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Reconciling biodiversity conservation and food security:
scientific challenges for a new agriculture
Lijbert Brussaard1, Patrick Caron2, Bruce Campbell3, Leslie Lipper4,
Susan Mainka5, Rudy Rabbinge6, Didier Babin7 and Mirjam Pulleman8
Production ecology and conservation biology have long

focused on providing the knowledge base for intensive food

production and biodiversity conservation, respectively. With

increasing global food insecurity and continuing biodiversity

decline, we show that the largely separate development of

these fields is counterproductive. Scenario analyses suggest

that feeding the world is possible without further

encroachment of agriculture into natural ecosystems. Without

ignoring the necessary demographic, socio-economic,

institutional and governance requirements, we make the

case for a science that develops the best ecological

means to produce food in a way that has substantially

less negative effects on biodiversity and associated

ecosystem services and, indeed, should be able to contribute

to their persistence and enhancement. Recent developments

in trait-based ecology should soon make it possible to adapt

and (re-)design agroecosystems to meet both goals of

biodiversity conservation and food security. However, there

are real tensions between, on the one hand, the opportunity

costs of biodiversity conservation (for direct use and for

conversion to agriculture) and on the other hand, the

ecosystem service values and option values associated

with biodiversity. We elaborate the management of plant

genetic resources as a metaphor of the tensions between such

values of biodiversity and ecosystem services in general. We

conclude that significant changes in policies, institutions and

practices are necessary to make advances in ecology work for

reconciling biodiversity conservation and food security.
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Introduction
Agriculture as we know it today is founded on the natural

capital of wild biodiversity and the outcome of interaction

between human and natural selection. Increasing special-

ization and intensification of production systems has led

to reduction in crop and livestock biodiversity, increasing

genetic vulnerability and erosion [1,2]. Concurrently, wild

biodiversity is still declining rapidly [3], in no small

measure because of expansion of agricultural areas [4].

At the same time food insecurity is a major and growing

problem with more than 1 billion people considered food

insecure in 2009. Climate change aggravates the situation

for both biodiversity conservation and food security by

increased risks of crop failure and population extinctions

because of the higher frequency of extreme events and

progressive change in key climate variables [5].

With mounting pressures to both increase food security

and stop biodiversity decline, it is counterproductive that

agriculturalists and conservationists often find themselves

in opposing camps. Hence, the urgent question is

whether the following Millennium Development Goals

on food security and biodiversity can simultaneously be

met:

Goal 1: Eradicate extreme poverty and hunger —

target 3: Halve, between 1990 and 2015, the proportion

of people who suffer from hunger, and
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Goal 7: Ensure environmental sustainability — target

2: Reduce biodiversity loss, achieving, by 2010, a

significant reduction in the rate of loss.

We briefly outline different recent strategies [6�,7�] to

increase food security and conserve biodiversity and we

explore the possible role of science in closing the appar-

ent gap between them.

Food production and food security
The most successful scientific endeavors to increase food

production have been in production ecology. A fundamental

scientific approach, in particular in crop ecophysiology,

plant breeding, plant nutrition and crop protection, sup-

ported by technology development for mechanization,

has made it possible to considerably increase the light,

water and nutrient use efficiencies and cropping inten-

sities in the major crops of the world [8], and to grow these

well beyond their original distributional areas. The green

revolution of the fifties and sixties of the last century was

largely built on such research [9]. Research on livestock

physiology, breeding, nutrition and disease control has

led to similar developments [10], while research on fish

and aquaculture follows suit [11].

In spite of the availability of knowledge and technologies

provided by science, the potential increases in food

production are far from being realized under field con-

ditions in most countries. Major impediments are con-

sidered to be poor education and health systems, poorly

functioning markets and other institutions, political

instability/poor governance and lack of alternative liveli-

hood opportunities for those who are not in a position to

make the transition from subsistence-based to market-

oriented agriculture [6�].

Biodiversity conservation
The most successful scientific endeavors to conserve

biodiversity have been in conservation biology. Research

on the habitat requirements and management needs of

emblematic and Red List species continues to contribute

considerably to the establishment and conservation of

species and the management of habitats, including pro-

tected areas [12]. In addition, much scientific focus is now

on methods by which to prioritize conservation action,

such as on biodiversity hotspots that is areas with many

species or high levels of endemism [13], and on means by

which to measure and monitor conservation progress

through biodiversity indicators. Yet, although more than

130 000 protected areas now cover almost 14% of the

earth’s surface [14] — but much less of its waters — the

rapid decline in biodiversity has not stopped. One reason

is that not all the habitat requirements for the persistence

of biodiversity generally can be fulfilled within the

boundaries of protected areas. Among causes of biodi-

versity loss are the fragmentation and degradation of

habitat, overexploitation of natural resources, pollution,
www.sciencedirect.com
climate change and invasive species. These can be the

result of poor management and/or the expansion of com-

mercial interests, be they in conversion of forests for

plantations or commercial wildlife trade. Finally, many

countries are reluctant to set aside (more) land solely

dedicated for biodiversity conservation, particularly in

areas with high population pressure on the land.

Intensive agriculture approach
There are broadly two approaches to improve the appal-

ling situation of persistent hunger and equally persistent

biodiversity loss. One approach holds that increased use

efficiencies of light, water and nutrients, and mechaniza-

tion will double the world food production, while dras-

tically reducing negative effects on the environment per

unit of product (ecological intensification sensu [15,16]).

Under this approach, if production falls short of its poten-

tial or if land is being (further) degraded, then the con-

straints, be they social, technological and/or political,

need to be identified and incentives put in place to

overcome the impediments. If production would be con-

centrated on those soils, it would be possible to increase

the area allocated to biodiversity conservation, at the

same time protecting the resource base for agricultural

germplasm that may be needed in future. Biodiversity

often happens to be highest on agriculturally marginal

soils, which renders a win-win situation, if agriculture is

concentrated on the most fertile soils [17]. This has been

referred to as the intensive agriculture approach. This

approach is built upon the notion that there are tradeoffs

between agricultural productivity and biodiversity, but

the approach largely fails to recognize the potential

synergies between productivity and biodiversity.

Ecoagriculture approach
In the second approach to overcome persistent hunger

and biodiversity loss, agriculture’s role is expanded well

beyond efficient food production. This approach assumes

that biodiversity at the landscape level is pivotal to sustain

both agricultural production and the provision of ecosys-

tem services. This has been referred to as the ecoagriculture
approach [18��]. In this approach, the land provides a wide

array of ecosystem services, all having a bearing on social

welfare, from the well-being of local people (e.g. regula-

tion of availability and purification of water) to that of the

world community (e.g. carbon sequestration). Improve-

ment, adaptation or re-design of existing agricultural

landscapes would be in order with a focus on crop, live-

stock and landscape diversification instead of the special-

ization implied by the first approach [19�]; on extensive

instead of intensive production [20]; on the multifunc-

tionality of agriculture [21]; and on regionalization instead

of globalization [22].

Directions of change in either approach
In the context of industrialized agriculture (which usually

results from the first approach), diversification would
Current Opinion in Environmental Sustainability 2010, 2:34–42
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benefit biodiversity directly, restore the association be-

tween biodiversity and ecosystem services, and reduce

the economic risks because of crop or livestock failure or

the vicissitudes of the market. When practiced with the

best ecological means, this type of agriculture would also

increase the use efficiencies of fertilizers; reduce green-

house gas emissions; and reduce the dependence on

external inputs such as fertilizers, pesticides and fossil

fuels [23]. Regionalization would be a way to make

farmers less dependent on expensive transport and the

power of retailers; foster the re-introduction of unused or

underutilized crops/varieties and livestock/breeds and,

thereby, use genetic resources to better cope with

environmental stress [24�]. All measures would help

restore the farmers’ license to produce in society [25].

In the context where agriculture is already extensive and

biodiverse (which would make it conducive to the second

approach), such as in most developing countries or ‘mar-

ginal’ lands, intensification is feasible through precision

agriculture, multiple cropping, agroforestry and landscape-

scale planning and management of services provided by

adjacent natural, semi-natural or restored ecosystems.

Investments in new knowledge and multistakeholder

partnerships and the development of new technologies

and institutions to provide appropriate incentives will be

necessary in either approach.

What role for science?
Both approaches are based upon demographic, social,

technological, institutional and governance transform-

ations foreseen or proposed and the predictions of their

impacts would benefit from scientific scrutiny. Ironically,

the people suffering most from hunger or malnutrition are

often the people in agricultural societies, which points to

lack of an enabling environment for agriculture to drive

poverty alleviation [6�,7�]. Much political will is needed to

facilitate the transition to new forms of agriculture, irre-

spective of which of the two approaches one subscribes to.

The intensive agriculture approach hypothesizes that both

food production and conservation of biodiversity are best

served by keeping them rigorously separate (land sparing

sensu [26]). The ecoagriculture approach hypothesizes that

the two can go together [27]. The tacit assumption of both

is that expansion of agriculture into protected areas will not

be needed to feed the world.

Current research in line with the intensive agriculture

approach represents the dominant paradigm in the

agricultural sciences and naturally follows up on the green

revolution it generated. This does not mean that it is

science as usual. Major side-effects on the environment,

caused by air, water and soil contamination with nutrients

and pesticides, and by water extraction for irrigation from

rivers and aquifers are now addressed by research aimed

at increasing not just the use efficiencies of added fertilizer
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and water, but higher overall use efficiencies, that is

encompassing environmental aspects [8]. As a result, there

is a movement away from very high inputs to avoid overuse,

and towards reliance on biological mechanisms to the

extent that they can be restored or newly applied in

intensive agriculture. This development is based on

increased ecological literacy. For example, soybean pro-

duction in Brazil almost entirely relies on biological nitro-

gen fixation instead of N fertilizers, which is the result of

selection and subsequent mass inoculation of efficient

strains of N2-fixing bacteria [28]. Other examples are

biological control of pests in glasshouses and, increasingly,

in the field instead of pesticide applications [29�]; the use of

‘green’ and ‘gray’ water to prevent overuse of water from

rivers and aquifers [30�] and conservation agriculture

[31��]. A common feature of most such practices is that

they are not only environmentally benign but also pro-

ductive and cost-effective at the farm enterprise level.

As areas under intensive agriculture are increasingly con-

fronted with inevitable constraints and restrictions,

research partly shifts to, for example, drought or salinity

stress of plants, while the focus remains on modifications at

the (sub)individual to cropping or crop/livestock system

levels [32�]. These modifications are largely grounded in

research on trait-based G�M�E (genotype–manage-

ment–environment) interactions, on the assumption that

the highest potential for increased production still lies

there. Crop and livestock biodiversity have increasingly

become a matter of concern in the intensive agriculture

approach, as apparent from efforts towards ex situ conserva-

tion and in situ protection of the areas of origin of the major

crops and livestock of the world.

A system-level approach aimed at changing water and

nutrient availability and erosion risks is increasingly

applied, as are participatory approaches, multistakeholder

involvement and agent-based modeling. Hence, although

it is not often explicitly acknowledged or emphasized,

also the intensive agriculture approach recognizes that

even an industrial farmer has always been, and will always

be, more than just a producer of food or other commod-

ities and that farmers are not the only stakeholders in

agriculture. However, this approach assumes that the

impediments to an enabling environment for intensive

agriculture can be overcome to realize its full potential

and that it can contribute to improvement of environ-

mental quality to the extent that it will also take pressure

away from natural areas. Critics of this approach state that

they have seen large-scale intensification of agriculture,

but that this has not led to notable reduction of expansion

of agriculture into natural areas [33��].

In the ecoagriculture approach, a landscape is character-

ized by both agricultural crop and livestock diversity and

wild (be it planned or unplanned) biodiversity in a certain

spatial configuration. Landscape composition and con-
www.sciencedirect.com
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Figure 1

Possible tradeoffs between agricultural production and biodiversity.

Modified after original drawing in [34].
figuration determine to what extent agriculture benefits from
biodiversity and the associated ecosystem services and,

vice versa, to what extent agriculture contributes to biodi-

versity and ecosystem services. In contrast to the intensive

agriculture approach, the ecoagriculture approach empha-

sizes biodiversity as an asset for both production and

ecosystem services. The farmer should be rewarded as

both a producer and an environmental steward. In Figure 1

various situations along the agricultural production and

biodiversity axes are conceptually represented.

This figure suggests that research should be directed at

moving systems towards the upper-right of the diagram to

benefit both production and biodiversity.

We suggest that trait-based ecology will be(come) extre-

mely helpful in this respect [36��]. In trait-based ecology,

organisms are characterized in terms of their multiple

biological attributes such as physiological, morphological

or life-history traits. A trait is a well-defined property of

organisms, usually measured at the individual level and

used comparatively across species. The conceptual

foundation consists of trait distributions (initially derived

from the pool of possible traits of individual organisms —

see upper level in Figure 2) and performance filters (i.e.

environmental filters eliminating traits with inadequate

local fitness — see middle level in Figure 2), resulting in

associated community composition and ecosystem func-

tioning (see lower level in Figure 2). This framework can

be used to analyze the dependence of the functioning of

existing agroecosystems on the existence of traits and trait

filters, using a procedure developed by [37��]. We suggest
www.sciencedirect.com
that, as trait-based ecology theory develops towards pro-

jection of performance filters across environmental gra-

dients to make predictions, it can be applied and further

developed to (re-)design agroecosystems at the landscape

scale in ways that are conducive to wild biodiversity and

to the use of as yet un-/underutilized crops/varieties and

livestock/breeds that enhance food security, as well as to

environmental health and social well-being.

At the agroecosystem level, this branch of ecology comp-

lements (and may re-direct) the trait-based approach from

gene to plant to cropping system level, that is now

commonly practiced in production ecology.

This approach should be supportive to already existing

analytical and design-oriented research of the matrix
landscape, in which apparent ecological interactions be-

tween productive and non-productive landscape com-

ponents are studied (e.g. [38,39�]) to optimize the

mimicking of nature.

Prospects for synergy
We acknowledge that most agriculturalists and conserva-

tionists are genuinely dedicated to the cause of hunger

reduction and biodiversity conservation, respectively

[32�,40�]. While neither of them will deny the urgency

of either goal, in seeking their respective objectives they

may overlook or neglect the needs of the other. However,

there are signs of recognition and acceptance of the need

for integration. The intensive agriculture community is

already responding to new opportunities that ecosystem

service provision could offer for agriculture, through

environmental labeling or payment for ecosystem service

programs [2]. In addition, focusing more on the use of

renewable resources, embracing that biodiversity and

associated ecosystem services are important production

factors, and recognizing that non-use values gain in import-

ance to keep the license to produce, would pave the way for

eco-efficiency in agriculture sensu [41�]. The biodiversity

conservation community is also recognizing that a com-

plete focus on protected areas for biodiversity on the other

hand, denies that much biodiversity resides in agricultural

landscapes and that the world has to be fed. The ecoa-

griculture approach already considers agricultural land-

scapes as conducive to the persistence of much, though

by far not all, biodiversity. In addition, the necessity of

external inputs (such as fertilizers and water), wherever the

natural conditions are too poor to allow acceptable yield

levels, should not be excluded. However, such inputs

should be a necessary supplement to the reinforcement

of natural processes by applying trait-based ecology in

(re-)design and optimization of the management of agricul-

tural and non-productive landscape components.

Is there evidence that reconciling food security and

biodiversity conservation is possible in practice? Indeed,

the odds are against us. For example, in Agrimonde, a
Current Opinion in Environmental Sustainability 2010, 2:34–42
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Figure 2

Environmental filters of plant functional traits, which may be used in the (re-)design of agricultural landscapes. After [35].
foresight study of the French agronomic research insti-

tutes INRA and CIRAD, aiming at identifying possible

ways to achieve food security at the global level in 2050

using re-analysis of 1961–2003 FAO data, the Agrimonde

‘global orchestration’ scenario, adapted from [4], is based

on the following hypothesis: if food crop yields per ha

grow by more than 1% per year (increasing yields in 2050

by 45%) and if no major shifts occur in consumption

patterns, an increase of arable land by 18% would be

required. An alternative scenario, Agrimonde 1 (adapted

from [42]), based on average world and regional consump-

tions of 3000 kcal/inhabitant/day (as opposed to current

trends towards 3600) and on a yield increase of 5.5% in 40

years, even requires an increase of arable land by about

40% [43��]. But in contrast to the ‘global orchestration’

scenario, the increase would occur by converting grazing

lands and pastures into cropped areas. The encroachment

on grazing lands, and not on forests, means that the total

area under production would not increase, but effects on

biodiversity will have to be considered as they depend on

future land use [44]. While livestock and mixed farming

systems may also support biodiversity [45], alternative

strategies will have to be found for livestock producer

livelihoods, wherever transformation to cropland is con-

sidered necessary. The opportunity costs of biodiversity

conservation are demonstrated by such work, albeit that

environmental consequences of such changes will highly

vary from place to place depending on specific local pro-

duction patterns and technologies and governance. The
Current Opinion in Environmental Sustainability 2010, 2:34–42
extra land area needed for agriculture may become less if

serious efforts are made to minimize the loss of energy in

food in the chain from harvest to processing, consumption

and waste recycling; if the slow food, fair trade, animal rights
and healthy life-style movements catch on; and if ‘demand’

were replaced by ‘requirement’ and ‘supply’ by ‘capacity of

ecosystems to produce’. Yet, the Agrimonde results under-

line that, while food security will remain the world’s

number one priority, food production must be reconciled

in any scenario with broader societal goals, such as biodi-

versity conservation and the provision of the ecosystem

services upon which agriculture also relies.

Meanwhile, people living in unacceptable poverty and

hunger desire to access the natural assets in support of

their own well-being, be that the intensification of veg-

etable growing, livestock rearing or cotton production; the

clearing of woodlands for new families; or the ‘mining of
woodlands’ for firewood selling [46]. Failing local income

sources, individual family members migrate out and remit

funds (that are often reinvested in intensified production,

often not food crops). In addition, pressures on the wild-

lands and shifts to intensified production are not purely

driven by local people — the global demand for products

can see vast areas cleared for commercial agriculture, as is

the case for oil palm in Kalimantan [47]. Approaches

based on payments for ecosystem services (PES) hold

some promise, but emphasize utilitarian, anthropocentric

perspectives, and leave intrinsic values and option values
www.sciencedirect.com
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poorly represented. Water service payments are the most

common [48,49], but current markets and other institu-

tions rarely offer incentives to promote management

systems that support biodiversity as a public good, for

example, for its option value for improving provisioning

and regulating services in the future [50].

Management of crop genetic resources: an
example of reconciling biodiversity
conservation and food security
We illustrate the tradeoffs or synergies between biodi-

versity and food security using the case of crop genetic

resources, where there is a tension between direct use

values and option values. Lipper and Cooper [51] group

the benefits of agricultural biodiversity into three main

categories:

� Private benefits to farmers via the consumption and

production values that they derive from crops, which

are shaped not only by their own preferences and

constraints, but also by policies affecting the demand

and supply of crop genetic resources;

� Local or regional benefits to farmers and, ultimately,

consumers, when the choices make farming more

resilient to biotic and abiotic stress;

� Global benefits to future farmers, plant breeders and

consumers, when the choices they make protect against

genetic erosion. This benefit is also a quasi-public good

at the global scale in that saving genetic resources and

the evolutionary processes that generate them, both

known and unknown, can benefit future generations of

farmers, and help adapt to unforeseen changes. Genetic

resilience and conservation of option values are

important facets of coping with, and adapting to

climate change.

Tradeoffs have occurred between these three categories

of benefits. Essentially, use patterns to capture private

farm benefits have involved the adoption of modern

varieties in replacement of landraces or traditional

varieties, as well as a reduction in the number of crops
Figure 3

Adoption of improved cereal varieties by region: 1980 and 2000 (the total b
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and varieties grown. These factors are considered major

causes of loss of crop genetic diversity and associated

increases in vulnerability at varying temporal and spatial

scales. In recent decades, the development of improved

or modern crop varieties for major commodity crops has

had a significant impact on improving food security and

reducing poverty [49,50]. The impacts have been both

direct and indirect: high yields not only generating higher

incomes, but also generating employment opportunities

and lower food prices [52,54]. In a study looking across 11

food crops in four regions over the period 1964–2000 [9], it

was concluded, however, that the contribution of modern

varieties to productivity increases was a ‘global success,

but for a number of countries a local failure.’

The tension between direct use values and option values

of biodiversity is particularly poignant in Sub-Saharan

Africa, where adoption of improved varieties of cereal

crops was very low during initial phases of the green

revolution, and only began to reach significant levels in

the late 1990s (Figure 3).

In terms of direct use value, key shortcomings cited have

been the lack of adaptation of improved varieties to

heterogeneous and marginal production areas [48];

emphasis on wide rather than local adaptation; and the

failure of many centralized plant breeding programs to

breed for traits of concern to small-scale and resource-

poor farmers. On the environmental side, increases in

pesticide and fertilizer use accompanying high-yielding

varieties have, in some cases, generated serious damage to

land, water and even human health. Diminishing returns

to high input use and the increasing scarcity of water, land

and labor, have resulted in a shift in plant breeding away

from an exclusive focus on high yields per unit area

towards varieties for more knowledge-intensive pro-

duction systems with reduced input costs [52,54]. Those

diminishing returns can be transferred into increasing

returns when production ecological insights and

approaches are used. That holds for well-endowed and

less-endowed lands, but agricultural research and plant
ar length represents the cumulative total). Source: [6�].

Current Opinion in Environmental Sustainability 2010, 2:34–42
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breeding for ‘less favored’ agroecosystems increasingly

recognizes the unsuitability of intensive monocropping

for such areas and the importance of conserving natural

resources through reducing external inputs [52,55]. While

new varieties clearly have an important role to play in

these systems, the types of technologies focused upon

need to be different from those required for high poten-

tial, high input systems [55]. This is important in the

context of poverty reduction, since the incidence of

poverty in these regions is as high, or higher than in high

potential production areas.

Improving farmers’ access to the crop genetic resources

they need to increase the productivity and resilience of

their production systems is a key component of strategies to

improve food security. Increasing the range of varieties and

traits available and affordable to farmers and with sufficient

information on their potentialperformanceat the farm level

will improve access. At the same time increasing the

diversity of genetic resources on offer to farmers can gen-

erate positive incentives for in situ conservation.

The results of various case studies [56] suggest that, aside

from interventions to improve the access and flow of

diverse genetic resources in local markets, specific inter-

ventions to promote genetic resilience and conservation

will be needed. These may or may not involve market

interactions. Publicly funded in situ conservation pro-

grams could work to develop niche markets to enhance

the value of genetically important resources, or directly

fund farmers to maintain such varieties in production.

We suggest that, just as crop genetic erosion undermines

food security, biodiversity loss in general undermines the

provision of the ecosystem services agriculture itself

depends on. Many examples can be given, in which

the balance in the spectrum between short-term benefits

at private and local level versus long-term benefits at

public and global level tipped over to environmental

degradation and out-migration in rural areas. However,

there is also a plethora of literature showing that rural

communities have opted for conservation and restoration

of the resource base, with concomitant reduced out-

migration and, indeed, re-ruralization, reconnecting

people, land and nature [57] and linking agriculture,

conservation and food sovereignty [39�].

Research needs
These areas of failure and success are field laboratories for

the research we recommend. They so far suggest that, in

regions where rural people cannot independently meet

the MDGs of food security and biodiversity, we will need

(cf. [58�,59]):

� Understanding of properties and functions of biodi-

versity as it relates to delivery of ecosystem services in
Current Opinion in Environmental Sustainability 2010, 2:34–42
agricultural landscapes and the perception of value

amongst stakeholders.

� Enlightened landscape planning and management

that allows for multiple functions in landscapes and

enables the balancing of development and environ-

mental goals.

� Development of sound agricultural policies that

recognize and value the role of biodiversity in agricul-

tural development and food security.

� Markets and institutions for ecosystem services, and

payments or governance for ecosystem service systems

that work for farmers and poor rural people, implying

clear tenure and resource access regimes, fair and

equitable contractual arrangements, systems for effi-

ciently transferring funds or advantages from buyers to

sellers, and good verification and sanction systems so

that stakeholders are satisfied.

� Understanding of synergies and tradeoffs between

different policy and management solutions to support

choices.

Conclusions
We need to revisit the idea that there are two extreme

options, intensive agriculture or ecoagriculture. We

need scientific scrutiny and creativity to establish the

best ecological means to be applied in both well-

endowed and less-endowed areas, to reach the ultimate

goal of sustainable development and food security. The

challenge of meeting the MDGs on biodiversity and

food security and reversing the degradation of ecosys-

tems while meeting increasing demands for their

services involves significant changes in policies, institu-

tions and practices. The science we advocate should

empower stakeholders from local to global levels with

formal knowledge, supplementing informal knowledge,

and further inform the decision-making process by

developing alternative scenarios for reconciling agricul-

tural production with biodiversity conservation.
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