technical change in both maize production and the maize wet hand milling process reducing the unit costs for this starch and making it over the post-war period the predominate starch produced in the world Events in the U S played a dominant role in the declining market share of cassava and the rising share of maize in world starch consumption The analysis thus turns briefly to a consideration of the starch industry in the United States and the effect this industry has on the world starch market

By the turn of the century following on the development of a successful processing technique in 1842 (Radley 1968) maize was the dominant starch produced and consumed in the U.S. Production of maize starch increased from 141 thousand tons in 1904 to 2 27 million tons in 1982 a sustained annual growth rate of 3 6% over the course of almost 80 years (Figure 8 1) This growth in production sped up in the post-second-world-war period rising to an annual rate of 4 8% between 1954 In this same post-war period exports of maize starch fell while and 1977 imports of cassava starch first increased through to the mid-1960 s and then fell dramatically to levels not reached since the turn of the century A convergence of factors influenced these trends (Figure 8 2) ın production and trade in maize starch but the driving force was the declining real price of maize in the US during the post-war period -except for a small hiccup in the years from 1972 to 1976 (Figure 8 3) The declining price was due to rapid technical change in maize production in as per hectare yields increased from 2 4 tons in 1950 to 7 6 tons the U S The consequences of this were far reaching in its effect on world in 1986 starch production and trade

In the US the declining price to the maize starch industry for its raw material allowed the industry to expand its markets resist the invasion of traditional markets by synthetic resins and to substitute for imported cassava starch The two dominant trends in the U S starch market was the expansion of starch use in the paper and cardboard industry (Table 8 1) and the technical advances in the modification of starch The expanding starch use in the paper products industry caused the increasing demand for unmodified starches while advances in starch modification and the advent of waxy maize allowed import substitution and continued competitiveness in the other end uses Thus over the post-war period unmodified starch maintained its market share while the number of different types of modified starch expanded significantly (Table 8 2) Finally the wet-milling industry was able to achieve increasing returns to scale in processing as output per plant has expanded rapidly over the period

TABLE 8 1

United States Utilization of Maize Starch in Different Industries 1918-58

Industry	1918 (%)	192 (%	5 192) (%	7 1954) (/)	1958 (%)
Bakers	15 8	33	3 5	2 1	2 4
Baking Powder	64	7 5	7 2	25	19
Brewers	73	0 1	0 6	79	63
Building Materials				19	2 5
Confectioners	24	59	48	2 4	2 7
Dealers and Repackers	4 9	11 2	6 2	24	2 3
Explosives	26	4 2	44	0 5	0 5
Jobbers				0 9	10
Laminating and Corrugating	4 1 ^a	¹ 91	a 106	a 113	11 9
Other Paper Products				28 9	35 3
Laundries	28	25	22	1 5	1 3
Grocers	22 1	24 2	199	8 9	87
Paste Adhesives Dextrine	99	48	11 7	I 1	07
Textiles	16 3.	19 0	. 22 2	. 17 1	16 2
Misc Food User	5 6 ^b	76	^b 67	b 55	41
Misc Industrial Uses				5 1	2 1
Domestic Utilization (000 t)	281 8	292 2	362 8	813 4	934 3
Export (000 t)	48 4	95 2	96 3	37 9	32 8
Total Production (000 t)	330 2	387 4	459 1	851 3	967 1

a Includes other paper products Includes misc industrial uses

Source 1918-1927 Yearbook of Agriculture 1930 U S D A 1954-58 Arthur D Little Inc International Market Potential for Nigerian Cassava Products 1963

Type of Packaging and Product	1954 (%)	1958 (%)	1979 (۳)
Not in retail packages			·
Unmodified	58 1	53 5	63 0
Unmodified waxy	-	_	34
Acid-converted thin-boiling	11 5	10 5	69
Oxidized thin-boiling	59	79	8 1
Cationic	-	-	24
Ethylated	-	-	27
Modified waxy/amioca	-	-	43
High amylose	-	-	09
Other modified starch	4 0	87	24
Dextrins	79	73	29
Pregelatinized	48	4 6	18
In retail packages	78	75	12

TABLE 8 2 United StatesProduction of Modified and Unmodified MaizeStarch1954-1979

Source 1954-58 Arthur D Little Inc International Market Potential for Nigerian Cassava Products 1963 1979 Jones S F The World Market for Starch and Starch Products with Particular Reference to Cassava Starch 1983 (Table 8 3) Technical dynamism in raw material production in processing and in utilization have created exceptional growth in what on the surface should appear to be a relatively traditional stable industry

A more recent outgrowth of this technological dynamism in the maize wet milling industry is the rapid growth in high fructose corn sweetners (HFCS) The possibly most important dimension to the very rapid growth in the HFCS market is the strong interplay between product substitution and price policy in an already well established market U S sugar policy in the post-war period has been directed to maintaining the incomes of domestic producers usually against imports from more productive tropical producers The rise of the HFCS industry has been due essentially to the protection given the domestic sugar market and the falling relative price of maize One result has been falling imports of sugar into the U S from developing countries but the salient point in the present context is that tariff policy and product substitution have been the dominant elements influencing both HFCS production in the US and world trade in starch

before returning to the world starch market Nevertheless the analysis of the US market for cassava starch will first be completed Cassava starch has enjoyed two markets in the U S a speciality market where cassava starch is utilized for its particular characteristics and the starch market where starches from different broader sources are The non-speciality market has changed over time substitutable In the early part of the century cassava starch was utilized principally for the manufacture of adhesives or glue especially for furniture manufacture and for envelopes and stamps With the advent of resin glue and natural gums these markets disappeared to be replaced in the 1950 s by the paper industry where cassava starch was used as a corrugating adhesive These represented large markets where other starches could have substituted and cassava starch was used because of its competitive price In 1928 the c 1 f price of Javanese cassava starch in New York was \$2 31 per 100 pounds compared to a maize starch price in Chicago of \$3 25 per 100 pounds (Committee on Finance U.S. Senate 1929) Thai cassava starch was very competitive with domestically produced maize starch through the 1950 s The cassava starch market share increased from 3 6% in 1952 to 14 17 in By 1968 cassava starch had ceased to 1961 (Arthur D Little Inc 1963) be competitive in the broader industrial market and imports declined Cassava starch has maintained its speciality market in dramatically the food industry but at a relatively insignificant level of around 30 thousand tons The largest import market for cassava starch over the course of about 50 years declined to relative insignificance

Responsibility for this dramatic shift in cassava starch imports lies partly with the technological advance taking place in the maize industry and partly with the changing international price for cassava During the 1960 s the linkage between international maize and cassava prices was severed by the creation of the European Economic Community (see the next

^{1/} Not coincidentally 1968 is the year when a tariff hole was opened for cassava feedstuffs in the EEC This topic will be discussed in the next section

	Numbe	r of Factories	Starch	Starch Production					
Year	Total	More than 20 Employees	Total (000 t)	Maize (000 t)	Production Per Plant (t)				
1933	28	n a	462 8	435 6	16 529				
1937	27	n a	456 3	424 6	16 899				
1947	55	21	776 6	734 4	14 120				
1963	60	20	1 270 3	1 163 5	21 172				
1972	39	27	1 711 8	1 627 6	43 892				
1977	39	27	2 602 6	2 488 6	66 967				
1982	41	26	2 475 4	2 270 4	60 376				

TABLE 8 3 United StatesNumber of Starch Factories and Average StarchProduction1933-82

Source Biennial Census of Manufactures U S Department of Commerce

section for details) The 1960 s witnessed the rise of the dried cassava animal feed trade where cassava chip or pellet prices were linked to the internal grain prices of the EEC and not to the international grain market Post-war growth in cassava starch trade was halted and throughout the 1960 s and 1970 s world exports of cassava starch remained stagnant at around 200 thousand tons However stagnation did not turn into decline as there was a major restructuring of import markets

This restructuring had two principal components the rise of new import markets in Asia and the transfer of maize wet milling technology to major markets usually through investment by the Corn Products Corporation of the USA By far the more important element in this restructuring was the development in major markets of a domestic capacity to produce maize usually based on imported maize This displacement of starch starch production based on domestic sources such as rice potato and wheat by starch production based on imported maize occurred essentially in the Several factors spawned this development in particular post-war period the declining real price of maize in international markets the cost savings in bulk shipping of grains -- to the extent that starch became more expensive to ship than grains -- the very high tariff barriers in most markets for imported starch generally much lower tariffs on imported maize in order to support the growing animal feed sector the technical advances in the maize wet milling process and the high value of the sub-products Thus maize starch became the principal especially the oil and gluten starch produced in the U K all five countries in the original EEC Spain and Japan and at the same time maize starch exports from the U S declined to insignificant levels In 1980 out of an estimated world production of starch of 16 million tons maize starch accounted for 77% (Jones 1983)

Cassava must move in international trade in a processed form and therefore cassava must buck the post-war trend in international where bulk movement of raw materials has dominated agricultural trade Cassava starch has been one casualty of these developments trends that have been set in motion by technical change and agricultural trade This however has not prevented cassava starch from carving out policies new markets essentially by minimizing transport costs and by breaching These new markets have come in Asia and the importance of trade barriers transport costs in the development of these markets can be seen in Table 84

Japan developed as a major importer of cassava starch in the 1970 s but imported cassava starch was always of secondary importance in domestic markets because of trade restrictions Japan erected a relatively elaborate set of import restrictions designed on the one hand to protect domestic raw material producers especially sweet potato and potato farmers and on the other hand to meet the needs of a growing domestic Starch production in Japan increased from 895 thousand tons starch market in 1962 to 1 975 thousand tons in 1982 to become the world s second largest starch producer Whereas in 1962 sweet potato and potato starch accounted for over 80% of total production (Business and Defense Services Administration 1967) by 1982 the production share had fallen to 20/ In

Destination		Freight Rate (\$/t)	Percentage of Bangkok fob price (7)	
Taiwan	25		+ 10	
Indonesia	25		+ 10	
Japan	30		+ 12	
Western European ports	75	(Non-conference)	+ 29	
۰ ۲	110	(Conference)	+ 42	
USA D	100	(Non-conference)	+ 38	
	120	(Conference)	+ 46	

TABLE 8 4 Ocean Freight Rates for Cassava Starch from Thailand December 1980

Notes ^a Bangkok fob price in December 1980 was \$260 per ton ^b Freight rates to west coast port destinations are slightly cheaper than to east coast destinations

Source Jones S F The World Market for Starch and Starch Products with Particular Reference to Cassava Starch 1983 this period in which the production of sweet potato starch fell the production share of maize starch increased from 9 3% in 1962 to 76% in 1982 (Figure 8 4) Even though maize used in starch production comes under the quota and tariff system maize starch has come to dominate the domestic market Part of the reason is that the major use for starch in Japan is for sweetner production where maize wet-milling technology is well advanced this accounted for 57% of total consumption in 1978/79 (Jones 1983)

The cassava starch that is imported services partly a speciality market and partly those industries where cassava starch is subject to quota rather than a 25% <u>ad valorem</u> duty (see Jones 1983 for a detailed discussion of the Japanese trade protection system for starch) Thus cassava starch was able to take advantage of the rapid growth in the Japanese starch market but cassava starch only filled in at the margin Without trade liberalization there is little scope for a large role for cassava starch in the Japanese market even though imports will fluctuate to a certain extent depending on the import price as happened in 1984 when Thai export prices declined markedly

However rapid industrialization in the countries of the Pacific rim have generated new markets for cassava starch In 1980 Taiwan became the largest importer of cassava starch Imports increased from an average of around 10 thousand tons in the 1973-76 period to over 100 thousand tons in This was due to falling domestic production especially for 1981-84 Imports went from 4% of cassava starch and rapidly rising demand domestic consumption in 1975 to 52% in 1980 (Jones 1983) The only dynamic component in the domestic starch sector was maize starch where production increased from 17 thousand tons in 1975 to 45 thousand tons in However one factor has limited the growth of the 1980 (Jones 1983) maize starch industry and that is a domestic sugar industry This has forestalled movement to an integrated starch-sweetner technology while market size has limited scale economies in processing On the other hand tariffs on imported maize of 3% are much more favorable than the tariff of Taiwan \$1500 per ton on cassava starch -- a rate of about 16% on 1980 cif The future for cassava starch imports into Taiwan hinges on prices developments in the domestic maize starch sector and here domestic sugar production and scale economies will probably be the driving forces

The market analysis above provides sufficient reasons for the stagnation at around 200 thousand tons in the world trade in cassava starch over the course of the 1960 s and 1970 s What then is surprising is the very significant expansion in export volumes in the 1981-84 period In 1984 Thai exports of cassava starch reached an historical high for any country of 465 thousand tons The USSR suddenly entered the market in importing very large volumes of cassava starch 1982 Singapore also became an importer of some substance and Hong Kong has continued to import about 10 thousand tons However most interesting of all 1s that Indonesia imported almost 100 thousand tons in 1982 and over 50 thousand tons in 1983 while Malaysia came into the market for over 10 thousand tons in 1984 -All of these are essentially Asian markets and Malaysia and Indonesia are as well major producers of cassava starch A major devaluation of the Thai baht in 1981 and particularly low root prices in 1981 and 1984 partly precipitated by the Thailand-EC quota agreement made

Thai cassava starch especially competitive in regional markets This increased Japanese and Taiwanese imports and made Thai starch competitive with domestically produced starch in Malaysia and Indonesia Supply side factors thus also have an impact on the world market and the analysis thus turns to a brief summary of export trends

Historically exports of cassava starch have usually been dominated by a single country except in relatively brief periods of transition between Comparative advantage in cassava starch production has shifted countries quickly and dominance is virtually total Thus comparative advantage shifted from Malaysia to Indonesia in the period 1907 to 1913 and from Indonesia to Thailand during the Second World War (Table 8 5) The first transition was precipitated by the rubber boom in Malaya while the second came as a result of the rayages of the war and the demise of the colonial regime in Indonesia There were thus clear reasons behind the rapidity of the transition period but what is less clear is why single countries should dominate in world cassava starch trade

A major part of the reason for this dominance is the relatively small size of the world market and the inherent riskiness in scaling up an export-oriented industry in such a thin market In both transitions the precipitating cause of decline in the leading country was a loss of profitability in the production of cassava starch In Malaysia this was due to the rising opportunity cost of land due to the expanding rubber industry and in Indonesia it was due to the destruction of processing capacity and the demise of the plantation systems of Java where land costs under a colonial administrator did not reflect its true scarcity value 0n the other side in the expanding countries growth in investment in processing and in turn increased cassava production had to be motivated by a significantly large profit margin This initial establishment phase was usually based on a period of relatively high world prices and some factor which made cassava production particularly competitive i e some basis for comparative advantage In the case of Indonesia the basis of comparative advantage was a substantial and relatively cheap labor force a plentiful water supply international capital availability relatively liberal terms for plantation development in upland areas and an existing smallholder However the initial base for comparative advantage was production base reinforced over time by development of excess processing capacity (and therefore quicker supply response) established marketing channels and a research capacity for developing new technologies Consolidation of the cassava starch export industry made entry by other countries into this market virtually impossible

Comparative advantage is thus not just a matter of intrinsic factors which make a country particularly competitive If export dominance can be established further evolution in the industry tends to reinforce comparative advantage That is comparative advantage in international trade can be created and does not necessarily depend only on initial factor To a very significant extent Thailand created its particular endowments comparative advantage in the production of cassava starch and later cassava This was based on the development of a major road system pellets especially into the Northeast a relatively liberal land policy together with an unexploited frontier an indigenous engineering capacity so that starch processing factories could be manufactured locally an existing well-developed export sector based on rice and commercial middlemen with

VIII - 7 -

the capital to invest Thailand had exported cassava starch as early as the 1930 s but it was not till the demise of Indonesian exports that the Thai cassava starch industry began to expand under the impetus of high prices following the Second World War By the mid-1950 s Thailand was unchallenged in the world cassava starch market and by the 1980 s both Malaysia and Indonesia were importing cassava starch from Thailand

cassava starch industry in Thailand faces two principal The constraints on further expansion both of which are due to trade policies The first is the high tariff barriers for starch in of other countries practically all major import markets except the U S Since cassava starch moves in world trade in a starch form rather than as a raw material differential trade barriers have resulted in cassava starch not being able to take advantage of the relatively buoyant growth in demand for starch whereas maize has captured much of the market Moreover the only other exports of starch of any significance is potato starch from the Potato starch has difficulty competing with maize starch Netherlands within the EC and substantial subsidies are necessary to export these Annual exports from the EC of about 150 thousand tons further surpluses decrease the international market for cassava starch A policy constrained market very much characterizes world trade in cassava starch even though some price elasticity does exist as is characteristic of a product with such close substitutes

This demand elasticity is closely linked to the second constraint In Thailand the starch industry must compete with the pellet export market for Because prices for pellets are defined by internal EC grain cassava roots prices the chip and pellet industry makes the price of roots significantly more expensive than if the industry had to compete at world maize prices which the starch industry must do The starch industry usually comes into the root market during the rainy period when root prices are low and root demand from the pellet industry is also low As root prices rise the starch industry is usually caught in a price squeeze and often must cease operation Significant excess capacity normally exists in the industry Thus when root prices are low starch producers can significantly expand their market by lowering prices and because of the excess processing capacity output response can be significant With the low root prices caused by the quota in the early 1980 s the Thai starch industry was able to double its exports (Table 8 6) Thailand is often constrained in expanding its starch market by the particular policy context of cassava within the EC however for Thailand this is not a loss since the social profits for selling pellets in the EC market more than compensate for the loss of starch sales

Future prospects for world trade in starch are if anything unpredictable No studies predicted nor could have predicted the rapid expansion in cassava starch trade in the 1980 s after two decades of stagnation since it was principally due to the imposition of the quota Policies are the dominant influence on world trade in cassava starch and these have tended to remain outside the real of economic prediction The only feature that is clear is that Thailand will continue to dominate exports for the foreseable future and the prospects for any other country entering the market at any substantive volume are minimal

Period ^d	Indonesia (t)	Malaysia ^b (t)	Thailand (t)	Brazil (t)	Madagascar (t)	Togo (t)	Total (t)
1900-04	11 607	52 807		154			64 568
1905-09	33 525	46 347	-	256	-	-	80 128
1910-14	49 754	37 589	_	383	814	_	88 540
1915-19	67 684	41 759	-	4 327	2 577	-	116 347
1920-24	84 040	29 166	-	1 688	2 249	-	117 143
1925-29	127 701	27 245	-	394	3 193	-	158 533
1930-34	113 539	27 398	1 789 ^C	527	5 330	102	148 685
1935-39	178 955	17 302	1 495 [°]	I 549	12 936	608	212 845
1940-44	n a	5 399	n a	5 715	9 698	731	n a
1945-49	2 523	8 611	n a	17 942	8 618	4 127	n a
1950-54	11 422	4 384	21 329	21 953	9 621	2 558	71 267
1955-59	2 004	6 944	88 275	20 145	9 081	4 426	130 875
1960-64	2 843	20 608	157 903	17 206	7 249	5 064	210 873
1965-69	819	19 425	155 413	15 225	5 477	2 692	199 051
1970-74	2 490	23 132	171 143	17 131	4 058	na	217 954
1975-79	1 410	16 253	188 305	4 726	2 194	neg	212 888
1980-84	2 434	1 079	355 090	n a	n a	neg	358 603

TABLE 8 5 World Exports^a of Cassava Starch Flake and Pearl 1900-1984

a Excludes minor exporters such as Reunion Indochina and French West Africa

^D Before 1920 exports are from the Straits Settlements and after 1955 does not include Singapore These figures are net exports

d Imports from Siam by Malaysia

Average yearly exports in the period

Source CIAT data files

ጥለ 21 ም	8	6
IADUE	0	0

Cassava Starch Exports form Thailand and Imports by Principal Countries

	Exports	Imports					
Period	Thailand (000 t)	USA (000 t)	Japan (000 t)	Taiwan (000 t)			
1955-59	88 3	77 1	6	-			
1960-64	157 9	116 9	84	-			
1965-69	155 4	126 2	38 8	-			
1970-74	171 1	75 9	71 9	11 7			
1975-79	188 3	37 4	81 5	34 1			
1980	243 6	27 9	67 3	87 3			
1981	308 1	36 3	79 1	108 9			
1982	387 1	29 7	82 1	102 5			
1983	363 5	28 6	59 7	89 3			
1984	464 9	37 4	136 9	146 6			
1985	497 4	36 5	162 0	146 9			

Source Individual country foreign trade statistics

The world starch market is really something of an allegory for the The lessons are essentially two First rarely history of cassava if ever have there been policy interventions by domestic governments in their On the other hand policy interventions by cassava producing sectors importing countries either directly on imported cassava or indirectly on domestic substitutes have continually influenced cassava s trade prospects prior to the Second World War cassava products were very Second competitive with grain products even considering the relatively high cost of international shipping The basic change between the pre-war and post-war position of cassava has been the rapid technical change in grain production in temperate developed countries especially the US The relative shift in comparative advantage between tropical cassava and temperate grains has been due to very large differences in research expenditures on grains versus cassava Every allegory has its moral and cassava s continued role in international trade is testimony to its inherent productivity Second modern comparative advantage especially of tropical cassava versus temperate grains is not fixed in stone but will depend essentially on technical progress together with economies of scale of post-harvest handling and processing

Protectionism and Substitution The Rise in Trade in Cassava_Feedstuffs

Apart from Thailand and Malaysia cassava starch production has normally been a component of a wider cassava sector where the bulk of the production normally went to food uses In many cases these were dry products such as gaplek in Indonesia or farinha de mandioca in Brazil Prior to the early 1960 s surpluses of these products were often exported principally to be used as an animal feedstuff in European countries Volumes in this century prior to 1960 were never large only rarely exceeding 200 thousand tons in a single year By comparison the international maize trade was normally around 4 to 6 million tons during having reached a peak of 13 million tons ın 1937 this period (International Institute of Agriculture) Argentina and Eastern Europe were the main suppliers of maize in this period International transport costs and the more rudimentary state of balanced feed technology limited the development of a wider trade in cassava feedstuffs

current large trade in cassava pellets was essentially The The origin of this trade was German price policy in the policy-induced Western Europe in the immediate post-war period was the principal 1950 s market for feedgrain imports Germany however developed a policy of high domestic grain prices to support the income of its own farmers (Figure 8 5) The rapidly expanding animal feed sector however had significant incentive to try develop cheaper supplies of carbohydrate sources with cassava being a potential grain substitute German companies in the 1950 s began developing supply sources in Indonesia and Thailand German imports of cassava in 1955 were 131 thousand tons in 1959 import levels were 240 thousand tons and in 1960 323 thousand tons The year 1960 marked the point at which Germany turned from Indonesia to Thailand as a principal source of supply During this period the other European countries were relatively minor importers of cassava

The formation of the European Economic Community and its associated Common Agricultural Policy served to expand the market that German policy

Grain and Country	July 1965 (U A /100 kg)		July (UA/	July 1966 (U A /100 kg)		July 1967 (U A /100 kg)		July 1968 (U A /100 kg)	
Barley									
Germany	103	87	103	87	89	00	95	00	
Netherlands	88	95	88	95	89	00	95	00	
Belgium	84	00	84	00	89	00	95	00	
Maize									
Germany	103	87	103	87	88	38	94	38	
Netherlands	84	67	87	15	88	38	94	38	
Belgium	78	20	78	20	88	38	94	38	

TABEL 8 7 European Community

Threshold Prices for Grains During the Unification Process

Source International Trade Centre UNCTAD/GATT Markets for Manioc as a Raw Material for Compound Animal Feedingstuffs 1968 and German companies had developed The first stage come in July 1962 when the variable levy and support price system become effective for all feedgrains The agricultural common market rested on two prices The intervention price is the guaranteed minimum price for farmers at which marketing agencies throughout the E E C are committed to buy the grain The threshold price is the minimum price at which grain imports from countries enter the community The variable levy is the non-E E C difference between the threshold price and the current c i f import price Internal prices are thus insulated from world market prices and operate within a band between the floor or intervention price and the ceiling or Bringing all internal prices within the economic threshold price community into line was done gradually and it was not until July 1967 that all national intervention and threshold prices were unified and border taxes were abolished

During this process cassava was not overlooked but nevertheless was treated differently Initially in 1962 only cassava meal imports were subject to tariffs These consisted of a fixed component and a variable component based on the barley variable levy After various changes by November 1964 the meal levy was fixed at 25 percent of the barley levy plus 2 5 units of account (the European Community accounting unit) per ton (see Nelson 1982 for further detail) In July 1967 chips and pellets were brought under tariff regulation and these products faced a variable levy of 18% of the barley variable levy and no fixed charge The meal tariff The most important change however came in July 1968 remained the same as part of Kennedy Round of the GATT negotiations the levy on when cassava pellets and chips was bound to a maximum 6% ad valorem basis Cassava meal was not bound and continued to be subject to the higher duty

The pattern and trends in cassava imports were remarkably sensitive to these policy changes First the form in which cassava was imported changed with the differential duty structure Meal was the principal form of imports prior to 1962 With the slightly higher duty structure for meal growth in imports in the 1962-68 period shifted to chips even though chips are bulkier and more costly to transport Meal was eliminated as an import item in 1968 due to the change in tariff structure and with the investment security provided by the duty binding the imports of cassava shifted almost completely to pellets to take advantage of economies in transport

Germany remained the dominant importer of cassava up to 1967 The unification of prices however shifted profitability of cassava imports to the Netherlands and Belgium Unification resulted in grain prices in Germany coming down and those in the Netherlands and Belgium rising This reduced cassava s relative profitability in Germany and (Table 8 7) increased it in the Netherlands and Belgium (Table 8 8) As grain prices were the same across countries transport costs became a determining factor of which areas could most successfully bid for cassava imports As Rotterdam had by far the most efficient unloading and distribution system the Netherlands became the locus of cassava imports Thus in 1966 Germany imported 702 thousand tons of cassava compared to only 96 thousand tons for the Netherlands Germany did not reach that level of imports again until 1977 By that time the Netherlands was importing 1.8 million tons (Table 8 9)

		Septe	mber 1966	<u> </u>	September 1967				
Product and Country	C i f Price	Import Duty	Threshold Price	Cassava Price Barley Price	C 1 f Price	Import Duty	Threshold Price	Cassava Price Barley Price	
	(U A /100kg)	(U A /100Kg)	(U A /100kg)	(৯)	(U A /100kg)	(U A /100kg)	(U A /100kg)	(7)	
Germany									
Barley	62 25	42 20	104 50	-	59 65	30 65	89 00	-	
Cassava Chips	75 60	2 72	78 32	74 9	61 60	5 52	67 12	75 4	
Cassava Pellet	78 40	2 82	81 22	77 7	64 40	5 52	69 92	78 6	
Cassava Meal	70 00	13 05	83 05	79 5	56 00	8 02	64 02	719	
Netherlands									
Barley	61 13	28 34	89 64	-	59 65	30 65	89 00	-	
Cassava Chips	75 60	2 72	78 32	874	61 60	5 52	67 12	75 4	
Cassava Pellets	78 40	2 82	81 22	90.6	64 40	5 52	69 92	78 6	
Cassava Meal	70 00	9 59	79 59	88 9	56 00	8 02	64 02	71 9	
Belgium									
Barley	61 24	22 80	84 00	-	59 65	30 65	89 00	-	
Cassava Chips	75 60	2 72	78 32	93 2	61 60	5 52	67 12	75 4	
Cassava Pellets	78 40	2 82	81 22	96 7	64 40	5 52	69 92	78 6	
Cassava Meal	70 00	8 20	78 20	93 1	56 00	8 02	64 02	71 9	

TABLE 8 8 European Community Comparison Between Barley and Cassava Prices During the Unification Process

Source International Trade Centre UNCTAD/GATT 'Markets for Manioc as a Raw Material for Compound Animal Feedingstuffs 1968

Year	Netherlands (000t)	Germany (000t)	France (000t)	Belgium (000t)	Italy (000t)	Denmark (000t)	United Kingdom (000t)	Ireland (000t)	Total (000t)
1960	4 1	322 8	27 1	44 4	5	_	7	_	399 6
1961	66	357 1	26 4	86-8	8	-	12	_	479 0
1962	12	366 1	23 6	22 9	neg	-	2	-	414 1
1963	48	387 3	20 0	72 1	-		а	-	484 2
1964	16 9	461 5	18 5	105 4	-	-	а	-	602 3
1965	76 5	519 6	18 0	100 5	6	_	а	-	715 2
1966	95 7	701 7	16 6	707	20	-	а	-	886 8
1967	158 8	532 7	19 6	113 3	12	_	а	-	825 7
1968	234 3	480 0	14 4	123 4	15	-	а	-	853 7
1969	424 9	548 1	14 8	209 5	39	-	а	-	1 201 1
197 0	475 8	587 4	11 1	267 3	14	neg	02	-	1 343 0
1971	510 9	522 0	39 0	273 2	20	neg	01	-	1 347 2
1972	670 4	429 2	140 0	290 8	13	neg	01	-	1 531 9
1973	756 6	331 3	159 0	188 9	02	05	neg	neg	1 436 6
1974	1 067 8	429 4	164 3	381 4	07	36	23 7	neg	2 070 9
1975	1 200 4	483 5	146 5	441 8		-	03	neg	2 272 5
1976	1 541 1	660 2	175 1	552 8	12 9	79	71	19	2 9 591
1977	1 823 8	920 4	201 0	672 9	neg	53 2	66	15 0	3 693 0
1978	2 293 1	1 409 7	713 4	863 1	219 2	127 3	13 4	80 4	5 719 4
1979	2 001 8	1 463 1	567 6	714 2	189 8	82 2	22 2	42 8	5 083 7
1980	2 158 5	1 336 5	364 9	620 9	98 9	54 5	28 1	399	4 702 2
1981	2 401 5	1 547 6	680 4	841 2	237 0	91 2	401 8	30 7	6 231 2
1982	2 827 4	1 993 9	786 6	1 029 9	212 2	576	798 6	804	77866
1983	1 121 5	1 796 7	239 8	906 3	99 7	09	314 3	47 5	4 526 7
1984	2 432 1	1 830 8	263 6	799 5	108 0	50	126 3	18 8	5 584 1
1985	2 982 0	1 674 6	307 0	801 6	108 7	04	77 0	50 8	6 002 1

TABLE 8 9 European Community Net Imports of Cassava Pellets Chips and Meal 1960-1985

^a Cassava not broken out as separate item in these years

Source EUROSTAT Foreign Trade Analytical Tables (NIMEXE) and foreign trade statistics of individual countries

Unification of grain prices however became difficult to maintain with realignment of exchange rates of member countries As grain prices were specified for a 12 month period in units of account (UA) any exchange rate adjustment vis-a-vis the UA would cause grain prices to diverge Price unification became particularly difficult with the floating exchange rates adopted in the early 1970 s Thus with the realignment of the franc and mark in 1969 green exchange rates -- that exchange rate at which common prices are established -- and border taxes (MCA s) were instituted in order to manage CAP administrative prices The result of these policies was that member countries grain prices began to diverge again that is when evaluated in dollar terms at market exchange rates This differentially affects demand for cassava in the individual countries since each country faces a single market price for cassava but in relation to different grain prices (see Nelson 1983 for a discussion of this point)

The CAP completely changed the dynamics of animal production in Western Europe Growth in animal populations occurred in those areas with the cheapest feed sources and these are precisely the areas which have transport advantages in the import of those feedgrain substitutes that do not come under the variable levy The process was extraordinarily rapid and was especially pronounced in the swine industry Between 1965 and swine populations increased 59% in the Netherlands and 103% in 1970 Belgium compared to only 16% in Germany and 21% in France (Table 8 10) In the period 1970 to 1985 the swine population increased 103% in the Netherlands and only 19% in Germany and actually declined in France These trends are correlated with the use of grains in compound feeds Overall the proportional use of cereals in balanced feeds has declined in the EEC but especially in the Netherlands Cereal use in compound feeds in that country has dropped below 20% (Table 8 11) whereas worldwide the figure is closer to 60%

Cereal substitutes are essentially imported and the principal one is Cassava imports into the EEC over the past two decades and a half cassava have shown dramatic growth increasing from 400 thousand tons in 1960 to a high of 7 8 million tons in 1982 (Table 8 9) Every country in the EEC imports cassava but the Netherlands is by far the largest importer Cassava imports by West Germany remained relatively stagnant until 1976 at which point imports more than doubled in two years In 1975 national grain prices in West Germany finally recovered to their pre-1967 level From that point national prices continued to rise The mark in 1976 also started to appreciate rapidly against the dollar and the international price (in marks) of cassava declined significantly in 1977 and 1978 This made cassava very attractive in Germany again and imports increased markedly

The basic rationale behind the Common Agricultural Policy was that the European consumer would bear the principal costs of the higher prices paid to farmers Moreover EEC consumers as well paid the cost of the higher prices of cereal substitutes even though they were not subject to the variable levy cereal substitutes garnered higher prices in the EEC grain market and these higher prices were transferred to exporting countries as social profits above what could have been earned on the world market Nevertheless cereal substitutes did not add to the EEC s tax revenue account and budgetary outlays by the EEC government for the costs of its

TABLE	8	10	

European Community Evolution of Growth in the Swine Population 1960-1985

Year	Germany (000)	France (000)	Netherlands (000)	Belgium (000)	EEC-9 (000)
1960	15 787	8 603	2 934	1 579	_
1965	17 723	9 238	3 987	1 885	_
1970	20 532	11 215	6 340	3 966	69 584
1975	19 805	11 890	7 016	4 679	68 663
1980	22 553	11 963	10 186	5 011	77 293
1985	24 360	10 956	12 908	5 521	80 983

Source EUROSTAT Animal Production

	Cereals Cassava		Oilseed cakes and meals		Corn gluten feed		Other		Total			
Country	(000t)	(%)	(000t)	(%)	(000t)	(%)	(000t)	(%)	(000t)	(%)	(000t)	(%)
West Germany	4 506	30 3	900	61	4 900	33 0	670	45	3 876	26 1	14 852	100
Netherlands	2 470	18 3	1 904	14 1	2 349	174	1 152	86	5 597	41 5	13 472	100
Belgium	1 724	35 1	618	12 6	1 055	21 5	0	0	1 518	30 9	4 915	100
United Kingdom	5 578	49 4	0	0	1 377	12 2	0	0	4 336	38 4	11 287	100
France	5 862	44 1	710	53	2 500	18 8	200	15	4 028	30 3	13 300	100
Community total	27 643	38 0	4 557	63	15 793	21 7	1 717	24	22 9 61	31 6	72 671	100

TABLE 8 11 European Community Raw Material Used in Compound Feeds 1978

Source Falcon et al 'The Cassava Economy of Java 1984

grain policy started to increase significantly in the early 1980 s In that period the EEC became a net exporter of grains the dollar started to appreciate against European currencies making the domestic costs of export subsidies high and cassava imports reached record high levels in 1981 and 1982 The budgetary costs of the CAP grain policy started to reach levels that were putting strains on the capacity of the EEC to generate tax revenue

Cassava started to play a significant role in the ability of the CAP to sustain its objectives In an econometric model of the EEC feedgrain market Rastegari (1982) found that cassava imports and consumption had a positive impact on livestock production -- thereby confirming the previous analysis -- and had a negative impact on feedgrain imports The latter effect is expected and results in the loss of tariff revenues to the EEC treasury The more significant finding was that cassava imports had a negative effect on the setting of threshold prices Cassava imports were reducing the flexibility of the EC to set domestic farm prices especially when the EC moved into a net export position in grains where export subsidies were large and dumping developed political repercussions with traditional grain exporters especially the U S

The EEC was under significant pressure to reduce the growth in budgetary costs of the CAP without the political flexibility of legislating major structural reform in agricultural policy The EEC sought to resolve the situation by reducing the growth in imports of cassava Because the 6% ad valorem import duty on cassava was bound in the GATT the EEC sought to negotiate voluntary export restraints with principal The EEC found this to be the supplying countries especially Thailand politically most tractable solution since unbinding of the tariff would have required agreement of compensation with exporting countries with which the binding had been negotiated and with the country (if different) which is the major supplier Moreover all the EEC countries would as well have had to agree to the unbinding In November 1980 Thailand agreed in principle to the voluntary limitation of cassava exports to the EEC however it is not till September 1982 that the voluntary export restraint agreement was ratified by both parties

Thailand felt that she had little bargaining power at this stage She had already negotiated a quota agreement for textile exports to the EEC an industry in which investments had been large and which was a principal component of her industrialization strategy Moreover Thailand did not want to put a politically sensitive industry such as cassava (because of its importance as a source of farm income in the Northeast) at risk by relying only on the difficulty of EEC members reaching agreement among themselves on an unbinding of the duty In addition Thailand was promised a significant increase in agricultural development aid to be spent on cassava diversification in the Northeast Finally as Blyth (1984) has from the exporters viewpoint voluntary export shown in another context restraints are the least harmful form of providing protection against Weighing the options Thailand chose the less risky imports into the EEC course However as Britain s Overseas Development Institute observed The story combines all those elements which so often bring the CAP into disrepute misdirected public expenditure (in this case of aid money) insensitive protectionism and uncritical acceptance of the views of

European farming interests at the expense of consumers (in this case other farmers) and overseas suppliers (House of Lords 1981)

As a concession to Thailand the EEC also committed itself to maintaining Thailand s position in the European cassava market The EEC thus sought voluntary export restraints from other principal exporting countries In 1982 an agreement also was reached with Indonesia and Brazil who were then GATT members which unbound the tariff and replaced it with a tariff-quota The agreement for all parties concerned was limited to a five-year period (Table 8 12) Thailand was particularly disadvantaged in the agreement by being the only country whose export quota would decline over time Also in the initial understanding the EEC would also bear in mind the importance of imports of carbohydrate products which would compete directly with manioc (House of Lords 1982) Significantly the other cereal substitutes of importance were maize-gluten feed and citrus pulp pellets the principal supplier of which was the United States The EEC has not found it possible politically to restrain the imports of these products and during the quota period imports of maize gluten feed rose dramatically This situation underscores a basic point about the political economy of cassava which is that cassava s vested interests have always lain with the economically powerless

Before the end of 1986 the EEC and the principal cassava exporters Thailand had to come to terms on a new agreement or return to the i e situation prevailing before 1982 By late 1986 Thailand and the EEC had both ratified a new agreement on export controls of cassava The agreement covers four years from 1986 through 1989 and specifies a maximum export volume of 21 million tons over the period This amounts to 5 25 million tons a year some improvement on the 4.5 million ton quota of 1985-86 However exports to Portugal and Spain as well would now come under the Some minor flexibility was allowed in distributing the quota agreement from year to year as Thailand could export up to 5 5 million tons in any single year This pattern of periodic deliberation and renewal of a new agreement on export restraint will most likely continue to be the pattern of EEC-Thailand trade in cassava

Demand for Cassava in the EEC With the voluntary export restraints in place since 1982 estimation of import demand for cassava is something of a moot point at least as far as total quantity imported by the EEC is concerned However price and the distribution of those imports within the EEC does have an effect on the profits to be earned by the Thai cassava industry and the comparative cost of animal feed across EEC countries How prices for cassava are determined thus is of key importance to Thailand especially in its management of the restraints on exports to the EEC

The feed industry in Europe is highly competitive and factories base their purchasing decisions on least-cost feed formulation models. In general cassava will enter into swine rations first that is at higher cassava prices than its entry into poultry rations. A large feed manufacturer in the Netherlands in 1985 maintained a 40/ maximum incorporation level for swine rations and a 25/ inclusion maximum for poultry rations. McKinzie et al. (1986) cite maximum inclusion levels of 35% in swine rations and 20% for poultry rations for Dutch feed manufacturers in 1980. Within any individual country cassava demand is a

Year	Thailand (000t)	Indones (000t)	Other GATT ia Members (000t)	Other Third Contries (000t)
1982	5000	500	90	370
1983	5000	750	132	370
1984	5000	750	132	370
1985	4500	825	146	370
1986	4500	825	146	370
Source	EEC Council	Regulation No	2646/82 30 September	1982

TABLE 8 12Export Restraint Agreement on Cassava Negotiated between the
EEC and Principal Trading Countries 1982-86

TABLE 8 13	
------------	--

European Cumminity

Estimates of Price Dependent Cassava Demand Equations

	Netherl	ands	Germany		
Variable	Coefficient	Standard Deviation	Coefficient	Standard Deviation	
Intercept	0 74	1 88	-2 99	3 05	
Cereal Price	0 85	0 23	0 31	0 10	
Soybean Meal Price	-0 03	0 06	0 03	0 04	
Swine Population	-0 03	0 27	0 54	0 31	
Net Imports	-0 03	0 01	-0 02	0 008	
Quota Dummy	0 05	0 07	0 07	0 47	
R ²	0 21	-	0 14	-	

Note The dependent variable was the spot price for cassava in Rotterdam and Hamburg The cereal price was maize in the Netherlands and barley in Germany Data were monthly observations 1973-1984 Equations were estimated in double-log form corrected for second order autocorrelation

SOURCE CIAT

ملر

step function operating between the price when it first enters the swine ration to that price at which cassava reaches maximum incorporation levels in all rations Because internal grain prices vary between countries cassava will be utilized first in those countries with relatively high grain prices As Nelson (1983) points out cassava demand will be relatively elastic in these countries between the price at which it first enters the ration and the maximum incorporation rate For additional imports demand becomes less elastic as the cost of transporting cassava from the port increases and it must compete in regions where feed-grain prices have been lowered by green rates

The import demand function for cassava is fraught with difficulties in specification Given a short enough time period so that supply cannot respond demand theory would suggest a price dependent function Moreover since grain prices vary between countries a market clearing price for cassava will be defined in each of the major importing countries with some potential for arbitrage between neighboring countries Using monthly data price dependent import demand functions were estimated for the Netherlands and Western Germany with the internal cassava price being a function of the market price for the dominant feedgrain net imports of cassava the soybean meal price and the swine population

The results of this estimation (Table 8 13) show that cassava prices respond to changes in feedgrain prices As would be expected cassava prices are more responsive to changes in maize prices in the Netherlands the main importer than to barley prices in Germany However although cassava imports have a significant and negative effect on cassava prices in both countries the size of the coefficient is remarkably close to zero suggesting very little elasticity in the market This result 1s counterintuitive given the rapid rate of growth in cassava imports and the ease of substitution in feed components McKinzie et al (1986) estimate a demand elasticity for cassava in the Netherlands of -24using transformed solutions of least-cost feed models Ιt is therefore worthwhile to analyze more closely the mechanisms surrounding price formation of cassava

Cassava prices are quoted in Europe in Deutsch marks on an fob Rotterdam basis which is distinct from the cif Rotterdam quotes for other commodities such as soybean meal The difference is the point at which the buyer takes ownership of the commodity In the case of soybean meal it is purchased on the Chicago Board of Trade and the feed manufacturer pays the freight and insurance at the unloading point in Rotterdam In the case of cassava he buys on a customs cleared basis from the shipper in Rotterdam The shipper pays the freight and insurance discharge costs and customs duties The shipper has ownership of the cassava till discharge in Rotterdam while in the case of soybean meal he does not providing only freight services

The reason feed manufacturers have gone to this system was essentially the uncertainty of quality and customs clearance At one stage Than pelleters were introducing rice hulls which under EC tariff rules would be classified as a compound feed dutiable at a very high tariff Under the current system the shipper guarantees the quality and the price and the buyer assumes no risks However this system potentially reduces the efficiency of price transmission between the two markets

This last point is reflected in the determination of a market price for cassava in Europe Most buyers purchase cassava on forward contracts so that continuity of supplies is guaranteed and storage costs are kept to a minimum In general cassava is contracted between 2 to 6 months forward Thus approximately 90% of each shipment from Thailand has already been contracted Only a small percentage is sold on a spot market or at the so-called afloat price the price normally quoted from trade sources Moreover the afloat price generally reflects speculators in the market who have not yet covered their contracts and is therefore more variable than the forward price

The market price for cassava is therefore a negotiated forward price between shipper and feed concentrate manufacturer and this price is often not quoted The shippers can negotiate on the basis of known production costs for pellets in Thailand known handling and freight cost -- in 1985 4/t for loading 9/t for freight and insurance and 5/t for discharge -and the tariff while the buyers will negotiate on the basis of the shadow price of cassava in their feed cost models and their sense of the cassava price in Thailand and Europe

The analysis of price transmission between Thailand and Europe (see Chapter VII) suggested that forward prices in Europe were much better correlated with Thai prices than afloat prices and that prices were transmitted instantaneously with some residual tendency for prices in Thailand to lead those in Europe before the quota and those in Europe to lead Thailand after the quota The forward contracting and the nature of price transmission suggests that the cassava price is given exogenously --in the context of a monthly import demand equation--and thus the endogenous variable in the demand function should be cassava imports

An import demand equation was thus estimated using net cassava imports as the dependent variable Since this is an amount which is forward contracted traders have suggested that an average period is about three months and so imports were lagged three months Lagged imports were then made a function of the forward price for delivery in three months current swine stocks current soybean meal prices and the grain threshold price three months forward Since grain prices are fixed on a monthly basis before the crop year the threshold price is the best estimate of the future grain price Because a fixed amount of cassava must be allocated among the various countries the equations were estimated using Zellner s seemingly unrelated regression technique

The results (Table 8 14) are significantly better than the previous specification The direct import elasticity is relatively elastic although lower for the Netherlands than for Germany This is expected in a country where cassava imports already are 30% of the combined production of pig and poultry feeds and moving additional amounts involves more radical price changes Conversely cassava imports in the Netherlands respond much more strongly to changes in grain prices than in Germany In Germany a large part of the concentrate and animal industry is in the South and cassava use in rations in this part of the country is moderated by the TABLE 8 14

European Community

Estimates of Import Dependent Cassava Demand Equations

	Nether	lands	Germany		
Variable	Coefficient	Standard Deviation	Coefficient	Standard Deviation	
Intercept	3 08	3 74	-65 1	8 35	
Cassava Price	-1 49	0 32	-0 90	0 31	
Cereal Price	1 87	0 64	2 77	0 58	
Soybean Meal Price	0 26	0 29	0 54	0 26	
Swine Population	0 61	0 61	6 69	0 87	
Quota Dummy	-0 60	0 16	-0 06	0 12	
R ²	0 33	-	0 55	-	
Own Price Elasticity	0 71	-	1 15	-	
Cross Price Elasticity with Cereals	0 65	-	0 36	-	

Note The cassava and cereal prices were three month forward prices and imports were lagged three months Zellner s Seemingly Unrelated Regression procedure was used to estimate the coeffcients

Source CIAT

transport costs from port areas Grain prices have to move more radically to get the same response in demand for cassava imports Finally the quota is principally affecting cassava use in the Netherlands where cassava imports have declined other things being equal to what they were prior to the quota Why Netherlands should be worse affected than Germany by the quota is not clear and in the end is counterintuitive However this result may be short term in nature since in 1985 the Netherlands recovered in import volume what it lost in 1983 and 1984 This result may therefore reflect forward contract committments at the time of implementation of the quota

The soybean meal coefficient remains something of an anomally since it suggests that cassava and oilseed meals are substitutes particularly in Germany where the coefficient is significant is Misspecification possible since the current price rather than the future price was used -a future price in Europe was not available Nevertheless Nelson (1983) in his model of EEC import demand did not get a significant coefficient for soybean meal either though the sign suggested complementarity McKinzie et al (1986) working with least cost feed models in the Netherlands find complementary relationship between cassava and oilseed а meals Nevertheless even using such a robust technique the cross-price elasticity estimated is only -0 3 i e there is a response of cassava use to changes in oilseed meal prices but it is not large In Germany oilseed meals make up 30 to 40% of feed concentrates Because oilseed meals are often similarly priced to grains they enter as a calorie as well as a protein source Changes in oilseed meal prices would thus have little influence on cassava use since the protein restrictions in the least cost models are already more than met

The effects of the quota thus have been (1) to reduce the efficiency of price transmission between Europe and Thailand while shifting cassava price formation essentially to demand-side factors in Europe (2) to widen the margins between Europe and Thailand a factor which Thailand is using to open third-country markets and (3) to reallocate cassava imports between countries On the latter point Spain and Portugal s entry into the suggested elimination of green rates and MCA s and the the EEC constraints environmental being placed on expansion of livestock enterprises in northern Europe all suggest potential for shifting the locus of growth in animal production to these two countries if based on the ability to efficiently import feed components which do not come under the variable levy Given grain shortfalls in both these countries rising grain prices as the grain sector comes under CAP prices some experience with importing cassava in 1984 and 1985 and the projected improvement in port facilities conditions seem appropriate for such a restructuring

Moreover the quota on cassava imports will probably have little impact on increased grain use Hillberg (1986) developed a simulation model of the West German feed sector and found only gradual substitution of grains for cassava in swine and poultry rations in northern Germany However the quota also led to higher feed prices a decreased demand for feed concentrates and in consequence the impact of changes in ration composition favoring grains was dampened by the accompanying higher finished ration costs (Hillberg 1986) Moreover as McKinzie et al (1986) find the high cross-price elasticities suggest that a specific commodity import restriction would substantially reduce that commodity s

Country	1965	1970	1975	1980	1982
	(kg)	(kg)	(kg)	(kg)	(kg)
Ion-Cassava Prod	ucing				
Japan					
Chicken	16	38	52	77	77
Pork	31	47	65	96	96
Taiwan					
Chicken	2 0	56	84	12 3	13 3
Pork	16 8	18 0	17 5	26 2	25 4
South Korea					
Chicken	05	14	16	23	25
Pork	2 0	26	28	63	60
Cassava Producing	g Countries				
Thailand					
Chicken	n a	n a	33	59	72
Pork	n a	49	51	78	n a
Philippines					
Chicken	n a	25	31	32	34
Pork	n a	8 1	90	85	91
Malaysia					
Chicken	n a	68	92	10 3	10 3
Pork	n a	59	49	50	54
Indonesia					
Chicken	n a	03	05	11	13
Pork	n a	03	04	04	04

TABLE 8 15AsiaPer Capita Chicken Meat and Pork Consumption Trendsin Selected Countries1965-1982

useage but that use of other non-grain imports could be expected to rise greatly Such appears to be the case with corn gluten feed imports from the United States (Siamwalla 1986)

The world market for cassava feedstuffs is something of the reverse of that for cassava starch In the case of feedstuffs tariff and price policies in Europe have created a large market insulated from world trade conditions in feedgrains Since the market is politically defined (though almost every agricultural market has its political dimension) cassava s impingement on other EEC objectives has resulted in restraints on future growth of EEC imports The European market is nevertheless providing the base for the restructuring of trade in cassava pellets and to understand this process requires some analysis of the feed and livestock sector in East Asia

The Asian Regional Market for Cassava Feedstuffs

Do cassava feedstuffs have a wider international market than just the European Community ? Trade and price policies as in all trade matters dealing with cassava hold the key to the answer The issue is being forced by the EC itself through its imposition of import quotas which in turn has caused Thailand to devise mechanisms to open third country markets The solution mimics the EEC s export subsidies with one big difference the European consumer rather than the EEC budget is in effect subsidizing Thai exports to non-EC countries This is irony of a high order that the EEC should be subsidizing Thai cassava exports to third This outcome is to the international grain trade what epicycles countries were to Ptolemaic astronomy a further complication to produce a workeable system but where the central thesis of that system is faulty For cassava what it achieves is time to develop a more rational system and the bulwark of such a system will inevitably be the Asian market for feedstuffs which is currently dominated by imports of U S coarse grains

Food consumption patterns in East and Southeast Asia are changing The causes for these changes arise as much from the supply side rapidly -- technical change in food production and processing improved foreign exchange availabilities allowing an increase in and diversification of food imports and improvements in marketing -- as from the demand side -increasing per capita incomes urbanization declining influence of religious prohibitions on certain foods and changing relative prices Changing food consumption patterns are thus set within an evolving economic system which reflects fundamental structural change and basic shifts in food processing marketing home preparation methods and purchasing patterns as the population shifts from rural to urban residence

The most fundamental shift in food consumption patterns in Asia has been the rapid increase in the consumption of livestock products especially meat (Table 8 15) For example in Japan in the two decades spanning the period 1960 to 1980 per capita consumption of beef grew at an annual rate of 5 6/ pork at a rate of 11 1/ and chicken at a sustained rate of 16 7/ Even after such high rates of growth per capita meat consumption in Japan is still only about a quarter of levels in the United States This highlights the first salient feature of meat consumption patterns in Asia that growth in consumption has started from a very small base since for most countries no more than 5 0 kg of meat per person was consumed in the early 1960 s Only the Philippines and Taiwan would appear to have had a higher consumption base due essentially to the larger role of swine in farming systems and rural consumption patterns Pigs also were

important in large parts of China Swine have played a differential role across Asian countries in defining meat consumption patterns partly because of religious restrictions such as Moslem taboos in Malaysia and Indonesia and Buddhist prejudices in Thailand and Japan and partly because of feed availability on farms in swine producing countries usually the root crops sweet potatoes or cassava and rice millings

In the two decades encompassing 1960 to 1980 annual growth in per capita GNP was over 4% in all countries under study here except for the Philippines which grew at 2 8% per year Meat demand is very income elastic in Asia (Table 8 16) and yet income elasticities and income growth do not explain all the growth in per capita meat consumption In Asia income growth has also precipitated diversification of the diet as reflected in the very low per capita consumption figures for meat in the early 1960 s Also income growth is closely related to other basic changes in the economy that affect food consumption patterns particularly urbanization and the growth of food retailing networks Implicit in migration from a rural to urban setting is a shift in food sources from one based primarily on production to one based on purchases Also convenience becomes an important factor in food choice in preparation methods and in food storage in the home Finally food preferences become more susceptible to advertising and to the diversity found in eating out of the Therefore implicit in income growth are the basic changes in home lifestyle that impinge on food consumption patterns these have had a large impact on the rising demand for meat in Asian countries

Income elasticities do not vary significantly across the different meats except for the lower estimates for pork in the high consuming Income growth does not account for the very significant countries differences in growth rates between the different meats Thus while income explains much of the growth in total meat consumption price is the more relevant variable in analyzing growth rates in individual meats In all meats the own-price elasticity is very high and while cross-price elasticities are normally significant (Table 8 17) substitution has not yet played a dominant role in meat consumption patterns in Asia as it has for example in Latin America Differences in growth rates in consumption of the various meats is due to the differential trends in real prices of the meats especially the decline in chicken and to a certain extent pork prices vis-a-vis stability or increases in the price level of beef It is the fundamental effect of prices on meat consumption that makes basic cost changes on the supply side so important

Japan has the longest history in the modernization of its feed and livestock industry and thus in many respects will presage the future developments in the livestock industry of many Asian countries. The dominant factor in the expansion of the livestock sector in Japan was technical change. This is shown in Table 8 18 which shows rapid expansion in meat production of chicken and pork even though product prices were declining relative to feed prices. This relationship is the more impressive considering that feed makes up 35/ of pork production costs and about two thirds of chicken production costs (Coyle 1983). Three

Country	Pork	Chicken	Beef
Non-Cassava Producing			
Taiwan	39	1 10	97
Japan	1 02	1 64	1 09
South Korea	1 19	1 54	1 38
Cassava Producing			
Philippines	85	1 00	80
Thailand	58	44	41
Indonesia	14	2 2	n a

TABLE 8 16 Asia Income Elasticities for Meats

Source Wu Cho Sawada ASEAN Prusarn Monteverde
Country	Pork	Chicken	Beef
Non-Cassava Producing			
Taiwan	- 44	- 55	-1 99
Japan	-2 05	-1 25	-1 53
South Korea	-1 53	-1 64	-1 34
Cassava Producing			
Philippines	2.00	1 20	1 20
Urban Rural	-1 50	-1 00	-1 30
			·

TABLE 8 17 Asia Own Price Elasticities of Meats

Source Wu Cho Kester ASEAN

important changes account for these rapid increases in production efficiency changes that are now occurring in other Asian countries

structural change in livestock production has been rapid First Production has moved from small units on farms to specialized large-scale In Japan this process has been particularly impressive in enterprises both swine and broiler production (Table 8 19) Structural change in livestock production has not implied a gradual increase in animal populations on farms but a rapid shift away from farm units to specialized production units In the process the number of producers declined rapidly In Japan the number of swine producers declined from 800 thousand in 1960 to 156 thousand in 1979 (Coyle 1983) Statistics on total animal populations usually mask quite marked shifts in sources of production Thus in disaggregating the statistics for Thailand for poultry (Table 7 25) while growth in the total population has been moderate the increase in large-scale commercial operations has been very rapid and on-farm populations have declined

This search for scale economics through structural change has characterized the pork and poultry sectors of all the countries under study here except Indonesia and China In China the very rapid rise in pork production and consumption since the political changes of the late 1970 s has been due to shifts of production from collectives to individual households and intensification of production through the improved In Indonesia on the other hand availability of grains (Sicular 1985) income distributional objectives have been translated into a 1983 policy which limits the size of poultry operations to a thousand layers and 750 brollers (see World Bank 1984 for a more extensive discussion of the This policy may limit the price declines in poultry that have policy) come in other countries and therefore the expansion in consumption On the other hand since the population is still overwhelmingly rural the policy may in fact lead to decentralization of production away from urban areas and increased rural consumption as is occurring with pork in China The feed companies appear willing to respond by developing rural feed distribution channels Indonesia and China may offer an alternative livestock development strategy oriented towards rural consumption However eventually when the policy turns toward urban consumption the development of large-scale poultry and swine units will be essential to cost and price reductions for urban consumers

The second important change in livestock systems in Asia is the shift to balanced feeds as the principal source of animal nutrition The impact of this on production efficiency has come through improved animal nutrition which has allowed quicker weight gains usually higher slaughter and improved reproductive capacity Whether balanced feed is weight cheaper than on-farm feed sources is questionable especially for swine since feedstuffs with relatively low opportunity costs are used Mixed feeds allow balanced nutrition especially for protein however and expand the availability of feed sources which are requirements Development of a mixed feed usually constrained at the farm-level industry has been especially critical in the growth of the poultry industry

Development of a mixed feed industry usually leads the structural change in livestock production with the initial linkages generally being

Beef and Veal		Chi	cken	Pork		
Period	Annual Production Growth (7)	Annual Change in Meat-Feed Ratio (%)	Annual Production Growth (7)	Annual Change in Meat-Feed Ratio (7)	Annual Production Growth (7)	Annual Change in Meat Feed Ratio (%)
1960-65	6 1	n a	36 0	n a	20 9	36
1965-70	69	54	19 8	- 26	12 4	- 0 7
1970-75	43	29	84	- 3 0	52	26
1975-79	52	58	96	- 29	13 2	- 4 9
1960-79	5 6	46	18 4	- 1 0	12 8	02

TABLE 8 18 Japan Trends in Meat Production and Meat-Feed Price Ratios 1960-79

-

Source Coyle William Japan's Feed-Livestock Economy 1983

made with the poultry sector Growth in compound feed manufacture has been very rapid in East and Southeast Asia in the last one to two decades Most countries have managed annual growth rates of well over 10/ with Japan maintaining a 9 9% annual rate of growth over a period of 22 years from 1960 to 1982 (Table 8 20) Growth can be remarkably rapid in the early stages in the establishment of the industry Thus in the 1960 s Japan s compound feed industry grew at annual rate of 17% comparable to the growth of South Korea's industry in the 1970 s of 18% but well below the remarkable growth in Thailand of 30% per annum through the course of the 1970 s

There is a chicken or egg question in the gestation of a compound feed In most cases the establishment of the industry is based on the industry development of commercial poultry enterprises with the two often vertically linked in the initial phases The feed industry often assumes the initiative in the development of its market If developments in the industry follow the example of Japan then eventually divestment of the poultry enterprises takes place and diversification occurs with а significant rise in swine feed and dairy feed production However significant differences will be expected to occur across countries in the development of the latter two industries because of Moslem prohibitions of pork consumption in Malaysia and Indonesia and lactose indigestability in many Asian populations In Asia more so than any other continent the development of the livestock industry is and will be based on either the purchase of mixed feeds by livestock producers or the purchase of the feed ingredients by the livestock producers to mix their own feeds Expansion of the livestock industry in Asia will not be based on an integrated farm system in which own production of feed components is linked to livestock production

The third element responsible for rapid technical change in the livestock sector is the improved feed conversion rates in the animal This is due to both more efficient animal breeds and population improvements in management especially in animal health A particular trend in swine production is the movement away from breeds with a high fat carcass to those with a much higher percentage of lean meat However aggregate feed conversion rates only partially reflect this improvement since they as well incorporate the movement away from on-farm feed resources -- that is those feed components which do not usually figure in data on feed availability -- to compound feeds (Table 8 21) Aggregate feed conversion rates thus first increase and then decline when the conversion by livestock producers to compound feed has stabilized Comparison of these aggregate rates across countries will not differentiate between improvements in the efficiency of feed conversion and the degree of penetration of compound feeds in the livestock sector What the limited data in Table 8 21 indicate is that aggregate feed conversion rates are still rising in all countries but Japan that is the changes in the production structure of animal production is still the dominate influence

Rising demand for livestock products and the structural change in livestock production have created a very rapid increase in the derived demand for feedstuffs especially carbohydrate sources. The response to this situation in all cases but Thailand has been to increase imports of feed grains. In the non-cassava and non-maize producing countries the growth in feed grain imports has been very rapid indeed. In 1960 Japan

Period		Swine	Broilers animals per farm	Layers
1960-65		4 0	na	25 9
1965-70		97	1 852 8	62 2
1970-76		23 3	5 101 0	186 6
1975 - 79		46 4	10 081 0	492 1
1979		60 7	12 684 0	670 3
Source	Coycle	1983		

TABLE 8 19JapanStructural Change in Average Herd
or Flock Size1960-79

Non-Cassava Producing		Cassava Producing			
Year	Japan (000 t)	South Korea (000 t)	Thailand (000 t)	Philippines (000 t)	Malaysia (000 t)
1960	2 884	n a	n a	n a	n a
1970	15 097	508	109 4	314 4	236 7
1975	16 897	901	486 5	654 7	315 6
1976	18 671	1382	666 4	625 3	389 8
1977	19 948	1899	725 5	830 0	386 2
1978	21 210	2693	922 8	960 0	444 8
1979	22 796	3880	1 173 9	99 4 0	457 3
1980	22 292	3462	1 350 0	1 061 0	548 6
1981	22 173	3491	1 560 0	1 147 0	564 6
1982	22 896	4420	1 710 0	1 161 0	569 2
1983	n a	5852	1 962 0	1 061 0	636 2

TABLE 8 20AsiaProduction of Compound Animal Feeds in Selected
Countries 1970-83

Source Statistics of feed associations and government agencies

Meat and Year	Japan (kg)	South Korea (kg)	Thaıland ^C (kg)	China ^b (kg)
Swine				
1970	5 36	n a	3 85	na
1975	4 36	2 40	n a	na
1980	4 34	3 27	n a	4 0
Poultry				
1970	2 07	2 55 ^a	2 55	n a
1975	3 13	3 79 ^a	na	n a
1980	2 90	5 51 ^a	na	2 0
Beef				
1970	4 18	n a	-	na
1975	5 61	0 43	-	na
1980	8 08	2 41	-	60

TABLE 8 21AsiaFeed Conversion Rates (kg of feed per one kg of meat)for Selected Countries1970-80

a Poultry meat and eggs

Grain only

c Commercial production only

Source Coyle 1983 Dyck and Sillers 1986 Chesley 1985 Sicular 1985

	Thailand		Phi	lippines	Indonesia		Malaysia	
Year	Production (000 t)	Net Exports (000 t)						
1960	544	515	1210	14	2460	na	4	-120
1965	1021	804	1380	- 6	2283	5	9	- 53
1970	1938	1371	2005	- 1	2606	282	16	-212
1975	2863	2072	2767	-121	2903	50	14	-275
1976	2675	2388	2843	- 96	2572	- 51	26	-269
1977	1677	1518	2855	-148	3143	1	18	-288
1978	2791	1955	3167	-105	4029	- 5	12	-310
1979	2863	1988	3123	- 35	3605	- 63	8	-436
1980	2988	2175	3110	-250	3994	- 19	8	-430
1981	3449	2549	3290	-253	4509	4	8	-400
1982	3002	2800	3126	-341	3234	-193	9	-683
1983	3552	2630	3134	-528	5087	- 33	20	-775
1984	4226	3117	3439	-182	5288	100	22	-953

TABLE 8 22	Southeast Asia	Trends in Produ	ction and Trade	of Maize	1960-84

Source National production and trade statistics

Taiwan and South Korea together imported less than 2 million tons of coarse grains By 1984 the import level for these three countries stood at 27 6 million tons Domestic production of feedstuffs in these countries declined during the period especially barley in Japan sweet potatoes and barley in South Korea and cassava and sweet potatoes in Taiwan which thereby reinforced the linkage between domestic livestock production and feed grain imports. Decline in domestic production of feedstuffs in these

feed grain imports Decline in domestic production of feedstuffs in these countries was due to the demise of integrated livestock-crop farms and the rising costs of farm labor as a result of industrialization and rural-urban migration

In maize-producing countries however development of the livestock sector has been one of the factors stimulating increases in grain in the Philippines Indonesia Thailand and China production Thus feedgrain production has increased significantly (Table 8 22) but this has not been sufficient to keep up with rising demand except in the case of The Philippines moved from the position of net exporter or minor Thailand net importer of maize to a major net importer in 1971 Indonesia did the some in 1976 and China has significantly increased its imports in the last Finally Thailand has not been able to increase significantly five years its maize exports even through domestic production has increased from 2 3 million tons in 1973 to well over 4 million tons in 1984 In all countries feed demand has increased at a much more rapid pace than domestic production of feedstuffs Significant scope therefore exists in the tropical countries in Southeast Asia to link increasing internal demand to production growth in feedstuffs thereby improving farmer income in principally upland areas

The rapidly rising demand for carbohydrate sources for the growing animal feedstuff industry in East and Southeast Asia thus raises a dual potential for cassava that is exports from Thailand to the large import markets in Japan South Korea and Taiwan and increased domestic utilization in the cassava producing countries As regards the former the quota placed by the EEC on cassava imports has had the secondary affect of shifting Thai surpluses into principally East Asian markets The mechanism by which this has been accomplished has to do with Thailand s internal management of the quota on the one hand and liberalization of tariff barriers on cassava for animal feed by the principal importing countries in East Asia

Since the agreement between Thailand and the EEC restricting cassava flows to Europe is a voluntary export restraint Thailand had to accept the responsibility for managing the quota (as Blyth 1984 has shown voluntary export restraints are the least harmful form of protection from the exporter s view point) Since the agreement which covers the period 1982 to 1986 was not signed till September of 1982 only in 1983 did Thailand begin to effectively limit cassava exports to the EEC During 1983 the Ministry of Commerce in Thailand adopted an export licensing system and attempted several forms of allocating the licenses First the quota was allocated on a quarterly basis to exporters based on historical shares in the export business Then the quota allocation was shifted to a first-come-first-serve system where licenses were granted for the quarter upto the point that the quota for the period was exhausted

Finally by the end of 1983 Thailand had arrived at a workeable system for allocation of the export quota Starting in 1984 the year was divided

Export allocations in a period were based on the into seven periods stocks held by exporters such that those holding higher stocks would be given a higher percentage share of the export quota In addition a bonus system was instituted in which any exports to third countries in the previous period would allow first priority to export allocation in the next period depending on the size of the third country exports The bonus system was established on a 1 1 basis and the ratio was changed to 1 25 1 at the end of 1985 that is a one ton quota allocation for every 1 25 tons exported to third countries However due to the declining stock levels in the bonus ratio was changed back to 1 1 in June of that year mid-1986 The reversal indicates that the Ministry of Commerce recognizes the policy role of the bonus ratio whereby market surpluses can be managed by adjustment in this ratio

The result of this quota allocation system has been the development of a two-tiered price structure at the export point The system has allowed Thailand to appropriate the rents to be accrued in the European market while maintaining a unified domestic price structure The divergence in prices at the export point is due to the situation where cassava prices in Europe are determined by the grain price set under the Common Agricultural Policy and those in third countries are set by the world price for feedgrains As one of the results of the quota has been an increased price spread between Thailand and Europe the Ministry of Commerce has developed its export allocation policy to divert these exporter rents in order to finance exports to third countries As export allocations have been as low as 11% of total stock holdings (Figure 8 6) there is significant incentive for exporters to guarantee their access to the European market by utilizing some of these profits to sell in third countries Thailand has thus taken the logical step of stratifying its market

On the import market side there has been a progressive liberalization of tariff and quota restrictions on cassava in most markets With the recognized shift to dependence on imports to meet their animal feed requirements East Asian countries have progressively liberalized import restrictions on feed components In general liberalization of feed grains especially maize and sorghum precedes that of cassava In Japan and South Korea this has been due to a vestigial desire to protect domestic sweet potato producers and in Taiwan to protect both sweet potato and cassava producers Nevertheless in 1968 Japan reduced its tariffs on cassava In South Korea the liberalization has been imports for feed use to zero Upto 1984 the general tariff for cassava was 40/ much more recent compared to 5% for maize -- cassava chips for alcohol manufacture were imported at a lower duty under a quota system In 1984 cassava tariff rates were reduced to 20/ and in 1985 to 7% which was then equal to the rate on feedgrain imports Taiwan on the other hand has continued to maintain a low tariff rate on maize of 3% with a significantly higher rate Taiwan has been reluctant to liberalize the duty because of for cassava its own cassava producers even though domestic cassava does not go into animal feed concentrates

East Asian markets have easily absorbed the surpluses from Thailand Thai exports to East and Southeast Asian markets increased from 48 thousand tons in 1982 (this was all chip exports to South Korea for alcohol production) to 129 thousand tons in 1983 225 thousand tons in 1984 and

		Destination			
Year	Total Exports (000 t)	EEC (000 t)	East Asian Countries (000 t)		
1980	4973	4811	0		
1981	5954	5883	4		
1982	7426	7331	49		
1983	5094	4964	129		
1984	6201	5867	225		
1985	6616	4708	954		

TABLE 8 23ThailandSize and Distribution of Cassava Pellet
Exports 1980-85

Source Department of Customs Bangkok

Note The voluntary export restraint came into effect October 1982

finally to 954 thousand tons in 1985 (Table 8 23) In 1985 Japan took over 400 thousand tons and South Korea and Taiwan over 200 thousand tons each The potential market for cassava in East Asia is more than even current cassava export levels as long as it is competitively priced with maize East Asia will develop as the secondary or residual market for Thai cassava with Europe having first call on Thai cassava exports upto the quota limit

On the other hand for the cassava-producing countries in Southeast increased cassava production is one of the means for meeting the Asia rapidly rising domestic demand for carbohydrate sources in feed rations Feed concentrate production has been increasing rapidly in (Table 8 20) most countries in Southeast Asia as demand for animal products have increased and technical change has taken place in animal production systems In Malaysia and the Philippines feed component demand has been met to a significant extent by increased maize imports In Thailand increasingly maize production has been diverted to meeting domestic demand while exports have largely stagnated Finally in Indonesia structural change in animal and feed production is just beginning and if Indonesia follows trends in the other countries Indonesia will also become a net Therefore the potential exists to link increasing feedgrain importer domestic demand for feed energy sources to increased cassava production

Realization of this potential depends on cassava being price competitive with other carbohydrate sources in animal feed diets In Asia this is maize supplemented by broken rice when available Cassava is competitive if it enters into the solution of a least cost feed formulation For the period 1982 to 1984 cassava enters into the least cost diet model in Indonesia and the Philippines Cassava comes in and out of the diet in Thailand and does not enter at all in Malaysia To enter the diet cassava in general has to be priced at about 65 to 70° of the price of maize depending on the price of soybean meal Viewed in the longer term this maize-cassava-price ratio has been very variable in Indonesia and Thailand reflecting the disarticulation between the two international markets Ιn Malaysia the trends in this price ratio have been consistently rising Τn Malaysia cassava has progressively gotten more expensive in relation to maize Starting in 1980 cassava began to be periodically uncompetitive and in mid-1982 this trend became relatively permanent In Indonesia on the other hand cassava has become relatively cheaper compared to maize although with significant variability

This analysis reinforces conclusions from the previous chapters In Malaysia in the 1980 s cassava has failed to remain competitive with maize In Thailand cassava will come in and out of the ration depending imports on price relationships for maize and cassava defined in two independent but nevertheless international markets In Indonesia cassava could form a more important component of the as yet nascent feed industry Cassava in some years is extremely competitive with maize and yet cassava has not been utilized in this industry Use in this industry could put a more effective price floor under cassava on Java However since the feed industry has so far relied on imported maize through BULOG the marketing channels there have yet to develop In the Philippines cassava is competitive but an even further step is required of developing cassava processing capacity In general there is sufficient demand in existing domestic markets to absorb

cassava production in these countries Cassava s entry into the growing animal feed market will apart from Thalland depend on increased domestic production

Conclusions

The previous analysis suggests a rather basic question what is a world market for cassava? The world cassava market is something of an odd animal only because it presents the reverse image of the dominant world market for grains The distinctions here are many but a few will suffice in order to characterize the world cassava market First cassava moves as a semi-processed product whereas grains are essentially bulked and shipped being processed in the importing country Processing makes cassava a tradeable gool and unlike other root crops links cassava producing areas to international markets However the processing defines the end market where it will be utilized i e starch human food or animal End use in cassava is defined at or near the production point feed whereas in grains end use is defined near the consumption point The issue is critical in international trade because processed products eg starch or flour in general have higher tariff protection than raw materials Thus a world cassava trade is not defined in the same sense as a world Rather there is a cassava starch trade and a cassava pellet maize trade trade each with their respective world prices

Second government policy plays a very direct role in price formation for cassava in world markets just as in the case of grains However for grains world prices are principally determined by policies in major exporting countries which support the price or incomes of their grain producers In cassava on the other hand prices are principally set by the policies of importing countries There are virtually no policies which directly intervene to support either farm prices for cassava or cassava producer incomes The distinction is important in regards to the standard by which cassava is judged to be price competitive with grains in international markets Cassava competes essentially with grains but the current organization of international trade in cassava and grains results in a situation where they do not compete directly at internationally the common assessment that cassava is not determined prices Thus competitive in international grain markets in something of a red herring because prices are formed within two very distinct policy structures and prices in both cases are not an adequate measure of actual production and transfer costs

Finally the degree of substitution between cassava and grains has measurably increased over the post-war period and much of the growth in world trade in cassava has been based on cassava s direct substitution for grains in the different end markets Cassava s future in world markets does in fact depend on its ability to compete with grains. To date this competition has been determined by grain price policies and tariff structures of importing countries and because of this cassava trade is more vulnerable to policy changes than the international grain trade where prices and volumes are principally set by the grain policies of the exporting countries. Thus while cassava competes on a cost basis in the wider international grain market (Table 7 21) it cannot compete on a price basis. The political economy of international trade in carbohydrate

sources is such that cassava which comes closest to being produced and traded under laissez-faire market principles and perfect competition economic principles and furthermore which is produced solely in developing countries cannot compete in an international grain market where income (and a lesser extent export subsidies and support policies to government-to-government sales) of developed countries are necessary for producing at international prices The future of a world market for cassava is principally a matter of political economy and not of pure economics and the policy structure within which cassava must compete will be set outside the influence of cassava producers themselves

Does cassava have a comparative advantage vis-a-vis grains in international markets? The dominant world market for both grains and cassava in the near future is the animal feed market Cassava would move as pellets competing against maize and sorghum What is striking about current world trade in coarse grains is that tropical countries are net importers with the volume growing over time In the tropics only Thailand has remained a large and consistent exporter of coarse grains in the last Sudan Burma and Zimbabwe have exported smaller amounts decade These exporters essentially trade in their own regional market anad their comparative advantage over the large temperate exporters often rests on transport costs quality (white maize in Africa) and demand for bagged The temperate zone appears to have a significant comparative grain advantage over the tropics in the production and export of maize and Part of this is due to edapho-climatic conditions -- longer day sorghum length longer growing season better soils and reduced disease and pest pressure --- but the primary factors are agricultural research and efficient transport and marketing systems For example the large investments in malze research in the United States since the early 1900's was responsible for a significant rate of growth in maize yields over the post-war period This increased production was principally directed to export markets at declining real prices (Figure 8 3)

The issue then is whether tropical cassava has a comparative advantage against temperate grains and whether this comparative advantage can be further shifted towards cassava through investments in agricultural processing and marketing Cassava is perfectly adapted to research tropical conditions it grows well in acid soild of low nutrient status can withstand periodic drought is relatively resistant to disease and pest attack and is very flexible in its planting and harvesting dates Its productivity under such conditions is unequalled by grain crops in the cassava has a very limited research history with tropics Moreover Compared to temperature grains almost no basic research on the crop research on cassava is in its infancy and to date there has been little impact on cassava productivity from improved technologies Average yields of cassava in exporting countries are far below their potential indicating significant scope to shift relative comparative advantage to cassava ın the same way that tropical palm oil has gained an increased market share over temperate soybean oil in the last two decade

Comparative advantage between grains and cassava (and also between cassava producers) will also depend on processing and marketing costs The development of the cassava sector in Thailand offers something of a model in the development of scale economies in cassava processing assembly and transport If growth in cassava exports are to be based on small farm production there is an argument for basing initial growth on small-scale processing units and achieving scale economies only at critical production volumes Large-scale processing units without the production base are a non-starter or usually result in plantation production Something of an infant industry argument exists for developing an export capacity in cassava that is competitive with the Thai industry where scale economies have already been developed Thailand because of the efficiency of its processing and marketing sector is fully competitive on a cost basis with U S coarse grains

Sustaining the infant industry argument would call for developing a critical production volume based on domestic markets In this lies the real future of a world cassava market since as has been stated tropical countries are major net importers of coarse grains and increased cassava production will be directed to meeting domestic requirements first Anv export surpluses will depend on the growth in domestic demand vis-a-vis the growth in production As has been the case in Asian cassava producing countries apart from Thailand production has not been able to meet rising demand for cassava products In this regard then improved production technology would provide the increases in volumes necessary to meet domestic demand and should surpluses develop would result in the cost reductions that allow the country to compete in international markets The international market for cassava products will continue to be ruled by trade policies technical change and shifting comparative advantage

IX A COMPARATIVE ANALYSIS OF CASSAVA PRODUCTION AND UTILIZATION IN TROPICAL ASIA

Cassava was probably first introduced into Asia during the Spanish occupation of the Philippines According to Rumphius cassava was being grown on Ambon one of the outer islands of Indonesia by 1653 (Nelson 1982) Cassava was introduced from Java to Mauritius in 1740 and from Mauritius to Sri Lanka in 1796 (Greenstreet and Lambourne 1933) Certainly by the beginning of the 19th century cassava had been effectively distributed throughout tropical Asia Expansion of cassava production in the 19th century was hastened by colonial administrations first by the initiation of a cassava processing and export industry in Malaya in the 1850 s followed by the Dutch in Java and second by the promotion of cassava as a famine reserve particularly by the Dutch in Java and the British in Southern India

Of the new world food crops introduced into tropical Asia cassava has become the most important on a production basis Characteristic of the crop the development of cassava has responded to different forces in each country as is particularly reflected in the utilization patterns for the different countries in Table 1 Cassava is an important food source only in India and Indonesia an important export crop in Thailand and an important source of starch in all countries Just as cassava has filled a particular market niche in each country the crop also occupies a different production niche in each country that is in terms of the type of land resource which has been exploited and the type of cropping system which has evolved

The crop's peculiar adaptability to upland conditions particularly where there are either soil or moisture constraints and its multiple end-market uses give cassava a certain malleability in adapting to quite different demand and production conditions By utilizing a comparative approach this paper proposes to bring out the diversity and similarities in systems of cassava production and utilization in tropical Asian countries From this conclusions will be drawn about potential for and constraints on further development of the crop in the region

An issue dominating this discussion will be whether principal constraints have their origin on the production or the demand side or vice versa whether growth has been production or demand led This view departs substantially from the more orthodox perspective in Asia - which is dominated by the case of rice - which suggests that the restriction on increased food supplies is lack of sufficient factors of production especially land and the solution is therefore improved production technology and land productivity The question for cassava on the other hand is whether improved technology is a sufficient stimulus for the expansion of production or whether this as well needs to be integrated with market development

A Comparative Analysis of Production

Cassava is essentially an upland crop in tropical Asia Only in rare cases when water is limiting such as occurs with well-fed systems in Tamil Nadu in India or during the secondary season on sawah soils of Java is cassava planted in irrigated areas The agro-climatic conditions under

······································			Domestic Utilization				
			Human Con	sumption		Anımal	
Country	Production (000t)	Export (000t)	Fresh (000t)	Dried (000t)	Starch (000t)	Feed (000t)	Waste (000t)
India (1977)	5688	22	2610	619	178/	_	653
Kerala	4189	22	2437	619	499	_	503
Tamıl Nadu	1310	-	126	-	1162	-	131
Indonesia (1976)	9686	801	3444	2212	2747	-	482
Java	6317	253	1815	1760	2134	-	355
Off-Java	3369	548	1629	452	613	-	127
Malaysıa (1977)	432	66	-	-	302	43	21
Philippines (1975)	450	-	223	37	92	32	65
Thailand (1977)	13 554	9 996	-	-	745	16	2797

Table 1 Production and Utilization of Cassava in Principal Producing Countries

Source Unnevehi 1982 Titapiwatanakun 1979 CIAT data files

which cassava is grown in the upland areas of Asia vary enormously but the defining factor in major cassava producing zones is the existence of a constraint on plant growth In areas such as Kerala India the off-islands of Indonesia or the eroded slopes of eastern and central Java the limiting factor is soils In the northeast of Thailand Tamil Nadu in India or Madura island in Indonesia the problem is moisture stress Cassava produces high carbohydrate yields under such conditions compared to other crop alternatives Cassava has thus tended to be concentrated in those areas where competition with other crops is relatively insignificant

This however is too broad a generalization for cassava competes quite effectively at both the extensive and intensive margin (Table 2) Cassava is grown in upland areas where farm size is a major constraint on farmers crop production such as Kerala and Java Cassava is selected because of its high yields and yield responsiveness even where there are agro-climatic constraints Exploitation of the yield potential of cassava is clearest in the irrigated area of Tamil Nadu Here farm-level yields commonly exceed 50 t/ha

On the other hand cassava is well adapted to more land extensive production systems such as occur in frontier areas Cassava has been a major crop component in the transmigration schemes in Indonesia and where infrastructure has developed cassava has expanded rapidly such as the Lampung area an Sumatra The same applies in the Mindinao area of the Philippines where cassava has become a major crop In such areas infrastructure development is a principal stimulus in moving cassava from essentially subsistence status to a major cash crop

In Malaysia as compared to other Asian countries cassava s role in the agricultural economy is defined more by access to land than by land quality Malaysia is by Asian standards a land surplus country and much of the unexploited land remains under control of the federal government Cassava is the crop of first choice for squatters on federal land and apparently much of the cassava grown in Malaysia is grown by squatters In the major producing state of Perak a 1976 estimate indicates that 3 892 ha of cassava were planted legally while 10 240 ha were planted illegally (Hohnholz 1980)

Given cassava s demonstrated ability to exploit the heterogenity of the land resource in Asia a major factor determining the production potential of cassava is its ability to compete with other crops for land in the upland areas An important point emerges on the production side cassava rarely competes for land with the same crops with which it competes on the demand side That is cassava rarely competes with food or feed grains There is some competition with maize in the central plain of Thailand and to a more limited extent in Mindinao in the Philippines but the one area where maize and upland rice overlap with cassava is on Java and Lampung and here the three are often found in an intercropping system In areas where rainfall is limiting such as the northeast of Thailand or the unirrigated areas of Tamil Nadu cassava has no effective competing crop

In most of the other cassava producing areas cassava competes principally with tree crops coconuts in the Philippines coconuts and rubber in Kerala oil palm and rubber in Malaysia and the off-islands of

	······	Type of Land Constraint	
0	Limited	Marginal Agro-Climatic	
Country	Farm Size	Conditions	Frontier Area
China	Guangdong	Guangx1	
India	Kerala	Tamıl Nadu	
	Tamıl Nadu	(pon-irrigated)	
	(irrigated)		
Indonesia	Java	Java	Transmigration schemes
	(level sawah)	(eroded hillside)	
Malays1a		P_at soils	Land development zones
Philippines	Visayas		Mind_nao
Thailand	Central Plain	Northeast	Northern region

Table 2 Type of Land Constraint in the Principal Cassava Production Zones

Indonesia and rubber in the southern part of Thailand Southeast Asia has an international comparative advantage in these crops over 80% 85% and 90% of world exports of rubber coconut oil and palm oil respectively originate from the region Expansion possibilities in these crops are limited by the growth potential of world markets and moreover these are markets in which close substitutes exist Cassava s ability to compete with tree crops for land labor and capital in these areas is an open question but it will essentially depend on the relative importance given to expanding export markets versus meeting domestic demand for carbohydrate sources

While it is the land issue that largely determines where cassava is grown it is relative endowments of land to labor that determines how cassava is grown that is in what type of cropping system Cassava-based cropping systems vary substantially across Asia (Table 3) and the labour intensity of these systems is fairly consistent with the land/labor ratio in each country (Table 4) In the countries with the highest land/labor ratios Malaysia and Thailand tractor services for land preparation are widely used in cassava production systems In the Philippines animal traction is common while in Indonesia and Kerala land is principally prepared by hand A similar trend is found in weeding intensity and the propensity to achieve a higher land productivity through intercropping and fertilizer application

One common theme that does run across cassava cropping systems in Asia is the low use of chemical fertilizers (Table 3) Even in Kerala and Java chemical fertilizer application to cassava is low despite the fact that application levels on other crops particularly rice is very high Toa significant extent in Indonesia and India farmers compensate for this by applying organic manures and wood ash In India what green manure that remains in the field is incorporated into the soil below the planted stake Although many published fertilizer experiments have shown a yield response of cassava to fertilizer application the fact remains that few farmers in significant utilize chemical fertilizer quantities Α better understanding of the fertilizer response issue at the farm-level is needed but it does appear to offer one potential avenue for significant yield gains

These differences in cropping systems lead to significant differences in labor input per hectare production costs and yields across Asian cassava production zones (Table 5) The largest cost component in cassava production is consistently labor Differences between countries in total per hectare labor costs are substantial However once differences in yields are taken into account there is a significantly reduced range of variable production costs per ton Expressed on a dried equivalent basis - these production costs must be seem as low compared to per ton production costs of grains

 $[\]frac{1}{}$ As a gross approximation 2 5 t of fresh roots produce 1 t of dried cassava expressed on a 147 moisture basis This will obviously vary depending on the dry matter content of the roots

	Thailand	Malaysia	Indonesia	Philippines	Ind	1.a
Characteristic	Northeast	Perak	Java	Mindinao	Kerala	Tamil Nadu
Principal Power Source	Tractor	Tractor	Manual	Bullock	Manual	Bullock
Intercropping	Monoculture	Monoculture	Maize and upland rice principal intercrops	Monoculture	Peanut recent intercrop	Monoculture
Labor Input foi Weeding (man days/ha)	37 6	13 3	hıgh	12 8	hıgh	96 7
Fertilizer Use						
- Organic (t/ha)	-	-	0 to 8 6	none	high	18 5
- Inorganic (kg/ha)	96	198	21 7	none	19	200
Seasonality in Planting	50% planted April-June	slight	757 planted Nov-Jan	Moderate	60-65/ planted Aprıl-June	Major portic planted Jan-Mar
- Average Yields (t/ha)	13 8	27 2	97	47	13 6	24 5
- / Subsistence Consumption	none	none	27/	17/	60%	neg

Table 3 Characteristics of Cassva Cropping Systems in Major Production Zones

۲

Source Thailand Ministry of Agriculture and Cooperatives 1982 Tunku Yahya 1979 Roche 1982 Mejia et al 1979 Uthamalingam 1980

IX - 4 -

However it is probably yield rather than per hectare production costs that is the principal variable in the determination of costs per ton Cassava as compared to the grain crops has a potentially high yield variance Yields as low a 2 t/ha are not uncommon in many parts of the Philippines while farm yields reaching as high as 80 t/ha have been recorded in Tamil Nadu India This very large yield potential has always been the hallmark of the crop and it is in Asia that this yield potential has been most exploited Compared to Africa or Latin America yields in Asia are high Part of this is due to the significantly lower disease and insect pressure since Asia is outside cassava s center of origin The other factor is the more intensive cassava cropping systems found in Asia

The other basic characteristics of the crop however is it adaptation Yield potential must therefore to marginal growing conditions be defined in terms of agro-climatic conditions Because of the differences in agro-climatic conditions of the major production regions and in cropping systems between these regions there is a large variation in yield levels within tropical Asia (Table 6) While general causes for the differences in yield between regions can be postulated there has been no systematic has specifically related differences in agro-climatic work which conditions input levels varieties and management practices to variation in yield levels 2 Without this information it is very difficult to assess the principal constraints on cassava yields and in turn the potential for increasing cassava productivity The potential yield gains from new technology and in large measure the definition of that technology still remain rather amorphous Nevertheless the range of yields suggested in Table 6 are at least suggestive of substantial scope for yield improvement in many countries

A Comparative Analysis of Consumption

The food economies of tropical Asia are dominated by rice any other starchy staple is only of secondary importance in the regional diet Within this context cassava has achieved a significant role in the food economies of Indonesia and Kerala and only maize is as significant a calorie source in tropical Asia The impetus for the early expansion of the cassava crop in Kerala the Philippines and Indonesia was to supplement inadequate supplies of rice and it was in land-scarce Kerala and Java that cassava production expanded most significantly In Thailand and Malaysia on the other hand the incentive for production expansion came from non-food markets

The locus of cassava consumption in Indonesia and Kerala is in the rural sector and among the lower income strata Moreover because cassava

^{2/} The research by Roche (1982) on cassava cropping systems on Java is the one exception Apart from age at harvest fertilizer and labor input the other explanatory variables were regional or land system dummies

Courtry	Land-Labor Ratio 1/ (Fa/person)	Average Farm Size (ha/farm)
India (Kerala)	0 12	0 49 (1971)
Indonesia	0 2?	1 05 (1963)
Java	N A	0 4 (1°7)
Malaysıa	0 65	2 19 ^{2/} (1970)
Philippines	0 44	3 59 (1960)
Thailand	0 51	3 72 (1978)

Tabl≏ 4	Land-labor	Ratios	and	Average	ŀarm	Sıze	for	Varıou	Asıan
	Countries								

 $\frac{1}{2}$ Arable land and land in permanent crops divided by rural population 1980

2/ Does not include estates which make up 31/ of cultivated area

Source FAO 1981 agricultural censuses of different countries

is very much a secondary staple in the food economy of these countries it preferred significantly less than rice the 15 in diet These characteristics to a large extent define cassava s role in these food economies as a cheap calorie source which supplements shortfalls in the availability of rice whether due to insufficient supplies or restricted purchasing power Cassava has thus come to play a significant role in the calorie nutrition of that population most at risk in the region (Figure 1) While food policy in these countries will still have rice as its central component cassava can add a certain flexibility to these rice-based policies Unfortunately it is rare that policies on secondary staples are integrated with those on rice in developing an overall food and nutrition policy

The role of cassava in nutrition planning has been analyzed most rigorously in Indonesia (Dixon 1982 Timmer and Alderman 1979 Timmer 1980) Cassava's low cost relative to rice the very skewed distribution of consumption toward the low income strata the existence among the poor of calorie intake well below recommended standards and among the lowest income strata the significantly positive income elasticity for cassava (Dixon 1982) create a situation where increased cassava production and lower prices will impact exclusively on the poor consumer

Overall inelasticity in food markets while providing substantial benefits to consumers when improved technology is introduced does not provide much scope for increasing farm incomes Cassava is a cash crop in Asia Even in Indonesia and India where there is some subsistence food consumption the major portion of the cassava moves into market channels Where cassava production has expanded rapidly in the region this expansion has been associated with dynamic markets Thus if cassava is to play a role in food policy there must be a means of maintaining incentives to Cassava s role in generating increases in farmer incomes is producers therefore associated with markets other than traditional food markets Where traditional food markets are important development of these alternative markets provides something of a price floor to sustain farmer incomes

The economies of Southeast Asia have been changing rapidly in the last two decades (Table 7) Industrialization rapidly rising income and significant rates of urbanization have created significant changes in domestic demand for food Food demand within the region is being driven principally by changes occurring outsides the agricultural sector yet it is this sector which must contin e to generate both the bulk of employment in the economy and continued increases in marketable surpluses Increasing demand in the quantity and variety of food products can be a stimulus to the agricultural sector or can put unwanted pressure on internal food prices-- and thus affect the nutrition levels of the poor-- and/or food This situation is potentially aggravated by the winding down of imports the production gains achieved by the dwarf rice varieties and by the significant portion of resources devoted to export tree crops

One of the dominant trends in Asıan food economies is the rising demand for livestock products and the derived demand for carbohydrate and protein sources for concentrate feeds (Table 8) This growth in demand for livestock products has been most striking in the poultry sector that is

Country Location Period	Irdonesia Gunung Kidul 1979/80	Indonesia Kediri 1979/80	Thailand Cholburi 1977/78	Thailand Nakornrajsima 1977/78	India Salem 1978/79	Philippines Central Visayas 1976/77	Malaysia Perak 1977/78
Labor Input (m d /ha)	345 8	237 2	74 8	67 2	138 5	65 0	62 2
Land Costs (US\$/ha)	0	233 7	28 9	74 8	121 3	$46 \ 4 \ \frac{2}{2}$	17 3
Variable Cost (US\$/hے)							
Labor	97 8	270	76 2	64 0	90 9	50 1	116 4
Land Preparation	0	106 7	59 2	33 5	13 4	5 1	38 9
Fertilizer	0	114 9	16 6	0	59 8	0	25 9
Pesticides	0	0	ν7	0	0	0	12 1 <u>3</u> /
Seed	26	48	66	19	0	0	35
Total	100 4	453 4	171 3	99 4	164 1	55 2	196 8
Yıeld	2 6	17 5	10 9	13 7	10 7	5 5	27 2
Variable Co ts (US\$/ton)	38 6	25 9	15 7	73	15 3	10 0	72

Table 5 Labor Use and Cost Structure in Cassava Production Systems $\frac{1}{}$

 $\underline{1}$ / Domestic currency converted to US dollars at existing exchange rate

2/ Share tenancy - 33/ of gross value

3/ Herbicides

SOURCE Roche 1982 Tinprapha 1979 Uthamalirgam 1981 Mejia et al 1979 Tunku Yahaya 1979

for meat and eggs The poultry and feed concentrate sector has developed rapidly over the last decade in the cassava producing countries of Thailand Philippines and Malaysia and in the non-producing countries of Taiwan Japan and the Republic of Korea The sector is only in a very formative stage in Indonesia However per capita consumption levels remain low and FAO (1983) anticipates annual growth rates to the year 2000 on the order of 8 8 and 6 3% for poultry meat and eggs in the Far East

Maize is universally the principal feedgrain used in the feed concentrate industry in the region and only Thailand Philippines and Indonesia are significant producers of which only Thailand is in a net export position Without a doubt Southeast Asia will have a continuing deficit in production versus consumption of teedgrains However at present only very insignificant amounts of cassava enter into animal feed rations in the region At around 15 thousand tons Malaysia is apparently the largest utilizer of cassava for feed concentrates A large and growing domestic market thus remains unexploited in most countries

After direct food use starch is by far the larges form of domestic utilization of cassava in the region As in the case of livestock products consumption levels of starch have increased rapidly in most countries in the last decade (Table 9) In countries such as Indonesia and Malaysia and regions such as Tamil Nadu India and Mindinao Philippines starch processing dominates the market for roots "hese similarities contrast with significant heterogenity across countries in the end market for cassava starch competition with other starch sources principally maize and the scale of processing technology within the starch industry These latter factors determine to a large extent the future growth potential for cassava starch in each of the countries

The other major cassava market is the export market exports are dominated by chips/pellets although there is a significant volume of cassava starch that is exported as well While all of the major cassava producing countries in the region have exported cassava products in the recent past only in Thailand is production principally directed to export In all other countries the export market is minor when compared markets India and China have been intermittent exporters to the domestic market while Indonesia has been a consistent exporter but with large fluctuations in quantities Malaysia has been a consistent but declining exporter For these latter countries the export market serves as something of a surplus vent which usually is operational only at relatively high world market prices This was particularly the case in 1979-80 and demonstrates the role that the export market can play in setting a price floor under domestic markets even though at historically low to moderate world price levels domestic prices in most countries make cassava exports uncompetitive

A multiple market structure has developed for cassava in most countries in the region with each country having developed its own particular utilization patterns. Yet as has been noted significant untapped potential exists for cassava in undeveloped markets such as the domestic feed concentrate markets. Other markets which have been unmentioned are the composite flour market especially where the wheat flour is used principally in noodles and in suga -importing countries

	National	Statistics	Production Survey		
Country/Region	Year	Yıeld (t/ha)	Year	Yield (t/ha)	
India	1978-79	16 /			
Kerala Tamıl Nadu	1978-79 1978-79	14 6 31 2	1978-79	N A 13 6 and 23 0 ¹	
Malaysıa Perak	1978	17 4 N A	1978	27 2	
Indonesia	1977-79	12 9			
West Java Central Java South-Central Java East Java	1977-79 1977-79 1977-79 1977-79 1977-79	10-12 9-11 7-9 10-11	1979-80 1979-80 1979-80 1979-80 1979-80	6-20 5-12 2-10 10-40	
Philippines	1977-79	10 3			
Central Luzon Bıcol Central Vısayas Eastern Vısayas Western Mındınao Northern Mındınao	1977-79 1977-79 1977-79 1977-79 1977-79 1977-79 1977-79	2 4 9 6 3 5 4 2 14 7 4 6	1977-79 1977-79 1977-79 1977-79 1977-79 1977-79	5 8 2 5 5 5 2 4 5 4 4 0	
Thailand	1980-81	13 1			
North Central Northeast	1980-81 1980-81 1980-81	17 0 15 5 13 3	1980-81 1980-81 1980-81	14 2 15 1 13 8	

Table 6 Comparative Yields Derived from National Statistics and Production Surveys

Source Uthamalingam 1980 Tunku Yahaya 1979 Roche 1982 Mejia et al 1979 Ministry of Agriculture and Cooperatives 1982 and national statistical sources

¹ Non-1~rigated and irrigated conditions

such as Indonesia high fructose syrups A natural question is what has been constraining the development of these alternatives markets and in turn whether improved production technology could be a motivating factor in their development At the heart of this issue is the original question of whether it is production or demand that is constraining or generating further development of the crop and to answer this question the issue of price formation must first be analyzed

Marketing and Price Formation

In a multi-market situation it is essentially price which allocates the cassava roots between the different end uses It is axiomatic that the price must be able on the one hand to cover the farmer s costs of production and on the other hand to compete with substitutes in the Forces on the supply side such as increasing input or various markets factor costs or the advent of more profitable crops may drive the production cost of cassava out of line with the market price of Vice versa forces on the demand side substitutes such as inelastic output markets or falling price of substitutes may drive the market price out of line with production costs at least for more high cost producers At issue in this section then is delineation of the principal factors determining cassava price in the different countries and of the mechanism influencing the allocation of cassava between different end uses

The cassava products in the different cassava markets tend to compete with different substitutes This sets up something of a hierarchy of markets in which cassava in some markets can be competitive at higher prices than in others Thus in Kerala India the fresh food market is the principal demand-side factor in price formation Since there are severe supply-side constraints on expanding cassava production cassava prices set in the food market tend to be higher than are profitable for the operation of the starch industry which absorbs seasonal surpluses and roots of inferior quality In the Philippines on the other hand the fresh food market usually sets a higher root price than the starch market but because the size of the food market is so limited the starch factories tend to be the major market force in their supply area However expansion in this starch market has been apparently constrained by competition with maize There is potential for expanding cassava area and production for starch the animal feed market but yields need to be higher than their current average of around 5 t/ha and therefore costs of production lower

determining cassava prices are very different Factors between countries (Table 10) and the constraints on further development of the crop also vary markedly In Thailand and the Philippines the constraint is on the demand side while in India Malaysia and Java the constraint is very much a production constraint Where cassava production has expanded rapidly in Asia such as Thailand and the Lampung area of Indonesia there has been the convergence of access to a very expansive market and underutilized land to support area expansion In the other areas apart from the possible case of Malaysia growth in production will depend on increasing yields whether to make cassava competitive in alternative markets or as a means of substituting for land where land availability is very limited

	GNP Per Capita		Percent of GNP of Industrial Origin		1980 / of Population	Growth in Urban Population	
Country	1980 Level (\$US)	Growth 1960-80 (/)	1960 (/)	1980 (/)	1n Urban Sector (7)	1960–70 (/)	1970–80 (%)
India	240	14	20	26	22	33	33
Indonesia	430	4 0	14	42	20	36	4 0
Malay 1a	1620	4 3	18	37	29	35	33
Philippines	690	28	28	37	36	38	36
Thailand	670	47	19	29	14	3 5	34

Table 7 Selected Economic Indicators of Principal Cassava Producing Countries

Source World Bank 1981

1

For a crop where in most countries prices are so dependent on forces within domestic markets and where there is such a diversity in market structure the expectation would be that cassava prices would very markedly across countries Evaluated at current exchange rates farm-level prices are consistently the lowest in Thailand and are the highest either in India or Indonesia (Table 11) -- although the latter are probably inflated because the series is based on village-level prices Clearly however the competitive position of Thailand in the world market is firmly established while the other countries remain either minor or intermittent exporters it is only in Thailand that there has been any clear trend in Moreover real farm-level prices over the last decade and this has been a downward trend which is consistent with the very rapid expansion in production In the other countries farm prices have been relatively stable which would appear to imply a relatively stable supply-demand situation The case in Indonesia is more complex than that but certainly for the other countries there has been little incentive to develop lower-priced markets

Different end markets and different forms of marketing cassava raise the second issue of how price allocates the cassava roots and dried products between the different markets As it has been noted only a relatively small part of cassava production remains on the farm for subsistence consumption and this occurs only in Indonesia and Kerala the greater portion moves into marketing channels Farmers market the major part of their production as fresh roots and it is generally the assembly agent who decides on the end market to which the cassava will go However farmers also have the option of producing gaplek-- by peeling quartering and drying the root This practice predominates in Indonesia and is utilized to a much more limited extent in Kerala and the southern region of the Philippines Gaplek plays a fundamental role in Indonesia in integrating cassava markets across different forms space and time

Various demands are made on a cassava marketing system due to the bulkiness and extreme perishability of the roots the different end uses and forms and in most countries the seasonality of production Seasonality is a problem in only the major cassava producing countries of Thailand Indonesia and India In Thailand about 50% of cassava area is planted in the April-June period in Kerala 60-657 is planted in the same three month period and in Java 75% of area 1s planted in the November-January period In Thailand the seasonality problem is overcome by processing all the cassava roots and by the availability of a large storage capacity In India and Indonesia where consumption of fresh roots as food is important there is a definite seasonality in consumption as can be seen for the case of Indonesia in Table 12 In Indonesia and to a much lesser in India gaplek although a less preferred food serves to extend the consumption period thus resolving the seasonality problem not by adjustments in the production system but through adjustments in marketing processing and consumption form

Gaplek provides the storage capability in cassava markets and thus tends to integrate them through time Gaplek also permits economical transport of cassava and thus tends to integrate cassava markets across space as well That is consumption points for fresh roots normally draw on only a very small supply area due to the high transport costs and the perishability constraint This situation would tend to create relatively

Country	Feed Concentrate Production-1980 (000t)	Growth in Concentrate Production 1970-80 (/)	Coarse Grain Imports 1980 (000t)	Growth in Coarse Grain Imports 1970-80 (/)
Cassava Froducers				
Thailand	1350	28 6	- 2 175	-
Philippines	936 ¹	$12 9^2$	351	27 5
Malaysıa	549	$12 2^{3}$	431	74
Indones1a	410	N A	34	3 5
Non-Cassava Producers				
Republic of Korea	4775 ⁴	5 2 ⁵	2 364	27 2
Taiwan	N A	N A	3 618	N A
Hong Kong	N A	N A	270	4 4
Japan	19 876 ⁶	N A	17 165	57
Singapore	N A	N A	552	14 0
¹ 1979 ² 1970-79	³ 1972–80 ⁴ 198	1 ⁵ 972-81 ⁶ 1977		

Table 8 Production of Feed Concentrates in Relation to coarse Grain Imports

Source FAO 1975 and 1982 CIAT data files

independent markets in which prices vary significantly between areas These would tend to occur in countries in which food markets for fresh cassava dominate that is the Philippines and Kerala (Table 13) Widely traded commodities such as starch and gaplek where arbitraging is possible have more of a national market where prices are determined more by aggregate rather than local supply and demand situations Because farmers and/or assembly agents have the option of supplying roots to these markets gaplek and starch prices will tend to integrate fresh root markets within the economy as occurs in Thailand and Indonesia (Unnevehr 1982)

space and time is critical in Price integration across markets fostering growth in cassava production and utilization Integration provides incentives for cassava to be grown in areas where production is most efficient it maintains competitive price formation and it provides the necessary information implicit in nationally determined market prices to motivate investment in processing capacity for which there is greatest Fragmented markets in a crop such as cassava market potential can significantly inhibit wide-spread investment in processing plants by making cassava appear too costly in price terms in relation to its actual production cost This is certainly one factor in explaining the lack of growth in Philippine cassava production compared to that in Thailand and Indonesia

Finally an observation arises on the role that gaplek can play in price integration between different and markets Gaplek is in many ways a If properly dried it can be stored which provides food cassava grain supplies out of the harvest season Because it is peeled it can be ground for composite flour production or go into domestic or export animal feed Starch plants in India and the Philippines occasionally use markets gaplek for starch processing especially for glucose production when fresh root supplies are limited Apart from kokonte in Ghana and farinha de raspa in Brazil dried cassava chips of this quality are only produced in Asia almost solely in Indonesia Interestingly Indonesia has the most diverse end markets for cassava and is probably the most fully integrated cassava market where the bulk of production is for domestic use Motivating a gaplek market of a certain minimum critical size would appear to give the cassava economy a large degree of flexibility in responding to changing economic and market conditions

Cassava s Future Role in Asia

Beyond the central role that rice plays in the food economies of tropical Asian countries the agricultural sectors of these countries are Cassava production and utilization has adapted itself to very diverse As is apparent in the previous analysis this diversity it is the differences rather than the similarities that are most striking in comparing cassava sectors across countries Cassava has developed within different types of land constraints and multiple markets have evolved around the crop with the particular market structure reflecting the overall development of the economy The rate of development of most of these economies has accelerated over the past two decades creating a potential demand for further broadening of cassava production and utilization

Country	Cassava Starch Production 1980 (000 t)	Growth in Cassava Starch Disappearance 1970-80 (%)	Growth in Total Starch Disappearance 1970-80 (/)	Two Largest Final End-Uses	Modal Scale of Processing
India	415	N A	N A	Tapioca Pearl Cloth Sizing	Medium
Indonesia	662	89 ¹	89 ¹	Krupuk Other food Indus- tries	Medium to Large Large
Malaysıa	50	99 ²	99 ²	N A	Large
Philippines	17 3	- 2 9 ⁴	79 ⁴	Glucose Monosodium Glutamate	Large
Thailand	416	77	77	Food Industry Monosodium Glutamate	Large
1 ₁₉₇₄₋₇₉	² 1972-80 ³	1979 ⁴ 1970–79			<u> </u>

Table 9 Characteristics of the Cassava Starch Industry in the Principal Producing Countries

Source Nelson 1982 CIAT data files

Rapid development of the crop in most cases will depend on increases in yields either to relieve land constraints or to be competitive in these emerging markets It is natural in an Asian context where expansion of crop area is frequently constrained that there should be a bias toward crops with very high yield potential more so when this is high yielding ability under upland conditions Very high productivity is already being achieved in certain areas but in general average yields remain below the What still remains largely undefined is the known potential of the crop means to achieving this high yield capability across tropical Asia Obviously the type of technology necessary will vary requiring a continued commitment of research resources to maintain the cassava research capacity in Asia that has emerged over the last two decades since the founding of the Indian program in 1963 Governments however require some justification for research investment which follows from the role cassava could play in the policy arena

Cassava s adaptation to a wide range of upland conditions and its multiple-use characteristics give cassava a substantial flexibility in As has been stressed cassava s role in each agricultural policy country s agricultural economy will be different (Table 14) but in each case cassava can be a basis for meeting multiple policy objectives In India and Indonesia cassava can play a clear role in nutrition policy In all countries even in India and Indonesia cassava because of its multiple-market potential can play a major role as a source of income generation for small-scale farmers in upland areas A further advantage in satisfying growing domestic markets by increased domestic production is the positive impact on balance of payments Further market diversification of will require both improved production technology and cassava however appropriate processing technology together with in some countries better integrated markets

The Green Revolution that swept the continent in the late-sixties and the seventies was limited to the irrigated areas The next major challenge is to raise crop productivity and farmer incomes in the upland areas With probably limited prospects for further major growth in world demand for rubber palm oil and coconut oil with growing domestic markets that could absorb cassava products and with a growing regional market for carbohydrate sources for livestock cassava is a major if not the major crop in a position to foster income growth in the upland areas of tropical Asia

Couty	Mj Mkt	P pl Se dary M kt	Pr plC fAlt	tin Dvlpmnt n ti Makt	Domnt ntraint n Expni of Prdut n
			S pply fd	D mad d	d Ut li t
Id	Stchand Fod FhRot	Fdgplk	Java Frm Si Costrint Off Jva Cmptit with T Crp	J Existing Gowth Mak t Off Java Infrititu	Jaa Spply Sd Off J Dmand Sid
Id					
κı	FodFhRt	St ch	Frm S C st nt	HghP snFdM kt	Supply s d
Tam 1 N d	Sta h	FdFrshR t	FmS Cnt nt	ExtngG wth Makt	S pply d
Th l d	Exp t P 11 t	Exp t Strh	P Dist t Rltv Ma	t Gan Ceatdby ECExpt kt	D mand s d
МІуі	Star h	Animal F d	Lnd U Plicy	Comptton with Imptd Maie	S pply 1d
Ph 1 pp					
Midia	St h	FdFhRt	L k f Intg tio f App T hr	pt Podtinnd Prc 1g hlgy	D mand 1d
R t f C try	FdFhRt	St h	LkfIntgt fApp Th	ptPdtionndPng 1gy	D madid

The logic state of the second state of the sec
ም ኑነ	11	r _ 1	1 n	£ 0	'n			(1075	100)		~	n	1 10 0-11	-	1070 01
1 01	11	L LW T	1 P	E G	ĸ	E.	K T	(13/2	מ ע נוטו	C1	U .	y Pr		P	19/0 01

	I d l		Ic	2	M	1 y 1 3	Ph 1 pp1	4	Th	11 d 5
Y	RIP	Doll P1	R 1 P	D 11 P	RIPi	Doll P 1	RalP	Doll P1	R I P	D 11 P
<u></u>	(Rp /t)	(US\$/t)	(R.p. /kg)	(US\$/t)	(M\$/t)	(US\$/t)	(P /kg)	(US\$/t)	(B ht/kg)	(US\$/t)
1970	N A	NA	19 7	22	N A	NA	25	20	79	24
1971	391	29	17 7	19	83	20	27	23	82	25
1972	406	31	21 5	23	56	15	25	22	72	23
1973	446	40	28 3	40	65	22	30	31	38	14
1974	423	47	16 1	32	79	32	31	42	30	14
1975	400	48	17 6	42	78	30	29	40	40	19
1976	449	44	23 4	67	73	29	26	37	44	22
1977	376	37	21 9	70	76	33	26	40	43	23
1978	353	39	19 9	64	58	28	26	43	29	18
1979	411	49	19 4	53	67	36	25	50	56	36
1980	N A	N A	20 3	67	89	51	25	58	47	37
1981	N A	N A	19 7	73	72	43	N A	N A	30	25
	<u> </u>								· · <u>·</u> · · <u>-</u> ·	
¹ K 1	Fra-1 1	2 J di Ma	ad R 1 V	llag l l	³ Prak Fat	уВу1дРі	4 Age I	hilppn F	rm-lvl	
1 _N	gtd d	gtdc d	t n							

S CIAT D t F 1

_

	January- April	May- August	September- December	Annual Average
Consumption (kg/capita)				
Java-Rural				
Fresh Cassava	33 7	25	15 8	24 9
Caplek	24 7	31 6	33 9	30 1
Indonesia				
Fresh Cassava	33 3	27 0	17 0	25 7
Gaplek	19 7	25 3	23 0	22 6
Prices (Rupiah/1000 calorio	es)			
Indonesia				
Fresh Cassava	21	24	26	23
Gaplek	14	13	20	16

Table 12 Indonesia Seasonality in Consumption and Prices of Fresh Cassava and Gaplek 1976

Source Dixon 1979

Kerala	Retail Price	Philippines	Retail Price
(District)	(Rupee/kg)	(Region)	(Pesos/kg)
Trıvandrum	0 50	Ilocos	1 29
Quilon	0 48	Cagayan Valley	1 34
Alleppey	0 59	Central Luzon	1 11
Kottayam	0 63	Southern Tagalog	1 01
Idukkı	0 70	Bicol	1 07
Ernakulum	0 60	Western Visayas	1 53
Trichur	0 51	Central Visayas	1 15
Palghat	0 47	Eastern Visayas	0 95
Malappuram	0 56	Western Mindinao	1 18
Kozhikode	0 62	Northern Mindinao	1 05
Cannanore	0 87	Southern Mindinao	1 30
		Central Mindinao	1 00

Table 13Retail Prices of Cassava Fresh Roots in Different Market AreasKerala and the
Philippines 1979

Source CIAT data files

Table 14	Potential	Role o	f Cassava	ın	Agricultural	Policies	of	Selected	Asian	Countries
----------	-----------	--------	-----------	----	--------------	----------	----	----------	-------	-----------

		Contribution according to country									
Agri	cultural policy objectives	Indonesia	India	Thailand	Philippines	Malaysia					
Food	and nutrition policies										
а	Flexibility in rice policies	x	Х		Ĵ						
Ь	Nutrition of the poor	X (gaplek)	X (fresh)		I						
Farm	income and land use										
а	Higher small-farm income in upland areas	X	x	x	x	x					
b	Exploitation of frontier areas	X (except Java)		X (1n the NE)	X (ın Mındınao)	X (peat soils)					
Balano	ce of payments										
а	Increased export earning			Х							
Ь	Import substitution	X (sugar)			X (feed grains)	X (feed grains					

In Indonesia there exists a price policy on rice and in India rice comes under a food rationing system

1

