Working Document
No. 132

Seed Health Testing and Phytosanitary Procedures for Tropical Forages

Compiled by:

Segenet Kelemu
Plant Pathology Section
Tropical Forages Program

Tropical Forages Program
Plant Pathology

November 1993
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Introduction.</td>
<td>1</td>
</tr>
<tr>
<td>II. Review of literature on seed-borne pathogens of tropical forage plants.</td>
<td>2</td>
</tr>
<tr>
<td>Seed-borne or seed associate pathogens of tropical forage legumes.</td>
<td>3</td>
</tr>
<tr>
<td>Seed-borne or seed associate pathogens of tropical forage grasses.</td>
<td>6</td>
</tr>
<tr>
<td>III. Seed disinfection or decontamination.</td>
<td>10</td>
</tr>
<tr>
<td>IV. Seed health testing.</td>
<td>10</td>
</tr>
<tr>
<td>i. Methods of detection of seed-borne fungi and bacteria.</td>
<td>10</td>
</tr>
<tr>
<td>ii. Selection of tests.</td>
<td>13</td>
</tr>
<tr>
<td>1. The blotter or filter paper test.</td>
<td>13</td>
</tr>
<tr>
<td>2. The agar plate test.</td>
<td>15</td>
</tr>
<tr>
<td>3. Adult plant inspection.</td>
<td>16</td>
</tr>
<tr>
<td>iii. Summary on seed health testing.</td>
<td>16</td>
</tr>
<tr>
<td>V. General procedures and recommendations.</td>
<td>16</td>
</tr>
<tr>
<td>i. General procedures for germplasm introductions.</td>
<td>17</td>
</tr>
<tr>
<td>ii. Procedures for adult plant inspections in the glasshouse.</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>20</td>
</tr>
<tr>
<td>Appendix 1: Definitions</td>
<td>22</td>
</tr>
<tr>
<td>Appendix 2: Culture media recipes</td>
<td>23</td>
</tr>
<tr>
<td>Appendix 3: Addresses of plant quarantine offices</td>
<td>24</td>
</tr>
</tbody>
</table>
I. INTRODUCTION

According to Kahn (1989), the word "quarantine" originated from the Latin "quadraginata" and the Italian "quarantina", applied to the 40-day period of isolation required for a ship (passengers and cargo) to remain anchored in port of arrival if the ship arrived from a country where certain epidemic diseases were known to occur. This practice was started to allow the development of symptoms before any passengers debarked.

Plant quarantines regulate the entry of plants and their products, soil, microbial cultures, and commodities in order to protect agriculture and the environment from avoidable pests and pathogens. Organisms of quarantine importance may include pests or pathogens that governments consider threats to the agriculture and environment of countries. These organisms are either foreign to a country or include foreign strains and races of already existing organisms.

In the case of forage legumes and grasses this becomes very complicated by the following factors: 1. there are numerous plant genera and species, 2. there are a number of pathogens which are capable of infecting these wild plants, 3. the lack of appropriate and complete documentation of these pathogens, 4. lack of information and scientific data on the biology, epidemiology, economic importance, complete geographic distribution, etc. of the documented pathogens.

Despite these complications and difficulties, careful tests and treatments should enable us to ensure safe movement of forage germplasm.

Testing, screening, disinfection and seed decontamination are procedures to be considered in phytosanitary programs.
II. REVIEW OF LITERATURE ON SEED-BORNE PATHOGENS OF TROPICAL FORAGE PLANTS

There are many seed-borne pathogens in Gramineae and Leguminosae which are frequently transmitted. Seed transmission of pathogens depends basically on the inherent features of both the host and the pathogen. Members of a plant family transmit groups of related pathogens through seeds; e.g., smut fungi in Gramineae, viruses or Colletotrichum spp. in Leguminosae.

In the family Gramineae, there is a wide range of seed-borne pathogens such as the smuts, ergots, and seed gall nematodes.

Seed-borne diseases are common in Leguminosae and probably far more severe than in other plant families.

There is very little published information on seed-borne pathogens of tropical forage plants. Colletotrichum gloeosporioides and C. truncatum were reported to significantly reduce emergence, survival, and root and shoot dry weight of *Stylosanthes hamata* as seed-borne pathogens (Lenné and Sonoda, 1979). *C. gloeosporioides* can also be a seed-borne pathogen of *Centrosema pubescens* and *Pueraria phaseoloides* (unpublished documents of Dr. J. Lenné).

Rhizopus stolonifer, the causal agent of seedling blight and inflorescence diseases of *Stylosanthes* spp., was reported to be the most common fungus associated with seeds of *S. hamata* in Florida (Lenné and Sonoda, 1978). In germination tests, this organism affected seedling emergence and survival.

Seed-borne pathogens of other tropical forage legumes have been reported. *Pseudomonas florcescens*, the cause of severe pod rot of *Leucaena leucocephala*, and bacterial leaf spot and dieback of *Centrosema* spp., has been reported to be seed-borne (Lenné et al., 1981a, 1981b). *Pseudomonas syringae* which causes leaf spot disease of *Centrosema pubescens* could be seed-borne (Duveiller, 1987).
Seed-borne or seed associated pathogens of tropical forage legumes.

<table>
<thead>
<tr>
<th>Host</th>
<th>Pathogen</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arachis</td>
<td>Cercospora arachidicola</td>
<td>Brazil, Colombia</td>
</tr>
<tr>
<td></td>
<td>Cercospora canescens</td>
<td>Malawi</td>
</tr>
<tr>
<td></td>
<td>Cercospora personata</td>
<td>Brazil, Colombia</td>
</tr>
<tr>
<td></td>
<td>Cochliobolus lunatus</td>
<td>Nigeria</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum capsici</td>
<td>Nigeria</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum gloeosporioides</td>
<td>Brazil, Colombia, Australia</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum truncatum</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Fusarium spp.</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Leptosphaerulina arachidicola</td>
<td>Brazil, Colombia, Costa Rica, Ecuador, Peru, USA</td>
</tr>
<tr>
<td></td>
<td>Mycosphaerella arachidis</td>
<td>India</td>
</tr>
<tr>
<td></td>
<td>Myrothecium roridum</td>
<td>Brazil, Colombia</td>
</tr>
<tr>
<td></td>
<td>Peanut mottle virus</td>
<td>Brazil, Colombia</td>
</tr>
<tr>
<td></td>
<td>Puccinia arachidis</td>
<td>Brazil</td>
</tr>
<tr>
<td></td>
<td>Periconia spp.</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Rhizoctonia solani</td>
<td>Brazil, Colombia, Costa Rica, Peru</td>
</tr>
<tr>
<td>Sphaceloma</td>
<td>Arachidis</td>
<td>Brazil, Colombia</td>
</tr>
<tr>
<td></td>
<td>Cercospora canescens</td>
<td>Australia, Barbados, Bolivia, Brazil, Colombia, Costa Rica, Cuba, Ecuador, French Guyana, Malaysia, Panama, Peru, Sudan, USA, Venezuela</td>
</tr>
<tr>
<td>Centrocoma</td>
<td>Cercospora canescens</td>
<td>Australia, Barbados, Bolivia, Brazil, Colombia, Costa Rica, Cuba, Ecuador, French Guyana, Malaysia, Panama, Peru, Sudan, USA, Venezuela</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum gloeosporioides</td>
<td>Australia, Barbados, Bolivia, Brazil, Colombia, Costa Rica, Ecuador, Peru, USA, Venezuela</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum truncatum</td>
<td>Colombia, USA</td>
</tr>
<tr>
<td></td>
<td>Mosaic viruses</td>
<td>Australia, Brazil, Colombia, Cuba</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas flourescens</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Pseudomonas syringae</td>
<td>Burundi</td>
</tr>
<tr>
<td></td>
<td>Rhizoctonia sp.</td>
<td>Australia, Brazil, Colombia, Costa Rica, Ecuador, French Guyana, Ghana, Indonesia, Malaysia, Papua New Guinea, Peru, Sierra Leone, Seychelles, Solomon Islands, USA, Vanuatu</td>
</tr>
<tr>
<td>Host</td>
<td>Pathogen</td>
<td>Country</td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Desmodium sp.</td>
<td>Cercospora sp.</td>
<td>Australia, Barbados, Brazil, Canada, Colombia, Dominican Republic, El Salvador, Ghana, India, Jamaica, Kenya, Malaysia, Pakistan, Papua New Guinea, Tanzania, USA, Venezuela, Zimbabwe</td>
</tr>
<tr>
<td>Cladosporium cladosporioides</td>
<td></td>
<td>Australia</td>
</tr>
<tr>
<td>Cladosporium sp.</td>
<td></td>
<td>India, Cuba</td>
</tr>
<tr>
<td>Colletotrichum gloeosporioides</td>
<td></td>
<td>Australia, Bolivia, Brazil, Colombia, Ecuador, Peru, USA, Venezuela</td>
</tr>
<tr>
<td>Colletotrichum truncatum</td>
<td></td>
<td>Colombia, USA</td>
</tr>
<tr>
<td>Desmodium mosaic virus</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Rhizoctonia sp.</td>
<td></td>
<td>Brazil, Colombia, Costa Rica, El Salvador, Malaysia, Peru</td>
</tr>
<tr>
<td>Synchytrium desmodii</td>
<td></td>
<td>Colombia, Ecuador, Tanzania</td>
</tr>
<tr>
<td>Pueraria sp.</td>
<td>Cercospora sp.</td>
<td>Cambodia, Cuba, Malaysia, Philippines, Puerto Rico, Sierra Leone, Taiwan, Tanzania</td>
</tr>
<tr>
<td>Cladosporium sp.</td>
<td></td>
<td>Sierra Leone</td>
</tr>
<tr>
<td>Colletotrichum gloeosporioides</td>
<td></td>
<td>Brazil, Colombia, Ecuador, Peru, Puerto Rico, Venezuela, Virgin Islands</td>
</tr>
<tr>
<td>Drechslera sp.</td>
<td></td>
<td>Malaysia</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td></td>
<td>Papua New Guinea, Sierra Leone</td>
</tr>
<tr>
<td>Mycosphaerella puerariicola</td>
<td></td>
<td>Cambodia, Hong Kong, Japan, Malaysia, Philippines, Singapore, Solomon Islands, Taiwan, USA</td>
</tr>
<tr>
<td>Pseudomonas phaseolicola</td>
<td></td>
<td>USA</td>
</tr>
<tr>
<td>Rhizoctonia sp.</td>
<td></td>
<td>Brazil, Colombia, Costa Rica, Ecuador, Malaysia, Peru, Sierra Leone, Solomon Islands</td>
</tr>
<tr>
<td>Stylosanthes</td>
<td>Ascochyta spp.</td>
<td>Colombia</td>
</tr>
<tr>
<td>Bipolaris spp.</td>
<td></td>
<td>Colombia</td>
</tr>
<tr>
<td>Botrytis cinerea</td>
<td></td>
<td>Australia, Colombia, Zimbabwe</td>
</tr>
<tr>
<td>Cladosporium spp.</td>
<td></td>
<td>Australia, Brazil</td>
</tr>
<tr>
<td>Host</td>
<td>Pathogen</td>
<td>Country</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Stylosanthes</td>
<td>Colletotrichum gloeosporioides</td>
<td>Angola, Australia, Belize, Bolivia, Botswana, Brazil, Colombia, Costa Rica, Cuba, Ecuador, Ethiopia, French Guiana, India, Ivory Coast, Kenya, Malaysia, Malawi, Mexico, Mozambique, Nigeria, Panama, Papua New Guinea, Peru, Solomon Islands, Tanzania, Thailand, Venezuela, Zaire, Zambia, Zimbabwe, USA</td>
</tr>
<tr>
<td></td>
<td>Curvularia spp.</td>
<td>Australia, Colombia, USA</td>
</tr>
<tr>
<td></td>
<td>C. truncatum</td>
<td>Australia, Bolivia, Brazil, Colombia, Ecuador, Ethiopia, Nigeria, Peru, Thailand, USA, Venezuela</td>
</tr>
<tr>
<td></td>
<td>Eurotium spp.</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Fusarium spp.</td>
<td>Australia*, Brazil, Colombia, Malaysia, Nigeria</td>
</tr>
<tr>
<td></td>
<td>Gloeocercospora spp.</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Leptosphaerulina spp.</td>
<td>Colombia, Australia</td>
</tr>
<tr>
<td></td>
<td>Phoma sorghina</td>
<td>Australia, Colombia, Ivory Coast, Nigeria</td>
</tr>
<tr>
<td></td>
<td>Phomopsis spp.</td>
<td>Colombia, Bolivia, Nigeria, Malaysia, Trinidad, Colombia</td>
</tr>
<tr>
<td></td>
<td>Potyvirus</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Rhizopus stolonifer</td>
<td>Colombia, India, USA</td>
</tr>
<tr>
<td></td>
<td>Rhizoctonia spp.</td>
<td>Australia, Colombia, Malaysia, Papua New Guinea</td>
</tr>
<tr>
<td></td>
<td>Sclerotinia sclerotiorum</td>
<td>India, Zimbabwe</td>
</tr>
<tr>
<td>Zonia sp.</td>
<td>Colletotrichum gloeosporioides</td>
<td>Brazil, Colombia, Costa Rica, Ecuador, Panama, Peru, USA</td>
</tr>
<tr>
<td></td>
<td>Colletotrichum truncatum</td>
<td>Bolivia, Brazil, Colombia, Ecuador, Peru, USA, Venezuela</td>
</tr>
<tr>
<td></td>
<td>Corynebacterium flaccumfaciens</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Fusarium sp.</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Phoma sorghina</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Rhizoctonia solani</td>
<td>Brazil, Colombia, Peru</td>
</tr>
<tr>
<td></td>
<td>Sphaceloma zoniae</td>
<td>Brazil, Colombia, Peru, Venezuela</td>
</tr>
</tbody>
</table>

* Several species of *Fusarium* reported.
** The pathogens are not necessarily seed-borne or seed associated. These can be transported through planting materials such as cuttings.

Seed-borne or seed-associated pathogens of tropical forage grasses.

<table>
<thead>
<tr>
<th>Host</th>
<th>Pathogen</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>Andropogon</td>
<td>Balansia</td>
<td>Bengal, China, India, Mexico, Nigeria, Philippines, Puerto Rico, Sierra Leone, West Indies, Zambia,</td>
</tr>
<tr>
<td></td>
<td>Cerebella andropogonis</td>
<td>Burma, Cuba, Ghana, Jamaica, Romania, Sierra Leone, Sri Lanka, Uganda, Zambia, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>Claviceps, ergot</td>
<td>Bengal, Colombia Kenya, USA, Colombia, Nigeria, Sudan</td>
</tr>
<tr>
<td></td>
<td>Curvularia sp.</td>
<td>Colombia, Sri Lanka</td>
</tr>
<tr>
<td></td>
<td>Phoma sorghina</td>
<td>Argentina, Cambodia, Colombia, Congo, India, Israel, Morocco, Sierra Leone, South Africa, Sri Lanka, USA</td>
</tr>
<tr>
<td></td>
<td>Sorosporium</td>
<td>Colombia, Sri Lanka</td>
</tr>
<tr>
<td></td>
<td>Sphacelia sorghi, ergot</td>
<td>Ethiopia, Ghana</td>
</tr>
<tr>
<td></td>
<td>Sphacelothea spp.</td>
<td>Bolivia, Brazil, China, Gambia, India, Malawi, Mexico, Pakistan, Sierra Leone, Sudan, Tanzania, Uganda, USA, Venezuela, Zambia, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>Tolyposporella, smut</td>
<td>Brazil, Dominican Republic, Mexico, Puerto Rico</td>
</tr>
<tr>
<td></td>
<td>Tolyposporium, smut</td>
<td>Nigeria, India</td>
</tr>
<tr>
<td></td>
<td>Tolysporum, smut</td>
<td>India</td>
</tr>
<tr>
<td></td>
<td>Ustilago, smut</td>
<td>Brazil, Congo, Ghana, India, Malawi, Mexico, Nigeria, Sierra Leone, Venezuela, West Africa</td>
</tr>
<tr>
<td>Brachiaria sp.</td>
<td>Alternaria alternata</td>
<td>Kenya, Pakistan</td>
</tr>
<tr>
<td></td>
<td>Balansia sp., false smut</td>
<td>Brazil, Fiji, India, Zambia</td>
</tr>
<tr>
<td></td>
<td>Botryodiplodia</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Ceratoxystis paradoxa</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Cercospora sp.</td>
<td>Australia, Bengal, Botswana, Ethiopia, French Guyana, Kenya, Mali, Tanzania, Uganda, Zambia, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>Cerebella andropogonis, false smut</td>
<td>Bengal, Burma, Kenya, South Africa, Sudan, Tanzania, Uganda, Zambia, USA, Zambia, Zimbabwe</td>
</tr>
<tr>
<td>Host</td>
<td>Pathogen</td>
<td>Country</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Brachiaria sp.</td>
<td>Cladosporium sp.</td>
<td>Brazil, Colombia, Ethiopia, Pakistan, Uganda</td>
</tr>
<tr>
<td></td>
<td>Claviceps sp., ergot</td>
<td>Australia, Bengal, Ethiopia, India, Kenya, Malawi, Tanzania, Zambia, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>Curvularia</td>
<td>Colombia, Fiji</td>
</tr>
<tr>
<td></td>
<td>Ephelis sp.</td>
<td>Australia</td>
</tr>
<tr>
<td></td>
<td>Fusarium acuminatum</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Fusarium heterosporum</td>
<td>Ethiopia, Kenya, Tanzania, Uganda, Zambia, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>Fusarium sp.**</td>
<td>Brazil, Colombia, Ecuador, French Guyana, Peru, Zambia</td>
</tr>
<tr>
<td></td>
<td>Guineagrass mosaic virus*</td>
<td>Africa, Brazil, Colombia, Peru</td>
</tr>
<tr>
<td></td>
<td>Melanotaenium brachiariae, smut</td>
<td>India</td>
</tr>
<tr>
<td></td>
<td>Phoma sorghina</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Pyricularia oryzae</td>
<td>Colombia, Fiji, India, Nepal, Malaysia, Philippines, Thailand</td>
</tr>
<tr>
<td></td>
<td>Rhizoctonia solani</td>
<td>Brazil, Colombia, Costa Rica, Ecuador, Ethiopia, Guadalcanal, India, Malaysia, Peru, Solomon Islands</td>
</tr>
<tr>
<td></td>
<td>Rhizopus stolonifera</td>
<td>Colombia</td>
</tr>
<tr>
<td></td>
<td>Sorosporium brachiariae, smut</td>
<td>Zambia, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>Sorosporium cryptum, smut</td>
<td>Australia</td>
</tr>
<tr>
<td></td>
<td>Sorosporium sp., smut</td>
<td>Malawi, USA</td>
</tr>
<tr>
<td></td>
<td>Sphacelia sp., ergot</td>
<td>Burma, Sudan, Uganda, Zambia</td>
</tr>
<tr>
<td></td>
<td>Sphacelotheca serrata, smut</td>
<td>Malawi</td>
</tr>
<tr>
<td></td>
<td>Ustilago operta, smut</td>
<td>India, Pakistan, Sudan</td>
</tr>
<tr>
<td></td>
<td>Ustilaginoidea virens, false smut</td>
<td>Kenya, Malawi, Peru, Sudan, Tanzania, Zambia, Zimbabwe</td>
</tr>
<tr>
<td></td>
<td>Xanthomonas sp.**</td>
<td>Colombia, French Guyana</td>
</tr>
<tr>
<td>Panicum</td>
<td>Balansia</td>
<td>Brazil, Costa Rica, Guinea, India, Jamaica, Malaysia, Nicaragua, Panama, Sierra Leone, Trinidad, Venezuela</td>
</tr>
<tr>
<td></td>
<td>Bipolaris</td>
<td>Australia, China, India, South Africa, USA, Venezuela</td>
</tr>
<tr>
<td>Host</td>
<td>Pathogen</td>
<td>Country</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------</td>
<td>---</td>
</tr>
<tr>
<td>Panicum</td>
<td>Cercospora</td>
<td>Australia, Bolivia, Brazil, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Ethiopia, Fiji, French Guyana, Ghana, Guadalupe, Guatemala, India, Ivory Coast, Jamaica, Kenya, Malaysia, Mexico, Nicaragua, Nigeria, Panama, Papua New Guinea, Peru, Puerto Rico, Sierra Leone, Sudan, Tanzania, Thailand, Togo, Trinidad, Uganda, USA, Vanuatu, Venezuela, Virgin Islands, Zambia, Zimbabwe,</td>
</tr>
<tr>
<td>Cerebella</td>
<td></td>
<td>Brazil, Dominican Republic, Ghana, India, Jamaica, Nigeria, Malawi, Puerto Rico, Sierra Leone, South Africa, Sudan, Tanzania, Venezuela, Virgin Islands, Zambia, Zimbabwe,</td>
</tr>
<tr>
<td>Cochliobolus</td>
<td></td>
<td>Australia, Colombia, Cuba, Egypt, French Guyana, India, Japan, Jamaica, Nigeria, Papua New Guinea, Peru, Sierra Leone, Solomon Islands, USA, Zambia, Zimbabwe,</td>
</tr>
<tr>
<td>Cladosporium</td>
<td></td>
<td>Cyprus, Bolivia, Sierra Leone, Sudan, Venezuela, Zambia</td>
</tr>
<tr>
<td>Claviceps</td>
<td></td>
<td>Australia, Bengal, Brazil, Colombia, Costa Rica, French Guyana, India, Kenya, Mauritius, Peru, Puerto Rico, Sierra Leone, Sudan, Tanzania, Venezuela, Virgin Islands, Zambia, Zimbabwe</td>
</tr>
<tr>
<td>Fusarium</td>
<td></td>
<td>Bengal, Brazil, Cameroon, Colombia, Costa Rica, Ghana, Kenya, Malawi, Peru, Puerto Rico, Tanzania, Venezuela, Zambia, Zimbabwe</td>
</tr>
<tr>
<td>Helminthosporium</td>
<td></td>
<td>Australia, Guadalupe, India, Malaysia</td>
</tr>
<tr>
<td>Magnaporthe grisea</td>
<td></td>
<td>Australia, Dominican Republic, Egypt, India, Nigeria, Malaysia, Puerto Rico, Tanzania, USA, West Africa, Zambia, Zimbabwe,</td>
</tr>
<tr>
<td>Phoma sorghina</td>
<td></td>
<td>Bolivia, Brazil, China, Ethiopia, India, Ivory Coast, Nigeria,</td>
</tr>
<tr>
<td>Host</td>
<td>Pathogen</td>
<td>Country</td>
</tr>
<tr>
<td>--------------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Panicum</td>
<td>Sorosporium</td>
<td>Angola, Australia, Bengal, Botswana, Congo, Cyprus, China, Ghana, India, Israel, Malawi, Northeast Africa, South Africa, Sri Lanka, Sudan, Tanzania, USA, Zimbabwe,</td>
</tr>
<tr>
<td>Sphacelia sp.</td>
<td>Sphacelotheca</td>
<td>Australia, Bengal, Brazil, Colombia, Costa Rica, Jamaica, Kenya, Malawi, Peru, Venezuela, Zambia</td>
</tr>
<tr>
<td></td>
<td>Tilletia</td>
<td>Belize, Bolivia, Brazil, Canada, Cameroon, Colombia, Congo, Costa Rica, Cuba, Ecuador, Ghana, India, Ivory Coast, Kenya, Malawi, Mauritius, Mexico, Natal, Nigeria, Pakistan, Panama, Philippines, South Africa, Sri Lanka, Sudan, Tanzania, Uganda, Venezuela, Zambia, Zimbabwe</td>
</tr>
<tr>
<td>Ustilaginoidea</td>
<td>Ustilago</td>
<td>Burma, Congo, Malaysia, Philippines, Puerto Rico, Tanzania, Trinidad & Tobago, Sierra Leone</td>
</tr>
</tbody>
</table>

- Several species of *Fusarium* reported.
- Potential to be seed-borne.
- Not seed-borne, but can be introduced through tissue culture or vegetative materials.

III. SEED DISINFECTION OR DECONTAMINATION

Seed treatment for eradication of seed-borne pathogens can be used as a precaution in quarantine only if careful consideration is given to the limitations of such procedures. In quarantine, no residual inoculum must remain after treatment. The primary justification for seed treatment as a quarantine precaution is its use as an additional safeguard to kill undetected trace amounts of inoculum in apparently healthy seed lots. Another acceptable possibility would be to treat seed which carry low amounts of inoculum, in order to save particularly valuable germplasm material.

A number of countries require that certain seeds and / or propagative materials be treated with broad spectrum fungicides or specific fungicides as a condition of entry. Some of the fungicides most cited are thiram, benomyl, captan and vitavax.

IV. SEED HEALTH TESTING

Seed health testing is conducted to provide information for the following purposes:

1. Seed inspection for quarantine purposes
2. Seed quality evaluation for planting value
3. Seed certification purposes

i. Methods of detection of seed-borne fungi and bacteria

There are several methods of seed testing. Usually there are a number of microorganisms carried in a seed lot, and each of these may have requirements for its growth. The method to be employed will depend mostly on the purpose of the test, the particular pathogen, and the type of seed.
Seed health testing procedures (adopted from Neergaard, 1977)

<table>
<thead>
<tr>
<th>METHOD</th>
<th>APPLICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct inspection</td>
<td>Examination of the dry seed, with impurities, using a hand lens or, a stereo-microscope. Seeds may be submerged in water to release spores and facilitate detection. Sclerotia of fungi, smut balls, nematode galls, infected plant debris; e.g., Sclerotinia sclerotiorum, Botrytis cinerea, Claviceps purpurea. Seeds discolored or with lesions produced by fungi, bacteria, or viruses, e.g., anthracnose fungi, some Xanthomonads, viruses such as soybean mosaic virus in leguminous seed.</td>
</tr>
<tr>
<td>Examination of suspension from washings of seed</td>
<td>An electrical mechanical shaker can be used to obtain standardized washings. Samples of the suspension are examined under compound microscope. Covered smuts, e.g., Tilletia spp. in monocots, oospores of certain downy mildews; quick orientation on the presence of other fungi that must be adequately detected by incubation procedures, e.g., Drechslera spp.</td>
</tr>
<tr>
<td>Whole-embryo count method</td>
<td>Soaking grains overnight in 10% NaOH at 22 C, then washing with warm water through sieves of decreasing mesh size. Embryos finally cleared in lactophenol. Loose smuts of monocots</td>
</tr>
<tr>
<td>Blotter method</td>
<td>Seeds are incubated on water-moistened blotter, usually for 7 days at 20 C. Sporulation of fungi is stimulated by near-ultra-violet (NUV) irradiation, standard 12/12-hr light/dark cycle. Petri dishes are usually used as containers. To allow penetration of the NUV, plastic or pyrex glass containers should be used. Sometimes blotters are soaked in 0.1-0.2% 2,4-D solution to counteract seed germination, thus aiding recording. The method is used most commonly for detecting a wide-range of Fungi Imperfecti, including different spp. of Acremonium, Acroconidiella, Alternaria, Ascochyta, Botrytis, Cercospora, Colletotrichum, Diplodia, Drechslera, Fusarium, Macrophomina, Myrothecium, Phoma, Phomopsis, Septoria, and others, and for practically all kinds of seed, including cereals, grasses, ornamentals, forest seeds, and vegetables.</td>
</tr>
<tr>
<td>Agar plate method</td>
<td>The seeds are plated in Petri dishes on nutrient agar, in particular malt extract agar, potato-dextrose agar. Some selective media are available for specific tests. Light treatment as for the blotter test. Incubation for 5-7 days. Although slowly growing fungi cannot be adequately detected, the procedure is relatively sensitive for revealing minor amounts of inoculum.</td>
</tr>
<tr>
<td>METHOD</td>
<td>APPLICATION</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Freezing method</td>
<td>Sometimes preferred for detecting certain fungi, e.g., Phoma, Septoria, Alternaria.</td>
</tr>
<tr>
<td>Ordinary seedling symptom test</td>
<td>Often used for detecting seedling symptoms which reveal pathogens rather than fungi to be identified. Useful for detecting seedling pathogens.</td>
</tr>
<tr>
<td>Water-agar seedling symptom test</td>
<td>Can be used for many kinds of seed as an economical procedure which, in test tubes, secures separation of healthy and infected seedlings. Has been used for detecting Drechslera, Septoria, Macrophomina; and other pathogens and hosts.</td>
</tr>
<tr>
<td>Indicator test, inoculation methods</td>
<td>Used for detection of Xanthomonas in beans, crucifers, etc.</td>
</tr>
<tr>
<td>Phage-plaque method</td>
<td>Used for Pseudomonas phaseolicola and Xanthomonas phaseoli in French bean, Xanthomonas vesicatoria in tomato.</td>
</tr>
</tbody>
</table>

Freezing method
A modified blotter method. After 1-2 days at 10-20°C, according to specifications, incubation for some hours or for 1 day at -20°C, then at 20°C in NUV light for 5-7 days.

Ordinary seedling symptom test
The seed is sown in autoclaved soil, sand, or similar material and placed under normal daylight conditions for observation of symptoms.

Water-agar seedling symptom test
The seeds are sown on water agar, in 16-mm test tubes, one seed per tube, or in microculture plastic plates or Petri dishes. They are placed under daylight conditions, e.g., 12/12-hr cycle of artificial daylight and darkness. Seedlings are inspected for symptoms, healthy seedlings may be transplanted for further post-entry quarantine cultivation.

Indicator test, inoculation methods
A standard technique for identification of viruses but also used for detection of trace amounts of pathogenic bacteria, e.g., by hypodermic injection of indicator plants with material from seeds slightly infected by the pathogen under test.

Phage-plaque method
Maceration of the seed to be tested followed by incubation by for 24 hr to enable multiplication of bacteria. Samples of this material transferred to sterile flasks, and a standard suspension of phage particles is added. Samples of this mixture are plated immediately and after 6-12 hr on plates with the indicator bacterium. Presence of homologous bacteria is indicated by significant increase in number of phage particles in the second plating.
METHOD	APPLICATION
Serological methods | Used for different seed-borne viruses, and may be used for any pathogen for which an antiserum is provided.

An antiserum must be provided and the tests may follow different procedures: the slide agglutination test, the tube precipitin test, the micro-precipitin test, the gel double-diffusion test, the latex flocculation test, the immunofluorescence test.

ii. Selection of tests

The test to be used should be capable of revealing the widest possible range of pathogens. The procedures can be combined in different ways. For instance, healthy-looking seedlings can be selected from the blotter and/or agar plate tests and transplanted into soil, sand, or another suitable medium for further growth and observation. The combination of procedures saves time and seed.

In addition to generalized procedures, it may be necessary to include specialized tests to detect specific pathogens: different serological procedures to reveal seed-borne viruses and bacteria, the phage-plaque test for detecting seed-borne bacteria, and the indicator test for detecting both of these categories of pathogens as well as fungi.

Procedural details:

1. **The Blotter or Filter Paper Test**

The method is widely used to detect a number of fungi. The procedural details of this method are as follows (adopted from International Seed Testing Association):

a. A working sample of 400 seeds is tested in replicates of 25 seeds per dish of 9 cm diam. Since the
seeds are later incubated in light, the dishes should be of such a material that allows light to pass through, e.g. Petri dishes made from clear plastic, and glass dishes of Pyrex or Corning. In plant quarantine, the samples of seeds may be less than 400. In such cases the whole sample or part of it may be tested. Only healthy seedlings, free from infection, must be released and grown in the quarantine glasshouse for inspection by the quarantine officer.

b. Label each dish properly with the accession number of the seed sample, date of examination and the dish number.

c. Before plating the seeds in the Petri dishes, each dish should be lined with three filter papers (blotters), well soaked in water. The water soaked filter papers for the dishes can be prepared in the following way: Count three filter papers at a time, dip them in water for a few seconds, lift and let the excess water drip off before setting the wet blotters in the dish.

d. Plate 25 seeds in each dish, 15 seeds in the outer ring, 9 in the middle and one in the centre.

e. Incubate the seeds at 20-22°C for 7 days in alternating cycles of 12 hr light and 12 hr darkness. Light should be supplied by two fluorescent tubes hanging horizontally, 20 cm apart from each other and the distance between the light tubes and the dishes should be 40 cm.

f. After 7 days incubation, start examination of seeds under a stereoscopic microscope with magnification at least up to x 50 or x 60. All seeds of the outer ring must be examined first, then the seeds of the second ring and finally the seed in the centre of the dish. Examination of seeds in sequence becomes easier when a line is drawn with a colored pencil. Examine thoroughly the whole seed at different magnifications before proceeding to the next seed.

Once the examination of the first seed is finished rotate the dish gently clockwise with the middle finger and the thumb of the left hand while still looking into the microscope. Follow this procedure in moving from one seed to the other.
g. Whenever the growth of an organism of interest is seen, mark the seed infected by writing near to the infected seed.

h. Identification of a particular organism needs experience in seed health testing. Whenever a growth is suspected of a particular organism, mount conidia (spores) in water on a glass slide and confirm the conidial morphology of a particular fungus under higher magnifications of a compound microscope.

i. Count the total number of seeds infected by a particular organism in each dish and enter the figures in a recording sheet, and calculate per cent seed infection.

2. The Agar Plate Test

Seeds are plated on an appropriate agar medium and spaced according to the size of the seed. Malt extract agar, oatmeal agar, or potato dextrose agar are most commonly used (see media preparations in Appendix (2).

Pretreatment of the seeds (soaking for 5-10 minutes in 1 per cent sodium hypochlorite) is applied to exclude fast growing saprophytes associated with the seeds. The following procedure is a more rigorous seed pretreatment. a. Put seeds in a screw capped tube containing about 25 ml of 30% (v/v) bleach (ie., 5% hypochlorite) 1 ul/ml of 20% Triton-X100, b. Shake vigorously so that a layer of foam develops on the solution. Most of the trash (which contains most of the contaminants) will collect in the foam which should be removed by aspiration with a sterile pasteur pipet, c. Continue to mix slowly by inversion for 5 to 10 minutes, d. Allow the seeds to settle for 1 or 2 minutes and decant the bleach, e. Fill the tube with sterile water, let seeds settle and decant, f. Repeat this process several times to remove as much bleach as possible. The seeds should be plated within a day. The incubation conditions are the same as described.
under the blotter test.

3. Adult Plant Inspection

Certain seed-borne diseases require a longer period of incubation to be detected than is provided by the usual incubation procedure. The seeds are sown in autoclaved soil in suitable containers and submitted to optimum conditions of temperature and humidity protected against contamination.

iii. Summary on seed health testing

Detection of fungi: procedures using the blotter or filter paper method and agar media are usually sufficient. The agar media most commonly used are potato dextrose agar (PDA), malt extract agar, and oat meal agar.

Bacteria: procedures using appropriate culture media are adequate, but specific procedures such as phage-plaque or serological tests (provided that antisera are available) may be used. Nutrient agar and King’s medium B are widely used.

Viruses: indicator tests (provided that suitable indicator plants are available), and ELISA can be used.

V. GENERAL PROCEDURES AND RECOMMENDATIONS

All agricultural scientists should understand that plant quarantine is a measure of plant disease control which we all want to achieve. It is our responsibility to take all the necessary precautions to prevent man-assisted pathogen disseminations.
i. General procedures for germplasm introductions.

The following procedures are representative of those followed by most quarantine officers in regulating germplasm of high risk genera.

1. Seeds should be collected from "disease-free" plants.

2. Small, discolored, shrivelled or damaged seeds should be avoided.

3. Seeds should be free of any plant residues such as leaf pieces, roots, glumes, husks or other foreign materials such as stones, soil particles, etc.

4. Seeds should not be packed using plant materials such as straws. All packing materials should be clean.

5. Seeds should be introduced, rather than vegetative materials, unless clonal propagation is a requirement or the plants are collected in the wild when seed is not available.

6. For clonal propagations, unrooted vegetative materials such as scions or unrooted cuttings are preferred to rooted plants.

7. Woody plant introductions should not be more than 2 years old.

8. Consignments of vegetatively propagated clonal germplasm should be small, i.e., limited to a few tubers, cuttings, or scions. If an accession is represented by tubers, cuttings, and scions, each
component should be regarded as separate subclone, particularly for virus indexing.

9. Germplasm that must be introduced as plants should enter free of soil. The original importation should be destroyed once daughter plants have been established.

10. If phytosanitary procedures require that clones, or subclones, be indexed for viruses, only propagations derived from indexed mother plants should be released.

11. With genera that present a high risk of seed-borne organisms, the original seed should be treated and planted to produce a healthy lot of seed.

12. For high-risk genera, whether imported as seed or vegetative material, only the part of the shipment that is passed through quarantine should be released. The part of the original introduction not used as mother or seed plants should be destroyed.

ii. Procedures for adult plant inspections in the glasshouse.

In exchanging genetic resources, the quantities of seed for distribution, and hence for sampling and testing, is very limited.

It seems more appropriate and realistic if all original seed introductions are examined at the Seed Health Lab. (currently under GRU) first, using appropriate seed health testing protocols, and those seeds which show no pathogens be planted in the plant quarantine green house for inspection. Visual plant inspection alone may not be effective and may provide only a false feeling of security.
The following steps should be taken in the phytosanitary glasshouse:

1. Pots, soil, and benches should be sterilized before being placed in the glasshouse.

2. The floor of the entrance cubicle should be treated with a disinfectant.

3. All planting of imported material should be carried out only in the glasshouse.

4. Personnel working in the glasshouse should be careful not to brush against plants or handle any plant unless necessary.

5. Hands and instruments should be washed with soap and water or some disinfectant after trimming, digging, etc., before being moved from one place to another.

6. Distance between potted plants should be sufficient to prevent contact with each other.

7. Airflow within the glasshouse unit should be controlled so that it does not cause the plants to touch each other.

8. All materials have to be inspected on individual plant basis.
REFERENCES

Agarawal et al. Seed-borne diseases and seed health testing of rice. Hellerup, Denmark, Danish Government Institute of Seed Pathology for Developing Countries. Surrey, U. K. CAB International Mycological Institute (Technical Bulletin No. 3).

Chidambaram et al. 1974. Identification of seed-borne Drechslera species. Norway, The international seed testing association [Handbook on seed health testing, series 2B (3)].

Neergaard, P. 1970. Seed Pathology, international cooperation and organization. Vollebekk, Norway, International seed testing association [Handbook on seed health testing, series 1 (5)].

Appendix 1: Definitions

1. **Seed health**: According to the definition of the International Seed Testing Association (ISTA, 1985), health of seed refers primarily to the presence or absence of disease-causing organisms such as fungi, bacteria and viruses, and animal pests.

2. **Plant quarantine**: It is a preventive measure against the introduction of pests and pathogens harmful to agriculture. It is basically the use of exclusion as a control strategy and is applied to both imported and exported materials.

3. **Incubation**: Seed maintenance in a condition favorable to pathogen growth or disease symptom expression.
Appendix 2: CULTURE MEDIA RECIPES

Potato dextrose agar
Potato dextrose agar (Difco 0013) 39.0 g
Distilled water 1000 ml
or
Potatoes, infusion from 200.0 g
Bacto-Dextrose 20.0 g
Bacto-agar 15.0 g
Distilled water to 1000 ml

Malt extract agar
Maltose 12.75 g
Dextrin 2.75 g
Glycerol 2.35 g
Bacto-peptone 0.78 g
Bacto-agar 15.0 g
Distilled water 1000 ml
or
Malt extract 20.0 g
Peptone 5.0 g
Agar 15.0 g
Distilled water 1000 ml
or
Malt extract agar (Difco 0112) 33.6 g
Distilled water 1000 ml

Oatmeal agar
Agar 5.0 g
Distilled water 500.0 ml
Melt.
Instant oatmeal (for babies) 40.0 g
Distilled water (cold) 250.0 ml
Mix: Combine mixed oatmeal with melted agar

Nutrient agar
Peptone 5.0 g
Beef extract 3.0 g
Agar 15.0 g
Distilled water 1000 ml

King’s medium B
Proteose peptone 20.0 g
Glycerol 15.0 g
K₂HPO₄ 1.5 g
MgSO₄.7H₂O 1.5 g
Agar 15.0 g
Distilled water 1000 ml
Adjust pH to 7.2 before autoclaving the medium

Notes: Media should be sterilized the same day that they are prepared. Sterilization is completed in 20-25 min. at a temperature of 121 C.
Appendix 3: ADDRESSES OF PLANT QUARANTINE OFFICES

Afghanistan
Director
Plant Protection and Quarantine
Ministry of Agriculture
Kabul

Albania
Bureau of Agriculture
Tirana

Algeria
Chef
Service de la Protection des Végétaux
Ministère de l’Agriculture
12, Boulevard Colonel Amiriouche
Algiers

American Samoa
Director
Agricultural Quarantine Services
Department of Agriculture
Pago Pago, 96799

Antigua
Director
Ministry of Agriculture
Lands and Fisheries
St. John’s
West Indies

Argentina
Director General
Servicio Nacional de Sanidad Vegetal
Ministerio de Agricultura
Paseo Colon 922, 1o Piso
Oficina No 196
Buenos Aires

Australia
Assistant Director General
Plant Quarantine
Department of Health
Canberra A.C.T.

Austria
Director
Bundesanstalt für Pflanzenschutz
Trunnerstrasse 5
1021 Wien

Bahrain
Department of Agriculture
Plant Protection Section
P.O. Box 251
Manama

Bangladesh
Department of Agriculture
(Extension and Management)
Director of Agriculture (E&M)
Ansari Building
14/2 Topkhana Road, Dhaka-2

Barbados
Head
Division of Entomology and Quarantine
Ministry of Agriculture,
Science and Technology
P.O. Box 505
Bridgetown

Belgium
Ingenieur en Chef-Directeur
Service de la Protection des Végétaux
Ministere de l’Agriculture
36 Rue de Stassart
1050 Bruxelles

Belize
Director of Agriculture
Belmopan

Benin
Service du Développement
Région Agricole du Sud
B.P. 648
Cotonou

Bermuda
Plant Pathologist
Department of Agriculture
and Fisheries
P.O. Box 834
Hamilton 5

Addresses taken from Plant Production and Protection Division publications of the FAO (1981) and from Export Summaries published by the USDA, Animal and Plant Health Inspection Service, Plant Protection and Quarantine Programs.
Bolivia
Jefe
Departamento de Sanidad Vegetal
Ministerio de Asuntos Campesinos y Agropecuarios
La Paz

Botswana
Entomologist
Department of Agriculture Research
Private Bag 0033
Gaborone

Brazil
Director
Secretaria de Defesa Sanitaria Vegetal
Ministerio da Agricultura
Esplanada dos Ministerios
Bloco 8, 70.000
Brasilia - D.F.

Brunei
The Director of Agriculture
Department of Agriculture
Bandar Seri Begawan

Bulgaria
Director of Plant Protection and Fertilizers
BD. Christo Botev 55
Sofia

Burkina Faso
Le Directeur
Section de Lutte Antiacridienne de Protection des Plantes et des Cultures
Direction des Services Agricoles
B.P. 7082
Ouagadougou

Burma
The Director
Department of Agriculture
Ministry of Agriculture and Forests
Rangoon

Central Agricultural Research Institute
Gyogon, Insein
Rangoon

Burundi
Chef
Institut des Sciences Agronomiques du Burundi (ISABU)
Groupe de Phytopathologie et d’Entomologie
B.P. 795
Bujumbura

Cameroon
Chef
Service de la Protection des Végétaux
Ministère de l’Agriculture
Yaound

Canada
The Director
Plant Quarantine Division
Production and Marketing Branch
Agriculture Canada
Sir John Carling Bldg. C.E.F.
Ottawa, Ontario K1A OC5

Cape Verde Islands
Serviço Nacional de Protecção des Vegetais
Direcção Nacional de Agricultura
Caixa Postal 50
Praia

Cayman Islands
The Director
Department of Agriculture
Grand Cayman

Central African Republic
Le Directeur
Direction de l’Agriculture
Service de la Défense des Cultures
162 Bangui

Chad
Service National de la Protection des Végétaux
B.P. 441
N’Djamena

Chile
Director
Division de Protección Agrícola
Servicio Agrícola y Ganadero (SAG)
Ministerio de Agricultura
Casilla 4088
Santiago

China, People’s Republic of
Central China Agricultural Research and Training Institute
Wuhan

Colombia
Director
División de Sanidad Vegetal
Instituto Colombiano Agropecuario (ICA)
Apartado Aéreo 79480
Calle 37 No. 8-43 - PS 8
Santa Fe de Bogotá
Cook Islands
Director of Agriculture
Ministry of Agriculture and Fisheries
Box 96
Rarotonga

Costa Rica
Jefe
Departamento de Cuarentena y Registro
Ministerio de Agricultura y Ganadería
San José

Côte d'Ivoire
Chef
Service de la Protection des Végétaux
Ministère de l'Agriculture
B.P. V7
Abidjan

Cuba
Director
Dirección Nacional de Sanidad Vegetal
INRA
Departamento de Cuarentena Vegetal
La Habana

Curacao
Plantentuin Cascoa
Willemstad

Cyprus
Officer-in-Charge
Plant Protection Section
Department of Agriculture
Ministry of Agriculture
and Natural Resources
Nicosia

Czechoslovakia
Plant Protection Service
Ministry for Agriculture and Food
Ministerstvo Zemedelství a Lesního Hospodarství
Ochrana Rostlin, Tesnov 65
Prague II

Denmark
Statens Plantetilsyn
Plant Protection Service
Gersonsvej 13
DK-2900
Hellerup

Dominica
Ministry of Agriculture,
Land and Cooperatives
Roseau

Dominican Republic
Dirección General de Foresta
Central de los Heroes
Santo Domingo

Ecuador
Jefe
Departamento de Sanidad Vegetal
Ministerio de Agricultura y Ganadería
Quito

Egypt
Ministry of Agriculture
Dokki
Cairo

Plant Quarantine Administration
Customs Gate 6
Alexandria

El Salvador
Jefe
Departamento de Defensa Agropecuaria
Ministerio de Agricultura y Ganadería
San Salvador

Ethiopia
Director
Department of Plant Production
and Protection
Plant Quarantine Service
Ministry of Agriculture and Settlement
Addis Ababa

Federal Republic of Germany
Federal Ministry of Food,
Agriculture and Forestry
Plant Protection Division
Rochusstr. 1
5300 Bonn

Fiji
Director of Agriculture
Department of Agriculture
Rodwell Road
Suva

Finland
Chief
Plant Quarantine Unit
Agricultural Research Centre
P.O. Box 18, SF-01301
Vantaa 30

France
(minor countries)
Ministère de l’Agriculture
Direction de la Qualité
Service de la Protection des Végétaux
231 Rue de la Convention
75015 Paris
Martinique, Guadeloupe, and French Guiana only
Chef
Service de la Protection des Végétaux
Boîte Postale 241
Fort de France
Martinique

Gabon
Direction des Services Agricoles
B.P. 43
Libreville

Gambia
Crop Protection Unit
Department of Agriculture
Cape St. Mary

German Democratic Republic
Staatl. Pfl. u. Pfl. quarantänedienst
Pfl. u. Pfl. quar.
15 Potsdam
Hermanswerde 20 A

Ghana
Plant Quarantine Service (PQS)
Department of Agriculture
P.O. Box M-37
Accra

Gilbert and Ellice Islands
Senior Agricultural Officer
Department of Agriculture
Bikenibeu, Tarawa

Great Britain

England and Wales
Plant Health Administrative Unit
Ministry of Agriculture, Fisheries and Food
Eagle House
90-96 Cannon Street
London EC4N 7HT

Northern Ireland
Potatoes, Plant Health and Seeds
Department of Agriculture for Northern Ireland
Dundonald House
Upper Newtownards Road
Belfast BT4 3SB

Scotland
Potatoes and Plant Health Branch
Department of Agriculture and Fisheries for Scotland
Chesser House
500 Gorgie Road
Edinburgh EH11 3AW

Greece
The Director
Plant Protection Division
Ministry of Agriculture
2 Acharnon St.
Athens

Grenada
Plant Protection Officer
Plant Protection Division
Ministry of Agriculture, Forestry and Fisheries
St. George's

Guam
The Director
Department of Agriculture
Agana 96910

Guatemala
Jefe
Departamento de Sanidad
Vegetal y Cuarentena Agrícola
12 Avenida 19-01
Zona 1
Ciudad de Guatemala

Guernsey, Channel Islands
The Secretary
State's Committee for Horticulture
Burnt Lane, St. Martins
Guernsey, C.I.

Guinea
Chef
Service de la Protection des Végétaux
Ministère de l'Economie rurale et de l'Artisanat
Conakry

Guyana
Chief Agricultural Officer
Plant Quarantine Service
Ministry of Agriculture
Central Agricultural Station
Mon Repos, East Coast
Demerara
Haiti
SERA/DARNDR
Section de Botanique et de Phytopathologie
Quarantaine Végétale
Damien
Port-au-Prince

Honduras
Programa de Producción y Protección Vegetal
Ministerio de Recursos Naturales
Boulevard Miraflores
Tegucigalpa, D.C.

Hong Kong
Department of Agriculture and Fisheries
Government Offices
393 Canton Road
Kowloon

Hungary
Deputy Head
Department of Plant Protection and Agro-Chemistry
Ministry of Agriculture and Food
Kossuth, Lajes-Ter 11, Pf.1, H-1860
Budapest 55

Iceland
Agricultural Research Institute
Keldnaholt
110 Reykjavik

India
Plant Protection Adviser to Government of India
Directorate of Plant Protection, Quarantine and Storage
N.H.I.V
Faridabad 121001
Haryana

Director
National Bureau of Plant Genetic Resources
IARI Campus
New Delhi 110 012

Indonesia
Director General
Food Crops Development
Ministry of Agriculture
Jalan Salemba Raya 16
Jakarta

Iran
The Director
Sazeman Hefze Nabatat (Plant Protection and Quarantine Organization)
Ministry of Agriculture
Evin, Teheran

Iraq
The Director
Plant Quarantine Division
D.G. of Plant Protection
Ministry of Agriculture
Sadon Street
Baghdad

Ireland
Plant Protection Service
Department of Agriculture and Fisheries
Kildare St.
Dublin 2

Israel
Director of the Department of Plant Protection and Inspection
Ministry of Agriculture
P.O. Box 78
Beit Dagan, 50250

Italy
Chief
Division for the Protection of Farm Crops
Ministry of Agriculture and Forestry
Directorate General for Agricultural Production Division II, Via XX Settembre
Rome

Jamaica
Chief Plant Protection Officer
Plant Protection Division
Ministry of Agriculture
P.O. Box 480
Hope, Kingston

Japan
Chief
Plant Protection Division
Agricultural Production Bureau
Ministry of Agriculture, Forestry and Fisheries
1-2-1 Kasumigaseki
Chiyoda-ku
Tokyo
Jersey
Chief Executive Officer
Department of Agriculture
6 Bond Street
St. Helier, Jersey
Channel Islands

Jordan
Chief
Plant Protection Division
Agriculture Services Department
Ministry of Agriculture
Amman

Kampuchea
Division de la Protection des Végétaux
Director de l'Agriculture
Department de l'Agriculture
Phnom-Penh

Kenya
Chief
Plant Quarantine Section
National Agricultural Laboratories
Ministry of Agriculture
P.O. Box 30028
Nairobi

Korea, Republic of
Ministry of Agriculture, Forestry and Fisheries
Kwangon-City
Kyunggi-do 171-11

Kuwait
Plant Protection and Quarantine Section
Ministry of Public Works
Agriculture Department
Kuwait

Laos
Department de l'Agriculture
Ministère de l'Agriculture
Vientiane

Lebanon
Department of Plant Protection and Quarantine
Ministry of Agriculture
Beirut

Lesotho
Agricultural Research Division
Ministry of Agriculture
Box 289
Maseru 100

Liberia
The National Plant Quarantine Service
Ministry of Agriculture
Monrovia

Libya
Plant Protection Section
Ministry of Agriculture and Agrarian Reform
Sidi Mesri
Tripoli

Luxembourg
Service de la Protection des Végétaux
Administration des Services Techniques de l'Agriculture
Boîte Postale 1904
Luxembourg - Ville

Madagascar
Service de la Protection des Végétaux
Boîte Postale 1042
Antananarivo

Malawi
Chief
Bvumbwe Research Station (Plant Imports)
Ministry of Agriculture and Natural Resources
Department of Agricultural Research
P.O. Box 5748
Limbe

Malaysia
Crop Protection Branch
Department of Agriculture
Jalan Gallagher
Kuala Lumpur

Mali
Service de la Protection des Végétaux
B.P. 1908
Bamako

Malta
Plant Health Division
Department of Agriculture and Fisheries
Government Experimental Farm
Ghannieri
Marsa

Mauritania
Directeur
Centre National de Recherche Agronomique et de Développement Agricole (CNRA)
Kaedi

Mauritius
Plant Pathology Division
(Plant Protection Service)
Ministry of Agriculture and Natural Resources and Environment
Reduit
Mexico
Dirección General de Sanidad Vegetal (DGSV)
Av. Gmo. Perez Valenzuela No. 127
Coyoacan, D.F. (S.P. 21)

Montserrat
Ministry of Agriculture,
Lands, Trade and Housing
Plymouth

Morocco
Service de la Protection des Végétaux
Direction de la Recherche Agronomique (DRA)
B.P. 415
Rabat

Mozambique
Chefe do Serviço Serviços de Agricultura
Maputo

Nepal
Division of Plant Pathology
Department of Agriculture
P.O. Box 415
Khumaltar
Lalitpur

Netherlands
Director
Plant Protection Service
Geertjesweg 15
P.O. Box 9102
6700 HC Wageningen

New Caledonia
Chef
Service de l'Agriculture
B.P. 34
Noumea

New Zealand
Ministry of Agriculture and Fisheries
P.O. Box 2298
Wellington

Nicaragua
Departamento de Sanidad Vegetal
Ministerio de Agricultura y Ganadería
Managua, D.N.

Niger
Service de la Protection des Végétaux
Direction du Service de l'Agriculture
B.P. 323
Niamey

Nigeria
Project Director
Plant Quarantine Service
PMB 5672
Moor Plantation
Ibadan

Netherlands (Channel Islands)
Department of Agriculture
Alofi

Norway
Norwegian Plant Protection Service
B.P. 94
Okern
Oslo 5

Oman
Director
Administration of Plants
General Province of Agriculture
Ministry of Agriculture, Fisheries, Petroleum and Minerals
P.O. Box 467
Muscat

Pakistan
Director
Department of Plant Protection
Ministry of Agriculture and Works (Agriculture Division)
Jinnah Avenue, Malir Halt
Karachi 27

Panamá
Departamento de Investigación Agropecuaria
Seccion de Cuarentena Agropecuaria
Ministerio de Agricultura Comercio e Industrias
Panamá

Papua New Guinea
The Administrator
Department of Agriculture, Stock and Fisheries
P.O. Box 2417
Konedobu

Paraguay
Jefe
División de Sanidad Vegetal
Ministerio de Agricultura y Ganadería (MAG)
Asunción

Perú
Unidad de Inspección y Control Fitosanitario
Ministerio de Alimentación
10o. Piso
Ministerio de Trabajo
Av. Salaverry s/n
Lima
Philippines
Plant Quarantine Section
Bureau of Plant Industry (BPI)
692 San Andres
Malate, Manila

Poland
Ministerstwo Rolnictwa
(Ministry of Agriculture)
Department Produkcji Roslinnej
i Ochrony Roslin
(Department of Plant Production and Protection)
Warszawa, ul.
Wspolna 30

Portugal
Repartição de Serviços
Fitopatológicos (R.S.F)
Lisbon 3

Puerto Rico
Plant Quarantine Section
Puerto Rico Department of Agriculture
P.O. Box 101613
Santurce 00908

Reunion Islands
Service de la Protection des Végétaux
Ministère de l’Agriculture
Boîte Postal No. 312
Saint-Denis
Reunion

Romania
State Inspectorate for Plant Protection
Ministry of Agriculture
Bd Republicii 24
Bucharest

Rwanda
Bureau de la Protection Végétale
Ministère de l’Agriculture et de l’Élevage
B.P. 621
Kigali

Saudi Arabia
Director
Plant Protection Branch
Ministry of Agriculture and Water
Riyadh

Senegal
Direction de la Protection des Végétaux
Ministère du Développement Rurale et de l’Hydraulique
Boîte Postale No. 486
Dakar

Seychelles
Director of Agriculture
Victoria
Mahe

Sierra Leone
Director of Agriculture
(Phytosanitary Control Unit)
MANR, Tower Hill
Freetown

Singapore
Senior Primary Production Officer
(Agriculture)
Primary Production Department
Ministry of National Development
Maxwell Road
Singapore 2

Solomons Islands
Ministry of Agriculture and Lands
Plant Quarantine Section
P.O. Box G 11
Honiara

Somalia
Plant Protection and Locust Control Department
Ministry of Agriculture
Mogadishu

South Africa
Director
Division of Plant and Seed Control
Department of Agriculture
Private Bag X179
0001 Pretoria

Spain
Director
Instituto Nacional de Semillas y Plantas de Vivero
Camino 2
Ciudad Universitaria
Madrid (3)

Sri Lanka
Director of Agriculture
Department of Agriculture
Ministry of Agricultural Development and Research
Colombo

St. Kitts and Nevis
Ministry of Agriculture, Housing and Labour
P.O. Box 39
Basseterre
St. Lucia
Chief Agricultural Officer
Department of Agriculture
Ministry of Agriculture and Lands
Castries

St. Vincent
Chief Agricultural Officer
Ministry of Agriculture, Trade and Tourism
Kingston

Sudan
Director
Plant Protection Department
Ministry of Agriculture and Irrigation
P.O. Box 14
Khartoum North

Surinam
Plant Protection and Production Division
Ministry of Agriculture, Animal Husbandry and Fisheries
P.O. Box 1153
Paramaribo

Swaziland
Director of Agriculture
Malkerns Research Station
P.O. Box 4
Malkerns

Sweden
Plant Protection Service
National Board of Agriculture
S-551 83
Jönköping

Switzerland
Division de l'Agriculture
Department Fédéral de l'Economie Publique
Mattenhofstrasse 5 3003
Berne

Syria
The Director
Plant Protection and Quarantine Division
Ministry of Agriculture and Agrarian Reform
Damascus

Tahiti
Monsieur le Chef du Service de l'Agriculture
Pirae
Papeete

Taiwan (Republic of China)
Chief
I Division (Plant Quarantine)
Bureau of Commodity Inspection and Quarantine
Ministry of Economic Affairs
5 Hsu Chou Road
Taipei

Tanzania
Head
Plant Quarantine Services
TPRI
Plant Quarantine
Arusha

Thailand
Director General
Department of Agriculture
Ministry of Agriculture and Cooperatives
Bangkok 9

Togo
Service de la Protection des Végétaux
B.P. 1263
Lomé

Tonga
Plant and Animal Quarantine Service
Ministry of Agriculture, Fisheries and Forestry
P.O. Box 14
Nuku'alofa

Trinidad and Tobago
Technical Officer (Research)
Ministry of Agriculture, Lands and Fisheries
Centeno

Trust Territory of the Pacific Islands
Chief of Agriculture
Agricultural Division
Department of Resources
Saipan 96950
Commonwealth of the Northern Marianas

Tunisia
Direction de la Production Végétale
Direction de la Défense des Cultures
30 Rue Alain Savary
Tunis

Turkey
Ministry of Food, Agriculture and Animal Husbandry
General Directorate of Plant Protection and Plant Quarantine
Necatibey Cad. No. 98
Ankara
Tuvalu (Gilbert and EIllice Islands)
Ministry of Commerce and Natural Resources
Funafuti

Uganda
Department of Agriculture
Plant Protection Unit
Kawanda Research Station
P.O. Box 7065
Kampala

Union of Soviet Socialist Republics
State Department of Plant protection
Ministry of Agriculture
State Inspectorate
Orlikov Pereulok 1/11
Moscow, 107139

United States of America
U.S. Department of Agriculture
Animal and Plant health Inspection Service
Plant Protection Service
Quarantine Programs
(USDA/APHIS/PPQ)
302-E Administration Building
Washington, D.C. 20250

Uruguay
Dirección de Sanidad Vegetal
Ministerio de Agricultura y Pesca
Millan 4703
Montevideo

Vanuatu
Chef
Service de l’Agriculture
Port Villa

Venezuela
Director
Ministerio de Agricultura y Cría
Departamento de Sanidad Vegetal
Torre Este, Piso 20, Parque Central
El Conde
Caracas

Vietnam
Plant Protection Service
Department of Rural Affairs
P.O. Box 427
Hanoi

Virgin Islands
The Director
Department of Agriculture
Road Town
Tortola

Western Samoa
Director of Agriculture
Department of Agriculture and Forests
P.O. Box 206
Apia

Yemen Arab Republic
Plant Protection Division
Ministry of Agriculture
Sana’a

Yemen, People’s Democratic Republic of
Plant Protection Project
El Ked Agricultural Research Centre
Ministry of Agriculture
Aden

Yugoslavia
Federal Committee for Agriculture
Department for Plant Protection and Veterinary Service
Bulevar Avnoj-a 104
11070 Belgrade

Zaire
Inspecteur-Chef
Service du Controle Phytosanitaire
B.P. 8722
Kinshasa I

Zambia
The Phytosanitary Service
Mount Makulu Central Research Station
P.O. Box 7
Chilanga

Zimbabwe
Plant Protection Research Institute
Ministry of Agriculture
P.O. Box 8100
Causeway
Harare