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Every time a farmer plants and harvests a crop represents a unique event or experiment. Our premise is
that if it were possible to characterize the production system in terms of management and the environ-
mental conditions, and if information on the harvested product were collected from a large number of
harvesting events under varied conditions, it should be possible to develop data-driven models that
describe the production system. These models can then be used to identify appropriate growing condi-
tions and improved management practices for crops that have received little attention from researchers.
The analysis and interpretation of commercial production data in the context of naturally occurring var-
iation in environmental and management, as opposed to controlled experimental data, requires novel
approaches. Information was available on both variation in commercial production of the tropical fruit,
lulo (Solanum quitoense), and the associated environmental conditions in Colombia. This information
was used to develop and evaluate procedures for the interpretation of the variation in commercial pro-
duction of lulo. The most effective procedures depended on expert guidance: it was not possible to
develop a simple effective one step procedure, but rather an iterative approach was required. The most
effective procedure was based on the following steps. First, highly correlated independent variables were
evaluated and those that were effectively duplicates were eliminated. Second, regression models identi-
fied those environmental factors most closely associated with the dependent variable of fruit yield. The
environmental factors associated with variation in fruit yield were then used for more in depth analysis,
and those environmental variables not associated with yield were excluded from further analysis. Linear
regression and multilayer perceptron regression models explained 65–70% of the total variation in yield.
Both models identified three of the same factors but the multilayer perceptron based on a neural network
identified one location as an additional factor. Third, the three environmental factors common to both
regression models were used to define three Homogeneous Environmental Conditions (HECs) using
Self-Organizing Maps (SOM). Fourth, yield was analyzed with a mixed model with the categorical vari-
ables of HEC, location, as a proxy for cultural factors associated with a geographic region, and farm as
proxy for management skills. The mixed model explained more than 80% of the total variation in yield
with 61% associated with the HECs and 19% with farm. Location had minimal effects. The results of this
model can be used to determine the appropriate environmental conditions for obtaining high yields for
crops where only commercial data are available, and also to identify those farms that have superior man-
agement practices for given environmental conditions.

� 2010 Elsevier Ltd. All rights reserved.
ll rights reserved.
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1. Introduction

Years of agronomic experimentation have lead to a wealth of
knowledge on crop responses to variation in the growth environ-
ment. This knowledge has been used to develop empirically-based
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crop models which quantify the crop response to variations in the
growing conditions. The required level of knowledge to develop
effective crop models only exists for those crops which have been
the subject of intense research. For many minor and some major
crops, models are not currently available. Moreover, it would take
years of experimentation using traditional methodologies to build
up the necessary knowledge base to develop them, particularly in
perennial crops such as many tropical fruit species. We suggest
that an alternative approach to years of research in controlled
experiments is observing crops under varied management and dif-
ferent environments in the field.

Every time a farmer harvests a crop, this event represents an
unreplicated experiment (Cock, 2007). We surmised that in the
case of tropical fruit crops, commercial production data (CPD)
could be used to evaluate crop response to variation in growing
conditions caused both by inherent variation in the growth envi-
ronment and also by variation in farm management practices.
Our premise is that if it were possible to characterize the produc-
tion system in terms of management and environmental condi-
tions, and if information on the harvested product were collected
from a large number of harvesting events under varied conditions,
it should be possible to develop data-driven models for the produc-
tion system (Jiménez et al., 2009). Furthermore, these data-driven
models, based on producers’ experiences in commercial produc-
tion, are likely to provide more realistic and valuable information
to growers than models based on small well manicured plots and
experiments carried out in controlled environments: the results
are likely to provide growers with site-specific recommendations,
which they can use to better manage their crops according to the
specific conditions of their farms.

This approach is essentially that of operational research, which
observes an organization’s operations and uses mathematical or
computer models, or other analytical approaches to find better
ways of doing them (Operational Research Society, 2006). This
method is similar to those of total quality management which
emphasizes monitoring, measurement and the systematic capture
and codification of tacit knowledge (Bessant and Francis, 1999;
Kannan and Tan, 2005). Similarly, in the medical profession sys-
tematic collection and analysis of information from the everyday
lives of people is used to deduce factors associated with disease
and hence to recommend methods of control (Framingham heart
study, 2006). We suggest that modern information technology
has advanced to the stage where even small-scale growers can
benefit from analyzing their multiple production experiences.
Existing public databases on climate, landscape, topography
coupled with information collected at the farm level (edaphic
conditions, management) can characterize the growth environ-
ment, and farmers can compile information on both their crop
management practices and the crop response. This information
can then be exploited by means of modeling approaches to
understand yield variability and to provide recommendations to
small-scale fruit growers.

Experience with sugarcane, coffee and Andean blackberry in
Colombia, has shown that by collecting CPD generated with the
naturally occurring variation in management and the environment,
the crops response can be modeled (Isaacs et al., 2007; Niederha-
user et al., 2008; Jiménez et al., 2009). There is however a major ca-
veat to this approach. Due to the large number of variables that
affect the crop response, the interactions and non-linearity of the
responses and the inevitable errors in data collection at the farm
level, a large number of data sets are required to make sense of
the data. With the large data sets required to draw conclusions it
is likely that novel analytical approaches will be necessary. Grimm
(1999) suggests that modelers should experiment more with their
models. In this paper we experiment with various analytical
approaches and compare their efficacy.
Please cite this article in press as: Jiménez, D., et al. Interpretation of comme
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Agricultural systems are difficult to model due to their com-
plexity, non-linear dynamic behavior, and the large number of
ill-defined processes that vary in time, interact with each other,
and whose relationships are very often unknown (Jiménez et al.,
2008). Hence, it has become necessary to develop modeling ap-
proaches able to deal with this high heterogeneity and natural var-
iability. According to Breiman (2001) there are two approaches
that can be used to predict the responses from input variables or
extract information of the association of these variables to the re-
sponse. They are ‘‘data model based’’ and ‘‘algorithmic based’’. Both
models are based on the same original data, but they diverge in the
assumptions and procedures used to estimate the model parame-
ters. The ‘‘data model based’’ approach assumes that the processes
generating the data have the form of a stochastic model, and the
‘‘algorithmic based model’’, instead of considering a stochastic
model, assumes an unknown internal structure (i.e. it does not
make assumptions about the underlying process or the distribution
of the data) which is often complex. In the present paper a range of
approaches are used to interpret variation in commercial produc-
tion of lulo (Solanum quitoense Lam.), an Andean fruit grown in
highly heterogeneous conditions by small producers with minimal
access to information from traditional research programs based on
controlled experiments. The efficacy of the different approaches is
compared with examples from ‘‘data model based’’ and ‘‘algorith-
mic based’’ methods and combinations of the two approaches.

Artificial neural networks (ANNs) were selected as an ‘‘algo-
rithm based’’ approach and multiple linear regression as ‘‘data
model based’’ approach. Furthermore, based on the recommenda-
tion of Schultz et al. (2000) ‘‘data model based’’ were combined
with ‘‘algorithmic based’’ methods in order to benefit from the
advantages of both. ‘‘Data model based’’ approaches such as multi-
ple linear regression and mixed models combined with Best Linear
Unbiased Prediction (BLUP), are frequently used to understand the
relationships between crop yield and environmental variation
(Khakural et al., 1999; Kravchenko and Bullock, 2000; Piepho,
1994; Yan et al., 2002; Piepho and Mohring, 2005). However, these
approaches are often not satisfactory due to their incapacity to take
into account non-linear relationships between output and
inputs (Gevrey et al., 2003; Miao et al., 2006) and do not handle
outliers well, although some robust linear regressions have been
developed to address this problem (Rousseeuw and Leroy, 1987;
Lanzante, 1996; Faraway, 2002). Multiple regressions are also poor
at handling categorical data (O’Grady and Medoff, 1988). In the
case of commercial data, categorical variables such as farm, agro-
ecological zone and location are likely to be important. ANNs, as
non-parametric approaches, have several attractive theoretical
properties: They do not require strong assumptions on the form
or structure of the data (Sargent, 2001; Paul and Munkvold,
2005; Nagendra and Khare, 2006); and they are capable of ‘‘learn-
ing’’ non-linear models that include both qualitative and quantita-
tive information. ANNs have demonstrated their utility in
agricultural modeling (Hashimoto, 1997; Schultz and Wieland,
1997; Paul and Munkvold, 2005; Miao et al., 2006; Jiménez et al.,
2008). Nevertheless, artificial neural networks also have disadvan-
tages: They are computationally exhaustive; it is difficult to under-
stand relations between the inputs and outputs due to their ‘‘black
box’’ nature; it is difficult to include knowledge of ecological pro-
cesses; they can be over-trained and give false expectations of their
predictive capacity; and they require large amounts of data to be
properly trained (Schultz et al., 2000; Sargent, 2001; Paul and
Munkvold, 2005; Ozesmi et al., 2006; Jiménez et al., 2009).

Mixed models combine both random and fixed effects. When
combined with BLUP, which provides linear estimates of fixed ef-
fects, the contribution of random effects to the output can be esti-
mated. Robinson (1991), Yan et al. (2002) and Rabe-Hesketh and
Skrondal (2008) demonstrated how this methodology could be
rcial production information: A case study of lulo (Solanum quitoense), an
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used to compare the performance of varieties grown under a range
of conditions in commercial fields with not all varieties being
grown at all sites. Experience with sugarcane, coffee (Isaacs et al.,
2007; Cock et al., submitted for publication) and shrimp produc-
tion (Gitterle et al., 2009), suggests that one of the most effective
means of analyzing commercial information is first to establish
clusters of events with similar environmental conditions, and then
determine the effects of variation of management practices within
and between these environmental clusters and also to determine
the effects of the environmental clusters per se.

The effects of many continuous environmental variables on pro-
duction and quality of agricultural products are likely to be non-
linear. For example, there is likely to be an optimal and non-linear
response to such variables as average temperature, soil water con-
tent, soil pH, air humidity and diurnal temperature range. Thus, it
is likely that non-linear methods will be optimal for determining
the effects of environmental variables on crop quality and produc-
tivity and identifying clusters of events with similar environmental
condition. Many variables recorded for commercial crop produc-
tion are likely to be categorical (i.e. weed control, land preparation
practices). Furthermore, categorical variables such as farm may be
used as a categorical proxy variable for farm management skills
associated with that particular farm. Isaacs et al. (2007) used
groups of farmers defined by social characteristics, as categorical
proxy variables for management and associated the various groups
with different levels of productivity. At the same time other man-
agement practices may be described by continuous variables as is
the case with such variables as fertilizer levels or number of irriga-
tions. Mixed models with BLUP, which incorporates linear regres-
sion, were selected as more suitable for handling both categorical
and continuous variables in the same model than pure regression
models (Cock et al., submitted for publication).

We chose the example of lulo to evaluate different data-driven
approaches to develop predictive models. We selected lulo as it is a
poorly understood tropical fruit tree cultivated in Colom-
bia, Costa Rica, Ecuador, Honduras, Panama and Peru (National Re-
search Council, 1989; Franco et al., 2002; Osorio et al., 2003;
Bioversity International, 2005; Flórez et al., 2008; Pulido et al.,
2008; Acosta et al., 2009). Lulo is exclusively grown in tropical
environments where they normally produce during the whole
year, with high variability in yield in both space and time.
2. Methodology

The commercial production data (CPD) was collected on the
farms, and the environmental conditions were characterized using
both data collected on farm and from publically available climate
databases.

The data was compiled in the Corporación BIOTEC databases for
analysis. The resulting database, which is the result of merging
information from different sources, was analyzed in an iterative
way with the aim of finding both, the most apposite data set and
the approach to model it.
2.1. Commercial production data (CPD)

Corporación BIOTEC in collaboration with lulo producers in the
department of Nariño, Colombia, developed a simple method of
keeping on farm records based on a calendar that also provided
them with useful information on lulo production (BIOTEC, 2007).
Twenty-one lulo producers recorded information on these calendars
over the period of 2 years (January 2006 to December 2007). The
records of the individual farms provided a data series on
production of lulo for each farm with farmers’ estimates of the quan-
tity (in grams) of fruit harvested per plant for weekly periods.
Please cite this article in press as: Jiménez, D., et al. Interpretation of commer
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The data collected in a data base by BIOTEC included informa-
tion on location, varieties (management), yield, and harvest time
for a total of 254 records In addition each site was geo-referenced
using hand held GPS.

2.2. Biophysical characterization of sites

Weather stations in Colombia are often not close to the fields
where most of tropical fruit species are grown, furthermore the
information provided by these stations rarely represent the climate
of individual production sites, largely due to the large variation in
altitude in the region. Therefore, the generation of the climatic,
landscape, topographic, and edaphic information of each site was
obtained from the coordinates (latitude and longitude). With this
spatial information, it is possible to extract biophysical information
from high resolution interpolated publically available databases,
through the use of automated algorithms implemented in Geo-
graphical Information Systems (GIS) and to estimate the climatic
conditions of any site that has been geo-referenced.

Long-term averages for monthly temperature and precipitation
were obtained from WORLDCLIM database (Hijmans et al., 2005),
and daily rainfall was extracted from the 3b42 product of the Trop-
ical Rainfall Measuring Mission (TRMM) database (Bell, 1987).
Landscape and topography data was extracted from the Shuttle Ra-
dar Topography Mission (SRTM) (Farr and Kobrick, 2000) using the
Version 3 data set available from the CSI-CGIAR.

With regard to soil, as farmers neither have the knowledge nor
the resources to evaluate their soil and terrain using traditional
methodologies and there is a lack of approaches, guidelines, books
and field manuals for farmers or extension workers to characterize
soils and terrain in situ, the RASTA (Rapid Soil and Terrain Assess-
ment) system was developed and used to characterize soil condi-
tions. RASTA is a simple easy to learn methodology that farmers
can used to characterize soils and terrain without recourse to com-
plicated classification schemes or laboratory analysis. Farmers
were provided with RASTA kits and used these to characterize their
soil and terrain (Alvarez et al., 2004).

We were aware that a number of management variables, that it
was not possible to measure, could have a major impact on the
outputs of the models. In order to evaluate these variables we used
the locality as a proxy for the socio-economic conditions of a given
group of farmers, and farm as a proxy for the management skills
associated with a particular farm.

2.3. Variables

In the present study, four locations with 21 different lulo pro-
ducing sites were characterized. The variables were chosen on a
pragmatic basis using expert knowledge to identify those variables
that were considered likely to influence production and also that
could be readily recorded. The information was compiled in the
database for lulo with 254 records, 19 independent variables
describing information of each site and the dependent variable,
productivity of lulo (Table 1). The independent and dependent
variables of the ‘‘data model based’’ approaches correspond to
the supervised ‘‘algorithmic based’’ inputs and output respectively.
This information included continuous variables depicting biophys-
ical information based on landscape, topography, edaphic condi-
tions, climate, and categorical variables depicting variety and
location (Table 1). Each yield observation was associated with
the climate variables taking into account the date of harvest.

2.4. Models

Inspection of the database showed that there was a preponder-
ance of low productivity data with only a few cases of high yields.
cial production information: A case study of lulo (Solanum quitoense), an
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Table 1
Variables recorded in the lulo database.

Input Variable Type Abbreviation Source

1 Location
1a Nariño, cartago, san isidro Cata Na_ca_san* CPD
1b Nariño, la unión, buenos aires Cata Na_un_ba* CPD
1c Nariño, la unión, la Jacoba Cata Na_un_jac* CPD
1d Nariño, la union, chical alto Cata Na_un_chical* CPD

Variety, landscape, topography, edaphic conditions
2 Thorn or no thorn Cata Nar_Thorn_N CPD
3 Altitude Conb Srtm* SRTM
4 Slope Conb Slope* SRTM
5 Internal drainage Conb IntDrain RASTA
6 External drainage Conb ExtDrain* RASTA
7 Effective soil depth Conb EffDepth* RASTA

Climate
8 Precipitable water of the harvest month Conb Trmm_0* TRMM
9 Precipitable water of the first month before harvest Conb Trmm_1* TRMM
10 Precipitable water of the second month before harvest Conb Trmm_2* TRMM
11 Average temperature of the harvest month Conb TempAvg_0* WORLDCLIM
12 Average temperature of the first month before harvest Conb TempAvg_1 WORLDCLIM
13 Average temperature of the second month before harvest Conb TempAvg_2 WORLDCLIM
14 Accumulated precipitation of the harvest month Conb PrecAcc_0 WORLDCLIM
15 Accumulated precipitation of the first month before harvest Conb PrecAcc_1 WORLDCLIM
16 Accumulated precipitation of the second month before harvest Conb PrecAcc_2 WORLDCLIM
17 Temperature range of the harvest month Conb TempRang_0* WORLDCLIM
18 Temperature range of the first month before harvest Conb TempRang_1* WORLDCLIM
19 Temperature range of the second month before harvest Conb TempRang_2* WORLDCLIM
Output Lulo yield Conb Yield CPD

a Categorical variables.
b Continuous variables.

* Final set of inputs/dependent variables used in the development of lulo yield regression models.
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Statistical analyses often take the drivers of these scarce productiv-
ities as outliers, and yet it is precisely those factors associated with
high yield that are of most interest. Given these characteristics of
the data we opted for three data-driven approaches: two regres-
sions: non-linear ‘‘algorithmic based’’ and linear ‘‘data model
based’’; and an iterative approach which used both, ‘‘data model
based’’ and a non-supervised ‘‘algorithmic based’’ modeling com-
bined with expert guidance.

The approaches we used to build the ‘‘algorithmic based’’ mod-
els were artificial neural networks. These non-parametric models
are connectionist systems inspired from the structure and behavior
of nervous systems. Connectionist systems are composed of ele-
mentary units performing simple calculations, which are intercon-
nected by following some ordered pattern. In the case of artificial
neural networks, these units are called ‘‘neurons’’ by analogy with
the cells in the brain. How these neurons are connected determines
the network topology. There are layered topologies in which the
neurons are organized in a sequence of regular arrays (i.e. the mul-
tilayer perceptron), lattice topologies whereby the artificial neu-
rons are organized in a single regular grid (i.e. the Self-
Organizing Maps), hierarchical, or even free topologies. In all cases,
a so called ‘‘learning’’ algorithm is employed in order to infer the
values of the parameters of the model from a set of observations
coming from the process under study. How these parameters are
stored in the model depends on the representation of the informa-
tion used in the neural network (Van Gelder, 1999). In the case of
models using local representations, the parameters of the model
are the positions of the units in the multidimensional input space
(i.e. in the Self-Organizing Maps). In the case of networks using a
distributed representation, parameters are stored in the form of
weighted connections between units (i.e. in the multilayer
perceptron).

These computational models can be used to better understand
the phenomenon under study, generally employing non-super-
vised learning approaches (Moshou et al., 2004; Boishebert et al.,
Please cite this article in press as: Jiménez, D., et al. Interpretation of comme
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2006), or to predict the behavior of the process under new condi-
tions through non-linear regressions based on supervised learning
approaches (Jain, 2003; Paul and Munkvold, 2005; Miao et al.,
2006).

In this paper, these ‘‘algorithmic based’’ models were developed
both to build a non-linear regression through a multilayer percep-
tron and also to establish clusters of events with Homogeneous
Environmental Conditions (HECs) by means of a non-supervised
approach known as Self-Organizing Maps.

The ‘‘data model based’’ techniques were employed in order to
construct a linear robust regression and to determine the effects of
location, management and the groups of Homogeneous Environ-
mental Conditions with mixed models in an iterative approach
guided by expert opinion.

2.4.1. Robust linear regression
For the multiple regression, we selected the robust linear

regression, which exploits as much information as possible with-
out removing outliers, exceptional records or events. This tech-
nique is appropriate when there are data points that have very
high leverage (a measure of how far an independent variable devi-
ates from its mean), and when there are outliers. Robust regression
is essentially a compromise between dropping the case(s) that are
moderate outliers (observations with large residuals) and seriously
violating the assumptions of Ordinary Least Squares regression
(OLS). The robust regression, a form of OLS, was applied to the
254 observations, with production as the dependent variable. The
robust regression was set to determine Cook’s D values, and then
drop any observation with a Cook’s D value greater than 1 in an
iterative process (StataCorp, 2005; Castelló-Climent, 2008).

2.4.2. Multilayer perceptron (MLP) regression
For the non-linear regression, a supervised ANN capable of

handling a high degree of heterogeneity in the data was used.
ANNs, unlike OLS regressions are non-parametric and make no
rcial production information: A case study of lulo (Solanum quitoense), an
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assumptions about the structure of the variance in the original data
sets (Nagendra and Khare, 2006). A Multilayer Perceptron (MLP)
(Bishop, 1995), was implemented to make a non-linear regression.
This supervised algorithm is a network of individual units called
perceptrons, which are linked by weighted connections, and where
data move through several layers (typically three), the input, hid-
den, and output layers. The input and output layers contain nodes
that correspond to independent and dependent variables, respec-
tively (Kaul et al., 2005). These basic perceptrons perform a simple
calculation, which in our case was a sigmoidal function of the
weighted sum of the values fed in as inputs. The parameters of
the model, which are the connections between units, were calcu-
lated by means of the Back-propagation algorithm applied over
the data sets containing yield information (Bishop, 1995). The
Back-propagation algorithm is a gradient descent that minimizes
the difference between the desired output of the model (in the
training data set) and the actual output of the network, i.e. the
mean square error (MSE) (Bishop, 1995).

Network topology is an important issue in training a neural net-
work model. The selection of the number of neurons in the hidden
layer was made by comparing neural networks having 1–10 hid-
den units. This comparison was carried out by a bootstrap valida-
tion scheme (Efron, 1983). Each network was tested by
performing ‘‘split-sample’’ validations 100 times, and then the dif-
ferent values of the averaged MSE were compared in order to
determine the network having the best performance. The topology
with the lowest MSE (0.041) over the validation subset had four
units in the hidden layer and was chosen as the most suitable
(Fig. 1). One hundred networks with the selected topology were
built and tested in order to improve the generalization capabilities
of the model (Dietterich, 2000; Brown et al., 2005).

2.4.3. Iterative model approach
The iterative approach combined ‘‘data model based’’ and ‘‘algo-

rithmic based’’ models and was based on robust linear regressions,
ANNs non-linear regression, and a combination of a non-super-
vised ANNs known as Self-Organizing Maps (SOM) with mixed
models with Best Linear Unbiased Prediction. The iterative ap-
proach first identified the most important variables associated
with yield, second used this information to identify Homogeneous
Environmental Conditions and third analyzed differences in pro-
ductivity related to variation between HECs and due to manage-
ment variation within HECs.

2.4.4. Self-Organizing Maps (SOM)
The Self-Organizing Map (SOM) or Kohonen map (Kohonen,

1995), is a non-supervised ‘‘algorithmic based’’ model widely used
to obtain a visual exploratory analysis of high-dimensional data
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4

M
SE

Hidde

Fig. 1. MSE of artificial neural metworks with d

Please cite this article in press as: Jiménez, D., et al. Interpretation of commer
under-researched Andean fruit. Agr. Syst. (2010), doi:10.1016/j.agsy.2010.10.0
sets. SOM topology consists of a lattice of fully interconnected arti-
ficial neurons. These neurons differ from perceptron units in that
the information is represented in a local manner, instead of a dis-
tributed manner. SOM units store a vector of position in the mul-
tidimensional input space, while keeping neighbor connections
within the lattice of neurons which often has a low dimensionality
(two in almost every application).

The SOMs were trained through an iterative process where the
data set was presented to the artificial neurons. At each iteration
the information stored in each artificial neuron and its neighbor-
hood is adjusted to match the examples provided. At the end of
the process, the artificial neurons become prototypes (also called
prototype vectors) that summarize the data set used during train-
ing. The SOM were used to map high-dimensional data sets in a lat-
tice of two dimensions. Observations with similar characteristics,
in the high-dimensional space appear grouped together in the
two dimensional map.

Such a map facilitates exploratory visual analysis of clusters and
the relationships between the variables of a complex data set.
However, a SOM does not preserve distance information. In order
to address this problem the topology is disregarded, and standard
clustering methods are applied to the SOM prototype vectors, and
then the clusters are displayed on a lattice (Vesanto and Ahola,
1999; Barreto and Pérez-Uribe, 2007). We chose the K-means algo-
rithm to group the events into a given number of K clusters. One of
the limitations of this technique is the a priori definition of the
number of clusters, which is frequently unknown. To tackle this
drawback, different K values were tested and then different groups
with different number of clusters were calculated. The optimal
number of K was then derived using the Davies–Bouldin index (Da-
vies and Bouldin, 1979; Vesanto and Alhoniemi, 2000).

The SOM were used to define Homogeneous Environmental
Conditions (HEC) based on the original set of selected environmen-
tal variables and then on those identified as important by the ro-
bust regressions and the ANN non-linear regressions. The HECs
take into account both temporal and spatial variability, thus a par-
ticular farm may fall into different HECs according to changes in
the weather conditions.
2.4.5. Mixed models
Mixed models were selected as they include both, random and

fixed effects in the analysis. Best Linear Unbiased Prediction (BLUP)
is used in linear mixed models for the prediction of random effects.
(The term prediction is normally used for the estimation of random
effects, whereas estimation is used for fixed effects (Robinson,
1991; Rabe-Hesketh and Skrondal, 2008)). Furthermore, whereas
regression techniques are not well suited to handle data sets with
many categorical variables as a result of the exponential increase
5 6 7 8 9 10
n Units

ifferent number of neurons in hidden layer.
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in volume linked to added extra dimensions to a mathematical
space (Bellman, 1961; O’Grady and Medoff, 1988), mixed models
are well suited to do this task. BLUPs are estimates of the realized
values of the output as linear functions of the random variables;
are unbiased in the sense that the average value of the estimate
is equal to the average value of the quantity being estimated; best
in the sense that they have minimum mean squared error within
the class of linear unbiased estimators; and predictors to distin-
guish them from estimators of fixed effects. The mixed models as-
sumed linear effects of the random variables with no interactions
to estimate how random effects contribute to raising or lowering
of the average of the output. Mixed models were selected as partic-
ularly suitable for evaluating data sets that included the categorical
variables HEC, locations and farms.
2.5. Regression model testing

In order to provide a mechanism for testing the model perfor-
mance and to compare different models or network topologies,
both training and validation data set were created by random sam-
pling without replacement from the whole data set for both robust
regressions and MLP. In this way, each robust regression or MLP
model regression was performed using 80% of the whole data set,
the model performance was assessed on the remaining 20%. This
method, called ‘‘split-sample’’ or ‘‘hold-out’’ validation, to assess
predictive model performance, is not recommended in its simplest
form for small data sets (Goutte, 1997). However, the split-sample
procedure can be improved for small data set by repeating the
‘‘split-sample’’ procedure several times. This split sample proce-
dure was run 100 times for both the MLP model and the robust
regression model. The 100 yield estimates were then used to esti-
mate the coefficient of determination (R2) and the confidence lim-
its of both the MLP and the robust regression models in order to
compare the two approaches.
Table 2
Pairs of variables strongly correlated.

Variable retained
(abbreviation)a

Variable removed
(abbreviation)a

Correlation

Na_ca_san Nar_Thorn_N �1
ExtDrain IntDraina �1
TempAvg_0 TempAvg_1 0.94
TempAvg_0 TempAvg_2 0.83
TempRang_0 PrecAcc_0 �0.83
TempRang_0 PrecAcc_1 �0.88
TempRang_1 PrecAcc_2 �0.89
TempRang_2 PrecAcc_2 �0.82

a List of abbreviations and their meanings are shown in Table 1.

Table 3
R2 of predicted versus real lulo yield provided by both regressions, using 100
validation data sets.

Approach Regression R2 (mean) Confidence interval (95%)

‘‘Data model based’’ Robust (linear) 0.65 0.63–0.66
‘‘Algorithmic based’’ MLP (non-linear) 0.69 0.67–0.70
3. Results and discussion

3.1. Regressions

3.1.1. Selection of variables
In the iterative process of analysis, the input data sets were first

pre-processed in order to eliminate variables that were highly cor-
related. Removal of essentially duplicated variables eliminates
redundant inputs, reduces noise, and avoids the effect of several
variables having the same function in the model (Faraway, 2002;
Paul and Munkvold, 2005; Satizábal et al., 2007). The elimination
of variables has been shown to help avoiding erroneous assigna-
tion of importance to variables when a sensitivity analysis is ap-
plied to the multilayer perceptron when analyzing data on fruit
crops (Jiménez et al., 2009).

A Pearson correlation identified several variables as highly cor-
related: A Pearson coefficient greater than 0.8 or less than �0.8
was taken as threshold, and one of the pair of variables was elim-
inated from the subsequent analysis when the coefficient was be-
yond the threshold values (Table 2).

The decision of which variable to retain was made on the basis
of expert opinion. In the case of Nariño-cartago-san isidro, thorn or
no thorn (variety), the Nariño-cartago-san isidro categories for
location were retained as the use of the thornless variety was con-
sidered to be just one of the several management factors that
might be associated with that particular location. External drain-
age was chosen over internal drainage, however, in this case they
are considered to be totally interchangeable. The variable average
temperature for the harvest month, first month before harvest
and second month before harvest were strongly correlated: the
Please cite this article in press as: Jiménez, D., et al. Interpretation of comme
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variable average temperature of the harvest month was retained.
Likewise, the accumulated precipitation of the harvest month,
the first and second months before harvest was strongly correlated
with the temperature range throughout the different months; the
variable temperature range was maintained instead of accumu-
lated precipitation. After the elimination process twelve of the ini-
tial 19 variables were selected as drivers for the MLP non-linear
regression and robust linear regressions. They were: Nariño- car-
tago-san isidro, Nariño- la union- buenos aires, Nariño- la union-
la Jacoba, Nariño- la union- chical alto, altitude, slope, external
drainage, effective soil depth, precipitable water of the harvest
month, precipitable water of the first month before harvest, precip-
itable water of the second month before harvest, average temper-
ature of the harvest month, temperature range of the harvest
month, temperature range of the first month before harvest, and
temperature range of the second month before harvest (Table 1).

3.1.2. Performance analysis and variables relevance
The mean R2 from the 100 validations subsets was 0.69 for the

MLP and 0.65 for the robust regression model (Table 3). The distri-
bution of the R2 provided by each approach was similar (Fig. 2)
with a 95% confidence interval 0.67–0.70 for the MLP regression
and 0.63–0.66 for the robust regression. Both models explained
more than 60% of variability in production at P = 0.05. The R2 of
the MLP was significantly greater than that of the robust linear
regression (P < 0.05 Holm–Sidak comparison at an alpha level of
5%) and thus the MLP explained significantly more of the variation
(69%) than the robust regression (65%).

One of the steps followed to develop the robust regression, in-
cluded the computation of forward stepwise addition procedure
(Tomassone et al., 1983). This method was used to add step by step
one predictor and assess the change in the MSE of the model. The
change in the MSE associated with the addition of each variable
illustrates the relative importance of each predictor variable (Gev-
rey et al., 2003). This stepwise procedure indicated that the vari-
able slope explained 84% of the total yield variation, average
temperature of the harvest month 11% and effective soil depth
4% of the total variation (Table 4).

In the case of MLP, in order to identify the variables which con-
tribute most to yield, we used the relevance metric based on sen-
sitivity described by Satizábal and Pérez-Uribe (2007). This
assesses input relevance by calculating the partial derivative of
the output of the neural network with respect to each one of the
rcial production information: A case study of lulo (Solanum quitoense), an
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Fig. 2. Distribution of the R2 obtained with each model.
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inputs, thus the greater the partial derivate, the more relevant is
the variable because the Back-propagation algorithm gives higher
values to the connection weights of those inputs that are more rel-
evant. The sensitivity metric in the MLPs identified effective soil
depth, average temperature of the harvest month, slope and the
locality Nariño-la union-chical alto as the most important variables
associated with yield variation (Fig. 3).

The four variables selected by the sensitivity metric included
the three most important variables as determined by the robust
linear regression. With the exception of slope, these are the same
variables that were identified as most relevant for modeling An-
dean blackberry yield in Colombia (Jiménez et al., 2009).

3.2. Mixed models and Self-Organizing Maps

In various crops attempts have been made to define the major
environments where crops are grown and the homogeneous or
Table 4
Variables explaining lulo yield according to a forward stepwise procedure.

Variable added R2 R2 due to variable % of Total

Slope 0.47 0.47 84.3
TempAvg_0 0.53 0.06 11.0
EffDepth 0.55 0.02 3.7
Total 0.55 100.0

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18

Fig. 3. Sensitivity distribution of the ML
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mega-environments in which similar varieties or crops can be
grown (see for example Cock, 1985; Braun et al., 1996; Yan et al.,
2002). These relatively Homogeneous Environmental Conditions
or mega-environments have been determined both by expert opin-
ion, (see for example Cock (1985) for cassava, Braun et al. (1996)
for wheat) and by analysis of the differential response or ranking
of varieties in multi-locational variety trials (Yan et al., 2002.).
Isaacs et al. (2007) defined various agro-ecological zones (AEZ)
for sugarcane production so as to analyze the effects of manage-
ment practices on cane and sugar yield within and across AEZs
using commercial production data. In the case of sugarcane the
AEZs were based on expert opinion and an intimate knowledge of
the crop and its response to variation in climate and soil conditions.
The idea behind the HECs, AEZs and mega-environments is that the
crops response in any one HEC, AEZ or mega-environments is uni-
form or homogeneous. With lulo we were not able to define AEZs
in the same manner as with sugarcane, cassava and wheat as there
was neither sufficient expert knowledge of the crops response to
variation in soil and climatic conditions nor were there carefully
managed and controlled multilocational trials. Hence we explored
an iterative approach to defining HECs for lulo.

The first step to identify production conditions that were homo-
geneous in terms of the environment and the weather in the period
before harvest was to select the twelve variables identified by the
regression models as those most closely associated with variation
in productivity. The twelve variables were then used to train a
P model with respect to the inputs.
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Kohonen map and identify clusters of HEC (Fig. 4a). The Davies-
Bouldin index (Davies and Bouldin, 1979) indicated that there were
six major HECs (Fig. 4b).

These six HECs were then incorporated into a mixed model to-
gether with the variables farm and location (Table 5). Farm and loca-
tion were both incorporated as proxy variables for crop management
on the assumption that HECs covered the variation due to environ-
mental variation and that the remaining variation must be due to
management. Furthermore, we hypothesized that management in
any one geographical location might be similar due to the inter-
change of ideas between farmers and furthermore that even in the
same location there would undoubtedly be managerial differences
between farms. In previous studies, the variable location or site
has been incorporated into regression models to predict soybean
and winter wheat yield (Yan and Rajcan, 2003; Green et al., 2007).

The mixed model with six HECs, location and farm explained
more than 79% of the variation (Table 6). However, the single
variable farm explained 70% of the variation, the location 8% and
Fig. 4. (a) U-matrix displaying the distance among prototypes. The scale bar (right)
indicates the values of distance. The upper side exhibits high distances, whilst the
lower displays low distances. (b) Kohonen map displaying the six clusters obtained
by the K-means algorithm and the Davies–Bouldin index.
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the HECs a negligible amount (less than 1%). Based on the MLP
regressions and the robust regressions, in which environmental
variables explained more than 60% of the variation with 95% con-
fidence limits, we had expected HECs to explain a much larger pro-
portion of the variation. This suggested that the variable, farm, was
not only acting as a proxy for management effects but also for envi-
ronmental conditions and that the clustering process had not iden-
tified truly homogeneous ecological conditions for crop growth
and development. The most likely explanation for the HECs not
being truly homogeneous in respect to crop response was that
the variables used to develop the clusters were inappropriate with
the variation encountered in several variables being irrelevant in
terms of crop development. From the MLP and the robust regres-
sion analysis, soil depth, average temperature of the harvest
month, and slope were identified as the most important environ-
mental variables associated with variation in yield. Expert opinion
concurred with the premise that soil depth and temperature were
indeed likely to be important factors associated with production.
However, slope came as somewhat of a surprise to the experts,
although it is well known that most lulo is indeed grown on slop-
ing ground with lulo planted on flat lands being a rarity. We there-
fore conducted a new cluster analysis with the three most
important environmental factors identified by the regressions
using the same Kohonen map procedure as that used previously:
three HECs were identified (Fig. 5a and b).

A mixed model with the categorical variables of three HECs,
location and farmer explained more than 80% of the variation in
lulo yield (Table 6). The variable HEC explained 61% of the total
variation indicating the extreme importance of environmental con-
ditions in yield determination. The location explained less than 3%
of the variation in yield suggesting that differences in local
practices between locations are of little importance in determining
yield. On the other hand 19% of the variation in yield,
ceteris paribus, was attributed to the farm suggesting that the
Table 5
Variables integrated into the mixed model.

Variable Abbreviation

Biophysical data used
in regressionsa,b

See Table 1

Site-farma F1, F2, F3, F4, F5, F6, F7, F8,
F9, F10,. . . F21

Homogeneous Environmental
Conditionsa

HEC1, HEC2, HEC3. . .HECn

Locationa Na_ca_san, Na_un_ba, Na_un_jac,
Na_un_chical

a Categorical variables.
b Continuous variables.

Table 6
Variance components of the mixed model estimations.

Parameters Estimate
(g plant�1 wk�1)

Standard error % of Total variance

Model including information of 6 HECs, farms, and 12 biophysical variables
HEC 0.01 0.65 0.5
Location 0.18 0.62 8.4
Site-farm 1.50 0.34 70.4
Error 0.44 0.05 20.7
Total 2.13 100.0

Model including categorical variables of 3 HECs, location and farm
HEC 1.85 2.01 61.2
Location 0.07 0.20 2.5
Site-farm 0.57 0.21 19.0
Error 0.52 0.04 17.3
Total 3.03 100.0
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management skills of the individual farmers influenced yield. Fur-
thermore, the high level of explanation of the total variance by the
HECs suggests that the means used to define them is effective.
Fig. 5. (a) U-matrix displaying the distance among prototypes. The scale bar (right)
indicates the values of distance. The upper side exhibits high distances, whilst the
lower displays low distances. (b) Kohonen map displaying the three clusters
obtained after using the K-means algorithm and the Davies–Bouldin index.

Please cite this article in press as: Jiménez, D., et al. Interpretation of commer
under-researched Andean fruit. Agr. Syst. (2010), doi:10.1016/j.agsy.2010.10.0
In the initial selection of variables, the varietal trait thorn or no
thorn was eliminated as it was highly correlated with location and
effectively confounded with location. Nevertheless, for farmers the
effect of this trait on yield is extremely important: thornless vari-
eties (Solanum quitoense var. quitoense) are much easier to harvest
than thorny types ( Solanum quitoense var. septentrionale). As loca-
tion was only minimally associated with variation in yield once the
effects of HEC and farm were taken into account, we decided to run
the mixed model without location, but including the thorn trait as
a fixed effect.

The variation explained by both HEC and farm (79%) was similar
to that of the previous model (Table 8). The effect of the variable
thorn or no thorn was not significant at the standard 5% level
(P = 0.168) (Table 7). However, we suggest that caution is needed
in interpreting this result as indicating that there is no difference
between the yield of thorned and thornless varieties. Put in an-
other way, there is a 7:1 probability that thorned varieties yield
28 g plant�1 wk�1 -more than thornless plants. For the farmer this
is an important and commercially significant difference. This indi-
cates that it would be advisable for producers who currently use
thornless varieties to compare thorned and thornless varieties on
their farms to elucidate whether the probable lack of yield is com-
pensated for by their ease of harvest.

Inspection of Fig. 6a and b gave clues as to how HEC and farms
affect productivity of lulo. HEC 3 shows a significant effect on lulo
yield and consistently yielded more than HEC 2 and HEC 1 (Ta-
ble 10). HEC 3 yielded 41 g plant�1 wk�1 more fruit than average,
whilst HEC 2 yielded 18 g plant�1 wk�1 less than average and
HEC 1 yielded 24 g plant�1 wk�1 less than the average. Comparison
of the characteristics of HEC 3 with the other HECs provides an
indication of environmental conditions suitable for high productiv-
ity of lulo (Table 9).

Farms 5, 6, 16, 19, and 20 in HEC 2 and farms 7 and 9 in HECs
had significantly different yields to the mean. A particular farm
may fall into different HECs according to changes in the environ-
mental conditions. Thus, farms 19 and 20 had a significant effect
on lulo production when they fell into HEC 2, but not when they
fell into HEC 3. Nevertheless, farms 19 and 20 produced 15 and
38 g plant�1 wk�1 more than average in HEC2 and 15 and
17 g plant�1 wk�1 more than average in HEC3, suggesting that
these farms effectively manage their crops and that different
environmental conditions do not greatly affect good management
practices required to obtain higher than average yield. Farm 7
Table 7
Variance components of the mixed model estimations, including information of
variety. Fixed effect.

Lulo yield Coefficient
(g plant�1 wk�1)

Standard
error

Z P > Z

Fixed effect
Nar_Thorn_Na �27.69 20.1 �1.38 0.168n

a Variable defined in Table 1.
n Not statistically significant difference.

Table 8
Variance components of the mixed model estimations, including information of
variety (Nar_thorn_N). Random effects.

Parameters Estimate
(g plant�1 wk�1)

Standard
error

% Variation of total

Random effects
HEC 1.41 1.55 55.4
Site-farm 0.61 0.21 23.9
Error 0.53 0.05 20.8
Total 2.56 100.0
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Fig. 6. Clustered columns of the effects on lulo yield estimations: (a) effect of HEC, (b) effects of farms across the HEC.

10 D. Jiménez et al. / Agricultural Systems xxx (2010) xxx–xxx
and 9 are in HEC 3 which in general produces the highest yields.
However, farm 7 produced 68 g plant�1 wk�1 less than average
whilst farm 9 produced 51 g plant�1 wk�1 more than average.
Similarly, farm 16 even though it was in a relatively low productiv-
ity environment (HEC 2) produced significantly more, (20 g
plant�1 wk�1), than average. We suggest that farm 7 probably has
inappropriate management practices for obtaining high yields
whilst farms 9 and 16 are effectively managed. Furthermore, by
identifying well managed farms and poorly managed units in par-
ticular environmental niches and visiting them it should be possi-
ble to identify those management practices that are associated
with high levels of productivity and conversely those practices
which are inappropriate. We suggest that this information is extre-
mely valuable as visits to superior farms could provide guidelines
for improving yields on other farms with similar HECs.

Within HECs there is a large range of variation of yield associ-
ated with the farm, and little variation associated with location
(Fig. 6b). Proxies can be used to estimate the effect of immeasur-
able variables on a given phenomenon (Thomas et al., 1990; Stec-
kel, 1995; Goodman et al., 1996; Adami et al., 1999; Filmer and
Pritchett., 1999; Montgomery et al., 1999). Jiménez et al. (2009)
used geographic location of areas as proxies for crop management
practices for Andean blackberry, suggesting that local knowledge
and socio-economic circumstances would tend to be similar within
geographic locations and would differ between them. In the case of
Andean blackberry the variable geographic location was associated
with yield variation; however, it is noteworthy that the geographic
Please cite this article in press as: Jiménez, D., et al. Interpretation of comme
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separation in the Andean blackberry study was much greater than
in this study with lulo, in which location did not appear to be an
important determinant of yield.

On the other hand, we suggest that farms as a variable, within
homogeneous ecological conditions, provides a proxy for farmer’s
management skills. Although it is not possible to identify precisely
what the practices or skills used by the farmers it is possible to
identify ‘‘good’’ farmers and quantify the yield advantage that they
obtain over others.
4. Conclusions

Both ‘‘Data model based’’ and ‘‘algorithmic based’’ models that
used commercial production data linked to characterization of
the growing conditions explained more than 60% of variability in
lulo yield. The algorithmic model, using a multilayer perceptron
explained more of the variation (69%) than the data model based
robust regression (65%). The robust regression applied with a step-
wise procedure identified slope, average temperature and soil
depth as the most important environmental variables associated
with variation in yield. The sensitivity analysis of the multilayer
perceptron identified the same three factors as the stepwise robust
regression plus one locality based variable, suggesting that both
methods are appropriate to identify the most important factors
associated with yield variation, but that the MLP was capable of
rcial production information: A case study of lulo (Solanum quitoense), an
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Table 10
t Test for the best linear unbiased predictions (BLUPs).

Effect Estimate (g plant�1 wk�1) t Probability > |t|

HEC Farm

1 – �24 �0.97 0.33n

2 – �18 �0.77 0.44n

3 – 41 1.76 0.08s

1 1 �1 �0.08 0.93n

1 2 �2 �0.13 0.89n

1 3 0 0.03 0.98n

1 4 3 0.19 0.85n

1 5 �14 �0.86 0.39n

1 8 �6 �0.32 0.75n

1 17 10 0.59 0.55n

2 5 �24 �2.55 0.01s

2 6 �17 �1.78 0.08s

2 8 �19 �1.44 0.15n

2 10 �7 �0.7 0.48n

2 11 �2 �0.19 0.85n

2 12 �7 �0.79 0.43n

2 13 �7 �0.8 0.42n

2 15 0 �0.04 0.97n

2 16 20 1.99 0.05s

2 17 2 0.24 0.81n

2 19 15 1.71 0.09s

2 20 38 4.26 <.0001s

3 7 �68 �5.12 <.0001s

3 9 51 4.56 <.0001s

3 14 6 0.48 0.63n

3 18 �11 �0.97 0.33n

3 19 15 0.84 0.40n

3 20 17 0.97 0.33n

3 21 8 0.76 0.45n

n Not statistically significant difference.
s Statistically significant difference.
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discovering factors that were not identified as important by the ro-
bust regression.

Identification of HECs by taking all the measured variables and
using Self-Organizing Maps (SOM), which are ‘‘algorithmic based’’,
did not provide a useful clustering of HECs. However, by first iden-
tifying those factors associated with yield variation either by ro-
bust regression or by multilayer perceptron regressions, HECs
associated with yield variation were successfully defined. Once
the HECs were defined it was possible use a mixed model to ana-
lyze: (1) the effects of the environment using the HECs as a cate-
gorical variable; (2) cultural conditions associated with the
geographic position of the individual production units using loca-
tion as a categorical variable; and (3) farm management skills
using the farm as a categorical variable. The mixed model has
the advantage over regression models of handling multiple cate-
gorical variables of the same class, such as several farms.

The mixed model explained more than 80% of the total variation
in lulo yield, with HEC and farm variables explaining most of the
variation. This suggests in the case of lulo that better than average
yield is primarily associated with appropriate environmental con-
ditions (indicated by HEC) and good farm management practices
(indicated by farm). Although it was not possible to identify pre-
cisely which management practices were effective, those farms
with ‘‘good’’ management could readily be identified. Furthermore,
observation of the range of conditions in the HEC 3, associated with
higher than average yields defined that the most suitable environ-
mental conditions for producing lulo are the combination of: an
effective soil depth between 40 and 67 cm, slope between 13 and
24 degrees and an average temperature between 15.8 and 19 de-
gree Celsius (�C). It is also noteworthy that although in this data
set not all measured variables were associated with variation in
lulo yield, those variables may affect yield if they are outside the
range reported here. We note that an automated approach to ana-
lyzing the data using a single methodology was much less power-
ful than an iterative guided approach using various methodologies.
Both ‘‘data model based’’ and ‘‘algorithmic based’’ models are use-
ful tools for analyzing and interpreting the commercial production
data once highly correlated independent variables had been elim-
inated. Regression models were particularly effective at identifying
those independent variables associated with variation in the
dependent variable, yield and then for defining Homogeneous
Environmental Conditions (HECs) based on the previously identi-
fied independent variables. Mixed models were effective for quan-
tifying the effects of location (local culture) and farm (farm
management skills) once the HECs had been determined. The
mixed model has the advantage of effectively handling multiple
categorical variables. Thus we suggest that when analyzing com-
mercial production highly correlated independent variables should
first be eliminated, then either algorithmic or data based regres-
sion models should be used to identify those independent variables
associated with variation in the dependent variable. Self-organiz-
ing maps can then be used to determine HECs based on the vari-
ables associated with yield. Mixed models can then be used to
analyze the variation in yield attributable to both the environmen-
tal conditions (HECs) and the social and management conditions.
In the particular case of lulo, proxies were used for social and man-
agement conditions. Finally, the experience with lulo suggests that
Table 9
Environmental conditions for each HEC.

Variable ranges HEC

Slope (�) EffDepth (cm) TempAvg_0 (�C)

5–14 21–40 15–16.5 1
8–15 32–69 15–18.9 2
13–24 40–67 15.8–19 3
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useful information on where and how to grow crops successfully
can be obtained from analysis and interpretation of commercial
production data combined with information on site specific grow-
ing conditions. The analysis and interpretation of the data is not
trivial: expert guidance is required in the process of analysis. Nev-
ertheless, various essential principles have been established that
can be used as a guide to analysis and interpretation of commercial
production data, especially for crops with little formal experimen-
tal trialing.
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