
Centro Internacional de Agricultura Tropical
lnternational Center for Tropical Agricultura

A Classifier System Prototype for the

Exploratory Analysis of Spatial Data

Project Report

Euan Crawford and William Bell

July 1997

•••

A Classifier System Prototype for the Exploratory
Analysis of Spatial Data

Project Report

Euan Crawford
CIAT 1 University ofEdinburgh
July 1997

This report details work conducted as part of a ClA T funded project investigating
exploratory analysis of spatial data using artificial intelligence techniques. The study was
conducted in collaboration with Dr William Mackaness (Department of Geography,
University ofEdinburgh) and Dr William Bell (Chieflnformation Officer, CIAT).

1. Introduction
As GIS emerges as a mature technology for the management and manipulation of spatial
data the amount of digital data to be serviced has exploded. As we generate greater
quantities of data at increasingly higher resolutions the opportunities to analyse, model apd
understand environmental and socio-economic processes increase. However, it appears that
our ability to make use of data has been swamped by our ability to create it. Current spatial
analysis techniques, whether conceptual or widely used, are not powerful enough to allow us
to ' release the empírica! regularities that exist amongst the noise' in large spatial datasets
(Openshaw, 1994, p123). As Holland (1986, p593) notes;

'Human experience indicares that real environments abound in regularities. The problem is
to uncover and exploit them '.

Many of our current techniques for the analysis of spatial data date from an era of limited
computing power where analysis was concepts, rather than data, driven. As a result most
spatial models are either too abstract to allow operationalisation (environmental systems
modelling, theoríes ofurban social structure) or too crude (gravity interaction modelling,
urban economic zoning) to produce useful resu lts (Senior, 1979). Many techniques from
exp1oratory statistical analysis (EDA) also prove to be of limited use. They assume a priori
knowledge of all potential relationships in the data and the strict assumptions of parametric
statistics, as well as the need to analyse categorical data, frequently make EDA techniques
inappropriate.

This study details the development and implementation of a prototype classifier system that
searches for rules and relationships among spatial data.

2. Machine Learning
Over two decades of work in artificial intelligence has produced a number of paradigms
aimed at inductive and deductive learning ofrules from experience (see Wilson, 1987, for a
review ofrelevant work). Many ofthese paradigms deal only with high leve), symbolic
representations of data (' a small field of dark soil ') (Mitchell, 1982) in broad problem
domains, ofthe type more commonly associated with human experience. The most
successful systems which are able to deal with lower leve! concepts ('a 1 hectare polygon of
soil of pH 6.1 ') ha ve been developed for restricted problem domains where the learning
environment lends itselfto straightforward classification e.g. gaming systems. Neural
networks have proved able to handle both high and low leve! concepts with notable success
(Barto, 1985). However, with a non-transparent learning process little insight is gained into
the processes that produce regularity in the data. The classifier system, developed by
Holland (1975, 1986), avoids many ofthese limitations and holds great potential for learning
of re lationships in spatia l data.

2.1 Classifier Systems

A comprehensive review of classifier systems and their operation is outwith the scope of this
report and thus only relevant elements wi ll be treated in depth . A fuller account is available
in Holland (1975, 1986).
Holland classifiers are essentially expert systems that incorporare elements of inductive
leam ing and rule creation. They are particularly adept at producing solutions to highly
complex problems that cannot be solved analytically (NP-complete).

Holland classifier systems comprise three main elements;

• standard classifier system: a rule base and message board
• leaming and induction system: bucket brigade algorithm
• rule discovery system: genetic algorithm

2.1.1 Standard Classifier
The standard classifier system uses a temary alphabet {0, 1,#} to represent data. Real world,
non-binary data can be transformed toa binary representation. The third element in the
alphabet, '#', is a wildcard character, used to confer a degree of generality on rules. A '#' is
used to signify either a ' 1' ora ' O'.

The rule base consists of a fixed number of rules, each one a hypothesis about sorne aspect of
the environment (in this case a description ofthe relationships between spatia1 data). Rules,
of s imilar form to those u sed in expert systems, are of fixed length L and include a condition
and outcome segment. A rule with L= l2 takes the form {011001100101 }, where bits 1-8
represent the condition and bits 9-12 represent the outcome. The condition might represent a
set ofvariab1es (soil X, aspect Y, s lope Z) that lead toa particular outcome (landuse Q). An
analogy can be drawn with the way chromosomes are used for the storage of genetic
information in biological systems. In this case each bit corresponds toan allele. Input from
the environment is coded using the same scheme. In this way rules and environmental data
can be directly compared.

The message board is a list, accessible by all rules. It is used for posting environmental input
and to a llow ínter-rule linking and communication.

2.1.2 Learning and induction system
The bucket brigade algorithm, as proposed by Holland (1976), allows competing rules to bid
for the right to become the system decision. Each rule in the rule base is compared with
environmental input posted to the message board . Matching is performed only on the
condition part of chromosomes. The system decision is the rule which most c losely matches
an input. Rules are then rewarded according to their leve! of success in predicting the
outcome, that is their ability to match the outcome segment ofthe input chromosome. While
successful rules become progressively stronger poor performers lose strength and run the risk
ofbeing eliminated from the population by the genetic algorithm (as explained below).

The bucket-brigade algorithm is particularly effective in task environments where success
may be infrequent and requires the construction of long chains of rules to achieve a s ingle
goal e.g. recognising, and acting upon, input to navigate a robot around a maze.

2.1.3 Genetic algorithm

The genetic algorithm (GA) provides the rule discovery element ofthe system. GAs
essentially mimic the way biological populations use genetic evolution to become
progressively fitter through successive generations. The GA operates, primarily, by
combining elements from the best performing rules to produce new, fitter offspring.

New rules are bred by randomly combining segments from the chromosome of each parent.
In the example below (L=12) the segments consisting ofbits 5-8 are swapped to produce two
hybrid offspring.

parents
rule_26 { 11110000 1111 }
rule_27 {11010001 1010}

offspring
rule _ 1 O 1 { 11110001 1111 }
rule _ 1 02 { 11 O 1 0000 lO JI }

The secondary operator, random mutation, precludes the permanent loss of, and ensures the
creation ofnew, 'genetic material ' in the system. In the above example rule_102 was subject
to this process. As is the case with biological populations, random mutation occurs far less
frequently than crossover.

Chromosomes can be considered as consisting of ' building blocks' of genetic material. The
key to the success of GAs líes in the way they search the solution space. The combination of
historically successful building blocks moves through thi s space 'orders ofmagnitude more
rapidly than would be indicated by the rate at which it is process ing strings' (Holland, 1986).
This is particularly important for searches in spatial datasets. A modest exploratory search
might use five layers ofspatial data. Assuming that all data in these layers can be adequately
represented using a 3-bit binary a lphabet there exists, potentially, 215 unique rules. A more
complex search might use 15 datasets anda 5-bit ternary alphabet. With a solution space of
275 unique combinations conventional searches are c learly inadequate. The benefits of a GA
which is guided through search space by a combination of experience and impl icit
parallelism are apparent.

3. System Prototype
A system prototype was developed to test the applicability ofthe c lassifier system to the
exploration of spatial data. This section documents the system design. The system
incorporates e lements from both the standard Holland c lassifier and Stewart' s (1987) Animat
classifier, with a number of modifications.

3.1 Data Representation
The use of a ternary alphabet (0, 1 ,#) to represent rules and environmental input has the
advantage of allowing the standardisation of many, potentially di verse, datasets. Coupled
with the ability to use fixed length registers in the CPU for simple string matching rapid
processing is possible. However, for ease of representation and interpretation of results, the
system was designed for use with a decimal alphabet. System trials used rules and
environmental input represented by the alphabet {0, 1 ,2,3,4,5,6} with '6' acting as a wi ldcard
(#).

3.2 Search
The system searches for rules by scanning the study area from upper left to bottom right. At
each grid cell the values in the corresponding datasets are recorded and mapped toa single
chromosome of the form described earlier (Figure 1). Comparisons are then made between

each rule in the rule base and the input string. The number of matches, including wildcard
matches, is recorded for each rule. The remaining steps in the algorithm are carried out
before preceding to the next cell.

~--~----

Figure 1: Environmental Input (ti ve 5*5 rasters)

el c2 c3 c4 c5
soil

dist_road

cell
(e 1 ,rl)
(c2,rl)
etc

landcover

chromosome
{3,4,5, 1,1}
{2,5,4,3,2}

As the search through the spatial data a llows immediate evaluation of rule success, that is,
success in providing a match, the full rule-chaining capabilities of the bucket-brigade
algorithm are not required .

3.3 Rule Base Payoff
For any particular grid location, those rules which fully match the condition part of the input
data are subset from the rule base (P] to form the condition set [CJ. The rule with the
greatest strength is then selected from [C], this becomes the system decision (sd) . The
decision set [D] is formed as a subset of [C] and comprises the system decision and those
rules with the same outcome as the system decision. The set NOT[D] is a lso formed. The
outcome of [D] is tested against the input data to establish whether or not the system
provided a correct decision. Depending on the decision, each member of [D] receives a
proportion of a fixed quantity of payoff. The payoff received by individual rules is
determined by the generality function defined be low.

l +(em / tm.)8

payoff¡ = n
1 1

• tpayoff

L 1 + (em 1 trn)8

1

where payoft;: payoffreceived by rule;, emi: number of non # matches in rule;, tm;: total
number of condition matches in rule;, g: system-wide generality control (scalar value) and
tpayoff: total payoff available to [D].

Payoffto an individua l rule is inversely proportional to the number ofwildcard matches
generated by it's condition. As g increases, those rules with a high number ofwildcard
matches receive proportionately Jess payoff. The generality control was introduced to
control the production of overly general rules.

The system also includes the capability to levy taxes on rules. Taxes can be applied to [C],
[D] and NOT[D] to control the way the system learns. Payoff with no taxation can be

considered a payoff-only regime whi le payoffwith high taxes can be considered a payoff­
penalty regime (Stewart, 1987).

3.4 Genetic Algoritbm
After the rule base has been matched with the input string and rewarded accordingly, genetic
operators are employed. The two operators, crossover and mutation, are controlled by two
system wide probability functions; llcr and 1/mt respectively.

The algorithm selects the strongest rule from [P] and makes a copy. lf crossover is invoked,
the second strongest rule is also copied and a random segment is swapped between the two.
The offspring are then inserted in place ofthe two weakest (lowest strength) rules in the
population. If crossover is not invoked the copied rule is simply inserted in place ofthe
weakest rule. In both cases the mutation operator is then applied to each allele in the
offspring with probability llmt.

4. System Trials
Testing was carried out using five artificially generated spatial datasets corresponding,
arbitrari ly, to soi l, aspect, s lope, distance from road and landcover data. The latter is treated
as the outcome while the preceding four layers form the condition. Each dataset is stored as
an ASCII raster.

The datasets were generated containing known regularities, or rules. The system was tested
by incorporating a performance algorithm to monitor the percentage of ru les in the rule base
which corresponded to one ofthe known rules. This, in effect, measures the ability ofthe
system to leam by recognising regularities and adapting the rule base accordingly.

For each tria! the rule base was populated with 250 randomly generated ru les. Rules were
generated by setting each allele (except those in the outcome part) to either # ora value from
the set {0-5}, each with a probability ofO.S. Each trial was run for 45 generations (one
generation is equivalent to every rule being matched once with every cell in the input data)
over rasters of size 8*8. Payoff, g and 1 lcr were set to 1000 , 2 and 0.5, respectively, after
initial experimentation. All tax values were set to zero to limit the number ofvariables for
testing.

4. Results
Figure 2a show the results from a simple tria! where the input data contained only three
randomly placed rules and no random noise (' non-rules') with 1/mt set to 0.01 5. The upper
series (total) represents the percentage ofthe rule base that corresponds to any one ofthe
three known rules while the other three series (rule 1-3) correspond to the discovery of
individual rules, as a percentage ofthe entire rule base. As can be seen from the total the
system rapidly recognises, learns and populates itself with know rules. E ven though the total
reaches close to 100% after six generations, the population is initially dominated by rule 1
and, to a lesser extent, rule 2. The system only 'discovers' rule 3 after 8 generations.
Thereafter rule 3 becomes more widely represented, at the expense of rules 1 and 2. After
twenty-five generations the system appears to reach a stage of equilibrium with only minor
changes in the composition ofthe rule base.

Figure 2a.

~
100

Q)
80 > total o o

(/) 60 ___ rule 1
'5
e:
·º 40 rule 2
3

- · - ·-· rule 3 o 20
(/)

"$. o - ... M O> 10 ;;; ... M - - N M ..,.
no. generations

1t can be seen that the randomly populated rule base (zero generations) contains solution
matches. Although the theoretical probability of random generation of any one of the known
rules is low, the high percentage ofwildcards in the initial population (50%) increases the
probability greatly (the performance algorithm includes rules with up to three wildcard
matches). The graph shows that the initial rule base did not contain any rules matching rule
3. The system required time to search the solution space and adjust itselfto presenta
successfu l system decision. A second tria l was run with the same system parameters as used
in Figure 2a., the only difference being that the input data was randomly generated to contain
no regularities (a regularity being detined as more than one occurrence of a particular
combination of conditions and outcome) and, specitically, no instances of any of the three
known rules. Six ofthe sixty-four unique combinations (a unique combination can be
thought of as a single-occurrence rule) were fed into the performance algorithm for system
testing. The system was able to leam on ly two of the s ix combinations. An interesting
phenomena was discovered when the system was runa third time, this time only the
performance algorithm was altered by feeding it with the three rules used in Figure 2a, the
results ofwhich are shown in Figure 2b. The system appears to be discovering regularities
not existent in, in fact specitically excluded from, the data.

Figure 2b.

~
20

Q)
> o o

15
(/)

'5 10 , __ total¡ e:
·º 3 5 o

(/)

~ o - (!) - (!) - (!) - (!) -- - N N M M ..,.
no. generations

The explanation for this phenomenon is that many different, but similar, pattems in the data
can be matched by one rule from the rule base. For example, the three input data strings
{0,1 ,5,3,4}, { 1, 1,3,3,4}, {5,1,2,3,4} can all be matched by the rule {#, 1,#,3,4} . This suggests
that results produced by the learning algorithm must be interpreted by care. The percentage
of the rule base that corresponds to any of the know rules can include multiple counting due
to the possibility of multiple matching illustrated above (E individual rule recognition % >
100%). However, none ofthe trials presented show evidence ofthis.

The role of mutation in rule discovery is demonstrated in Figure 2c. This plot shows total
system performance on a trial with l lmt set to 0.25. In all other respects the trial is identical
to that presented in Figure 2a. As can be seen the higher probability of mutation has led to
slower, less stable, learning andan equilibrium leve\\ower than that achieved in Figure 2a.
As the mutation rate increases, the more conservative processes of rules replication and
crossover become less prevalent. Rule replication serves to strengthen the rule base while
crossover produces new rules through minor changes, both based on the historical
performance ofthe rule base. Mutation does not use the accumulated knowledge ofthe rule
base and the effects of this more radical search strategy can be seen. E ven when the system
reaches equilibrium mutation ensures the continued insertion of random genetic material into
the rule base.

Figure 2c.

e=-
100

Q)
80 > o

o
en 60 :0 __ total e
.Q 40
S
o 20
en

::le o o
<O <O - <O - <O -- N N M M V

no. generations

A more realistic Jearning environment is presented in Figure 2d. In this case the input data
contains both known rules and randomly generated noise.

Figure 2d.

e=-
100

Q)
> 80 o o
en 60
:0 __ total
e 40 .Q
S o 20 en

</!. o
<O ID - <O - <O -- N N M M V

no. generations

The system is able to learn the known rules, though less rapidly than when ' clean' data is
used. Solution discovery reaches a maximum value of around 90%, compared with the
figure of97% achieved for clean data. This is expected as the rule base must retain non­
solution rules to be able to respond to frequent, random noise.

5. Discussioo
The development and implementation of a successful classifier system prototype has been
presented. The system works well with small datasets of restricted complexity where the
existence of known relationships in the data allows an evaluation of performance. lt has
demonstrated a capability to recognise patterns in both clean and noisy data anda sensitivity

to variations in the mutation rate. Although a comprehensive testing of other system
pararneters, specifically taxes, was outwith the scope of this study, work by Holland (1986)
and Stewart (1987) documents their role in the leaming process.

A limitation ofthe system was discovered during the tria\ performed on the data containing
sixty-four unique rules. Although the rule base was exposed to each combination forty-five
times (the number of generations over which the tria! was run) the system exhibited a low
rule discovery rate. It is not clear ifthe limitation is dueto the large number of rules to be
leamed and held, concurrently, by the rule base orto the infrequent exposure of the rule base
to each rule. With respect to the latter, ifthe system were applied to real world data it is
unlikely that a phenomenon that occurs so infrequently in such isolated groups (of one)
would be considered an important regularity in the data.
It is suggested that the system provides, at the very least, the basis for a technique that can be
used for the exploratory analysis of'real world' spatial data. There are a large number of
potential applications for the system. As the arbitrary naming of the test datasets implies, the
system could be used to look for evidence regarding the causes of soi l erosion, marginal
cropping and other unsustainable practices. An immediate advantage ofthe technique over
statistical methods is the ability to incorporate both interval and categorical data. This would
allow analysis of the conditions giving rise to low income and poverty by incorporating
biophysical (soil, slope etc.) and socio-economic (land tenure, farming practices etc.) data.
Analysis should aim to incorporate as many factors as possible, with little a priori concern
for which data might be relevant. Ifthe system is run over a sufficiently large number of
generations it will identify particular sets of conditions which give rise to particular
outcomes with irrelevant data simply represented by wildcards in the rule base.

Where a priori theories or hypotheses about the nature of regularities in the data are held,
they can be incorporated as rules, seeded in the rule base. Over a number of generations, the
proliferation or extinction ofthese rules should help determine their validity.

A final note of caution is required. The classifier system presented here should only ever be
considered an aid to directed, insightful exploratory analysis of spatial data. Any results
produced by a classifier systern should be subject to the highest scrutiny. lt is quite
conceivable that a large, rich spatial database will contain spurious regularities of little
relevance. Results should be used as part of an ongoing process of analysis, aiding in the
construction of hypotheses and guiding future research.

6. Future
Future work should aim to determine the scalability of such a system. It is essential to test
the system on real world data, magnitudes of size and complexity greater than the very
simple data used in this study. Scalability should be considered in terms ofboth system
performance and the ability to handle large numbers of concurrent rules with, potentially,
infrequent payoff. This might include measures to síphon rules out of the system once they
have reached a particular threshold (in terms of dominance ofthe rule base etc.), as trials
indicated that apparently strong rules can become extinct if not subject to frequent
strengthening. Appendix A contains additional information on the architecture and
performance ofthe system.

An issue requiring attention is the incorporation of spatial relations in the search process. At
present the system can only handle those relations which are explicitly defined and recorded
in a dataset e.g. distance toa particular road. lt is unsatisfactory to include only spatial
information that is considered a priori to ha ve relevance. Dibble (1994) propases the use of

Dutton's tesselation data structure as a means of incorporating spatial relations. An area of
investigation would be the use of object-oriented data modelling to incorporate the full
semantics of spatial relations that might be relevant in exploratory data analysis.

References
Aspinall R., 1994, 'Exploratory spatial analysis in GIS: generating geographical hypotheses
from spatial data' , in Worboys M. (ed), Innovations in GIS 1, Taylor Francis.

Barto A.G., 1985, Learning by statistical cooperation ofself-interested neuron-like
computing elements, COINS Technical Report 85-11, Amherst: University ofMassachusetts.

Dibble C., 1994, 'Beyond Data: handling spatial and analytical context with genetics based
machine learning ', Proceedings SDH ' 94, Edinburgh, 1041-1060.

Dibble C., Densham P.J ., 1993, ' Generating interesting alternatives in GIS and SDSS using
genetic algorithms', Proceedings GIS/LIS '93, 180-189.

Frey P .W ., 1986, ' A bit-mapped classifier' , Bvte, 11 (12), 161-1 73.

Goldberg D.E, 1989, Genetic Algorithms in Search, Optímization, and Machine Learning,
Addison Wesley.

Holland J.H, 1975, Adaptation in Natural and Artificial Systems, MIT Press.

Holland J.H., 1986, Escaping brittleness: The possibilities of general-purpose learning
a1gorithms applied to paral\el ru\e-based systems, in R.S . Michalski, J.G. Campbe\1 & T.M.
Mitchell (eds), Machine Learning: An artificial intelligence approach (Vol. 2), Margan
Kaufmann (Los Altos, CA).

Holland J.H, 1992, ' Genetic algorithms' , Scientific American, July, 66-72.

Koza J.R., 1992, Genetic Programming: On the Programming of Computers by Means of
Natural Selection, MJT Press.

Mitchell T.M., 1982, 'Generalisation as search', Artificial Intelligence, 18,203-226.

Openshaw S., 1993, ' Sorne suggestions concerning the development of artificial intelligence
tools for spatial mode\ling and ana1ysis in GIS' , in Fischer M.M, Nijkamp P. (eds),
Geographic lnformatíon Systems, Spatia1 Modelling and Policy Evaluation, Springer-Verlag.

Openshaw S., 1994, ' A concepts-rich approach to spatial analysis, theory generation, and
scientific discovery in GIS using massively paralle1 computing', in Worboys M. (ed),
Innovations in GIS 1, Taylor Francis.

Schrodt P.A., 1986, ' Predicting International Events', ~. 11(12), 177-192.

Senior M.L., 1979, 'From gravity modelling to entropy maximising: a pedagogic guide',
Progress in Human Geography, 3(2), 176-21 O.

Wilson S. W ., 1987, 'Classifier Systems and the Animat Problem', Machine Leaming, 2,
199-229

Appendix A

System Implementation
The system was coded in C using the Borland C++ compiler (V 4.5) under Windows 3. 1.
Although written for a 16-bit OS it is anticipated that few changes would be required for
porting toa different OS. A fully documented code listing is included in Appendix B.

The system was designed to explore the applicability of the classifier system rather than
achieve high performance levels. With limited attention paid to program optimisation
processing speed can be slow. For a tria) with a rule base of size 300 and five 8*8 input
raster processing times on an RM PC-466 (486) and RM PC-575 (75 Mhz Pentium) are 34
and 21 minutes, respectively. For trials with real, s ignificantly larger, datasets sorne form of
optimisation would clearly be required. The use of a more restricted alphabet to represent
rules and data input may help in this respect.

Datasets must be stored as ASCII rasters of equal dimensions. The system can, theoretically,
handle any number of datasets, of any size, however, limitations are imposed by the memory
capacity ofthe hardware running the system.

The algorithm includes a bounds checking function. The rules are coded as integer arrays
and this function makes period checks for rules with strengths approaching INT _MAX to
avoid system crashes. Although unnecessary for most trials it avoids problems where large
datasets are processed over many generations.

•
..

Appendix B

¡••·· •••• CLASSIFIER SYSTEM PROTOTYPE ••••
•••• (machine leaming of relationships in spatial data) ••••
•••• • •••
•••• file: csp.cpp (code) • •••
•••• Euan Crawford, July 1997 ••••
··••¡
#include "csp.h" JI libraries and algorithm parameters

/* Function declarations - descriptions included with code after main() •
FILE * diagf(FILE *, int);
void filetoarray(int [][NROW)[NCOL]);
void randfill(int •• , FILE *);
int reinforce(int [][NROW][NCOL], int, int, int ••, FILE*);
void ga(int • •, FILE *);
void bounds(int **);
void stats(int ••, FILE •, int);
void sort(int **);
void pm_data(int [)[NROW)[NCOL], FILE*);
void pm _pop(int • • , FILE *);
void header(FILE *);
void mem(int **);

void main() {

int h,ij, • •pop;
int dstore[NUMDSETS][NROW)[NCOL];
time_t st,ft; JI for calculation ofprocessing time
FILE *df;

pop=new int *[POPSIZE]; // allocate memory for rule base
for(i=O;i<POPSIZE;++i)
pop[i]=new int[W];

randomize();
st=time(NULL);
filetoarray(dstore); // environrnental (input) data to array
df=diagf(df, 1);
#ifV
pm _data(dstore,d t);

#endif
randfill(pop,dt);

printf{"\n\n\n\t\tprocessing: ");
for(h= 1 ;h<=MAXG EN ;++h){ // generation counter

for(i=O;i<=AOIR-1 ;++i){
for(j=Oj <=AOIC-1 ;++j){ // raster AOI controls

11 bounds(pop);
while(!reinforce(dstore,ij ,pop,dt)); // reinforce() while [C] set empty
ga(pop,dt);
#ifV

if{TSOL) stats(pop,df,h);
#endif

printf("\b\b\b\b\b\b%5d%",(h*IOO)IMAXGEN); // percentage processed counter
if(TSOL) stats(pop,df,h);

ft=time(NULL); ft-=st;
printf("\n\n"); if(TSOL) stats(pop,df,h);
sort(pop);
fprintf(df,"\n\nfinished after %d iterations (%d seconds)\n\n",h,ft);
if(TSOL) stats(pop,df,h);
pm_pop(pop,dt); df=diagf(df,O);

mem(pop); 11 dea\locate memory

11--F UN CTI O N S--

11---------------------------------LEA RN IN G RO UT IN ES---
int reinforce(int dstore[][NROW][NCOL], int r, int e, int **pop, FILE *dt) {
/* Function has two roles: i)matcbes rules in rule base with input strings

ii)strengthens rules according to matches */

int ij,maxbid=INT _MIN,mset=O,aset=O,ecnt=O, lsysdec= INT _ MIN ,sysdec=-0 ,taxa,taxna,taxsd;
double dt=O,tmp;

1* rule matching- counts input string-classifier matches */
for(i=-O ;i<=POPSIZE-1 ;++i){

pop[i][G]=O; pop[i][C]=O; 11 reset rule match scores toO
for(j=O;j<=NUMDSETS-2;++j) 11 count condition matches only
if(pop[i][j]= dstore[j)[r][c) 11 pop[i][j]= MAXVALUE){

++pop[i][C];
if(pop[i)[j]= MAXY ALUE)

++pop[i)[G); 11 count # matches

1* strengthen rules */
for(i=O;i<=POPSIZE-1 ;++i)

if(pop[i)[C]= NUMDSETS-1)
++mset;

11 determine size of [C]

if(mset>O){ 11 if [C] not empty
for(i= 1 ;i<=NUMOSETS-1 ;++i){ // loca tes system decision (full matches)

for(j=O;j<=POPSIZE- 1 ;++j) 11 with lowest no. #
if(pop[j][C]= NUMDSETS-1 && pop[j][G]<=i && pop[j][S)>maxbid){

lsysdec=j ; maxbid=pop[j][S];
}

if(lsysdec>INT _ MIN)
break;

if(pop[lsysdec)[A]= dstore[NUMOSETS-1] [r)[e])
sysdec= 1; 11 test if system decision correct

for(i=O;i<=POPSJZE- 1 ;++i) 11 determine size of (O)
if(pop[i][C)= NUMDSETS- \ && pop[i][A)= pop[lsysdec][A]){

++aset; ecnt+=(NUMDSETS-1)-pop[i](G]; 11 count non-general (#) matches

•

#ifV // progress report
fprintf(df,"mset:o/od aset:o/od lsysdec:%d sysdec:o/od ecnt%d\n\n",

mset,aset, lsysdec,sysdec,ecnt);
fprintf(df, "compdatsol(): flag classifier and input string matches\n ");
pm _pop(pop,dt);

#endif

11 calculate generality function for [D}, excluding full # matches
for(i""O;i<=POPSIZE-1 ;++i)

if(pop[i][C]--NUMDSETS-1 && pop[i][A)- pop[lsysdec)[A) && pop[i)[G)<NUMDSETS-1){
tmp""NUMDSETS-1 ;tmp=(tmp-pop[i][G))/tmp; tmp""pow(tmp,GEN); dt+""tmp;

for(i=O;i<=POPSIZE-1 ;++i) {
if(pop[i)[C]= NUMDSETS-1){

if(pop[i][A]--pop[lsysdec)[A) && pop[i)[G)<NUMDSETS-1){
taxa""TAXD/ 1 O; 11 select members of [D)
pop[i)[S)""pop[i][S)-((pop[i][S] •taxa)/ 1 O); 11 tax [D)
if(sysdec= l){ // if sys. decision correct

tmp""NUMDSETS-1 ; tmp=(tmp-pop[i)[G))/tmp; tmp=pow(tmp,GEN);
pop[i][S)+""{tmp/dt)• TPA YOFF; 11 payoffto [D)

}
el se if(sysdec- 0) { // if sys. decision wrong

}
} //[0]
else {

taxsd=T AXSD/ 1 O;
pop[i][S)=pop[i)[S]-((pop[i][S]•taxsd)/ 1 O); 11 tax [D)

11 select members ofNOT[D]
taxna=T AXND/ 1 O;
pop[i][S]=pop[i)[S]-((pop[i][S] •taxna)/ 1 O);

}//NOT[D]

11 tax NOT[D]

}//NUMDSETS-1
}//i

#ifV
fprintf(df, "reinforce(): classifiers taxed and rewarded\n ");
pm _pop(pop,dt);
sort(pop); fprin tf(df,"reinforce(): classifiers taxed, rewarded and sorted\n");
pm_pop(pop,dt);

#endif

}//mset= l
else if(mset=O){ // if [D] empty

sort(pop);
#ifV

fprintf(df,"[M) empty- pop sorted and rule created\n\n");
#endif
for(i=O;i<=A;++i){ 11 create new rule

if(i<A){
if(random(2)= 1)

pop[POPSIZE-1][i]= MAXV ALUE; // insert random #s
el se

pop[POPSIZE- l)[i)=dstore[i)[r)[c) ; // e lse copy input string

else
pop[POPSIZE- 1][i]=random(MAXV ALUE); 11 rule outcome=random value

•

pop[POPSlZE-1)[S]=(pop[O][S)+pop[POPSIZE-2][S])/2; 11 rule strength set to median of rule base

#ifD
fprintf(df,"rule created + inserted\n");
pm _pop(pop,df);

#endif

}//mset=O;

retum mset; 11 retum value indicating if [C] empty or not
}

void ga(int ••pop, FILE *df) { /* genetic algorithm • 1
int ij,tmp[W],spt=O,cprob=O,ps 1 ,ps2,rv= 1;

sort(pop);

if(random(CROSSPROB)=CROSSPROB/2){
cprob= 1; 11 invoke crossover with probability 1 /CROSSPROB
while(!(spt=random(NUMDSETS))); 11 define split point (O < spt < NUMDSETS)

#ifV
fprintf(df,"crossover switch:o/od crossover point:o/od\n\n",cprob,spt);

#endif

for(i=O;i<W;++i){ 11 strongest rules replace weakest
pop[POPS1ZE-1][i)=pop[O][i); //copy strongest o ver weakest
if{cprob= 1){

pop[POPSlZE-2][i]=pop[1][i); //copy 2nd strongest o ver 2nd weakest
if{i>=spt){ 11 crossover at spt

tmp[i)=pop[POPSIZE-2)[i);
pop[POPSIZE-2][i]=pop[POPSIZE-1][i];
pop[POPSlZE-1][i)=tmp[i];

/* invoke mutation with probability 1/MUTPROB equally over chromosome • ¡
if(i= A) rv=O; 11 # not pennitted for action mutation
if(random(MUTPROB)= MUTPROB/2){

pop[POPSIZE-1][i]=random(MAXV ALUE+rv);
if(cprob= J && random(MUTPROB)=MUTPROB/2)

pop[POPSIZE-2][i]=random(MAXVALUE+rv);

11 alter rule strengths
if(cprob= 1){ // if crossover invoked

psl=pop[O][S]/3; ps2=pop[1][S]/3;
pop[O][S)=pop[O)[S)-ps 1; pop[1)[S)=pop[1)[S]-ps2;
pop[POPSIZE-1)[S)=pop[POPSIZE-2][S)=ps 1 +ps2;

} // parent strengths reduced by 1/3 and shared equally between offspring
else { // crossover not invoked

pop[O][S)=pop[POPS1ZE-I][S]=pop[O][S)/2;
} // parent strength halved and given to child strength

#ifV
fprintf{df,"ga(): new rules bred and mutated\n"); prn_pop(pop,df);

#endif

11---------------------------------BA CK G ROUN D RO UTINES--
void stats(int **pop, FILE *df, int h){
/* calculate leaming performance statistics (when rules in data known) */
int ij,k,tp=O,maxv,max=O,soi[TSOL)[NUMDSETS+3)'={ {0, 1 ,2,3,4 ,0,0,0} ,

{ 1 ,2,3,4,5,0,0 ,0} ' {2,3,4 ,5,0,0,0,0}};

for(i=O;i<=POPSIZE-1 ;++i){ // count no. rules from solution set in rulebase
for(k=O;k<=TSOL-1 ;++k){

}
}

sol[k][NUMDSETS]=O; maxv=O;
forG=O;j<=A;++j){

}

if(pop(i][j]= sol[k][j]) // count individual taxa/action matches
++sol[k][NUMDSETS];

else if(pop[i][j]= MAXV ALUE){
++sol[k][NUMDSETS];
++maxv;

if(sol[k][NUMDSETS]= NUMDSETS && maxv<NUMDSETS-1){
++sol[k][NUMDSETS+ I]; // count full (non #) matches
k=TSOL; // skip to next classifier ifmatch found

} // note: may miscount non-unique rules (esp #)

for(k=O;k<=TSOL-1 ;++k) 11 cale % correct c\assifiers

}

if(sol[k] [NUMDSETS+ 1]>O){
sol[k)[NUMDSETS+2]=(sol[k][NUMDSETS+ 1]*1 00)/POPSIZE;
tp+==sol[k][NUMDSETS+2) ;
if(sol[k][NUMDSETS+2]>max)

max=sol[k][NUMDSETS+2];

fpri tf(df,"soln[o/od)\t ",h); 11 output stats to file/screen
for(i=O;i<==TSOL-1 ;++i)

fprintf(df,"%d:%3d ",i+ 1 ,sol[i][NUMDSETS+2]);
fprintf(df,"total :%3d",tp);
}

void sort(int **pop) { /* bubble sort rule base*/
int ij ,k,tmp[W];

for(j=O;j<:;oPOPS lZE-2;++j)
for(i=O;i<==POPSIZE-2;++i) // sort by (in order): strength, no. condition matches, generality

}
}

if(pop[i+ 1][S]>pop[i][S] 11

(pop[i+ 1][S]=pop[i][S] && pop[i+ 1][C]>pop[i][C]) 11

(pop[i+ 1][S]= pop[i](S] && pop(i+ 1][C]- =pop[i][C] && pop[i+ 1)[G]<pop[i][G])){
for(k=O;k<=S;++k)
tmp(k]=pop[i][k];
for(k=O;k<=S;++k)

pop[i][k]==pop[i+ 1][k];
for(k=O;k<=S;++k)

pop[i+ 1][k]=trnp[k] ;

•

void bounds(int ••pop){
/* checks for rule strengths approaching INT _ MAX when tax cales performed • 1
int i,f=O,trnp--max(T AXSD,max(T AXD, T AXND));

if(trnp>O) trnp=INT _MAX/(trnp/ 1 O);// for integer % tax calculations
for(i=O;i<=POPSIZE-1 ;++i)

if(pop[i][S)>trnp) {
f= 1;
break; // flag high strength

}

if(f)
for(i=O;i<=POPSIZE-1 ;++i) 11 divide all rule strengths by 100

if(pop[i][S]> 1 00)
pop(i][S)=pop[i][S]/ 1 00;

/1-------------------------------0UTPUT TO Fl LE--
vo id pm_pop(int ••pop, FILE *df){
/* print rule base to reportldiagnostics file*/
int ij;

for(i=O;i<=POPSIZE-1 ;++i) {
fprintf(df,"%3d: ",1);
for(j=O;j<=W-1 ;++j)

if(j= S)
fprintf(df, "o/o6d" ,pop[i][j]);

else if(pop[i][j]=6)
fprintf(df,"%3c ",'#');

el se
fprintf(df,"%3d ",pop[i][j]);

putc('\n',df);
}
putc('\n',df);

}

void pm_data(int dstoreQ[NROW)[NCOL], FILE *df){
/* print array holding raster data to reportldiagnostic file*/
int h,ij ;

fprintf(df,"pm_data(): rasters read into arrays\n");
for(h=O;h<=NUMDSETS-1 ;++h){

}

fprintf(df, "dstore[%d]\n" ,h);
for(i=O;i<=NROW- 1 ;++i){

for(j=O;j <=NCOL-1 ;++j)
fprintf(df, "%d ",dstore[h][i)[j]);

putc('\n',df);

}
putc('\n',df) ;

}

void header(FILE *df){
/* output leaming parameters to reportldiagnostics fi le*/
fprintf(df, "\t\t\t* • • • • • • • • • • • • • Report• • • • • • • • • • • • • • • *\n\n ") ;

fprintf(df,"No. datasets:o/od Max. value:o/od Pop size:o/od No. gen:o/od\n",
NUMDSETS,MAXV ALUE,POPSIZE,MAXGEN);
fprintf(df,"Crossover prob:o/od Mutation prob:o/od\n",CROSSPROB,MUTPROB);
fprintf(df,"TPAYOFF:o/od tax(D]:o/od tax[D](sd=O):o/od tax NOT[D):o/od\n\n",
TPAYOFF,TAXD,TAXSD,TAXND);

}
11-----------------------IN ITIAL 1 SA TI ON R OUT IN ES--­
void randfill(int ••pop, FILE *df){
t• random ly populate rule base*/
int ij,tmp;

for(i=O;i<POPSlZE;++i)
for(j=O;j<W ;++j) {

if(j=G 11 j==C)
pop[i)Li]=O;

else if(j= S)
pop[i)[j)= 1 00;

else if(j= A)
pop[i][j)=random(MAXV ALUE); // '#' not permitted as action value

else {
tmp=random(MAXV ALUE+ 1)%RG ;
if(tmp=O)

pop[i][j)=MAXV ALUE;
el se
pop[i)[j)=random(MAXV ALUE);

/*seed rules can be inserted here for diagnostics and hypothesis testing
pop[1][0]=0; pop[l)(l)= 1; pop(1](2]=2; pop[1](3)=3; pop[1)(4)=4; pop(1)[5)=5; • ¡

#if V // prints random1y filled rule base to diagnostics file
sort(pop); fprintf(df, "randfill(): random popu1ation generated\n ");
pm_pop(pop,df);

#endif
}

void filetoarray(int dstoreO[NROW][NCOL]){
t• reads data from ascii rasters and stores in array*/
int ij,k;
char fnames[NUMDSETS] [20]= { "r-soil.dat", "r-aspect3 .dat",

"r-slope.dat" , "r-dist.dat",
"r-lcover.dat"}; 11 ASCII raster filenames

FILE *ipf[NUMDSETS];

for(i=O;i<=NUMDSETS-1 ;++i}
ipfl i]=fopen(fnames[i], "r") ;

11 open files

for(i=O;i<=NROW- 1 ;++i) // read data into array
for(j=Oj<=NCOL-1 ;++j)

for(k=O;k<=NUMDSETS-1 ;++k)
fscanf(ipf[k], "o/od" ,&dstore[k] [i][j]);

for(i=O;i<=NUMDSETS- 1 ;++i) 11 close files
fclose(ipfli]);

void mem(int ••pop) {
/* deaJiocate rulebase memory •¡
for(int i=O;i<POPSIZE;++i)

delete[] pop[i);
delete[] pop;

FILE • diagf(FILE *df, int sw){
/* open/close diagnostics/report file */
if(sw= l){

if((df=fopen("diagf.dat","w"))=NULL){
printf("file error\n");

}

exit(1);
}
header(df);

e l se
fclose(df);

retum df;
}

/**
**** CLASSIFIER SYSTEM PROTOTYPE ****
**** (machine learning ofrelationships in spatial data) ****
**** ****
**** file : csp.h (header) ****
**** Euan Crawford, July 1997 ****
**/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <limits.h>
#include <time.h>

/* input data parameters * 1
#defme NUMDSETS 5
#define W NUMDSETS+3
#defme A NUMDSETS-1
#define G NUMDSETS
#defme C NUMDSETS+ 1
#define S NUMDSETS+2
#define NCOL 8
#define NROW 8
#defme MAXV ALUE 6

!* learning parameters *1
#define POPSIZE 250
#define MAXGEN 75
#define AOIC 8
#defme AOIR 8
#define TSOL 3
#define RG 2
#define TPA YOFF 1000
#define GEN 2
#define T AXD O
#defme T AXSD O
#define T AXND O
#defme CROSSPROB 2
#defme MUTPROB 60

1* performance reporting * 1
#define V O

11 number of datasets/rasters
11
11
11 alter (W-S) only vía NUMDSETS
1/
11
11 no. columns in rasters
11 no. rows in rasters
1* 0-MAXV ALUE = range of pennissible values in input data,

where wildcard (#) = MAXV ALUE *1

JI size of rule base
JI no. generations
/1 defme segment of raster to be included in \earning -
JI no. of columns/rows from upper left
JI no. of solution sets included for performance testing

11 l!RG =probability of alle les as # in randomly populated rulebase
JI payoff to [D]
11 generality payoff control
JI % tax on [D]
11 % tax on [D] (sd=O)
JI % tax on NOT[D}
JI 1/CROSSPROB = GA crossover probability (even nos only)
JI 1/MUTPROB = allele mutation probability (even nos only)

/1 verbose report onloff (small trials only)

