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Introduction  

Cassava (Manihot esculenta Crantz, Family Euphorbiaceae) is one of the most 

important staple crops for farmers in the tropics due to its high calorie content, 

low production cost and ability to adapt to different soil types and climatic 

conditions (Cock, 1982; FAO and IFAD 2000; Mejía de Tafur, 2002). Recent 

estimates suggest that as many as 500 million to 1 billion people consume 

cassava, making it the third most important crop in the tropics after rice and maize 

(Dutt, 2005; Breu, 2005; FAO 2008). Tropical farmers produce 233 million tons 

of cassava on 18.6 million hectares. A total of 40 countries in Africa make up 

more than 50% of the production, while Asia and Latin America contribute 34% 

and 15% respectively.  

Although socioeconomic factors, market conditions and abiotic constraints 

negatively affect cassava production, pests and diseases are well known to 

substantially reduce yields, resulting in multi-billion dollar crop losses (Fondong 

et al., 2000; Bellotti et al., 2002; Hillocks and Jennings, 2003; Legg et al., 2004; 

Coulibaly et al., 2004; Maruthi et al., 2004; Anderson and Morales, 2005; 

Renkow and Byerlee, 2010; Waddington et al., 2010). Biological control 

programs in Africa have been highly successful, preventing huge losses. Recently, 

cultivars with disease resistance have successfully reduced the damage from 

cassava mosaic disease (Abele et al., 2005). However, these attempts to prevent 

and control pests and diseases often lack objective evaluations of the state and 

magnitude of the problem across cassava-growing regions.  

 

Agricultural experts are concerned about recurring or new pest and disease 

problems that have emerged over the last several years. The steady advance of 

cassava brown streak disease in Africa could be devastating if it spreads beyond 

its relatively limited distribution in southeastern Africa and the Great Lakes 

region. Recent discovery of increased incidence of whiteflies and mealybugs in 

Asia is another cause for concern, especially given the growing importance of 

cassava in this region. Green mites could be another problem for Asia. Cassava 

brown streak disease and mosaic disease could potentially devastate cassava 

production in Latin America, if they were to appear. The emergence of new 

whitefly biotypes or possibly even species is another concern for cassava 

production (Perring et al, 2001; De Barro et al., 2011). 

 

Despite the (potential) severity of these constraints, no systematic and global 

effort exists to estimate the potential geographic distribution of cassava pests and 

disease problems across the tropics. This paper addresses the question of where 

environments are suitable for key cassava pest and disease problems. The known 

distribution of four important pests -- whiteflies, cassava green mites, cassava 

mosaic disease and cassava brown streak disease -- was documented.
1
 

Environmental ranges of the pests and diseases were determined by combining the 

known locations with a series of global, high-resolution environmental maps, 

                                                

1 . The study excluded Cassava Mealybug due to the lack of information on the actual distribution 

of the pest. However, future research should include the mealybug due to its history of economic 

damage in Africa. 
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using a spatial overlay method implemented in a geographic information system 

(GIS). Ecological niche models were then used to estimate the potential 

distribution based on actual occurrence records for these pests and diseases. The 

paper delineates areas with high potential for these problems and suggests some 

implications for reducing damage and yield loss. 

 

Key cassava pests and diseases 

Important aspects of cassava pest and diseases suggest how they might be 

evaluated and how their negative consequences might be countered in prevention 

and control programs. The review below indicates criteria for determining 

modeling methodology and evaluating the potential geographic distribution of this 

species.  

Whiteflies (Bemisia tabaci Gennadius, Family, Aleyrodidae) 

The whitefly, Bemisia tabaci Gennadius, is a complex of morphologically 

indistinguishable cryptic species that show distinct geographical, biological and 

genetic differences (Brown et al., 1995; Ko et al., 2005; Liu et al., 2007; Xu et al., 

2010; De Barro et al., 2011). The most invasive species type documented is the 

Middle East-Asia Minor 1(B), which, regarded as such, also impacted cassava in 

Africa, but probably has been recorded as B. tabaci (Anderson and Morales, 2005; 

Xu, et al., 2010; De Barro et al, 2011). 

 

The recent studies described above indicate that B. tabaci may be a complex of 

species, instead of a complex species. But this hypothesis is still subject to 

ongoing debate. Our research is based on an analysis of collection records that do 

not distinguish between biotypes or species. Accordingly, this study regards B. 

tabaci as a complex species. 

 

Whiteflies can move 7 km through downwind migratory flight and no more than 2 

km in self-propelled flight between crops and crop fields (Hirano et al, 2003; 

Salas, 2003). Planting materials, stem cuttings and international trade of 

ornamentals are important elements in its expansion (CABI, 2007). B. tabaci 

species attack crops, weeds and ornamental plants in all growth stages, feeding 

upon the phloem of its host plants (Martin 1999; Ellsworth and Martinez-Carrillo, 

2001). The pest causes damage from direct feeding and indirect damage through 

honeydew secretion, promotion of fungal growth and vectoring several plant 

viruses (Ko et al., 2005; Nunes et al., 2005; Anderson and Morales, 2005; Liu et 

al., 2007). More than 600 host plants suffer from B. tabaci attacks, causing yield 

losses as high as 100% in certain crops (Albergaria and Cividanes, 2002; Nunes et 

al., 2005; Anderson and Morales, 2005). B. tabaci causes substantial damage from 

the diseases that they transmit (Ko et al., 2005), most importantly, Cassava 

Mosaic Disease (CMD) and Cassava Brown Streak Disease (CBSD). 

Found throughout equatorial and tropical zones and extending into temperate 

zones (CABI, 2007), B. tabaci (Gennadius) has been recorded in 42 countries in 

Africa, 30 in Asia, 30 in Europe, 28 in Central America and the Caribbean, 22 

states and provinces of North America, 10 countries in South America and 19 

countries of the Pacific region (Fig.1a; Anderson and Morales, 2005; EPPO, 
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2006a CABI, 2007). Although the geographical range of the invasive Middle 

East-Asia Minor (B) type is extensive, its recording is limited to 10 countries in 

Europe, 7 in Asia, 3 in Africa, 3 in North America, 15 in Central America and the 

Caribbean, 3 in South America and 11 in Oceania (Fig. 1b; EPPO, 2006b). 

 

Fig 1. Reported distribution of Whitefly (B. tabaci and the Middle East-Asia 

Minor (B) 
2
) and potential distribution of the species niche. a) Shows the reported 

distribution of B. tabaci Gennadius, b) reports the distribution of B. argentifolii 

and c) represents the potential niche of B. tabaci: values are classified in five 

categories of equal intervals between 50 and 100% from yellow to red-brown 

tones: brown-red tones show areas where the probability of presence is high due 

to suitable climatic conditions; the yellow tones show low probabilities of 

presence. Grey represents areas with suitability under 50% and White areas 

represent habitats with no suitability. 

 

The latitudinal limit of B. tabaci is about 40° in the northern hemisphere and 30º 

in the southern hemisphere, limited by cold climates in the winter (CABI, 2007). 

However, the pest is often found in greenhouses in areas outside its natural range, 

which play an important role in the expansion of the pest (Cáceres, 2004). The 

range of B. tabaci includes areas with at least four months of dry season, where 

climates lead to savanna vegetation, in areas with less than 80 mm of monthly 

rainfall and average monthly temperatures higher than 21°C (Morales and Jones, 

2004). Optimal temperatures are 20 to 30°C, but the insect can be found across a 

range from a minimum of 14°C to a maximum of 35°C. B. tabaci populations 

have been known to increase at the onset of the dry season (Nunes et al., 2005). 

Factors leading to increased mortality include extreme temperatures, low relative 

humidity, and intense and persistent rainfall (Nunes et al., 2005). In Latin 

America, B. tabaci is poorly adapted to climates above 1000 m elevation (Morales 

and Jones, 2004).  

 

Cassava green mite (Mononychellus tanajoa Bondar, Family, 

Tetranichidae) 

The Cassava Green Mite (CGM; M. tanajoa; Fam:Tetranichidae) has co-evolved 

exclusively with its host plant cassava. The mites feed on the terminal parts the 

plant, killing leaf cells and reducing photosynthesis (Gutierrez et al., 1988). The 

mites disperse over short distances by walking and by wind. They move over long 

distances, between countries and regions, through exchange of cassava stem 

cuttings and by attachment to people, vehicles and other physical mediums 

(Yaninek, 1989).  

During the 1970s M. tanajoa was responsible for yield losses of 30 to 50% in 

Africa (IITA/CIAT, 1997; Doreste 1982). Losses up to 80% in dry regions of 

Africa were reported in the 1970s and 1980s (Doreste, 1982; Skovard, 1993). 

Reported yield losses due to CGM in commercial plantings in Colombia range 

from 21 to 53% depending on population levels, host plant resistance, and 

duration of attack. Under high mite populations, yields in experimental fields 

                                                

2
 Reported as B. argentifolii or B biotype of B. tabaci (EPPO, 2006b) 
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were reduced by 15% in resistant cultivars compared with an average 67% loss in 

susceptible cultivars (Bellotti et al., 2002). 

Native to South America, M. tanajoa appeared in Africa in the early 1970s, 

spreading to 27 countries throughout the cassava belt by 1985 (Yaninek, 1988; 

Fig. 2a). CGM is found in all cassava regions of Latin America and Africa, but is 

not yet a problem in East and Southeast Asia. However, a closely related species, 

Mononychellus mcgregori, was recently observed feeding on cassava in Vietnam 

(Bellotti, personal observation).  

 

Fig 2. Reported and potential distribution of Cassava Greenmite. a) Represents 

the known distribution of the species and b) shows the potential distribution 

predicted. 

Tropical regions with a distinct dry season and low elevations provide suitable 

habitats for CGM. Temperatures as low as 15°C limit its range. M. tanajoa 

generally thrives where average temperatures are from 24°C to 31°C, with values 

of relative humidity between 50 and 70% (Doreste, 1982). Intense and constant 

rainfall is a key factor in their mortality. Population growth rates of the green mite 

increase at the end of rainy season and the beginning of the dry season when 

foliage is abundant (Yaninek et al., 1989). 

 

Cassava Mosaic Disease (Cassava Mosaic Geminiviruses, Family: 

Geminiviridae) 

Cassava Mosaic Disease (CMD) is produced by different viruses related to the 

Geminiviridae family, Begomovirus genus (Fig. 3 a, b, c and d show the reported 

distribution of each one). While the disease can be propagated through exchange 

of stem cuttings, its rapid expansion is closely associated with high populations of 

whiteflies (B. tabaci B), the principal vector of the disease (Hillocks, 2000; Legg 

et al., 2002). CMD is not exclusive to domesticated cassava, but affects its wild 

relatives and other species (Alabi et al, 2008). Yellow spots on leaves, leaf 

distortion and stunted growth are the typical symptoms of CMD-infected cassava 

(Fig. 4; Legg and Thresh, 2000). Different strains of the virus are unique to 

geographical sub-regions. In some areas where these strains overlap, there is 

evidence for the development of new virus pseudo-recombinations (Pita et al., 

2001; Okao-Okuja et al., 2004; Fondong, 2000). 

Fig 3. Reported and potential distribution of Cassava Mosaic Disease (CMD). . 

Maps a, b, c and d: show known distribution of Cassava Mosaic Disease: a) shows 

the virus distribution in Africa and Asia. The latter three (b, c and d) represent the 

virus with major extension: b) Shows the distribution in the countries where 

African Cassava Mosaic Virus (ACMV) is reported, c) East African Cassava 

Mosaic Virus (EACMV), d) East African Cassava Mosaic Virus–Uganda strain 

(EACMV-UG). Colors in the known distribution maps represent viruses’ 

distinction as follows: 1. ACMV, 2. ACMV and East African Cassava Mosaic 

Cameroon Virus (EACMCV), 3. ACMV and EACMV, 4. ACMV and EACMV-

Ug, 5. ACMV, EACMV-UG and East African Cassava Mosaic Virus –2 Uganda 

strain (EACMV-UG2), 6. ACMV, EACMV and EACMCV, 7. ACMV, EACMV, 
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EACMCV and EACMV-UG, 8.ACMV, EACMV and EACMV-UG, 9. ACMV, 

EACMV, EACMV-UG and EACMV-UG2, 10. EACMV-UG, 11. ACMV, 

EACMV, EACMV-UG and South African Cassava Mosaic Virus (SACMV), 12. 

ACMV, EACMV, SACMV, 13. EACMV, 14. EACMV-UG2, 15. EACMV-UG and 

EACMV-UG2, 16. EACMV and SACMV, 17. SACMV, 18. Sri Lankan Cassava 

Mosaic Virus (SLCMV), 19. Indian Cassava Mosaic Virus (ICMV), 20. SLCMV 

and ICMV. Map e) shows the potential distribution of CMD: values are classified 

in five categories of equal intervals between 50 and 100% from yellow to red-

brown tones 

Fig 4. Cassava plant showing symptoms caused by CMD.  

Economic damage from CMD has been substantial. In 2002, the total losses in 

Africa were reported at 19.6 to 27.8% of annual production of 97 million tons 

(Zhang et al., 2005). Annual economic losses in East and Central Africa have 

been estimated at US$ 1.9-2.7 billion dollars (Patil and Fauquet, 2009). Fauquet 

and Fargette (1990) estimate 50% yield loss on average in Africa in areas with 

CMD infection. 

CMD has been reported in all countries of Africa and the Indian 

subcontinent where cassava is an important crop (Fig. 3a; Colvin, 2004; Patil et 

al., 2005; Sseruwagi, 2006; Otim and Thresh, 2006, Patil and Fauquet, 2009). The 

disease has not yet been reported in Latin America, the Caribbean, East Asia or 

Southeast Asia (Carabali, 2005; Patil and Fauquet, 2009). However, its vector, B. 

tabaci (B), has been found feeding on cassava in the Dominican Republic, Cuba 

and Colombia (Brown et al. 1995; Carabali et al., 2004). 

 

The distribution of Geminiviruses is determined by their vectors, environmental 

conditions and modes of dispersion. High temperatures in the rainy season and 

increasing whitefly populations have been associated with incidence of African 

Cassava Mosaic Virus (ACMV; Legg and Ogwal, 1998). Maruthi et al. (2002) 

demonstrated co-adaption between B. tabaci and the geminivirus, indicating the 

complexity that influences its environmental range. 

Cassava Brown Streak Disease (Cassava Brown Streak Virus, 

Family: Potyviridae) 

 

Cassava Brown Streak Disease (CBSD) is caused by two viruses -- Cassava 

Brown Streak Virus that belongs to the family Potyviridae and genus Ipomovirus 

and the Ugandan Cassava Brown Streak Virus (UCBSV; Monger et al., 2001a, 

2001b, 2010; Mbanzibwa et al., 2009, Winter et al., 2010; ICTV, 2010; 

Mbanzibwa et al., 2011). The disease also seems to be related to a mixed infection 

between the two viruses (Mbazimbwa et al., 2011). Although mostly related to 

cassava, the disease can use other host species in the Nicotiana genus, where it 

can reproduce and propagate. The virus causes a yellowing of the leaves, stem 

lesions and necrosis of the roots, rendering it unpalatable and unsuitable for the 

market (Fig. 5; Hillocks and Jennings, 2003).The disease is transmitted 

mechanically through propagation of stem cuttings (Lister, 1959) and there is 

some evidence that the disease can be transmitted by different species of 

whiteflies, such as B. afer (Legg and Raya, 1998; Hillocks and Jennings, 2003; 
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Maruthi et al., 2005), B. tabaci (Maruthi et al., 2005, Alicai et al., 2007; 

Ntawuruhunga and Legg, 2007) and Aleurodicus dispersus (Mware et al., 2010). 

Monger et al. (2001b) also suggest that mites could be related to transmission of 

CBSV. 

 

Fig 5. Cassava plant showing symptoms caused by CBSD. 

 

The disease is exclusive to cassava and has caused losses up to 80% in East Africa 

(FAO and IFAD 2005). At least 20 million people have been affected by this 

cassava disease, with annual losses of $50 million (IITA 2007). 

 

The disease has been found mostly along the coast of East Africa, in an area 

extending from Kenya south to the Zambezi River in Mozambique (Fig. 6a). 

Along the shores of Lake Malawi, the disease is present in Malawi and Tanzania, 

but not along the shoreline in Mozambique (Hillocks and Jennings, 2003). It has 

been suggested that Angola could be a probable area to find the disease, due to 

cultural and economic ties to Mozambique (Hillocks and Jennings, 2003). Recent 

research has reported the disease in Uganda, Bas-Congo (without confirmation), 

Mozambique, Zambia and Malawi (Alicai et al., 2007).  

 

Fig 6. Reported and potential distribution of Cassava Brown Streak Disease 

(CBSD). a) Shows the reported distribution of CBSD in Africa, b) displays CBSD 

distributional area on the Africa continent as a whole and c) represents the 

potential predicted distribution of CBSD: values are classified in five categories 

of equal intervals between 50 and 100% from yellow to red-brown tones. 

 

Although in some cases CBSD has been found up to 1700 m above sea level, the 

disease is normally found at elevations below 500 m (Legg and Hillocks, 2003). 

There has been some evidence of a relationship between elevation and damage 

severity, with losses greater at lower elevations (Hillocks, 2003). The most recent 

outbreaks have occurred in Uganda where the entire country has now been 

affected by the disease.  

  

Materials and Methods 

The known geographic distribution of a pest or disease can be used to predict the 

potential distribution. This principle is the foundation for a rapidly growing area 

of research on ecological niche modeling, using known locations of a pest to 

characterize the environmental profile and potential distribution (Peterson and 

Vieglais, 2001). The method can simplify an otherwise complex process of 

analysis of species invasions (Peterson, 2003). Recent research has focused on 

how to more closely link niche modeling to ecological theory and its potential 

application to the analysis of climate change impacts on agriculture (Guisan and 

Thuiller, 2005; Pearson and Dawson, 2003). 

Records of the locations of whiteflies, CGM, CMD and CBSD were used with 

ecological niche models to identify habitats where these pests and diseases would 

find climatic conditions suitable for survival and growth. A database of the known 

distribution was developed from collection records of the entomology and 
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virology labs of the International Center for Tropical Agriculture (CIAT), from 

the online species distribution database of the Global Biodiversity Information 

Facility (GBIF), from an expert survey as a part of Harvest Choice project in 

collaboration with colleagues at the University of Minnesota and from known 

locations reported in the scientific literature. These known distributions of pests 

and diseases were characterized using 22 climatic variables, plus elevation and the 

presence of cassava cultivation. Ecological niche models were then used to predict 

the potential distribution of the pests and diseases. Finally an evaluation data set 

was used to examine how well these models predicted the distribution of the pests 

and diseases. We describe in detail below: the development of the presence 

database, the environmental characterization data set, the ecological niche models 

and the validation method. 

Presence and absence data 

Each data set of known occurrences of pests and diseases was divided randomly 

into a training data set equivalent to 80% of the records and a validation data set 

of the remaining 20% of the data records (Table 1). The study lacks records on the 

absence of pests and diseases – reports of locations where researchers searched for 

pests and diseases, but they were not found. This limitation was addressed using 

the concept of pseudo-absence data (Benito de Pando and Peñas de Giles, 2007; 

Wisz and Guisan 2009; Phillips et al., 2006; Phillips and Dudík, 2008). 10,000 

pseudo-absence data points were generated randomly for use in the ecological 

niche models. 

 

Table 1. Summary of presence record of species used in the study. 

 

Species Source 
Presence 

records 

Training 

(80%) 

Validation 

(20%) 

Whitefly CIAT virology and entomology 

labs 
251 200 51 

Cassava Green 

mite 

 CIAT entomology lab/ Scientific 

literature (Delalibera et al, 2004) 
215 172 43 

Cassava Mosaic 

Disease 

CIAT virology lab and scientific 

literature (Colvin, 2004; Legg & 

Raya, 1998; Okao -Okuja, 2004; 

Sseruwagi, 2005; Patil, 2005; 

Legg & Ogwal, 1998) 

159 127 32 

Cassava Brown 

Streak Disease 

Scientific literature(Legg & Raya, 

1998; Legg & Hillocks, 2003; 

Hillocks & Jennings, 2003; Alicai 

et al, 2007) and expert survey1 

82 66 16 

 
1Information from an expert survey was acquired in collaboration with colleagues at the University 

of Minnesota through the Harvest Choice project (http://www.harvestchoice.org). 

 

Environmental characterization data 

The relevance of an environmental variable, the scale of the study and the 

practicality of developing a global data set drive the selection of variables for 

characterizing the known occurrence of cassava pests and diseases (Titeux, 2006). 

At the global scale, climate is considered the determining factor, while at local 

http://www.harvestchoice.org/
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scales topography, soil type and biotic interactions as well as management 

considerations play an important role (Pearson and Dawson 2003). This study was 

carried out at the global scale and relies primarily on climate interactions. 

Bioclimatic data, as developed by Busby (1991), made up the key variables used 

in this analysis. These data are developed from averages of monthly precipitation 

and temperature and minimum and maximum monthly temperatures and are 

available in the Worldclim dataset (www.worldclim.org; Hijmans et al., 2005). 

Additional variables included the Hargreaves evapotranspiration index, the aridity 

index, number of consecutive dry months (with rainfall less than 60 mm), altitude 

and harvested area of cassava (Trabucco et al., 2008; You and Wood, 2006). The 

variables represent annual and seasonal tendencies as well as limiting factors and 

extreme values.  

Three different groups of variables were selected to test their applicability for 

characterizing environmental conditions of cassava pests and diseases: a subset of 

variables selected by the authors based on our knowledge of the pests and diseases 

(EXP), a reduced set of variables derived from principal components analysis 

(PCA) and a reduced set derived from analysis of spatial correlation (SCA, Table 

2).The authors’ selected set of variables was based on the ecology and biology of 

the species, as well as our knowledge of the scientific literature. Our selection of 

environmental characterization variables for whiteflies and green mites included 

data that describes both seasonal and annual variation in climate. The data set on 

the number of consecutive dry months was also considered important for 

describing these two pests. However, this global spatial analysis could not account 

for factors such as the age of the crop, host plant resistance and characteristics of 

natural enemies of pests – factors the scientific literature considers important. 

Table 2. List of variables and datasets used for training the models. 

 
Cod. Variables(

1
) Whitefly CGM CMD CBSD 

 All P S E P S E P S E P S E 

Bio1 Annual mean temperature  x x  x x  x   x   

Bio2 Mean diurnal range (mean (period max-min))             

Bio3 Isothermality (bio2/bio7)       x x     

Bio4 
Temperature seasonality (coefficient of 

variation) 
  x   x       

Bio5 Max temperature of warmest period    x   x    x  

Bio6 Min temperature of coldest period             

Bio7 Temperature annual range (bio5-bio6) x   x x        

Bio8 Mean temperature of wettest quarter   x x  x x      

Bio9 Mean temperature of driest quarter x  x x  x x   x   

Bio10 Mean temperature of warmest quarter   x x  x x x  x   

Bio11 Mean temperature of coldest quarter x  x x  x x   x   

Bio12 Annual precipitation    x x  x x     

Bio13 Precipitation of wettest period x            

Bio14 Precipitation of driest period  x     x x  x   

Bio15 Precipitation seasonality (coefficient of   x x x x       

http://www.worldclim.org/
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variation) 

Bio16 Precipitation of wettest quarter x  x   x       

Bio17 Precipitation of driest quarter x  x   x    x x  

Bio18 Precipitation of warmest quarter  x x   x    x x  

Bio19 Precipitation of coldest quarter   x   x       

Bio19 Number of dry consecutive months x x x   x       

Alt Altitude x x x x x     x x  

HI Aridity index             

PET Potential evapotranspiration index             

HAC 
Cassava harvested area (MapSpam, 

http://mapspam.info/) 
x     x x x x x x x 

EDBT Potential distribution of B. tabaci2         x   x 

1 Key for variable data sets; 1: all variables includes all the climatic variables, excludes HAC 

and EDBT, P: Principal Components Analysis (PCA), S: Spatial Correlation Analysis (SCA), 

E: variables selected by authors (EXP). 

2The potential distribution of the vector (whitefly) of cassava mosaic disease is from the 

Environmental Distance model (ED), the model showing the greatest extent of habitat 

suitability. This map was only used in models of CMD and CBSD. 

 

PCA and SCA analyses were conducted using the Spatial Analysis in 

Macroecology (SAM) program (Rangel et al., 2006). The elimination of variables 

based on the principal components analysis and autocorrelation was not consistent 

across the four pests/diseases. However, the mean diurnal range, minimum 

temperature in the coldest months, rainfall in the wettest months, the aridity index 

and the potential evapotranspiration index were excluded due to multicollinearity. 

 

Ecological niche models 

Ecological niche models (ENM) describe habitat suitability along environmental 

gradients, which are then projected onto geographic space. Model projection 

represents the potential distribution of a species according to one or several 

environmental dimensions (Phillips et al., 2006).  Several approximations for 

predicting distributions or determining suitability of habitat have been used 

(Busby 1991; Elith et al., 2006; Drake et al., 2006; Phillips et al., 2006; Benito de 

Pando and Peñas de Giles, 2007; Ortega–Huerta and Peterson, 2008; Sutherst and 

Bourne, 2009). ENMs require presence records of species and a set of 

environmental variables, describing factors that determine environmental 

suitability of a species (Phillips et al., 2006).  

Several models were used in order to compare and evaluate the potential 

distributions of whiteflies, CGM, CMD and CBSD. The Climate Space Model 

(CSM, version 0.4) is based on principal components analysis, employing the 

concept of "broken stick cut off" to select the number of components and their 

http://mapspam.info/
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threshold values for making the estimation (Sutton et al.,2007). The 

Environmental Distance model (ED; version 0.3) is based on the notion of 

dissimilarity metrics. Distances from reference values in variable space are 

calculated to estimate the probability of suitability based on where the pest or 

disease was collected. The Genetic Algorithm for Rule-set Production model 

(GARP, version 3.2) is based on the concept of assessing conditions under which 

a species can maintain their populations (Anderson et al., 2003). GARP models 

are non-deterministic and are the result of multiple iterations and rule sets 

developed by the analyst. The Maximum Entropy Species Distribution Model 

(Maxent, version 3.1.19) is based on machine learning and produces probability 

distributions as a function of the environmental variables included in the analysis 

(Phillips and Dudík, 2008). Finally, the Support Vector Machine (SVM, version 

2.86) is a generalized linear classifier based on supervised learning methods. All 

of the models described above except for Maxent were applied using the Open 

modeller analysis environment (de Souza Muñoz et al., 2009; available for 

download from http://openmodeller.sourceforge.net/). Maxent Software can be 

downloaded from the Internet (Phillips et al., 2006; 

http://www.cs.princeton.edu/~schapire/maxent/ 

Evaluation and validation 

Ecological niche models produce two kinds of errors. Validation for this study is 

based on identifying the specific combination of omission and commission errors 

found in each model evaluated (Ortega-Huerta and Peterson, 2008). A threshold 

value was established, from which the predicted distribution is classified into two 

categories: absence in the values of prediction below threshold and presence in 

values equal or up to the threshold value. 

Errors of commission are given by: 

 1 /Specificity d b d      

where b is a false positive and d is a true negative, predicting the presence of the 

species where it actually does not occur. Errors of omission predict the absence of 

the species where it actually does occur, expressed by: 

 /Sensitivity a a c     

where a is a true positive and c is false negative. The calculation of the statistics is 

realized by comparing the presence and absence (pseudo-absence) of the 

calibration data set and the results of each one of the models. 

Another statistic for evaluating models and identifying thresholds is the evaluation 

of types of errors using the Kappa coefficient (K), a measure of model 

performance, defined by the precision of the prediction in relation to a random 

prediction. A high coefficient indicates that the prediction has low errors of 

omission and commission (Fielding and Bell, 1997). The statistic is calculated by: 

http://openmodeller.sourceforge.net/
http://www.cs.princeton.edu/~schapire/maxent/
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/

/

a d a c a b b d c d N
Kappa

N a c a b b d c d N

       
 
      
 

 

Where a is the number of occurrence records correctly predicted as present; b is 

the number of random records incorrectly predicted as present; c is the number of 

occurrences incorrectly predicted as absent; d is the number of random records 

predicted as absent and N is the total number of observations (N =a + b + c + 

d).This index permits the identification of suitability for each model and species 

through the relationship between the threshold and the maximum Kappa value.  

To select the best models a fixed threshold of 75% in sensitivity with an error rate 

of 0.25 was used to evaluate accuracy (Peterson et al., 2008). 

Consensus distribution maps 

The final potential distribution maps were developed using the weighted overlay 

method. Each map was assigned weights according to the error rate and 

sensibility statistics described above, assigning greater influence to the best-

performing models (see supplementary material, tables 1 and 2). Potential 

distribution areas were included only where the probability value was above a 

fixed threshold of 0.7. Individual map models were then overlaid and each pixel 

was summed to produce a final suitability score (Potential distribution maps). 

 

Results 

Model statistics 

For B. tabaci acceptable Kappa coefficients were found with low threshold 

values, the model ED with expert dataset had a K value of 0.80 reached in a 

threshold value of 63%. As judged by the Kappa coefficient, the best models in 

the case of CGM were GARP according to the authors’ variable selection, 

showing a K value of 0.85 and a probability threshold of 90%. The same model 

using spatial correlation selection of variables showed a K value of 0.86 and a 

threshold value of 70%. The environmental distance model with a variable data 

set drawn from principal components analysis showed a K value of 0.87 and a 

threshold of 75%.  

 

In the case of CMD, the environmental distance model showed a high K 

coefficient of 0.92 and an acceptable threshold value of 65%. CBSD showed high 

K coefficient with low threshold values. Acceptable models were Maxent with a 

K coefficient of 0.96 and a threshold of 68% and the environmental distance 

model with a K coefficient of 0.91 and a threshold value of 57%.  

 

The models that in general show high Kappa coefficients are Maxent, ED and 

SVM. Nevertheless, for some of these the threshold probability of maximum 

performance varies from very low to medium and therefore these are not reliable 

models (Table 3, Fig. 7) 
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Table 3. Performance of models and datasets evaluated with the Kappa coefficient 
 Whitefly CGM CBSD CMD 

Model
1
 and 

variable set2 

combination 

kappa threshold kappa threshold kappa threshold kappa threshold 

CSM ALL 0.79 3 0.828 3 0.858 4 0.864 15 

CSM PCA 0.386 1 0.556 10 0.449 57 0.309 68 

CSM SCA 0.312 5 0.464 47 0.382 20 0.362 62 

CSM EXP 0.83 8 0.802 1 -- -- -- -- 

ED ALL 0.796 60.1 0.849 62 0.919 57 0.924 65.1 

ED PCA 0.532 80 0.87 75 0.445 71.1 0.493 80 

ED SCA 0.312 5 0.868 64 0.36 68 0.483 79 

ED EXP 0.802 63.1 0.85 67 0.539 90 0.357 90 

GARP ALL 0.804 40 0.852 20 0.859 10 0.884 90 

GARP PCA -- -- 0.83 20 -- -- -- -- 

GARP SCA -- -- 0.868 70 -- -- -- -- 

GARP EXP 0.806 30 0.858 90 0.828 70 0.632 30 

MAX ALL 0.849 30.1 0.916 12 0.964 15 0.904 12.1 

MAX PCA 0.662 30 0.892 17 0.786 29.1 0.755 24 

MAX SCA 0.597 19.1 0.877 5 0.968 68 0.725 23 

MAX EXP 0.842 23 0.92 22 0.825 26 0.5 0 

SVM ALL 0.835 15.1 0.884 25 0.945 19 0.911 22.1 

SVM PCA -- -- 0.857 11.1 -- -- -- -- 

SVM SCA -- -- 0.896 18 -- -- -- -- 

SVM EXP 0.823 25.1 0.878 15.1 0.754 41 0.73 56 

1The ecological niche models used were Climate Space Model (CSM); Environmental Distance 

model (ED); Genetic Algorithm for Rule-set Production (GARP); Maximum Entropy Species 

Distribution Model (MAX); Support Vector Machine (SVM) 

 
2The data variable sets used were All variables (ALL); Reduced variable set using Principal 

Components Analysis (PCA); Reduced variable set using Spatial Correlation Analysis (SCA); 

Reduced variable set according to author’s selection (EXP).  

 

Fig 7. Performance of models evaluated with the Kappa coefficient. The data set 

key refers to groups of variables: the entire set of variables (ALL), variable set 

reduced using principal components analysis (PCA), variable set reduced using 

spatial correlation (SCA) and variable selected by authors (EXP). 
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According to the sensitivity analysis the best models for predicting the 

distribution of CGM were GARP, ED and SVM. The best models for whiteflies 

were GARP, ED and CSM. In the case of the two viruses few models displayed 

acceptable levels of sensitivity (above 0.7). The models with the best performance 

were GARP and ED in the case of CBSD, and ED, GARP and SVM in the case of 

CMD. The distribution maps of each model are in the supplementary material. 

 

Potential geographic distribution of cassava pests and diseases 

Potential B. tabaci distribution extends across the tropical and subtropical zones 

up to the margins of the temperate zone (Fig. 1c). Given the tendency of related 

species, to have similar characteristics (Pearman et al., 2007), as can be expected 

of the Bemisia tabaci complex; the invasive Middle East-Asia Minor (B) 

represents a threat in all the regions where other whiteflies (B. tabaci) occur under 

natural conditions. The potential range of B. tabaci (B) could therefore be much 

wider than its known distribution. B. tabaci A (New World group, Xu et al., 2010; 

De Barro et al., 2011) is not found in Latin America associated with cassava 

(Brown et al, 1995; Bellotti, 2002). However, because the Middle East-Asia 

Minor (B) was found feeding in cassava in some areas of the Americas (Brown et 

al., 1995), it could colonize cassava using wild species or other cultivated host 

plants that serve as intermediaries, as was demonstrated in experimental 

conditions (Carabali et al., 2004; 2005). Synergies and interactions between 

whitefly populations species, such as occurred in China and Australia where the 

Middle East-Asia Minor (B) mated with indigenous whiteflies (Liu et al., 2007), 

could be a strategy for whiteflies to increase their populations in Latin America. 

The Middle East-Asia Minor (B) continues to be a threat in Africa, where high 
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suitability was predicted for the entire cassava belt (Fig. 1c). The pest is limited 

by dryness northward into the Sahel region and by constant wetness in the heart of 

Central Africa. The potential natural distribution of whiteflies is more restrictive 

than the known distribution due to their presence in artificially controlled 

environments such as greenhouses and irrigated regions (Cáceres, 2004, CABI, 

2007).  

 

Cassava green mite (M. tanajoa) shows a wide potential distribution in Latin 

America, the center of origin for cassava, with which it has co-evolved over 

centuries (Fig. 2b). The potential distribution of green mite in Africa is found 

throughout the cassava belt where there was a large expansion of the pest in the 

1980s, after its introduction from South America. The models accurately predict 

the presence of green mites in Africa, where our occurrence dataset lacks records. 

In South Asia and Southeast Asia, the models predict a wide potential distribution 

for green mites in areas where cassava production has increased recently. In 

Vietnam, Cambodia, Thailand, Laos, Malaysia, Indonesia, Myanmar and New 

Guinea suitability values greater than 50% are common. Although it is possible 

that the distribution of green mites in these zones is limited by high precipitation, 

these regions also have dry periods that are favorable to the development of the 

species. Several regions in Asia appear to be highly suitable for the establishment 

of the pest because potential distribution estimates are similar to values in Africa, 

where substantial economic damage from green mite invasions has already 

occurred.  

 

The known distribution of CMD extends throughout the cassava belt of Africa, 

the southwest coast of India and the island nation of Sri Lanka, matching the 

predicted distribution quite well (Fig. 3 a and e). In Latin America – where CMD 

has not been reported – the prediction models show similarly high suitability 

values in Brazil, northern Venezuela, Colombia, Bolivia, southern Mexico, 

Guatemala, Honduras and Nicaragua. In Asia, high suitability values are found in 

Vietnam, Cambodia, Myanmar, Thailand, Indonesia and the Philippines – areas 

where the disease has not yet been reported. 

 

Substantial areas in Latin America and Asia could suffer from the geographical 

dispersion of B. tabaci and CMD problems, as shown by combining the suitability 

maps of each of these (Fig. 8). The inability of B. tabaci to colonize cassava in 

Latin America has been suggested as a reason for the absence of cassava mosaic 

disease. Nevertheless, taking into account studies showing the possibility of 

adaptation of the Middle East-Asia Minor (B) to cassava, the possibilities of its 

establishment and growth in the region are very high and therefore the 

development of the disease is a potential threat (Carabali, 2004, Carabali et al., 

2005). The evolution of the virulence of cassava mosaic disease is shown by its 

different combinations into variants, as well as the appearance of new virus types. 

The capacity for the disease to be transmitted by whiteflies increases the 

possibility of its geographic dispersion towards regions of high potential for its 

development.  

Fig 8. Model coincidence between CMD and whitefly (B. tabaci) showing spatial 

conjunction of the potential distribution of the disease and its vector. 
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CBSD shows a relatively limited potential distribution, yet one that is much larger 

than the current known distribution along the coast of Tanzania and Mozambique 

and in some regions of Uganda (Fig. 6 a and c). The potential to spread to West 

Africa, Central Africa and the southwestern coast of Africa is indicated by Figure 

6(c). In Latin America, areas of high potential distribution include Mexico, 

Central America (Guatemala, Honduras and Nicaragua), the northern coast of 

South America and some regions of eastern Brazil. The potential distribution is 

more limited in Asia. Nevertheless pockets of high suitability include southern 

India, Thailand and Vietnam. 

Discussion and Conclusion 

Geographic hotspots of cassava pests and diseases 

The prediction models indicated high potential for the spread of whiteflies, CGM, 

CMD and CBSD in the African rift valley, the Mato Grosso in Brazil, northern 

South America and Southeast Asia, where different models and data sets were 

generally in agreement. Some areas of cassava production in countries of Central 

America, the Mato Grosso region in Brazil, coastal zones in the north of 

Venezuela and Colombia, the boundary region between Bolivia and Brazil and 

northern Argentina exhibit environmental conditions conducive to the 

development of whiteflies (B. tabaci complex) and high potential for transmission 

and reproduction of whitefly-borne viruses. Climatically suitable regions for the 

pests and diseases studied include India, Malaysia, and New Guinea, where 

cassava production plays an important role in agriculture.  

Cassava brown streak disease will encounter favorable environmental conditions 

in the greater part of central Africa where vectors associated with this disease are 

present. Uncertainty about virus propagation could explain the absence of the 

disease in large parts of the Africa cassava belt (Maruthi et al., 2005; Hillocks and 

Jennings, 2003). Distinct possible vectors for the disease are considered: Bemisia 

afer, B. tabaci and Aleurodicus dispersus. If the vector is B. tabaci, a closer 

correspondence between the distribution of the virus and the vector would be 

expected, which is not the case.  

Favorable environments for CBSD occur in northern Bolivia, southern and central 

Brazil, northern Venezuela and some countries of Central America and the 

Caribbean. Places where actual pest or disease occurrences do not match the 

predictions are due to reports from artificial environments such as greenhouses 

and irrigation zones. 

 

Model performance 

Our results showed that in general the GARP and ED models performed well at 

the global scale and for all four biotic constraints. SVM and CSM performed least 

well. Maxent appears to work well for geographically limited regions or local 
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situations.  The results show that higher numbers of occurrence records improve 

the reliability of the models.   

Analysis with different variable sets showed the performance of PCA and SCA 

was lower (below 50%) than expert criteria (EXP). 70% of the models run with 

variables selected by the authors’ criteria have good capacity of discrimination. 

The percentage of models with good performance diminishes utilizing the 

sensitivity statistic with a 75% threshold, but maintains the same trend. 

Expert knowledge beyond the use of global climate variables constitutes 

fundamental criteria for model processing and interpretation. Species distribution 

responds to environmental, economic and social dynamics that are impossible to 

include in an ENM at global scale.  

The use of these models should constitute a first approximation to the knowledge 

of the distribution of the pest and pathogens at global scale, owing to the emphasis 

on climatic variables. For this reason they serve as preliminary insights for more 

detailed studies that involve other types of information, such as host plant 

resistance, predator-prey interactions, crop management information and others.  

 

Implications 

Future research should take advantage of ecological niche modeling, as an easily 

accessible and useful tool. While it is easier to acquire data on the presence of 

pests and diseases, the information often lacks needed protocols for its 

organization and correct use. Problems related to data development include the 

lack of absence data and poor or no geo-referencing of field observations, all of 

which reduce the accuracy of analyses and limit the interpretation of the results.  

More effort is needed on the study of host plants, virus and disease vectors and 

natural enemies across a range of scales. To determine strategies and policy for 

management, studies need to be initiated at regional, landscape and local scales, 

focusing on species dispersal and ecosystem interactions. 

Research in the field of taxonomy and entomology of B. tabaci is urgent in order 

to clarify the distinctions and nominations of the species complex. The lack or 

inconsistency of information causes many difficulties and lowers accuracy in the 

geographic approximations to the distribution of the complex. 

More attention needs to be paid to management considerations that affect the 

distribution of cassava pests and pathogens, such as effects of continuous 

cropping and unsafe movement of cassava germplasm (Calvert, 1994). The 

interactions between pests and diseases suggest that management plans need to be 

integrated across different pests and pathogens, host plants and natural enemies.  

The research results reported in this paper can support economic impact studies 

oriented towards prioritizing agricultural research and development programs. 

These analyses can inform breeding programs designed to develop cultivars 
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resistant to pest and diseases. They can help prioritize crop management 

interventions.  

The cassava research and development community could implement more formal 

early warning systems that motivate more research and development, such as that 

described in this study, and that are oriented towards avoiding the dispersion of 

pests and pathogens in their potential environments. The dispersion of cassava 

pests and diseases disregards international borders, calling for international 

collaboration to reduce their negative impacts on food security.  
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Supplementary maps 
 
Figures 1 to 66 Show potential distribution of four cassava pest, according to each 
Ecological Niche Model and variable dataset used. Values are classified in five categories 
of equal intervals from yellow to red tones: brown-red tones show areas where the 
probability of presence is high due to suitable climatic conditions; the yellow tones show 
low probabilities of presence. White areas represent habitats with low or no suitability.  
 
Maps 1 to 16. Potential distribution of Bemisia tabaci 
 

Fig 1. Climate Space Model with all variable dataset. 
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 Fig 2. Climate Space Model with Spatial Correlation variable dataset. 
 

 
Fig 3. Climate Space Model with Experts criterion to variable dataset. 
 

 
Fig 4. Climate Space Model with Principal Component Analysis variable dataset. 



 
Fig 5. Environmental Distance model with all variable dataset. 
 

 
Fig 6. Environmental Distance model with Spatial Correlation dataset 
 

 
Fig 7. Environmental Distance model with expert criterion variable dataset. 



 
Fig 8. Environmental distance model with Principal Component Analysis variable dataset 
 

 
Fig 9. GARP model with all the variables dataset  

 
Fig 10. GARP model with Expert criterion variable dataset. 



 
Fig 11 Maxent model and all the variables  
 

 
Fig 12. Maxent model with Spatial Correlation Analysis variable dataset. 
 

 
Fig 13. Maxent model with Expert criterion analysis  



 
Fig 14. Maxent model and Principal Component Analysis  
 

 
Fig 15. Support Vector Machine model with all the variables  
 

 Fig 16. Support Vector Machine model with Expert criterion variable dataset 
 



Maps 17 to 36. Potential distribution of Mononychellus tanajoa 
 

 
Fig. 17. Climate Spatial model with all variables. 
 

 
Fig 18. Climate Spatial model with Spatial Correlation Analysis 

 
Fig 19. Climate spatial model with Expert criterion dataset. 



 

 
Fig 20. Climate Spatial Model and Principal Component Analysis. 
 

 
Fig 21. Environmental Distance Model with all variables dataset 

 
Fig 22. Environmental Distance Model with Spatial Correlation Analysis 
 



 
Fig 23. Environmental Distance Model with Expert criterion 
 

 
Fig 24. Environmental Distance Model with Principal Component Analysis 
 

 
Fig 25. GARP with all variables dataset 
 



 
Fig 26. GARP with Spatial Correlation Analysis  
 

 
Fig 27. GARP with Expert criterion. 
 

 
Fig 28. GARP with Principal Component Analysis 
 



 
Fig 29. Maxent model with all variables dataset. 
 

 
Fig 30.Maxent model with Spatial Correlation Analysis 

 
Fig 31. Maxent model with Expert criterion 
 



 
Fig 32. Maxent model with Principal Component Analysis 
 

 
Fig 33 Support Vector Machine with all variables dataset. 
 

 
Fig 34. Support Vector Machine with Spatial Correlation Analysis  
 



 
Fig 35. Support Vector Machine with expert criterion dataset. 
 

 
Fig 36. Support Vector Machine with Principal Components Analysis. 
 
Maps 37 to 51. Potential distribution of Cassava Brown Streak Virus 
 

 
Fig 37. Climate Space Model with all variables 



 

 
Fig 38. Climate Space Model with Spatial Correlation Analysis 
 

 
Fig 39. Climate Space Model with Principal Component Analysis. 
 

 Fig 40. Environmental Distance Model with all variables 
 



 
Fig 41. Environmental Distance model, with Spatial Correlation Analysis  
 

 
Fig 42. Environmental Distance Model with Expert criterion variables dataset 
 

 
Fig 43. Environmental distance model with Principal Component Analysis  
 



 
Fig 44. GARP with all variables dataset 
 

 
Fig 45. GARP with expert criterion dataset 
 

 
Fig 46. Maxent model with all variables 
 



 
Fig 47. Maxent model with Spatial Correlation Analysis 
 

 
Fig 48. Maxent model with expert criterion. 
 

Fig 49. Maxent model with Principal component Analysis. 
 



 
Fig 50. Support Vector Machine with all variables 
 

 
Fig 51. Support Vector Machine with expert criterion 
 
Maps 52 to 66. Potential distribution of Cassava Mosaic Virus 
 



Fig 52. Climate Spatial Model with all variables 
 

Fig 53. Climate Spatial Model with Spatial Correlation Analysis. 
 

 
Fig 54. Climate Spatial Model with Principal Component Analysis  
 



 
Fig 55. Environmental Distance Model with all variables 
 

 
Fig 56. Environmental Distance Model with Spatial Correlation Analysis 
 

 
Fig 57. Environmental Distance Model with Expert Criterion 
 



 
Fig 58. Environmental Distance Model with Principal Component Analysis dataset 
 

 
Fig 59. GARP with All variable dataset. 
 

 
Fig 60. GARP with Expert criterion dataset. 
 



 
Fig 61. Maxent Model with All variables dataset 
 

 
Fig 62. Maxent model with Spatial Correlation Dataset. 
 

 
Fig 63. Maxent model with Expert Criterion dataset. 
 



 
Fig 64. Maxent model with Principal Component Analysis.  
 

 
Fig 65. Support Vector Machine with All variable dataset 
 

 
Fig 66. Support Vector Machine with Expert Criterion dataset. 
 



Table 1 and 2 show the best model performance of sensitivity statistic in a threshold 
value of 75% and the weight assigned in the final distribution maps for pest and diseases, 
respectively. 
 
Table 1. Statistical values for the Whitefly (B. tabaci) and the Green mite 
(M. tanajoa) models. 

Specie Whitefly Green mite 

Model(1) sensitivity Error rate Weight sensitivity Error rate Weight 

GARP ALL 0.904 0.16 26.1 0.932 0.11 11.57 

GARP EXP - - - 0.955 0.14 11.8 

GARP PCA - - - 0.909 0.14 11.3 

GARP SCA - - - 0.955 0.11 11.8 

ED ALL 0.942 0.05 27.23 0.773 0.04 9.6 

ED EXP 0.826 0.09 23.8 0.886 0.12 11 

ED PCA - - - 0.955 0.111 11.8 

ED SCA - - - 0.864 0.10 10.7 

SVM ALL - - - 0.818 0.03 10.1 

CSM ALL 0.788 0.03 22.7 - - - 

Total   100   100 

 
1. The ecological niche models with best performance were Climate Space Model (CSM); 
Environmental Distance model (ED); Genetic Algorithm for Rule-set Production (GARP); 
Support Vector Machine (SVM). ALL: includes all the climatic variables, PCA: Principal 
Components Analysis dataset, SCA: Spatial Correlation Analysis dataset and EXP: variables 
selected by authors. 

 
 
Table 2. Statistical values for the Cassava brown streak disease (CBSD) 
and the Cassava Mosaic Disease (CMD) models. 
Virus CBSD CMD 

Model(2) sensitivity Error rate Weight sensitivity Error rate Weight 

GARP ALL 0.879 0.13 53.7 0.722 0.04 30.9 

ED ALL 0.758 0.03 46.2 0.833 0.02 35.7 

SVM ALL 0.778 0.01 33.3 - - - 

Total   100   100 

 
2. The ecological niche models with best performance were Environmental Distance model 
(ED); Genetic Algorithm for Rule-set Production (GARP) and Support Vector Machine (SVM) 
with ALL climatic variables. 


