

Delineating Effective Riparian Buffer Widths for Water Quality Protection

Glenn G. Hyman.

1997

Consultative Group on International Agricultural Research

Compilation and Editing

Nickolai Denisov Claudia Heberlein Lorant Czaran Otto Simonett

Graphical Production

Petter Sevaldsen

© 1997 UNEP

UNEP (1997). Denisov, N., Heberlein, C., Czaran, L. and O. Simonett (Eds). GIS in Agricultural Research: Awareness Package. UNEP/DEIA/TR.97-9

Graphical production: Petter Sevaldsen

UNEP/GRID-Arendal Global Resource Information Database Longum Park, P.O. Box 1602, Myrene, N-4801, Arendal, NORWAY

Tel.: (47) 370 35 650 Fax: (47) 370 35 050 E-mail: grid@grida.no http://www.grida.no/

Internet version of the report is accessible at: http://www.grida.no/prog/global/cgiar/htmls/awpack.htm

This publication is an output of the project 'Use of Geographic Information Systems in Agricultural Research' jointly implemented by the United Nations Environment Programme, Global Resource Information Database (UNEP/GRID) and the Consultative Group for International Agricultural Research (CGIAR).

Division of Environment Information and Assessment (DEIA) United Nations Environment Programme (UNEP) P.O. Box 30552, Nairobi, KENYA

Tel.: (254 2) 62 3512 Fax: (254 2) 62 3943/3944 E-mail: elainfo@unep.org http://www.unep.no/

CGIAR

Consultative Group for International Agricultural Research 1818 H Street, N.W., room J-4073,

Washington, D.C. 20433, USA

Tel.: (1 202) 473 8951 Fax: (1 202) 473 8110 E-mail: cgiar@cgnet.com http://www.cgiar.org/

The views expressed in this publication are not necessarily those of the United Nations Environment Programme. The designations employed and the presentations do not imply the expressions of any opinion whatsoever on the part of UNEP concerning the legal status of any country, territory, city or area or its authority, or concerning the delimitation of its frontiers or boundaries.

This publication may be reproduced in whole or in part and in any form for educational or non-profit purposes provided acknowled-gement of the source is made. UNEP would appreciate receiving a copy of any publication that uses this publication as a source.

Table of Contents

Fo		

Classification of the Case-Studies

Thematic Mapping, Assessment and Remote Sensing

- A Systems Analysis of the World's Forests
- 2 Agricultural Development Options Review in Cambodia - Land Cover Mapping
- Anamorphic Maps
- Collaborative Planning and Monitoring of Watershed Resources Management
- Diversity of Wild Potato Species in Bolivia
- Early Determination and Monitoring of Droughts in Kazakhstan
- Environmental and Sustainability Indicators for Latin America and the Caribbean
- High-resolution Remote Sensing: Getting Information for Participatory Research
- Land-use Changes in the Ethiopian Highlands: Use of GIS in Resource Management Research
- Land Cover Mapping of Afghanistan
- Mapping Poverty in West Africa
- Natural Agricultural Potential of European Landscapes
- Sea-Level Rise in the Nile Delta
- Use of Aerial Photography for Mapping the Salinisation of Agricultural Soils in Uzbekistan
- Using GIS/RS to Monitor and Evaluate Irrigation and Drainage Projects in Pakistan
- Using SAR Images to Locate Gaps in the Riaprian Forests of Colombian Tropical Lowlands

Database Development and Dissemination

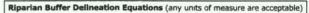
- Asian Population Database
- Circumpolar Arctic Population and Agriculture Database
- Crop Information Systems for Food Legumes in Hokkaido, Japan
- 20 Electronic Atlas of Rice Areas by Type of Culture: South, Southeast and East Asia
- 21 FAO Statistical Database Dissemination System
- 22 GIS and Breeding for Drought Tolerant Maize in Sub-Saharan Africa
- 23 Land-use GIS for the Cajamarca Area in Peru
- 24 Land Quality Indicators Information System
- 25 Mountain Environment and Natural Resources Information Service: Gorkha District Database
- 26 On-line Baltic Sea Drainage Basin GIS
- ReefBase: Toward Informed Management of Coral Reefs and Their Resources
- 28 Soil and Terrain Database for Sustainable Agriculture and Environmental Protection in Hungary
- 29 The UNEP Meta-data Directory
- World Water and Climate Atlas

Modelling and Simulation

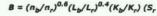
- Delineating Effective Riparian Buffer Widths for Water Quality Protection
- 31 32 Fuzzy Classification for Mapping Forest Vegetation
- GIS-based Soil Erosion Model
- GIS for Late Blight Research
- 35 Modeling of Spatial and Temporal Changes in Soil-Water Erosion
- Potential Impact of Climate Change on Crop Suitability: Robusta Coffee in Uganda

- Potential Impact of Climate Change on Crop Suitability: Robusta Composition Farming the EPIC Model
 Simulation Models for Studying Limiting Factors in Potato Production
 Spatial Analysis of Intraspecific Diversity: A Point-centred Approach
- 41 Water Management in Kirindi Oya Irrigation and Settlement Project in Sri Lanka
- 42 Where Will it Grow? How Well Will it Grow?
- Wilderness Mapping for Evaluating Human Impact on the Environment
- A GIS Application Project: Objectives, Steps, Benefits Inputs and Resource Needs

Delineating Effective Riparian Buffer Widths for Water Quality Protection

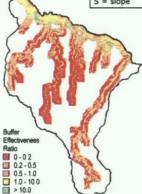

bjective

Agricultural pollution added to streams has shown to be a major problem throughout the world. The use of vegetated strips between farm fields and adjacent streams is one technique to reduce loadings of sediment and chemical pollutants to streams draining agricultural lands. These runoff buffer zones are commonly referred to as riparian buffer


A major problem associated with designing riparian buffers is in determining the appropriate width for buffers in a specific setting. This case study demonstrates a GISbased method for determining the efficiency of riparian buffers in agricultural watersheds.

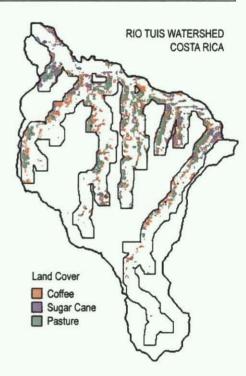
ethod

Phillips 'Riparian Buffer Delineation Equations (RBDE) are one way for selecting appropriate riparian buffer widths for water quality protection. The methodology includes separate formulae for predicting the effectiveness of buffers in attenuating (1) sediment (and adsorbed pollutants) delivered by overland flow (Bagnold's law) and (2) dissolved pollutants transported primarily through subsurface routes (Darcy's law and Manning equation). The hydraulic ver-


 $B = (n_b/n_r)^{0.6} (L_b/L_r)^2 (K_b/K_r)^{0.4} (S_r/S_b)^{0.7} (C_b/C_r)$

B = buffer effectiveness ratio K = saturated hydraulic

- n = Manning's roughness coefficient C = soil moisture storage capacity
- conductivity of the soil buffer width or slope length
- b = value for the proposed buffer r = value for the reference buffer


Model

S = slope

Above: Results of the RBDE model applied in a raster GIS. The values indicate the riparian buffer effectiveness of a given area compared to a selected reference buffer. Right: Areas in the Tuis Watershed with non-forested land covers and buffer effectiveness ratios less

than 1 (less effective than the reference buffer).

sion of the RBDE was calculated for the Tuis watershed in Costa Rica, in GRID ARC/ INFO. The method requires the selection of a reference buffer which is used to compare buffer effectiveness for riparian areas. A land cover map was made from satellite imagery.

Result

The resulting maps give land managers an objective basis to evaluate the need for establishing riparian buffer strips. The model results can be used as a guide for determining erosion susceptibility and pollution potential of riparian areas.

GRID-Arendal, P.O.Box 1602 Myrene 4801 Arendal, NORWAY e-mail grid@grida.no http://www.grida.no/

Contact:

Glenn Hyman, International Center for Tropical Agriculture (CIAT), A.A. 6713, Cali, Colombia S.A., ghyman@gis.ciat.cgiar.org http://www.ciat.cgiar.org/ Michael W. Mayfield, Appalachian State University,

Boone, NC U.S.A 28608, mayfldmw@conrad.appstate.edu http://www.appstate.edu/ Sergio Velasquez, Tropical Agriculture Research and Higher Education Centre (CATIE), 7170 CATIE, Turrialba, Costa Rica, svelasqu@computo.catie.ac.cr http://www.catie.ac.cr/