Studies of Yield-Lımitung Factors

19868
INGLES

SERVIGO~ wuthilACION

The Bean Program concentrates ats resources primarily on genetic improvement Specific studies are needed to support this principal activity Studies reported this year include one comparing grain production efficiencies of Phaseolus vulgaris and eight other legumes prehminary results in defining yield models of the four growth habits of P vulgaris calculation of phenology models of P vulgarıs and bean performance under stress and non-stress con ditions '

Comparisons of Gram Legume Species

Grain legumes are morphologically simular in that the basic building block of the plant is a nodal unit with leaf and pod attached A comparative expenment was conducted at CIAT Palmira to evaluate the yield efficien cies of P vulgaris and eight other legume species A similar experiment with five legumes was reported two years ago (CIAT Ann Rept 1978)

The best adapted genotypes for most of the species were selected from previous yield trials The trials included materials available from mternational and mational programs The clımatic conditions at CIAT Palmira are considered sufficiently moderate (mean temperature 238 C) that no species was at a disadvantage Phaseolus coccineus was not included as it is relatively unadapted at local temperatures

Mean species gram yield ranged from 22 to 45 t/ha (Table 1) Leaf area duration (LAD) days to maturity and total biomass were all hughly and posituvely correlated with yield

Common beans were intermediate in yield and unlike some other species (e g Vigna spp) were highly syn chronized with pod maturity Harvest index and

[^0]yreld/LAD were comparable with soybeans and higher than those of other species The difference in crop growth rate (CGR) between soybeans and common beans was consistent with the difference in maximum leaf area index (LAI) A detaled comparison of growth parameter trends with time for one cultivar each of common beans (Porrillo Sintetico) and soybeans (ICA Tunia) indicated that growth patterns for the two species are similar (Fig 1) However common beans mature much earlier and thus have lower LAI and CGR values Peak grain growth rate (GGR) is much higher in beans and the grain growth phase is proportionally much shorter

While soybeans commenced flowering at the same time as beans the post flowering phase was much longer The soybean cultivar had a longer flowerng period due to the extra nodes on the man stem which must go through the flowering process

The grain filling process in soybeans proceeds at a lower maximum rate and is spread over a longer period than common bean (Fig 1) The rate of decline in LAI during senescence is slower in soybeans

Common beans apparently adjust potential sink size (pod number) to the avalable source (leaf area) and then proceed to fill the sink (grain growth rate) as quickly as possible

Soybeans continue their high GGR during the period of senescence This suggests that the common bean is more efficient than the soybean in its use of assimilates produced by photosynthesis
Seed yield versus LAD for each of the 16 genotypes tested is plotted in Figure 2 Arachis hypogea (peanuts) is the only species in the inst with a dufferent morphology The data are remarkable in that one varnable (LAD) can be used to explain a large proportion of the yield variation of 15 genotypes from four genera and eight species Since all of the species are constructed with simular building blocks it can be concluded that yield among grain legumes is simply related to the number of nodal units present which is in turn chiefly a function of time

Tbl I G y ld d alu f sele tedy ld comp nt fo milgume sp es

$\left.\begin{array}{l} \hline \text { Sp } \\ \text { (} \mathrm{mb} \\ \text { ge } \\ \text { ge typ } \end{array}\right)$	Y ld (14\%)		Yeld/day (kg/ha/day)	$\underset{\text { Numb }}{\text { days to }}$		Ma mum Leaf Are Ind x LAI	C pG wh Rate at max LAI(g/m /day)	Leaf A e D at n LAD	Yeld/LAD (g/m/day)	$\begin{aligned} & \mathrm{T} \text { tal } \\ & \mathrm{bma} \\ & (\mathrm{~kg} / \mathrm{ha}) \end{aligned}$	Harvest d (\%)
	(kg/ha)	harvest (\%)		fl w g	matu ty						
Cajus J (1)	4479	68	26	67	174	52	101	298	15	9400	41
Gly m (2)	3899	100	38	34	102	42	149	195	20	5440	62
Ph $l(l u \quad 1$ (2)	3682	68	26	35	139	36	85	179	21	5990	53
$V \mathrm{gn}$ ngu 1t (2)	3292	82	30	43	109	40	87	147	22	6145	46
A his hyp g (1)	3080	100	27	28	114	60	138	323	10	5570	48
Ph 1 lg is (3)	2637	100	34	35	78	28	100	108	24	3733	61
Vig dat (2)	2533	83	26	38	99	30	108	99	26	4295	51
$V \mathrm{gn} \mathrm{g} \mathrm{lar} \mathrm{(1)}$	2748	100	31	35	88	40	143	158	17	3930	60
Ph l tf 1 (2)	2170	100	29	39	76	36	124	105	21	3125	60
LSD (005)	277		3	49	237	29	69	25	10	1428	38
C V (\%)	94	94	99	14	31	143	119	160	24	167	58
alue (y id)				056	086	050	-0 16	093	-	091	-

[^1]

Day f m m ce

Fg $1 \quad G$ th $p m t$ for ne Phaseol ulgaris ty (P llo S 1t, d ne Glycin m a ety (ICA Tun) ($C n d$ d $d f m t$ go $m t$ curv fting $p d u$)
$C G R=C \quad p \quad G$ with Rat $G G R-G \quad n G$ th R

Figue $2 \quad S d, l d(149 \mathrm{~m}$ tstue) sus Lef $A \quad D u$ to
 g notype of ghi $/ \mathrm{gm} p \quad(-0997$ w thout A hypogea 093 th A hypogea)

Growth Habit Yield Models

The relationship between morphological and physiological factors and grain production was studied in preliminary experiments Forty lines varying in the length of their preflowering vegetative growth phase and seed filling time and seed size were selected for each of the four growth habits of P vulgaris The selection was done to obtain the variation that exists in the germplasm within each habit

Table 2 shows the means and ranges of selected yield components and yield for each growth habit Similar data have been reported in earher annual reports however this study concentrates on the vanation obtained within each growth habit and the basic data on which the eventual models are to be built Leaf area index (LAI) crop growth rate (CGR) days to flower and number of nodes were chosen as the basic components of the model All of these components except CGR increase from growth habit I to IV The other components do not vary so much or show trends for the mean values The ranges of each component do vary depending upon the growth habit

Yield models were designed for each growth habit The general form of the models is illustrated in Figure 3 Details within habits are discussed separately since the yield models differ depending upon the growth habit

Table 2 Mea sad ges of selected mo phological ompo ts of 401 es f omeach growth habit of Phaseolus vulgaris

	G owth h b ts							
	I		11		III		IV	
	Mea	Rag	Mean	Range	Mean	Range	Mean	Range
Y id (kg/h)	1066	(164-1436)	1376	(795 2058)	1377	(406 2056)	1366	(507 2053)
N mbe of $\mathrm{sed} / \mathrm{m}$	423	(97 1002)	789	(147 1442)	761	(354 1187)	668	(132 1102)
We ght/seed (g)	025	(012-0 45)	018	(0 14-0 31)	018	(022-0 33)	024	(0 14-0 47)
Numbe of pod/m	136	(39 240)	190	(72 313)	173	(107 270)	153	(62 267)
Se ds/pod	3	(2-4)	4	(2-6)	4	(3-6)	4	(2-6)
N mbe f odes/m	356	(224-565)	425	(263 586)	476	(318719)	583	(417-832)
P d/ ode	04	(01-08)	05	(02-0 7)	04	(0 2-0 6)	03	(01-0 5)
D y t w	28	(24-44)	32	(2738)	33	(24-39)	32	(24-38)
Seed fll g ume	40	(30-49)	39	(32 50)	41	(2853)	52	(44-58)
L af area de (LAD)	27	(17-4 2)	29	(1 3-4 8)	33	(1954)	35	(2-2-6 0)
C pgowth ate (CGR)	103	($50-206$)	108	(52229)	98	(61174)	106	(55247)
N d g owth rat (NGR)	53	(29-83)	60	(3785)	64	(4193)	70	(5594)
Gra g owth t (CGR)	48	(07108)	56	(24116)	57	(2 3105)	57	(21101)

Figure $3 \quad P l m n y g e l y e l d m$ del f le $t d g$ whp $m t$ fo thef u Phaseol vulg gowth hbt G wh hab t/ only

Growth habit I Number of total seeds number of pods number of seeds per pod number of pods per node CGR and grain growth rate (GGR) are all correlated with yield (Table 3) Days to flower is negatively correlated to yield

The length of the preflowering vegetative phase does not have an effect on the number of nodes formed but is correlated (47**) to the leaf area duration (LAD) LAD is negatively correlated (50) to the number of pods per node which does have a strong relationship with the final yield Seed size is negatively correlated ($57^{* *}$) to the number of seeds per pod Since number of seeds per pod is highly correlated to yield selection for a large seed size in this growth habit can also be a selection for lower yields According to the early model for this growth habit selection for a plant with many nodes a long preflowering vegetative phase and an increased number of seeds per pod should result in selection for higher yields The large number of nodes is essential to provide sites for pod and leaf formation

Growth habit II All yield components except seed size days to flowering and the length of seed filling period are correlated to yield (Table 3) Seed size as in growth habit 1 is negatively correlated to yield and to the number of seeds per pod ($55^{* * *}$) Therefore a selection for large seed size can result in fewer seeds per pod and can also be a selection for lower yield This is the only growth habit showing a correlation between maximum LAI and yield This is due to the direct relationship of LAI with GGR and the number of seeds per pod The correlation (61^{*} *) between plants $/ \mathrm{m}^{2}$ and the number of nodes suggests that plant density for this growth habit can affect final yield The growth habit II model imples that both the LAI and the number of nodes are the major limiting factors towards increased grain production

Growth habit III The yield components correlated with yield are the number of total seeds number of pods number of seeds per pod and the maximum LAI (Table 3) The model for this growth habit tends to be less obvious in the selection of yeld components for increasing grain production Although LAI is correlated with yield it does not have a direct relationship with any yield components used in this model

The model does however suggest that selection for more nodes or large seed size can also be a selection for low yield The lack of relationship between GGR and final grain yield and negative correlation ($-40^{* *}$) with pods per node suggest that leaf area is limiting to support pod formation and pod filling

Growth habit IV This growth habit differs from the others in that seed size and number of seeds per pod are correlated to yield (Table 3) Even though seed size and number of seeds per pod are negatively correlated ($57^{* *}$) to each other selection for both large seed size and more seeds per pod should result in higher yields A negative correlation (57) existed between GGR and the length of the seed filling period Since GGR is correlated to yield this suggests that shortening the period from flowering to physiological maturity could be beneficial

General observations In all growth habits except IV selection for large seed size without enough seeds per pod can result in a selection for lower yields Since these models are in the early stages of development it is not known whether the himits of seed size will have detrimental effects on the number of seeds per pod

The number of pods per node or the number of total pods for all growth habits except type I were correlated with yield There was no direct relationship between these two parameters with LAI and LAD implying that there is sufficient leaf area to support the growth of pods

In growth habit LAD needs to be increased either by increasing the maximum LAI or the time to physiological maturity However for growth habit II a relationship ($56{ }^{* *}$) existed between LAI and GGR suggesting that leaf area is limiting in the filling of these pods

It should be noted that changing one of these com ponents will of course increase or decrease that com ponent sor other components effects on grain production The limits at which a component can be changed before it will cause other factors to become yield hmiting are unknown

Prediction of Bean Flowering Date

In order to evaluate the suitability of a new line or cultivar for a particular region its expected phenology must be known Since the phenologic response depends upon temperature and photoperiod it is essential to have a model that predicts the effects of these variables

Such a mathematical model was developed by the Physology Section of the Bean Program The derivation and form of the model are not presented in this report but results from testing the model will be described

Data for testing the model were those avalable from growing a common set of 20 cultivars in the 1976 International Bean Yield and Adaptation Nursery (IBYAN) at 39 international locations The flowering similarity of the 20 cultivars had been evaluated previously by comparing their performance at 27 world locations with
independent tests of their photoperiod sensitivity at CIAT Palmıra (CIAT Ann Rept 1978) In constructing the current model the estumated critical daylength was increased to 13 hours 30 minutes (materials had been tested at CIAT Palmira under a normal daylength of 12 hours 20 minutes and an extended daylength of 18 hours) After the earher evaluations materials were placed in cluster groups according to their phenologic behavior at world locations

By applying the model to these previous groupings reasons for their behavior became evident (Table 4) In the table the photoperiod response class and cluster groupings in the columns at the right are those determined from the earher analyses The coefficient of photopenodicity was calculated from the model It is at or near 0 when there is little or no flowering delay as daylength increases above the critical point (ie the photoperiod response is essentially
 and Adaptat o Nursery (IBYAN) locat o

M mum day t fl w g	$\begin{array}{ccccc} \text { C } & \text { ff } & \text { t } & \text { f } \\ \text { ph } & t & \text { pe } & \text { d } & \text { ty } \end{array}$		(${ }^{\text {c }}$			Phot peri d espo se class			$\begin{gathered} \mathrm{Be} \\ \mathrm{mtn} \end{gathered}$	D_{b}^{d}	$\underset{\mathrm{d} p \mathrm{ph}}{\mathrm{~g}}$	$\begin{gathered} \mathrm{d} \\ \mathrm{I} \mathrm{gy} \end{gathered}$
B_{0}	B_{1}	B_{2}	B3	B_{4}	(days)							

Normal temperature espo se

neutral) this value approaches 1 as a material becomes more sensitive to photoperiod The base temperatures beta 2 beta 3 and beta-4 are also parameters of the model They are those temperatures that respectively indicate the point where a cultivar shows an initial response to temperature where temperature response reaches a plateau and where the higher temperature causes a decrease in cultuvar performance From the original cluster patterns it is possible to see that groups 12 and 3 formed a discernable pattern after that however response types became numerous and varied The new model indicates that a variety of temperature response were the causes

The first three groups comprise a temperature response type here called normal At the bottom end of the cluster
groups are several with varied photoperiod responses buta readily identitiable temperature response type called the broad response is due to the wide temperature plateau Between these extremes is a group of cultuvars with mixed responses Given the possible sources of error in reporting phenology data from a large international network the root mean square (RMS) errors of about four days contirm that the data and the model rather accurately describe the interactions of temperature and photoperiod in bean cultivar performance I he results are important in that they open the way to possibly estumating the model parameters trom simple (and presently routine) screenings at CIAT stations lhis would enable predicting the phenology of both existing cultivars and new lines for the full target area and thus aid in determinig their suitability tor any location

Plant Development under Leafhopper Stress

 cond to s

P am te	P tected			U p tect d			LS D (001)
	Tol ant	1 trmdat	Suscept bl	Tol ra t	Int medrat	Suscept ble	
Y eld (kg/ha)	2000	1610	1948	1067	846	816	16
Y eld/day (g/m/day)	28	23	30	15	12	12	2
Number f pods/m	299	254	335	267	248	261	38
Numbe of nod /m	581	422	453	595	492	482	70
Leaf area index (LAI)	49	50	42	35	41	26	07
Leaf area du t (LAD)	173	154	137	119	126	79	12
Y eld/LAD	11	10	15	09	07	10	01
Crop growth t (CGR)	167	130	156	121	124	88	29
Grain growth rate (CGR)	69	59	73	41	28	35	13
Stem lenght (cm)	106	66	67	64	53	49	10
B mass (kg/ha)	3671	2661	3316	2261	1916	1615	52
Harvest dex (\%)	44	46	44	42	43	42	7
N mber of Empoas ymphs	0	0	0	117	155	132	N S
Numbe of Empoas adults	0	0	0	679	559	591	60

T I rant h EMP9 G0124 I med II ICA Iu S scept bl Ine
V I esw hasterisk sh wed g fca dff re ce (P 00I) be wee I ra
BAT 41 B
d uscep bl lines nd p tected nd ns NS gica

An experiment was conducted to study the effects of the leafhopper (Empoasca kraemeri) on bean yield com ponents and final grain yield Two tolerant lines (EMP 9 and G0124) two susceptible lines (BAT 41 and Bunsi) and an intermediate line (ICA Tui) were grown in protected and unprotected plots at CIAT Palmira

Yeid and most of the major yield components decreased significantly from protected to unprotected treatments regardless of whether lines were tolerant or susceptible (Table 5) Significant yield reductions of 47% for tolerant
lines and 59% for the susceptuble lines were recorded Yield differences were due to decreases in the number of nodes leaf area index (LAI) and leaf area duration (LAD) Only in the later plant growth stages did leafhopper nymphs and adults show different preferences between tolerant and susceptible lines

Figure 4 compares curves for the different growth parameters and insect populations all insect population curves represent total counts per plant The nymphal population curve for the tolerant lines remained high
because the vegetative material (measured by LAI and total biomass) decreased less during this period compared to the susceptible lines The nymphal population on tolerant lines began to drop when plants reached physiological maturity

Days f om pla $t m$ ge ce

Fg 4 Go thp $m t \quad f m$ in $t m$ and $b n h$ of Phaseolus utgars I ne tole ant nd us puble to Empoasca kraem if (C d df mitgnmet cu fitngp ed,$C G R=C$ op Gowth Rat GGR=G nG ith t) St ms b) Banh
to the green growth of the tolerant lines shown by the significant increase in the number of adults near the end of the season

The sudden decrease in total biomass production and crop growth rate (CGR) for the susceptible lines coincided with peak nymphal populations Stem LAI but not branch LAI decreased significantly between tolerant and susceptı ble lines Due to this lack of leaf area grain growth rate (GGR) also decreased on stems but not on branches

Plant Development under Low Input Stress

Yield parameters in beans were also studied under high and low levels of inputs High inputs included complete
control of insects and diseases and applications of fertihzer at planting low inputs involved only applying a small amount of fertilizer at planting (Table 6)

Yield differences on both stems and branches were significant between the two treatments An interesting point was that seeds were larger but not significantly so for low input treatments This probably was due to the significant decrease in seeds per pod These two parameters were shown to be negatively correlated in the earlier discussion on yield modeling

The data in this experiment suggest that a major cause for decreased yield under low inputs is the number of seeds per pod and that most of the yield loss may be traced to low yield on branches

Table 6 Relat $n \mathrm{~h} p$ iselected y eld ompo ent to bea yeld f Phaseotus vuig $i s$ ines rece ing two levels of p :

Y Id component	1 ptl		LS D	Value (us y ld)				$\begin{aligned} & \text { C V } \\ & \text { (\%) } \end{aligned}$
	High	Low		High	puts	Low	p ts	
$Y \mathrm{ld}(\mathrm{g} / \mathrm{m})$								
stem	100	65	17	46			6**	212
branch	84	54	19	20			7	282
t tal	184	119	35					141
Pod umber/m								
stem	125	100	70	31			1	195
branch	106	89	76	01		34	4	244
total	231	189	108	23		46	6	161
Seeds/pod								
stem	47	21	16	40			7	119
bra ch	42	21	22	49			7	172
total	45	21	15	51			6	114
Weight (g)/ 100 seeds								
stem	19	31	22	19			5	270
branch	19	28	18	21			4	239
total	19	30	19	20			3	240
Elomass (g/m)								
$t \mathrm{~m}$	210	127	42	31			6	159
bra ch	137	86	44	04			2	213
total	347	214	63	25			6	158
Harvest index (\%)								
$t \mathrm{~m}$	51	57	12	28			8	149
bra h	62	68	13	21			8	135
total	55	61	11	28			1	126
Y Id/day (g/m)								
tem	15	11	9	44			6	143
bra ch	11	10	9	19			7	187
total	25	15	9	98		99	9	147
Days to fl w	37	37	4	04		06		73
Days to m tity	75	81	5	01		02		42
Hgh inp is freg la f dize t pla tung Hgh plathas nsk	sect	as w		$\text { p } 1$	nsist	$\mathrm{f} \text { an } \mathrm{pl}$		

Type I Determinate growth habit reproductive ter minals on the main stem with no further node production on the main stem after flowering commences

Type 11 Indeterminate growth habit vegetative ter minals on the main stem with node production on the main stem after flowering commences erect branches borne on the lower nodes of the main stem erect with relatively compact canopy variable guide development depending on environmental conditions and genotype

Type IIla Indeterminate growth habit vegetative terminals on the main stem with node production on the man stem after flowering relatuvely heavily branched with varable number of facultatively cimbing branches borne on the lower nodes variable main stem guide development but generally showing climbing ability

Type IIIb Indeterminate growth habit vegetative terminals on the main stem with node production on the main stem atter flowering, relatively heavily branched with variable number of facultatively climbing branches borne on the lower nodes variable main stem guide development but generally showing climbing ability

Type IVa Indeterminate growth habit vegetative terminals on the main stem with heavy node production atter flowering commences branches not well-developed compared to main stem development moderate chmbing ability on supports and pod load carried evenly along the lenght of the plant

Type IVb Indeterminate growth habit vegetative terminals on the main stem with heavy node production atter flowering commences branches not well-developed compared to main stem development strong chmbing tendency with pod load mostly borne on the upper nodes of the plant

Notes The growth habst classification has been expanded for the climbing types since the 1977 Annual Report Type 111 matersals with some tendency to chmb are now recognized as Type IIlb, and Type IV has been divided on the basis of vigor and pod distribution

The most important distinguishing features of the growth habits are as follows terminal raceme on mainstem for Type I indeterminate with erect branches for Type II indeterminate with prostrate branches for Type lila indeterminate with semi-climbing main stem and branches for Type IIIb indeterminate with moderate chmbing abilty and pods distributed evenly up the plant for Type iVa indeterminate with aggressive climbing ability and pods carried mainly on the upper nodes of the plant for Type IVb

Growth habit is not necessarily a stable characteristc since changes in growth habit may occur from one location to another the classification of growth habit for a partucular genotype is only useful in a defmed environment partucularly with regard to climbing ability

CIAl No	Id nutication	Local register	Source ${ }^{2}$
G00057	Suedi h Brown	PI 136735	USA
600076	Red Kloud		USA
G00118	Forty Days	P1 162566	USA
600124		PI 163372	USA
G00159	Calı rasulya	P1 165078	USA
G00489	Raytal	P1 175269	USA
G00687	Windsor Long Pod	P] 182026	USA
G01507	Ojo de Cabra	PI 281988	USA
G01820	Negro Jamapa	P1 309804	USA
G01854	Nima	PI 310512	USA
G02005		Pl 310739	USA
G02006		Pl 310740	USA
G02047		Pl 310805	USA
G02 58	Morada del Agua	P1 311904	USA
G02333	Colorado de Teopisca	P1 311998	USA
G02525	Magdalena 3	PI 313624	USA
G02618	Col No 168	P1 313755	USA
G02858	Zacat cano	Pl 319665	USA
G02959	Pect o Amarillo	GTA-014	GTA
G03353	Puebla 152		MEX
G03607	C C G B-44	1-462	VNZ
G03645	Jamapa	$1-810$	VNZ
G03652	Puebla 152	1-820	VNZ
G03658	Mexico 27N	1-867	VNZ
G03776	Venezuela 2	11062	VNZ
G03807	Brasil 2 Pico de Oro	11098	VNZ
G03834	51051	11138	VNZ
G03942	Michelite	8-33	CRA
G04000	NEP Bayo_22	C 286	CRA
G04122	S 166-A N	N 555	CRA
G04393	Tlaxcala 62 C		MEX
G04421	S-630 B	C-63	CR 1
G04434	Antioqua 11	P 111	CRA
G04435	Diacol Calima	P 146	CRA
G04445	Ex Rico 23		CLB
G04446	Ex I uebla 152 Brown Seeded		ME ${ }^{\text {d }}$
604449	Pinto Ul 114		USA
G04451	9 Al 2		USA

[^0]: R PJ 1971 A comp t program f fitting n-linen gression mod ist
 R se hoga ta (CSIRO) D S 1 i h P p 6 Fyld ley JB 1978 A method of aluat \mathbf{g} the fifect ft mper to onan ganism wh th esponse is $\quad \mathrm{n}$-linear $\mathrm{Ag} \quad \mathrm{M} \quad 1 \quad 19.137153$

[^1]: $\begin{array}{lllllllll}1 \mathrm{tg} & \mathrm{d} & \mathrm{d} & \text { LAI } \mathrm{rv}(\mathrm{m} & \mathrm{g} & \text { ce phy } 1 \mathrm{gcalm} & \mathrm{g})\end{array}$

 Wh Ahpg

