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This report details work conducted as part of a ClA T funded project investigating 
exploratory analysis of spatial data using artificial intelligence techniques. The study was 
conducted in collaboration with Dr William Mackaness (Department of Geography, 
University ofEdinburgh) and Dr William Bell (Chieflnformation Officer, CIAT). 

1. Introduction 
As GIS emerges as a mature technology for the management and manipulation of spatial 
data the amount of digital data to be serviced has exploded. As we generate greater 
quantities of data at increasingly higher resolutions the opportunities to analyse, model apd 
understand environmental and socio-economic processes increase. However, it appears that 
our ability to make use of data has been swamped by our ability to create it. Current spatial 
analysis techniques, whether conceptual or widely used, are not powerful enough to allow us 
to ' release the empírica! regularities that exist amongst the noise' in large spatial datasets 
(Openshaw, 1994, p123). As Holland (1986, p593) notes; 

'Human experience indicares that real environments abound in regularities. The problem is 
to uncover and exploit them '. 

Many of our current techniques for the analysis of spatial data date from an era of limited 
computing power where analysis was concepts, rather than data, driven. As a result most 
spatial models are either too abstract to allow operationalisation (environmental systems 
modelling, theoríes ofurban social structure) or too crude (gravity interaction modelling, 
urban economic zoning) to produce useful resu lts (Senior, 1979). Many techniques from 
exp1oratory statistical analysis (EDA) also prove to be of limited use. They assume a priori 
knowledge of all potential relationships in the data and the strict assumptions of parametric 
statistics, as well as the need to analyse categorical data, frequently make EDA techniques 
inappropriate. 

This study details the development and implementation of a prototype classifier system that 
searches for rules and relationships among spatial data. 

2. Machine Learning 
Over two decades of work in artificial intelligence has produced a number of paradigms 
aimed at inductive and deductive learning ofrules from experience (see Wilson, 1987, for a 
review ofrelevant work). Many ofthese paradigms deal only with high leve), symbolic 
representations of data (' a small field of dark soil ') (Mitchell, 1982) in broad problem 
domains, ofthe type more commonly associated with human experience. The most 
successful systems which are able to deal with lower leve! concepts ('a 1 hectare polygon of 
soil of pH 6.1 ') ha ve been developed for restricted problem domains where the learning 
environment lends itselfto straightforward classification e.g. gaming systems. Neural 
networks have proved able to handle both high and low leve! concepts with notable success 
(Barto, 1985). However, with a non-transparent learning process little insight is gained into 
the processes that produce regularity in the data. The classifier system, developed by 
Holland (1975, 1986), avoids many ofthese limitations and holds great potential for learning 
of re lationships in spatia l data. 

2.1 Classifier Systems 



A comprehensive review of classifier systems and their operation is outwith the scope of this 
report and thus only relevant elements wi ll be treated in depth . A fuller account is available 
in Holland ( 1975, 1986). 
Holland classifiers are essentially expert systems that incorporare elements of inductive 
leam ing and rule creation. They are particularly adept at producing solutions to highly 
complex problems that cannot be solved analytically (NP-complete). 

Holland classifier systems comprise three main elements; 

• standard classifier system: a rule base and message board 
• leaming and induction system: bucket brigade algorithm 
• rule discovery system: genetic algorithm 

2.1.1 Standard Classifier 
The standard classifier system uses a temary alphabet {0, 1,#} to represent data. Real world, 
non-binary data can be transformed toa binary representation. The third element in the 
alphabet, '#', is a wildcard character, used to confer a degree of generality on rules. A '#' is 
used to signify either a ' 1' ora ' O'. 

The rule base consists of a fixed number of rules, each one a hypothesis about sorne aspect of 
the environment (in this case a description ofthe relationships between spatia1 data). Rules, 
of s imilar form to those u sed in expert systems, are of fixed length L and include a condition 
and outcome segment. A rule with L= l2 takes the form {011001100101 }, where bits 1-8 
represent the condition and bits 9-12 represent the outcome. The condition might represent a 
set ofvariab1es (soil X, aspect Y, s lope Z) that lead toa particular outcome (landuse Q). An 
analogy can be drawn with the way chromosomes are used for the storage of genetic 
information in biological systems. In this case each bit corresponds toan allele. Input from 
the environment is coded using the same scheme. In this way rules and environmental data 
can be directly compared. 

The message board is a list, accessible by all rules. It is used for posting environmental input 
and to a llow ínter-rule linking and communication. 

2.1.2 Learning and induction system 
The bucket brigade algorithm, as proposed by Holland ( 1976), allows competing rules to bid 
for the right to become the system decision. Each rule in the rule base is compared with 
environmental input posted to the message board . Matching is performed only on the 
condition part of chromosomes. The system decision is the rule which most c losely matches 
an input. Rules are then rewarded according to their leve! of success in predicting the 
outcome, that is their ability to match the outcome segment ofthe input chromosome. While 
successful rules become progressively stronger poor performers lose strength and run the risk 
ofbeing eliminated from the population by the genetic algorithm (as explained below). 

The bucket-brigade algorithm is particularly effective in task environments where success 
may be infrequent and requires the construction of long chains of rules to achieve a s ingle 
goal e.g. recognising, and acting upon, input to navigate a robot around a maze. 

2.1.3 Genetic algorithm 



The genetic algorithm (GA) provides the rule discovery element ofthe system. GAs 
essentially mimic the way biological populations use genetic evolution to become 
progressively fitter through successive generations. The GA operates, primarily, by 
combining elements from the best performing rules to produce new, fitter offspring. 

New rules are bred by randomly combining segments from the chromosome of each parent. 
In the example below (L=12) the segments consisting ofbits 5-8 are swapped to produce two 
hybrid offspring. 

parents 
rule_26 { 11110000 1111 } 
rule_27 {11010001 1010} 

offspring 
rule _ 1 O 1 { 11110001 1111 } 
rule _ 1 02 { 11 O 1 0000 lO JI } 

The secondary operator, random mutation, precludes the permanent loss of, and ensures the 
creation ofnew, 'genetic material ' in the system. In the above example rule_102 was subject 
to this process. As is the case with biological populations, random mutation occurs far less 
frequently than crossover. 

Chromosomes can be considered as consisting of ' building blocks' of genetic material. The 
key to the success of GAs líes in the way they search the solution space. The combination of 
historically successful building blocks moves through thi s space 'orders ofmagnitude more 
rapidly than would be indicated by the rate at which it is process ing strings' (Holland, 1986). 
This is particularly important for searches in spatial datasets. A modest exploratory search 
might use five layers ofspatial data. Assuming that all data in these layers can be adequately 
represented using a 3-bit binary a lphabet there exists, potentially, 215 unique rules. A more 
complex search might use 15 datasets anda 5-bit ternary alphabet. With a solution space of 
275 unique combinations conventional searches are c learly inadequate. The benefits of a GA 
which is guided through search space by a combination of experience and impl icit 
parallelism are apparent. 

3. System Prototype 
A system prototype was developed to test the applicability ofthe c lassifier system to the 
exploration of spatial data. This section documents the system design. The system 
incorporates e lements from both the standard Holland c lassifier and Stewart' s (1987) Animat 
classifier, with a number of modifications. 

3.1 Data Representation 
The use of a ternary alphabet (0, 1 ,#) to represent rules and environmental input has the 
advantage of allowing the standardisation of many, potentially di verse, datasets. Coupled 
with the ability to use fixed length registers in the CPU for simple string matching rapid 
processing is possible. However, for ease of representation and interpretation of results, the 
system was designed for use with a decimal alphabet. System trials used rules and 
environmental input represented by the alphabet {0, 1 ,2,3,4,5,6} with '6' acting as a wi ldcard 
(#). 

3.2 Search 
The system searches for rules by scanning the study area from upper left to bottom right. At 
each grid cell the values in the corresponding datasets are recorded and mapped toa single 
chromosome of the form described earlier (Figure 1 ). Comparisons are then made between 



each rule in the rule base and the input string. The number of matches, including wildcard 
matches, is recorded for each rule. The remaining steps in the algorithm are carried out 
before preceding to the next cell. 

~--~----

Figure 1: Environmental Input (ti ve 5*5 rasters) 
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As the search through the spatial data a llows immediate evaluation of rule success, that is, 
success in providing a match, the full rule-chaining capabilities of the bucket-brigade 
algorithm are not required . 

3.3 Rule Base Payoff 
For any particular grid location, those rules which fully match the condition part of the input 
data are subset from the rule base (P] to form the condition set [CJ. The rule with the 
greatest strength is then selected from [C], this becomes the system decision (sd) . The 
decision set [D] is formed as a subset of [C] and comprises the system decision and those 
rules with the same outcome as the system decision. The set NOT[D] is a lso formed. The 
outcome of [D] is tested against the input data to establish whether or not the system 
provided a correct decision. Depending on the decision, each member of [D] receives a 
proportion of a fixed quantity of payoff. The payoff received by individual rules is 
determined by the generality function defined be low. 

l +(em / tm. )8 

payoff¡ = n 
1 1 

• tpayoff 

L 1 + ( em 1 trn )8 

1 

where payoft;: payoffreceived by rule;, emi: number of non # matches in rule;, tm;: total 
number of condition matches in rule;, g: system-wide generality control (scalar value) and 
tpayoff: total payoff available to [D]. 

Payoffto an individua l rule is inversely proportional to the number ofwildcard matches 
generated by it's condition. As g increases, those rules with a high number ofwildcard 
matches receive proportionately Jess payoff. The generality control was introduced to 
control the production of overly general rules. 

The system also includes the capability to levy taxes on rules. Taxes can be applied to [C], 
[D] and NOT[D] to control the way the system learns. Payoff with no taxation can be 



considered a payoff-only regime whi le payoffwith high taxes can be considered a payoff­
penalty regime (Stewart, 1987). 

3.4 Genetic Algoritbm 
After the rule base has been matched with the input string and rewarded accordingly, genetic 
operators are employed. The two operators, crossover and mutation, are controlled by two 
system wide probability functions; llcr and 1/mt respectively. 

The algorithm selects the strongest rule from [P] and makes a copy. lf crossover is invoked, 
the second strongest rule is also copied and a random segment is swapped between the two. 
The offspring are then inserted in place ofthe two weakest (lowest strength) rules in the 
population. If crossover is not invoked the copied rule is simply inserted in place ofthe 
weakest rule. In both cases the mutation operator is then applied to each allele in the 
offspring with probability llmt. 

4. System Trials 
Testing was carried out using five artificially generated spatial datasets corresponding, 
arbitrari ly, to soi l, aspect, s lope, distance from road and landcover data. The latter is treated 
as the outcome while the preceding four layers form the condition. Each dataset is stored as 
an ASCII raster. 

The datasets were generated containing known regularities, or rules. The system was tested 
by incorporating a performance algorithm to monitor the percentage of ru les in the rule base 
which corresponded to one ofthe known rules. This, in effect, measures the ability ofthe 
system to leam by recognising regularities and adapting the rule base accordingly. 

For each tria! the rule base was populated with 250 randomly generated ru les. Rules were 
generated by setting each allele (except those in the outcome part) to either # ora value from 
the set {0-5}, each with a probability ofO.S. Each trial was run for 45 generations (one 
generation is equivalent to every rule being matched once with every cell in the input data) 
over rasters of size 8*8. Payoff, g and 1 lcr were set to 1000 , 2 and 0.5, respectively, after 
initial experimentation. All tax values were set to zero to limit the number ofvariables for 
testing. 

4. Results 
Figure 2a show the results from a simple tria! where the input data contained only three 
randomly placed rules and no random noise (' non-rules') with 1/mt set to 0.01 5. The upper 
series (total) represents the percentage ofthe rule base that corresponds to any one ofthe 
three known rules while the other three series (rule 1-3) correspond to the discovery of 
individual rules, as a percentage ofthe entire rule base. As can be seen from the total the 
system rapidly recognises, learns and populates itself with know rules. E ven though the total 
reaches close to 100% after six generations, the population is initially dominated by rule 1 
and, to a lesser extent, rule 2. The system only 'discovers' rule 3 after 8 generations. 
Thereafter rule 3 becomes more widely represented, at the expense of rules 1 and 2. After 
twenty-five generations the system appears to reach a stage of equilibrium with only minor 
changes in the composition ofthe rule base. 



Figure 2a. 
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1t can be seen that the randomly populated rule base (zero generations) contains solution 
matches. Although the theoretical probability of random generation of any one of the known 
rules is low, the high percentage ofwildcards in the initial population (50%) increases the 
probability greatly (the performance algorithm includes rules with up to three wildcard 
matches). The graph shows that the initial rule base did not contain any rules matching rule 
3. The system required time to search the solution space and adjust itselfto presenta 
successfu l system decision. A second tria l was run with the same system parameters as used 
in Figure 2a., the only difference being that the input data was randomly generated to contain 
no regularities (a regularity being detined as more than one occurrence of a particular 
combination of conditions and outcome) and, specitically, no instances of any of the three 
known rules. Six ofthe sixty-four unique combinations (a unique combination can be 
thought of as a single-occurrence rule) were fed into the performance algorithm for system 
testing. The system was able to leam on ly two of the s ix combinations. An interesting 
phenomena was discovered when the system was runa third time, this time only the 
performance algorithm was altered by feeding it with the three rules used in Figure 2a, the 
results ofwhich are shown in Figure 2b. The system appears to be discovering regularities 
not existent in, in fact specitically excluded from, the data. 

Figure 2b. 
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The explanation for this phenomenon is that many different, but similar, pattems in the data 
can be matched by one rule from the rule base. For example, the three input data strings 
{0,1 ,5,3,4}, { 1, 1,3,3,4}, {5,1,2,3,4} can all be matched by the rule {#, 1,#,3,4} . This suggests 
that results produced by the learning algorithm must be interpreted by care. The percentage 
of the rule base that corresponds to any of the know rules can include multiple counting due 
to the possibility of multiple matching illustrated above (E individual rule recognition % > 
100%). However, none ofthe trials presented show evidence ofthis. 



The role of mutation in rule discovery is demonstrated in Figure 2c. This plot shows total 
system performance on a trial with l lmt set to 0.25. In all other respects the trial is identical 
to that presented in Figure 2a. As can be seen the higher probability of mutation has led to 
slower, less stable, learning andan equilibrium leve\\ower than that achieved in Figure 2a. 
As the mutation rate increases, the more conservative processes of rules replication and 
crossover become less prevalent. Rule replication serves to strengthen the rule base while 
crossover produces new rules through minor changes, both based on the historical 
performance ofthe rule base. Mutation does not use the accumulated knowledge ofthe rule 
base and the effects of this more radical search strategy can be seen. E ven when the system 
reaches equilibrium mutation ensures the continued insertion of random genetic material into 
the rule base. 

Figure 2c. 

e=-
100 

Q) 
80 > o 

o 
en 60 :0 __ total e 
.Q 40 
S 
o 20 
en 

::le o o 
<O <O - <O - <O -- N N M M V 

no. generations 

A more realistic Jearning environment is presented in Figure 2d. In this case the input data 
contains both known rules and randomly generated noise. 

Figure 2d. 
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The system is able to learn the known rules, though less rapidly than when ' clean' data is 
used. Solution discovery reaches a maximum value of around 90%, compared with the 
figure of97% achieved for clean data. This is expected as the rule base must retain non­
solution rules to be able to respond to frequent, random noise. 

5. Discussioo 
The development and implementation of a successful classifier system prototype has been 
presented. The system works well with small datasets of restricted complexity where the 
existence of known relationships in the data allows an evaluation of performance. lt has 
demonstrated a capability to recognise patterns in both clean and noisy data anda sensitivity 



to variations in the mutation rate. Although a comprehensive testing of other system 
pararneters, specifically taxes, was outwith the scope of this study, work by Holland (1986) 
and Stewart ( 1987) documents their role in the leaming process. 

A limitation ofthe system was discovered during the tria\ performed on the data containing 
sixty-four unique rules. Although the rule base was exposed to each combination forty-five 
times (the number of generations over which the tria! was run) the system exhibited a low 
rule discovery rate. It is not clear ifthe limitation is dueto the large number of rules to be 
leamed and held, concurrently, by the rule base orto the infrequent exposure of the rule base 
to each rule. With respect to the latter, ifthe system were applied to real world data it is 
unlikely that a phenomenon that occurs so infrequently in such isolated groups (of one) 
would be considered an important regularity in the data. 
It is suggested that the system provides, at the very least, the basis for a technique that can be 
used for the exploratory analysis of'real world' spatial data. There are a large number of 
potential applications for the system. As the arbitrary naming of the test datasets implies, the 
system could be used to look for evidence regarding the causes of soi l erosion, marginal 
cropping and other unsustainable practices. An immediate advantage ofthe technique over 
statistical methods is the ability to incorporate both interval and categorical data. This would 
allow analysis of the conditions giving rise to low income and poverty by incorporating 
biophysical (soil, slope etc.) and socio-economic (land tenure, farming practices etc.) data. 
Analysis should aim to incorporate as many factors as possible, with little a priori concern 
for which data might be relevant. Ifthe system is run over a sufficiently large number of 
generations it will identify particular sets of conditions which give rise to particular 
outcomes with irrelevant data simply represented by wildcards in the rule base. 

Where a priori theories or hypotheses about the nature of regularities in the data are held, 
they can be incorporated as rules, seeded in the rule base. Over a number of generations, the 
proliferation or extinction ofthese rules should help determine their validity. 

A final note of caution is required. The classifier system presented here should only ever be 
considered an aid to directed, insightful exploratory analysis of spatial data. Any results 
produced by a classifier systern should be subject to the highest scrutiny. lt is quite 
conceivable that a large, rich spatial database will contain spurious regularities of little 
relevance. Results should be used as part of an ongoing process of analysis, aiding in the 
construction of hypotheses and guiding future research. 

6. Future 
Future work should aim to determine the scalability of such a system. It is essential to test 
the system on real world data, magnitudes of size and complexity greater than the very 
simple data used in this study. Scalability should be considered in terms ofboth system 
performance and the ability to handle large numbers of concurrent rules with, potentially, 
infrequent payoff. This might include measures to síphon rules out of the system once they 
have reached a particular threshold (in terms of dominance ofthe rule base etc.), as trials 
indicated that apparently strong rules can become extinct if not subject to frequent 
strengthening. Appendix A contains additional information on the architecture and 
performance ofthe system. 

An issue requiring attention is the incorporation of spatial relations in the search process. At 
present the system can only handle those relations which are explicitly defined and recorded 
in a dataset e.g. distance toa particular road. lt is unsatisfactory to include only spatial 
information that is considered a priori to ha ve relevance. Dibble ( 1994) propases the use of 



Dutton's tesselation data structure as a means of incorporating spatial relations. An area of 
investigation would be the use of object-oriented data modelling to incorporate the full 
semantics of spatial relations that might be relevant in exploratory data analysis. 
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Appendix A 

System Implementation 
The system was coded in C using the Borland C++ compiler (V 4.5) under Windows 3. 1. 
Although written for a 16-bit OS it is anticipated that few changes would be required for 
porting toa different OS. A fully documented code listing is included in Appendix B. 

The system was designed to explore the applicability of the classifier system rather than 
achieve high performance levels. With limited attention paid to program optimisation 
processing speed can be slow. For a tria) with a rule base of size 300 and five 8*8 input 
raster processing times on an RM PC-466 (486) and RM PC-575 (75 Mhz Pentium) are 34 
and 21 minutes, respectively. For trials with real, s ignificantly larger, datasets sorne form of 
optimisation would clearly be required. The use of a more restricted alphabet to represent 
rules and data input may help in this respect. 

Datasets must be stored as ASCII rasters of equal dimensions. The system can, theoretically, 
handle any number of datasets, of any size, however, limitations are imposed by the memory 
capacity ofthe hardware running the system. 

The algorithm includes a bounds checking function. The rules are coded as integer arrays 
and this function makes period checks for rules with strengths approaching INT _MAX to 
avoid system crashes. Although unnecessary for most trials it avoids problems where large 
datasets are processed over many generations. 
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Appendix B 

¡••·············································································· •••• CLASSIFIER SYSTEM PROTOTYPE •••• 
•••• (machine leaming of relationships in spatial data) •••• 
•••• • ••• 
•••• file: csp.cpp (code) • ••• 
•••• Euan Crawford, July 1997 •••• 
··············································································••¡ 
#include "csp.h" JI libraries and algorithm parameters 

/* Function declarations - descriptions included with code after main() • 
FILE * diagf(FILE *, int); 
void filetoarray(int [][NROW)[NCOL]); 
void randfill(int •• , FILE *); 
int reinforce(int [][NROW][NCOL], int, int, int ••, FILE*); 
void ga(int • •, FILE *); 
void bounds(int **); 
void stats(int ••, FILE •, int); 
void sort(int **); 
void pm_data(int [)[NROW)[NCOL], FILE*); 
void pm _pop(int • • , FILE *); 
void header(FILE *); 
void mem(int **); 

void main() { 

int h,ij, • •pop; 
int dstore[NUMDSETS][NROW)[NCOL]; 
time_t st,ft; JI for calculation ofprocessing time 
FILE *df; 

pop=new int *[POPSIZE]; // allocate memory for rule base 
for(i=O;i<POPSIZE;++i) 
pop[i]=new int[W]; 

randomize(); 
st=time(NULL); 
filetoarray(dstore); // environrnental (input) data to array 
df=diagf(df, 1 ); 
#ifV 
pm _data( dstore,d t); 

#endif 
randfill(pop,dt); 

printf{"\n\n\n\t\tprocessing: "); 
for(h= 1 ;h<=MAXG EN ;++h){ // generation counter 

for(i=O;i<=AOIR-1 ;++i){ 
for(j=Oj <=AOIC-1 ;++j){ // raster AOI controls 

11 bounds(pop); 
while(!reinforce(dstore,ij ,pop,dt)); // reinforce() while [C] set empty 
ga(pop,dt); 
#ifV 

if{TSOL) stats(pop,df,h); 
#endif 



printf("\b\b\b\b\b\b%5d%",(h*IOO)IMAXGEN); // percentage processed counter 
if(TSOL) stats(pop,df,h); 

ft=time(NULL); ft-=st; 
printf("\n\n"); if(TSOL) stats(pop,df,h); 
sort(pop); 
fprintf(df,"\n\nfinished after %d iterations (%d seconds)\n\n",h,ft); 
if(TSOL) stats(pop,df,h); 
pm_pop(pop,dt); df=diagf(df,O); 

mem(pop); 11 dea\locate memory 

11----------------------------------------F UN CTI O N S----------------------------------------------------------

11---------------------------------LEA RN IN G RO UT IN ES-------------------------------------------------
int reinforce(int dstore[][NROW][NCOL], int r, int e, int **pop, FILE *dt) { 
/* Function has two roles: i)matcbes rules in rule base with input strings 

ii)strengthens rules according to matches */ 

int ij,maxbid=INT _MIN,mset=O,aset=O,ecnt=O, lsysdec= INT _ MIN ,sysdec=-0 ,taxa,taxna,taxsd; 
double dt=O,tmp; 

1* rule matching- counts input string-classifier matches */ 
for(i=-O ;i<=POPSIZE-1 ;++i){ 

pop[i][G]=O; pop[i][C]=O; 11 reset rule match scores toO 
for(j=O;j<=NUMDSETS-2;++j) 11 count condition matches only 
if(pop[i][j]= dstore[j)[r][c) 11 pop[i][j]= MAXVALUE){ 

++pop[i][C]; 
if(pop[i)[j]= MAXY ALUE) 

++pop[i)[G); 11 count # matches 

1* strengthen rules */ 
for(i=O;i<=POPSIZE-1 ;++i) 

if(pop[i)[C]= NUMDSETS-1) 
++mset; 

11 determine size of [C] 

if(mset>O){ 11 if [C] not empty 
for(i= 1 ;i<=NUMOSETS-1 ;++i){ // loca tes system decision (full matches) 

for(j=O;j<=POPSIZE- 1 ;++j) 11 with lowest no. # 
if(pop[j][C]= NUMDSETS-1 && pop[j][G]<=i && pop[j][S)>maxbid ){ 

lsysdec=j ; maxbid=pop[j][S]; 
} 

if(lsysdec>INT _ MIN) 
break; 

if(pop[lsysdec )[A ]= dstore[NUMOSETS-1] [ r )[e]) 
sysdec= 1; 11 test if system decision correct 

for(i=O;i<=POPSJZE- 1 ;++i) 11 determine size of (O) 
if(pop[i][C)= NUMDSETS- \ && pop[i][A)= pop[lsysdec][A]){ 

++aset; ecnt+=(NUMDSETS-1 )-pop[i](G]; 11 count non-general (#) matches 



• 

#ifV // progress report 
fprintf(df,"mset:o/od aset:o/od lsysdec:%d sysdec:o/od ecnt%d\n\n", 

mset,aset, lsysdec,sysdec,ecnt); 
fprintf( df, "compdatsol(): flag classifier and input string matches\n "); 
pm _pop(pop,dt); 

#endif 

11 calculate generality function for [D}, excluding full # matches 
for(i""O;i<=POPSIZE-1 ;++i) 

if(pop[i][C]--NUMDSETS-1 && pop[i][A)- pop[lsysdec)[A) && pop[i)[G)<NUMDSETS-1){ 
tmp""NUMDSETS-1 ;tmp=(tmp-pop[i][G))/tmp; tmp""pow(tmp,GEN); dt+""tmp; 

for(i=O;i<=POPSIZE-1 ;++i) { 
if(pop[i)[C]= NUMDSETS-1){ 

if(pop[i][A]--pop[lsysdec)[A) && pop[i)[G)<NUMDSETS-1 ){ 
taxa""TAXD/ 1 O; 11 select members of [D) 
pop[i)[S)""pop[i][S)-((pop[i][S] •taxa)/ 1 O); 11 tax [D) 
if(sysdec= l){ // if sys. decision correct 

tmp""NUMDSETS-1 ; tmp=(tmp-pop[i)[G))/tmp; tmp=pow(tmp,GEN); 
pop[i][S)+""{tmp/dt)• TPA YOFF; 11 payoffto [D) 

} 
el se if(sysdec- 0) { // if sys. decision wrong 

} 
} //[0] 
else { 

taxsd=T AXSD/ 1 O; 
pop[i][S)=pop[i)[S]-((pop[i][S]•taxsd)/ 1 O); 11 tax [D) 

11 select members ofNOT[D] 
taxna=T AXND/ 1 O; 
pop[i][S]=pop[i)[S]-((pop[i][S] •taxna)/ 1 O); 

}//NOT[D] 

11 tax NOT[D] 

}//NUMDSETS-1 
}//i 

#ifV 
fprintf( df, "reinforce(): classifiers taxed and rewarded\n "); 
pm _pop(pop,dt); 
sort(pop); fprin tf(df,"reinforce(): classifiers taxed, rewarded and sorted\n"); 
pm_pop(pop,dt); 

#endif 

}//mset= l 
else if(mset=O){ // if [D] empty 

sort(pop); 
#ifV 

fprintf(df,"[M) empty- pop sorted and rule created\n\n"); 
#endif 
for(i=O;i<=A;++i){ 11 create new rule 

if(i<A){ 
if(random(2)= 1) 

pop[POPSIZE-1 ][i]= MAXV ALUE; // insert random #s 
el se 

pop[POPSIZE- l)[i)=dstore[i)[r)[c) ; // e lse copy input string 

else 
pop[POPSIZE- 1 ][i]=random(MAXV ALUE); 11 rule outcome=random value 



• 

pop[POPSlZE-1 )[S]=(pop[O][S)+pop[POPSIZE-2][S])/2; 11 rule strength set to median of rule base 

#ifD 
fprintf(df,"rule created + inserted\n"); 
pm _pop(pop,df); 

#endif 

}//mset=O; 

retum mset; 11 retum value indicating if [C] empty or not 
} 

void ga(int ••pop, FILE *df) { /* genetic algorithm • 1 
int ij,tmp[W],spt=O,cprob=O,ps 1 ,ps2,rv= 1; 

sort(pop); 

if(random(CROSSPROB)=CROSSPROB/2){ 
cprob= 1; 11 invoke crossover with probability 1 /CROSSPROB 
while(!(spt=random(NUMDSETS))); 11 define split point (O < spt < NUMDSETS) 

#ifV 
fprintf(df,"crossover switch:o/od crossover point:o/od\n\n",cprob,spt); 

#endif 

for(i=O;i<W;++i){ 11 strongest rules replace weakest 
pop[POPS1ZE-1 ][i)=pop[O][i); //copy strongest o ver weakest 
if{cprob= 1){ 

pop[POPSlZE-2][i]=pop[ 1 ][i); //copy 2nd strongest o ver 2nd weakest 
if{i>=spt){ 11 crossover at spt 

tmp[i)=pop[POPSIZE-2)[i); 
pop[POPSIZE-2][i]=pop[POPSIZE-1 ][i]; 
pop[POPSlZE-1 ][i)=tmp[i]; 

/* invoke mutation with probability 1/MUTPROB equally over chromosome • ¡ 
if(i= A) rv=O; 11 # not pennitted for action mutation 
if(random(MUTPROB)= MUTPROB/2){ 

pop[POPSIZE-1 ][i]=random(MAXV ALUE+rv); 
if(cprob= J && random(MUTPROB)=MUTPROB/2) 

pop[POPSIZE-2][i]=random(MAXVALUE+rv); 

11 alter rule strengths 
if( cprob= 1 ){ // if crossover invoked 

psl=pop[O][S]/3; ps2=pop[1][S]/3; 
pop[O][S)=pop[O)[S)-ps 1; pop[ 1 )[S)=pop[ 1 )[S]-ps2; 
pop[POPSIZE-1 )[S)=pop[POPSIZE-2][S)=ps 1 +ps2; 

} // parent strengths reduced by 1/3 and shared equally between offspring 
else { // crossover not invoked 

pop[O][S)=pop[POPS1ZE-I ][S]=pop[O][S)/2; 
} // parent strength halved and given to child strength 

#ifV 
fprintf{df,"ga(): new rules bred and mutated\n"); prn_pop(pop,df); 

#endif 



11---------------------------------BA CK G ROUN D RO UTINES----------------------------------------------
void stats(int **pop, FILE *df, int h){ 
/* calculate leaming performance statistics (when rules in data known) */ 
int ij,k,tp=O,maxv,max=O,soi[TSOL)[NUMDSETS+3)'={ {0, 1 ,2,3,4 ,0,0,0} , 

{ 1 ,2,3,4,5,0,0 ,0} ' {2,3,4 ,5,0,0,0,0}}; 

for(i=O;i<=POPSIZE-1 ;++i){ // count no. rules from solution set in rulebase 
for(k=O;k<=TSOL-1 ;++k){ 

} 
} 

sol[k][NUMDSETS]=O; maxv=O; 
forG=O;j<=A;++j){ 

} 

if(pop(i][j]= sol[k][j]) // count individual taxa/action matches 
++sol[k][NUMDSETS]; 

else if(pop[i][j]= MAXV ALUE){ 
++sol[k][NUMDSETS]; 
++maxv; 

if(sol[k][NUMDSETS]= NUMDSETS && maxv<NUMDSETS-1 ){ 
++sol[k][NUMDSETS+ I]; // count full (non #) matches 
k=TSOL; // skip to next classifier ifmatch found 

} // note: may miscount non-unique rules (esp #) 

for(k=O;k<=TSOL-1 ;++k) 11 cale % correct c\assifiers 

} 

if(sol[k] [NUMDSETS+ 1 ]>O){ 
sol[k)[NUMDSETS+2]=(sol[k][NUMDSETS+ 1 ]*1 00)/POPSIZE; 
tp+==sol[k][NUMDSETS+2) ; 
if(sol[k][NUMDSETS+2]>max) 

max=sol[k][NUMDSETS+2]; 

fpri tf(df,"soln[o/od)\t ",h); 11 output stats to file/screen 
for(i=O;i<==TSOL-1 ;++i) 

fprintf(df,"%d:%3d ",i+ 1 ,sol[i][NUMDSETS+2]); 
fprintf(df,"total :%3d",tp); 
} 

void sort(int **pop) { /* bubble sort rule base*/ 
int ij ,k,tmp[W]; 

for(j=O;j<:;oPOPS lZE-2;++j) 
for(i=O;i<==POPSIZE-2;++i) // sort by (in order): strength, no. condition matches, generality 

} 
} 

if( pop[i+ 1 ][S]>pop[i][S] 11 

(pop[i+ 1 ][S]=pop[i][S] && pop[i+ 1 ][C]>pop[i][C]) 11 

(pop[i+ 1 ][S]= pop[i](S] && pop(i+ 1 ][C]- =pop[i][C] && pop[i+ 1 )[G]<pop[i][G]) ){ 
for(k=O;k<=S;++k) 
tmp(k]=pop[i][k]; 
for(k=O;k<=S;++k) 

pop[i][k]==pop[i+ 1 ][k]; 
for(k=O;k<=S;++k) 

pop[i+ 1 ][k]=trnp[k] ; 



• 

void bounds(int ••pop){ 
/* checks for rule strengths approaching INT _ MAX when tax cales performed • 1 
int i,f=O,trnp--max(T AXSD,max(T AXD, T AXND)); 

if(trnp>O) trnp=INT _MAX/(trnp/ 1 O);// for integer % tax calculations 
for(i=O;i<=POPSIZE-1 ;++i) 

if(pop[i][S)>trnp) { 
f= 1; 
break; // flag high strength 

} 

if(f) 
for(i=O;i<=POPSIZE-1 ;++i) 11 divide all rule strengths by 100 

if(pop[i][S]> 1 00) 
pop(i][S)=pop[i][S]/ 1 00; 

/1-------------------------------0UTPUT TO Fl LE------------------------------------------------
vo id pm_pop(int ••pop, FILE *df){ 
/* print rule base to reportldiagnostics file*/ 
int ij; 

for(i=O;i<=POPSIZE-1 ;++i) { 
fprintf(df,"%3d: ",1); 
for(j=O;j<=W-1 ;++j) 

if(j= S) 
fprintf( df, "o/o6d" ,pop[i][j]); 

else if(pop[i][j]=6) 
fprintf(df,"%3c ",'#'); 

el se 
fprintf(df,"%3d ",pop[i][j]); 

putc('\n',df); 
} 
putc('\n',df); 

} 

void pm_data(int dstoreQ[NROW)[NCOL], FILE *df){ 
/* print array holding raster data to reportldiagnostic file*/ 
int h,ij ; 

fprintf(df,"pm_data(): rasters read into arrays\n"); 
for(h=O;h<=NUMDSETS-1 ;++h){ 

} 

fprintf( df, "dstore[%d]\n" ,h); 
for(i=O;i<=NROW- 1 ;++i){ 

for(j=O;j <=NCOL-1 ;++j) 
fprintf( df, "%d ",dstore[h][i)[j]); 

putc('\n',df); 

} 
putc('\n',df) ; 

} 

void header(FILE *df){ 
/* output leaming parameters to reportldiagnostics fi le*/ 
fprintf( df, "\t\t\t* • • • • • • • • • • • • • Report• • • • • • • • • • • • • • • *\n\n ") ; 



fprintf(df,"No. datasets:o/od Max. value:o/od Pop size:o/od No. gen:o/od\n", 
NUMDSETS,MAXV ALUE,POPSIZE,MAXGEN); 
fprintf(df,"Crossover prob:o/od Mutation prob:o/od\n",CROSSPROB,MUTPROB); 
fprintf(df,"TPAYOFF:o/od tax(D]:o/od tax[D](sd=O):o/od tax NOT[D):o/od\n\n", 
TPAYOFF,TAXD,TAXSD,TAXND); 

} 
11-----------------------IN ITIAL 1 SA TI ON R OUT IN ES------------------------------------------­
void randfill(int ••pop, FILE *df){ 
t• random ly populate rule base*/ 
int ij,tmp; 

for(i=O;i<POPSlZE;++i) 
for(j=O;j<W ;++j) { 

if(j=G 11 j==C) 
pop[i)Li]=O; 

else if(j= S) 
pop[i)[j)= 1 00; 

else if(j= A) 
pop[i][j)=random(MAXV ALUE); // '#' not permitted as action value 

else { 
tmp=random(MAXV ALUE+ 1 )%RG ; 
if(tmp=O) 

pop[i][j)=MAXV ALUE; 
el se 
pop[i)[j)=random(MAXV ALUE); 

/*seed rules can be inserted here for diagnostics and hypothesis testing 
pop[1][0]=0; pop[ l)(l)= 1; pop(1](2]=2; pop[ 1](3)=3; pop[1)(4)=4; pop( 1)[5)=5; • ¡ 

#if V // prints random1y filled rule base to diagnostics file 
sort(pop ); fprintf( df, "randfill(): random popu1ation generated\n "); 
pm_pop(pop,df); 

#endif 
} 

void filetoarray(int dstoreO[NROW][NCOL]){ 
t• reads data from ascii rasters and stores in array*/ 
int ij,k; 
char fnames[NUMDSETS] [20]= { "r-soil.dat", "r-aspect3 .dat", 

"r-slope.dat" , "r-dist.dat", 
"r-lcover.dat"}; 11 ASCII raster filenames 

FILE *ipf[NUMDSETS]; 

for(i=O;i<=NUMDSETS-1 ;++i} 
ipfl i]=fopen( fnames[i], "r") ; 

11 open files 

for(i=O;i<=NROW- 1 ;++i) // read data into array 
for(j=Oj<=NCOL-1 ;++j) 

for(k=O;k<=NUMDSETS-1 ;++k) 
fscanf(ipf[k ], "o/od" ,&dstore[k] [ i][j]); 

for(i=O;i<=NUMDSETS- 1 ;++i) 11 close files 
fclose(ipfli]); 



void mem(int ••pop) { 
/* deaJiocate rulebase memory •¡ 
for(int i=O;i<POPSIZE;++i) 

delete[] pop[i); 
delete[] pop; 

FILE • diagf(FILE *df, int sw){ 
/* open/close diagnostics/report file */ 
if(sw= l){ 

if((df=fopen("diagf.dat","w"))=NULL){ 
printf("file error\n"); 

} 

exit( 1 ); 
} 
header(df); 

e l se 
fclose(df); 

retum df; 
} 



/******************************************************************************** 
**** CLASSIFIER SYSTEM PROTOTYPE **** 
**** (machine learning ofrelationships in spatial data) **** 
**** **** 
**** file : csp.h (header) **** 
**** Euan Crawford, July 1997 **** 
********************************************************************************/ 

#include <stdio.h> 
#include <stdlib.h> 
#include <math.h> 
#include <limits.h> 
#include <time.h> 

/* input data parameters * 1 
#defme NUMDSETS 5 
#define W NUMDSETS+3 
#defme A NUMDSETS-1 
#define G NUMDSETS 
#defme C NUMDSETS+ 1 
#define S NUMDSETS+2 
#define NCOL 8 
#define NROW 8 
#defme MAXV ALUE 6 

!* learning parameters *1 
#define POPSIZE 250 
#define MAXGEN 75 
#define AOIC 8 
#defme AOIR 8 
#define TSOL 3 
#define RG 2 
#define TPA YOFF 1000 
#define GEN 2 
#define T AXD O 
#defme T AXSD O 
#define T AXND O 
#defme CROSSPROB 2 
#defme MUTPROB 60 

1* performance reporting * 1 
#define V O 

11 number of datasets/rasters 
11 
11 
11 alter (W-S) only vía NUMDSETS 
1/ 
11 
11 no. columns in rasters 
11 no. rows in rasters 
1* 0-MAXV ALUE = range of pennissible values in input data, 

where wildcard (#) = MAXV ALUE *1 

JI size of rule base 
JI no. generations 
/1 defme segment of raster to be included in \earning -
JI no. of columns/rows from upper left 
JI no. of solution sets included for performance testing 

11 l!RG =probability of alle les as # in randomly populated rulebase 
JI payoff to [D] 
11 generality payoff control 
JI % tax on [D] 
11 % tax on [D] (sd=O) 
JI % tax on NOT[D} 
JI 1/CROSSPROB = GA crossover probability (even nos only) 
JI 1/MUTPROB = allele mutation probability (even nos only) 

/1 verbose report onloff (small trials only) 


