

Expression Pattern Conferred by a Glutamic Acid-Rich Protein Gene Promoter in Field-Grown Transgenic Cassava (Manihot esculenta Crantz)

Journal:	Planta
Manuscript ID:	Planta-2010-01-0043.R2
Manuscript Type:	Original Article
Date Submitted by the Author:	02-Mar-2010
Complete List of Authors:	Beltrán, Jesus; CIAT, Agrobiodiversity and Biotechnology Project; The City University of New York Prías, Mónica; CIAT, Agrobiodiversity and Biotechnology Project Al-Babili, Salim; Albert-Ludwigs-Universität Freiburg, Faculty of Biology, Center for Applied Biosciences Ladino, Janet; CIAT, Agrobiodiversity and Biotechnology Project López, Danilo; CIAT, Agrobiodiversity and Biotechnology Project Beyer, Peter; Albert-Ludwigs-Universität Freiburg, Faculty of Biology, Center for Applied Biosciences Chavarriaga, Paul; CIAT, Agrobiodiversity and Biotechnology Project Tohme, Joe; CIAT, Agrobiodiversity and Biotechnology Project
Keywords:	β -glucuronidase, Cassava, Carrot, Expression pattern, Promoter GUS fusion

1		
2 3		
4	1	Expression Pattern Conferred by a Glutamic Acid-Rich
5 6		
7	2	Protein Gene Promoter in Field-Grown Transgenic
8 9		
10	3	Cassava (<i>Manihot esculenta</i> Crantz)
11 12		
13	4	
14 15	5	J Beltrán ¹ , M Prías ¹ , S Al-Babili ² , Y Ladino ¹ , D López ¹ , P Beyer ² , P Chavarriaga ^{1,*} , J
16	5	J Beilian, M Fhas, S Al-Babili, Y Laulio, D Lopez, F Beyer, F Chavanaga, J
17	6	Tohme ¹
18 19	7	
20	/	
21 22	8	¹ Agrobiodiversity and Biotechnology Project, International Center for Tropical
23	0	Agriculture (CIAT) A A CZ12 Coli Colombia
24 25	9	Agriculture (CIAT), A.A. 6713, Cali, Colombia
26	10	² Albert-Ludwigs-Universität Freiburg, Faculty of Biology, Center for Applied
27	11	Pieneienene Schönzlentr 1. D. 70104 Erziburg, Cormony
28 29	11	Biosciences, Schänzlestr.1, D-79104, Freiburg, Germany
30	12	
31 32	13	* To whom correspondence should be addressed. E-mail: pchavarriaga@cgiar.org
33		To whom correspondence should be addressed. L-mail. pchavamaga@cgial.org
34 35	14	
36	15	
37 38	16	
39	10	
40 41	17	
42	18	
43	10	
44 45	19	
46	20	Short running title: A cassava promoter directs strong GUS expression in root and
47 48	20	
49	21	stem tissues
50 51	22	
52		
53 54	23	Abstract
55	24	A major constraint for incorporating now traits into access using biotochaology is the
56 57	24	A major constraint for incorporating new traits into cassava using biotechnology is the
57 58	25	limited list of known/tested promoters that encourage the expression of transgenes in
59 60		
60		

$\begin{array}{c}1\\2&3\\4&5\\6&7\\8&9\\10&11\\12&13\\14&15\\16&17\\18&19\\20\\21&22\\33\\\end{array}$	
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40	
$\begin{array}{c} 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 55\\ 56\\ 57\\ 58\\ 60\\ \end{array}$	

1	cassava's starchy roots. Based on a previous report on the glutamic-acid-rich protein
2	Pt2L4, indicating a preferential expression in roots, we cloned the corresponding gene
3	including promoter sequence. A promoter fragment (CP2; 731bp) was evaluated for its
4	potential to regulate the expression of the reporter gene GUSPlus in transgenic
5	cassava plants grown in the field. Intense GUS staining was observed in storage roots
6	and vascular stem tissues; less intense staining in leaves; and none in the pith.
7	Consistent with determined mRNA levels of the GUSPlus gene, fluorometric analyses
8	revealed equal activities in root pulp and stems, but 3.5 times less in leaves. In a
9	second approach, the activity of a longer promoter fragment (CP1) including an intrinsic
10	intron was evaluated in carrot plants. CP1 exhibited a pronounced tissue preference,
11	conferring high expression in the secondary phloem and vascular cambium of roots, but
12	6 times lower expression levels in leaf vascular tissues. Thus, CP1 and CP2 may be
13	useful tools to improve nutritional and agronomical traits of cassava by genetic
14	engineering. To date, this is the first study presenting field data on the specificity and
15	potential of promoters for transgenic cassava.
16	
17	
18	
19	Key words
20	β -glucuronidase, Cassava, Carrot, Expression pattern, Promoter GUS fusion.
21	
22	Abbreviations
23	CIAT, International Center for Tropical Agriculture; pCaMV35S, promoter of the 35S
24	protein from Cauliflower Mosaic Virus; GUS, β -glucuronidase,
25	

Planta

1 Introduction

Cassava (Manihot esculenta Crantz) roots comprise a major source of carbohydrates in the tropics, feeding more than 600 million people, mainly in Africa. Therefore, cassava is significant for the food safety of many depressed areas. In addition, cassava's highly efficient carbohydrate production predestines it to be a useful biomass for ethanol production (Amutha and Gunasekaran 2001). Because of its importance as a 'staple crop' and its economic potential, its genome has been sequenced (Cassava Genome Project 2009, http://www.phytozome.net/cassava). In addition, cassava has recently been subject to transcriptomic research for biotic and abiotic stresses (López et al. 2004; Reilly et al. 2007; Sakurai et al. 2007). In the last two decades, appropriate transgenic technologies have been developed to alleviate problems associated with pests and low micronutrient contents of this crop (Taylor et al. 2004). As a strategy for crop improvement, genetic engineering of metabolic pathways requires specific promoters to confine transgene expression to a specific organ. In

17 cassava, a major constraint is the limited availability of promoters with strong

18 expression in roots and freedom from intellectual property claims. Indeed, the list of

19 isolated, endogenous and exogenous promoters validated in cassava is very restricted.

Today, we know that a widely used promoter, the constitutive Cauliflower 35S promoter
 (pCaMV35S), is unsuitable for directing strong expression of genes in cassava roots

22 (Zhang et al. 2003a). It appears to lose its potency for directing the expression of the

- *GUS* reporter gene as cassava tissues mature, although expression is variable
- 24 (Schopke et al. 1996; González et al. 1998; Sarria et al. 2000; Beltrán et al. 2009).

2	
3 4	
5 6	
6 7	
8	
9 10	
11	
12 13	
14	
15 16	
17 18	
19	
20 21 22	
22	
23 24	
25	
26 27	
28	
29 30	
30 31 32	
32 33 34	
34 35	
36	
37 38	
39	
40 41	
42 43	
44	
45 46	
47	
48 49	
50	
51 52	
53	
54 55	
56	
57 58	
59	
60	

1

Among the few studies on the expression of genes in a specific organ of the cassava plant is that carried out by Ihemere et al. (2006). They determined that the potato class I patatin promoter (Kim et al. 1994) seems to be root specific. Generally, however, results derived from evaluations with a significant number of promoters for storage tissues are still not available for cassava as they are for other crops such as barley, wheat, and rice (Qu et al. 2008; Furtado et al. 2009).

8 de Souza et al. (2006) reported that hybridizations using Northern blots indicated that the glutamic-acid-rich protein (GARP) Pt2L4 is expressed in roots and stems but not in 9 10 leaves of cassava. The authors also suggested that the gene *Mec1* coding for Pt2L4 11 may be implicated in the development and thickening of roots. At least two homologous 12 genes coding for GARP exist in the cassava genome, according to Southern blot 13 analyses (Zhang et al. 2003b; de Souza et al. 2006). Acquiring the promoters of these 14 genes, which direct expression towards important organs such as roots and stems, 15 would allow alternative regulatory sequences to express genes of interest in these 16 organs.

17

7

18 During the preparation of this manuscript, de Souza et al. (2009) reported on the 19 cloning of a genomic fragment containing a promoter sequence and part of the Mec1 20 gene. The cloned promoter was shown to be functional by transient expression of a 21 GUS-fusion in bean hypocotyledons (de Souza et al. 2009). In this work, we report, on 22 the first evaluation of a promoter in transgenic cassava plants under field conditions. 23 Based on the Pt2L4-cDNA sequence available, we cloned the whole Mec1 gene 24 including the promoter sequence. A promoter fragment (CP2) was fused with the GUS 25 gene and introduced into cassava plants. The pattern of expression of the fusion 26 CP2:: GUS was determined by histochemical GUS staining and measuring

60

Planta

1 2		
3 4	1	β -glucuronidase enzymatic activity in the organs of transgenic cassava plants grown in
5 6	2	the field. Promoter CP2 was shown to be highly active, preferentially in stems and the
7 8	3	storage tissues of roots, which makes it a good candidate for the genetic engineering of
9 10 11	4	cassava. In a second approach, we evaluated a longer version of <i>Mec1</i> promoter (CP1)
12 13	5	including an intrinsic intron in carrot plants, a model crop with storage roots and
14 15	6	technically more feasible transformation system. Promoter CP1 could strongly express
16 17	7	the GUS gene in roots, but only slightly in leaves, thus demonstrating its usefulness for
18 19	8	expressing proteins in roots in heterologous systems and possibly preferential
20 21	9	expression in cassava itself. CP2 and/or CP1 could be used, for example, to increase
22 23 24	10	levels of iron, folate, pro-vitamin A and zinc of cassava to improve its nutritional value
24 25 26	11	(Dellapenna 1999; Fregene and Puonti-Kaerlas 2002; Taylor et al. 2004;
27 28	12	www.harvestplus.com).
29 30	13	
50		
31 32	14	Materials and methods
31 32 33 34	14 15	Materials and methods
31 32 33 34 35 36		Materials and methods Inverse PCR
31 32 33 34 35	15 16	Materials and methods Inverse PCR
31 32 33 34 35 36 37 38 39 40	15	
31 32 33 34 35 36 37 38 39 40 41 42	15 16 17	
31 32 33 34 35 36 37 38 39 40 41 42 43 44	15 16 17 18	To produce circular DNA fragments, 10 μ g of genomic DNA from cassava were
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	15 16 17 18 19	To produce circular DNA fragments, 10 μ g of genomic DNA from cassava were digested with EcoRI in a total volume of 100 μ l, purified using GFX TM PCR DNA and
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	15 16 17 18 19 20	To produce circular DNA fragments, 10 μ g of genomic DNA from cassava were digested with EcoRI in a total volume of 100 μ l, purified using GFX TM PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Piscataway, NJ) and eluted with 100
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	15 16 17 18 19 20 21	To produce circular DNA fragments, 10 μ g of genomic DNA from cassava were digested with EcoRI in a total volume of 100 μ l, purified using GFX TM PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Piscataway, NJ) and eluted with 100 μ l of 60 °C pre-warmed water. 40 μ l of purified genomic fragments were then ligated
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\end{array}$	15 16 17 18 19 20 21 22	To produce circular DNA fragments, 10 μ g of genomic DNA from cassava were digested with EcoRI in a total volume of 100 μ l, purified using GFX TM PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Piscataway, NJ) and eluted with 100 μ l of 60 °C pre-warmed water. 40 μ l of purified genomic fragments were then ligated using 100 U of T4 DNA-ligase in a total volume of 300 μ l. The ligation was performed
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 33\\ 54\\ 55\end{array}$	15 16 17 18 19 20 21 22 23	To produce circular DNA fragments, 10 μ g of genomic DNA from cassava were digested with EcoRI in a total volume of 100 μ l, purified using GFX TM PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Piscataway, NJ) and eluted with 100 μ l of 60 °C pre-warmed water. 40 μ l of purified genomic fragments were then ligated using 100 U of T4 DNA-ligase in a total volume of 300 μ l. The ligation was performed for 2 h at room temperature, followed by 20 h at 16 °C. The ligase was then deactivated
$\begin{array}{c} 31\\ 32\\ 33\\ 34\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ 41\\ 42\\ 43\\ 44\\ 45\\ 46\\ 47\\ 48\\ 49\\ 50\\ 51\\ 52\\ 53\\ 54 \end{array}$	 15 16 17 18 19 20 21 22 23 24 	To produce circular DNA fragments, 10 μ g of genomic DNA from cassava were digested with EcoRI in a total volume of 100 μ l, purified using GFX TM PCR DNA and Gel Band Purification Kit (Amersham Biosciences, Piscataway, NJ) and eluted with 100 μ l of 60 °C pre-warmed water. 40 μ l of purified genomic fragments were then ligated using 100 U of T4 DNA-ligase in a total volume of 300 μ l. The ligation was performed for 2 h at room temperature, followed by 20 h at 16 °C. The ligase was then deactivated by heating for 10 min at 60 °C, and circular genomic DNA was precipitated with EtOH

Page 6 of 36

Planta

3
1
4 5
о с
2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 4 5 8 9 10 11 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3
1
8
9
10
11
12
13
14
15
16
17
10
10
19
20
21
22
23
24
25
26
27
28
29
30
31
32
22
33 24
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
-0 /0
49 50
50
51
52
53
54
55
56
57
58
49 50 51 52 53 54 55 56 57 58 59
60

1 2

1	dNTPs, 50 ng of the primers CAS II and CAS III (Table 1), and 0.5 μI Advantage®
2	cDNA Polymerase Mix (DB Bioscience, CA, USA) in the buffer provided. Amplification
3	profile was as follows: 2 min initial denaturation at 94 $^\circ\!$ C followed by 35 cycles (30 sec
4	94 °C, 30 sec annealing, 5 min 68 °C) and 10 min final polymerization at 68 °C. For
5	annealing, a temperature gradient of 1 $^\circ C$, ranging from 58 to 68 $^\circ C$, was applied.
6	Sequences of the 5' and 3' ends of the ~2.2 Kb inverse-PCR products obtained were
7	used to design the primers FinCas and CasP II (Table 1) for cloning of the GAPR gene.
8	The amplification was performed with 200 ng genomic DNA, 100 ng of each primer,
9	250 μM dNTPs and <i>PfuUltra™</i> II Fusion HS DNA Polymerase (Stratagene Europe,
10	Amsterdam, Netherlands) in the buffer provided. Amplification steps were 1 min initial
11	denaturation at 95 °C, 35 cycles of amplification (20 sec 95 °C, 30 sec 55 °C, 2 min
12	72 ℃) and 10 min final polymerization at 72 ℃. The obtained 2 Kb PCR product was
13	purified using GFX [™] PCR DNA and Gel Band Purification Kit (Amersham Biosciences,
14	NJ, USA), and cloned into the pCR2.1 [®] -TOPO® (Invitrogen, Paisley, UK) vector to yield
15	pCR-CP. The integrity of the amplified gene was verified by sequencing.
16	
17	Construction of binary vectors
18	
19	To generate a CP2::GUSPlus cassette, a 731 bp promoter fragment was amplified from
20	pCR-CP using the primers PCII and PCNI (Table 1) carrying a PstI and an NcoI site,
21	respectively. The PCR was performed with the proofreading PWO DNA Polymerase
22	(Peqlab, Erlangen, Germany). The amplified CP2 promoter fragment was digested with
23	PstI and NcoI, and ligated to pCAMBIA1305.2 (Canberra, Australia) digested with the
24	same two enzymes to yield pCP2. The CP1::GUSPlus cassette was obtained by
25	amplifying a fragment carrying 1012 bp promoter sequence, followed by 18 bp of the
26	coding sequence, the intron of GAPR gene and by further 9 bp. The PCR was

Page 7 of 36

Planta

1	performed on the plasmid pCR-CP using the primers PCI and PCNII (Table 1) carrying
2	a PstI and an NcoI site, respectively. The obtained fragment was digested and ligated
3	into pCAMBIA1305.2 (Canberra, Australia), as described above, yielding pCP1.
2	1
5	6 Genetic transformation of cassava
6	5
7	7 The procedure for cassava transformation is described by Beltrán et al. (2009). Briefly,
8	the plant material used for obtaining transgenic plants was friable embryogenic callus
ç	(FEC; Taylor et al. 1996) from the cassava genotype 60444 (M Nig 11). The genotype
10) was transformed with Agrobacterium tumefaciens strain AGL1, containing plasmid
11	pCP2. The plasmid's T-DNA region carried the gene GUSPlus under the direction of
12	2 promoter CP2 and the gene <i>hpt</i> II under the promoter 35S which was the selective
13	3 marker.
14	L Contraction of the second
15	The tissue was inoculated with the bacterium (grown overnight), using 200 μ l of
16	suspension per gram of FEC. The inoculated FEC was then submitted to a vacuum
17	pressure of 25" of Hg (12.3 psi) per minute and co-cultivated for 48 h at 22 °C in
18	darkness and at a relative humidity of 49%. To select transgenic tissue, hygromycin
19	was used at 10 mg I^{-1} during the induction of somatic embryos (an early regeneration
20	stage). Complete plants were then regenerated and preselected for the genes
21	GUSPlus and hptII, using amplification by PCR according to the methodology
22	2 described by Beltrán et al. (2009).
23	3
24	Genetic transformation of carrot
25	5

1	For carrot transformation, we essentially used the protocol reported by Hardegger and
2	Sturm (1998), using the variety Chantenay Red Core. Transgenic plants were selected,
3	using amplification by PCR and the GUS test, and established in the greenhouse under
4	controlled conditions.
5	
6	Establishing transgenic lines in confinement fields
7	
8	After regeneration, the transgenic cassava plants were propagated in vitro and
9	transferred to the greenhouse where they were maintained for 2 months. They were
10	then planted under confinement field conditions at the International Center for Tropical
11	Agriculture (CIAT, its Spanish acronym). The planting plot for the transgenic plants
12	complied with the following biosafety standards: (1) minimum separation of 500 m from
13	the nearest plot planted to cassava, (2) planting of live barriers of elephant grass
14	(Pennisetum purpureum Schum.), (3) removal of flowers before anthesis, (4) manual
15	and chemical control of weeds during the experiment and of postharvest sprouting, and
16	(5) incineration of plant residues.
17	
18	To determine the pattern of expression of the GUSPlus gene as conferred by promoter
19	CP2, samples of mature storage roots, stems, and leaves were collected and
20	evaluated, using GUS staining and quantifying β -glucuronidase enzymatic activity. To
21	determine finer differences in the expression of the fusion CP2:: GUSPlus, the root
22	cortex was analysed separately from the edible root pulp. The latter comprises mostly
23	parenchyma and xylem, and is where starch accumulation occurs.
24	
25	Obtaining nucleic acids
26	

Planta

1	For the PCR tests, genomic DNA was extracted, using the QIAGEN DNeasy Plant Mini
2	Kit (Maryland, USA), and starting with 300 mg of leaf tissue pulverized with liquid
3	nitrogen. The DNA was quantified by absorbance and its quality confirmed by
4	electrophoresis in 1% agarose gel and staining with ethidium bromide.
5	
6	RNA was extracted, using an SV Total RNA Isolation Kit (Promega Corporation,
7	Madison, WI, USA), visualized in 0.8% agarose gel to confirm its quality, and quantified
8	by absorbance in a Tecan GENios fluorometer (Tecan Trading, Zurich, Switzerland).
9	To rule out contamination with DNA, a standard PCR was carried out for gene 18S.
10	Where DNA residues had to be eliminated, the RNA was treated with DNase I
11	(Invitrogen Life Technologies, Carlsbad, CA, USA).
12	
13	Southern blotting
14	
15	We separated 10 μ g of genomic DNA (digested by enzyme EcoRI) by electrophoresis
16	in 1% agarose gels and transferred them to a nylon membrane (Amersham
17	Biosciences, Piscataway, NJ, USA). To hybridize the membrane, we used a DIG DNA
18	Labelling Kit (Roche Molecular Biochemicals, Mannheim, Germany), following the
19	manufacturer's instructions. The temperature was 42 °C, and the GUSPlus probe was
20	200 bp long and marked with digoxigenin. EcoRI cuts at one site in the T-DNA region
21	of the pCP2 plasmid, between cassettes GUSPlus and hptII. Hence, the number of
22	hybridization signals was interpreted as the number of copies integrated with the GUS
23	<i>Plus</i> gene.
24	
25	Histochemical GUS staining
26	

Page 10 of 36

Planta

1	
2	
3	
4 5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
10 10	
20	
20 21	
22	
$\begin{array}{c}2\\3\\4\\5\\6\\7\\8\\9\\1\\1\\1\\2\\1\\4\\1\\5\\1\\6\\1\\7\\8\\9\\0\\1\\2\\2\\3\\4\\5\\6\\3\\7\\8\\39\end{array}$	
24	
25	
26	
27	
28	
29	
30	
31	
32 22	
33	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44 45	
45 46	
40 47	
48	
49	
50	
51	
52 53	
53	
54	
55	
56	
57 50	
58 59	
59 60	
00	

1

1	The in situ activity of the β -glucuronidase enzyme of the transgenic cassava and carrot
2	lines was determined, using the histochemical GUS staining test, according to
3	Jefferson (1987). We used 7-month-old plants that had been grown in the field. Cross-
4	sections of leaves, petioles, stems, and storage roots were left in stain for either 3 h or
5	12 h at 37 $^\circ\!\mathrm{C}$, washed several times with sterilized distilled water, and, except for the
6	root samples, immersed in 70% ethanol (v/v) to remove chlorophyll. The stain
7	comprised NaH ₂ PO ₄ 50 mM, Na ₂ EDTA 10 mM, K ₄ Fe(CN) ₆ 0.5 mM, K ₃ Fe(CN) ₆ 0.5 mM,
8	0.1% Triton X-100 (v/v), NaHPO ₄ for adjusting to pH 8.0, methanol, and 0.5 mg ml ⁻¹ of
9	5-bromo-4-chloro-3-indolyl- β -D-glucuronic acid (X-Gluc). The same tissues of
10	nontransgenic plants were used as control.
11	
12	Quantifying enzymatic activity
13	
14	Protein was extracted according to Bao et al. (2000) and Bao and Lazarovits (2002),
14 15	Protein was extracted according to Bao et al. (2000) and Bao and Lazarovits (2002), using 100 mg of samples from leaves, stems, and root cortex and pulp to which was
15	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was
15 16	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10
15 16 17	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10 mM, Na ₂ EDTA pH 8.0 10 mM, 0.1% Sarkosyl® (w/v), and 0.1% Triton X-100 (v/v)]. The
15 16 17 18	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10 mM, Na ₂ EDTA pH 8.0 10 mM, 0.1% Sarkosyl® (w/v), and 0.1% Triton X-100 (v/v)]. The mixture was homogenized by vortexing and leaving on ice for 30 min to facilitate
15 16 17 18 19	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10 mM, Na ₂ EDTA pH 8.0 10 mM, 0.1% Sarkosyl® (w/v), and 0.1% Triton X-100 (v/v)]. The mixture was homogenized by vortexing and leaving on ice for 30 min to facilitate extraction. After centrifuging for 10 min at 10,000 rpm and 4 °C, the supernatant was
15 16 17 18 19 20	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10 mM, Na ₂ EDTA pH 8.0 10 mM, 0.1% Sarkosyl® (w/v), and 0.1% Triton X-100 (v/v)]. The mixture was homogenized by vortexing and leaving on ice for 30 min to facilitate extraction. After centrifuging for 10 min at 10,000 rpm and 4 °C, the supernatant was saved. Protein concentration was determined, using a Bradford microassay method
15 16 17 18 19 20 21	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10 mM, Na ₂ EDTA pH 8.0 10 mM, 0.1% Sarkosyl® (w/v), and 0.1% Triton X-100 (v/v)]. The mixture was homogenized by vortexing and leaving on ice for 30 min to facilitate extraction. After centrifuging for 10 min at 10,000 rpm and 4 $^{\circ}$ C, the supernatant was saved. Protein concentration was determined, using a Bradford microassay method (Bradford 1976) and a standard of bovine serum albumin (BSA; Sigma-Aldrich
 15 16 17 18 19 20 21 22 	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10 mM, Na ₂ EDTA pH 8.0 10 mM, 0.1% Sarkosyl® (w/v), and 0.1% Triton X-100 (v/v)]. The mixture was homogenized by vortexing and leaving on ice for 30 min to facilitate extraction. After centrifuging for 10 min at 10,000 rpm and 4 $^{\circ}$ C, the supernatant was saved. Protein concentration was determined, using a Bradford microassay method (Bradford 1976) and a standard of bovine serum albumin (BSA; Sigma-Aldrich
 15 16 17 18 19 20 21 22 23 	using 100 mg of samples from leaves, stems, and root cortex and pulp to which was added 1 ml of GUS extraction buffer [NaHPO ₄ pH 7.0 50 mM, 2-mercaptoethanol 10 mM, Na ₂ EDTA pH 8.0 10 mM, 0.1% Sarkosyl® (w/v), and 0.1% Triton X-100 (v/v)]. The mixture was homogenized by vortexing and leaving on ice for 30 min to facilitate extraction. After centrifuging for 10 min at 10,000 rpm and 4 °C, the supernatant was saved. Protein concentration was determined, using a Bradford microassay method (Bradford 1976) and a standard of bovine serum albumin (BSA; Sigma-Aldrich Corporation, St. Louis, MO, USA).

Planta

1	hydrate (MUG) (Jefferson 1987). This reaction is triggered by dilutions of the protein
2	extracts in the presence of MUG (final concentration 0.8 mM), and incubated for 10 min
3	at 37 ℃. The fluorescence emitted was measured in a DyNA DNA Quant™ 200
4	fluorometer (Hoefer Pharmacia Biotech, Inc., San Francisco, CA, USA) with a spectrum
5	of excitation of 356 nm and one of emission of 494 nm. The enzymatic activity was
6	expressed as pmol 4-MU per minute per µg of protein.
7	
8	Quantitative real-time RT-PCR
9	
10	The primer pairs suitable for real-time PCR of the genes GUSPlus, hptII, and 18S were
11	recently reported by Beltrán et al. (2009). SuperScript™ II First-Strand Synthesis
12	System for RT-PCR was used with Ramdom Primers (Invitrogen Life Technologies,
13	Carlsbad, CA, USA) to synthesize cDNA from 1 µg of total RNA.
14	
15	For amplification, 1 μI of a 1:10 dilution of each synthesized cDNA was used, and a
16	final volume of 20 μl, containing 10 μl of master mix from the DyNamo™ SYBR [®] Green
17	qPCR Kit (Finnzymes Oy, Espoo, Finland), made. For the amplification reaction,
18	0.1 μ M of each primer was used, and the program was: one cycle of 15 min at 94 °C,
19	followed by 40 cycles of 10 s at 94 $^{\circ}$ C, 25 s at the annealing temperature of each
20	primer pair, and 35 s at 72 $^{\circ}\!\mathrm{C}$. The program finished with an amplification of melting
21	curves, consisting of a sweeping of temperatures from 65 to 95 °C, increasing by 0.2 °C
22	each second.
23	
24	The reactions were carried out in the continuous fluorescence detector (DNA Engine
25	Opticon [®] , MJ Research, Waltham, MA, USA), using the OpticonMONITOR 2.0 software
26	from the same company. The Tm value for each amplification was recorded to verify

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
1/	
18	
19	
$\begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 2 \\ 13 \\ 4 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 12 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 20 \\ 27 \\ 28 \\ 29 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20 \\ 20$	
21	
22	
23	
24	
25	
20	
21	
28	
29 30	
30 31	
32	
32 33	
34	
35	
36	
34 35 36 37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56 57	
57	
58	
59	
60	

1	the specificity of the amplified product, and the amplification compared with that
2	obtained for plasmid pCP2 as the positive control.
3	
4	To estimate the transcription levels, the method of relative quantification was used with
5	correction of efficiency as described initially by Pfaffl (2001) and modified for cassava
6	transgenes by Beltrán et al. (2009). To confirm the specificity of the amplified products,
7	qPCR products from the genes <i>GUSPlus</i> and <i>18S</i> were sequenced, using a BigDye [®]
8	Terminator Kit in an automatic sequencer (ABI PRISM [®] 3100, Applied Biosystems,
9	Foster City, CA, USA). The sequences were analysed, using the BLAST algorithm
10	(Altschul et al. 1997).
11	
12	Results
13	
14	Cloning of Mec1 gene and characterizing the promoter
15	
16	To clone the Mec1 gene, inverse PCR on EcoRI-digested and circularized genomic
17	DNA was performed using the primer pair CAS II/ CAS III deduced from the
18	corresponding cDNA sequence (accession No: AY101376). A 1926 bp genomic
19	fragment was then obtained by PCR on genomic DNA, using the primer pair
20	FinCas/CasP II, which were designed based on the sequence of the inverse PCR
21	product. As shown in Fig.1, the obtained genomic fragment contains 1012 bp promoter
22	sequence followed by the coding region. Consisting with the previously published data
23	of de Souza et al. (2009), the TATA box of the pMec1 was identified 103 bp upstream
24	from the start ATG. According to the PLACE software
25	(dna.affrc.go.jp/PLACE/signalup.html), the pMec1 promoter harbours a sucrose
26	responsive element (SURE) conserved among genes regulated by sucrose, e.g. the

Page 13 of 36

Planta

1	patatin I gene of potato, in addition to conserved motifs occurring in regulatory
2	sequences of β -amylase genes from different species. The p <i>Mec1</i> promoter contains
3	also motifs indicating putative regulation by light, biotic and abiotic stress, and the
4	phytohormones gibberellins and auxin. Furthermore, the promoter includes several
5	copies of both nodulin consensus sequences, NODCON1GM and NODCON2GM,
6	which are present in nodule specific genes from soybean. A list of selected putative
7	motifs is presented in Table 2. As previously reported, the Mec1 coding region contains
8	an intron of 136bp (de Souza et al. 2009). The deduced cDNA (534 bp including stop
9	codon) encodes a protein almost identical (97% identity) to that of the allergenic-related
10	protein Pt2L4 (accession No: AAM55492) reported by de Souza et al. (2006).
11	Comparison of the Mec1 shown here with the glutamic acid-rich protein C54 reported
12	by Zhang et al. (2003a) revealed a sequence identity of about 60%, indicating that the
13	two proteins might have different biological functions. Accordingly, the sequences of the
14	corresponding promoters differ significantly, indicating differential regulation. For
15	instance, <i>pC54</i> does not contain the sucrose responsive element (SURE) or ARF
16	(auxin response factor) binding site, which are present in <i>pMec1</i> .
17	
18	Generating transgenic cassava plants and their molecular characterization
19	
20	For cassava transformation, a 731 bp fragment from the promoter of Mec1, from here
21	onward called CP2 promoter, was translationally fused to the GUSPlus gene. The
22	binary vector pCP2 was then employed to transform cassava embryogenic calli, using
23	the Agrobacterium tumefaciens based FEC transformation system. Eight of the 103
24	hygromycin-resistant cell lines regenerated to plants, from which four were successfully
25	established in the field. The transgenicity of the lines numbered 10, 22, 24, and 26 was
26	confirmed by PCR-detection of the genes GUS Plus and hptII (data not shown). In

1	addition, the four lines were identified as coming from different transformation events,
2	as suggested by southern blot analysis (Figure 2).
3	
4	Patterns of expression of CP2 in cassava tissues and organs
5	
6	Histochemical analyses were carried out on different organs of 7-month-old cassava
7	plants grown in the field. Although we could detect, throughout this research, the
8	expression of transgenes in plants grown in vitro and in the greenhouse (data not
9	shown), the objective of this study was to determine the activity of the promoter under
10	field conditions, in plants ready for harvesting. The GUS staining pattern was examined
11	for all samples of storage roots, stems, leaves, and petioles.
12	
13	Because roots comprise the organ of greatest interest in cassava, we focused our
14	attention on identifying tissues stained with GUS. In root cross-sections, we could
15	detect a differential pattern of expression of the GUSPlus gene in the three tissue
16	systems that anatomically distinguish the cassava storage root: TSI (epidermis and
17	cortical parenchyma), TSII (phloem and vascular cambium), and TSIII (secondary
18	xylem with parenchyma cells that are highly specialized for storing starch) (de Souza et
19	al. 2006).
20	
21	The GUS staining analysis revealed strong and uniform expression across the three
22	root tissue systems. However, the generalized pattern could be described as being
23	strongest in the vascular tissue (central and secondary xylem); slightly less intense in
24	the vascular cambium; but uniform throughout the parenchymatous tissue where starch
25	accumulates (Fig. 3A, E).
26	

Planta

1 2 3		
1 2 3 4 5 6 7		
7 8 9 10		
11 12 13		
14 15 16		
17 18 19		
20 21 22		
19 20 21 22 23 24 25 26 27		
20 27 28 29		
30 31		
32 33 34 35		
36 37 38		
39 40 41		
42 43 44 45		,
43 46 47 48		,
49 50 51		,
52 53 54		, ,
55 56 57		,
58 59 60		

1 In stem tissues (Fig. 3B), the expression of the *GUSPlus* gene was completely absent 2 in the pith, explained in part by the presence of hollow sclerenchyma cells lined in 3 xylem. Intense staining, however, was observed in the vascular bundles, including the 4 xylem and phloem. The intensity of staining in the three outside layers declined 5 gradually towards the pith (Fig. 3F). In petiole tissues (Fig. 3C), the pattern of 6 expression was similar to that of stem tissues, showing no expression in the pith. 7 Staining, however, was clearly less intense than in the stems. In leaf tissues (Fig. 3D), 8 GUS staining seemed uniform, with an intensity that was comparable with that for 9 petioles, but less than for roots and stems. 10 11 Quantifying GUS activity in cassava organs 12 13 Values of β -glucuronidase enzymatic activity were averaged across three different 14 plants, with three replications of tissue per plant. The best expression was found in line 15 10, where levels of enzymatic activity were highest in the stems and root pulp, for which 16 values were almost the same $(17.2\pm2.1 \text{ and } 17.5\pm1.6 \text{ pmol } 4\text{-MU per minute per } \mu g$ 17 protein, respectively; Fig. 4). An intermediate level of activity was recorded for TSI 18 (epidermis and cortical parenchyma) at 11.9±1.5 4-MU per minute per µg protein. The 19 lowest level of activity was recorded for leaves at 5±0.6 4-MU per minute per µg 20 protein. The high level recorded for enzymatic activity in roots was reflected in the 21 intense staining observed in cross-sections of this organ. The activity levels detected in 22 leaves were also compatible with the light staining detected in leaf cross-sections. 23 24 Variations in mRNA levels of the GUSPlus gene and GUS activity in cassava roots 25

3
4
5
6
7 8 9 10
8
9 10
11
12
13
14
15
16
1/
10 10
20
21
22
13 14 15 16 17 18 20 21 22 32 22 23 24 25 26 27 28 20 31 23 34 35 37 38 9 30
24
25
26
21
20
30
31
32
33
34
35
30
38
39
40
41
42
43 44
44 45
46
47
48
49
50
51
52 52
52 53 54
55
56
57
58
59
60

1 2

1	To refine the quantification of the potency of the CP2 promoter fragment in directing
2	gene expression in transgenic cassava roots, we evaluated levels of mRNA and
3	enzymatic activity in four lines presenting variation in intensity of GUS staining (Fig.
4	5A). Results were classified within a quantitative range of enzymatic activity that fell
5	into three categories: low (0.15 \pm 0.0), medium (1.27 \pm 0.04), and high (17.27 \pm 2.13 4-MU
6	per minute per μ g protein) (Fig. 5C). We point out that, in storage roots, high levels of
7	enzymatic activity correlated with the intensity of histochemical GUS staining and the
8	relative mRNA levels for the GUSPlus gene (Fig. 5A, B, C).
9	
10	Patterns of expression and β -glucuronidase enzymatic activity in the organs and
11	tissues of carrot transformed with CP1::GUSPlus
12	
13	The carrot transformation system was used to evaluate, in a more expeditious way, the
14	activity of a longer promoter fragment named CP1 (1012 bp long) fused to GUSPlus
15	(Fig. 6A). As shown in Fig.1, the fragment CP1 included also an intrinsic intron, to
16	account for possible regulatory roles exerted by this genetic element. Hence, 120
17	cotyledons from in vitro germinated seeds were transformed with Agrobacterium. They
18	produced 228 calli from which 39 transgenic carrot plants were generated and
19	transferred to the greenhouse. A weak GUS activity was visualized in leaves of several
20	plants analyzed; it was restricted to the vascular tissue of leaf blades of plants
21	expressing the GUSPlus gene. Results obtained with the best line are depicted in
22	Fig. 6B.
23	
24	In storage roots, β -glucuronidase activity appeared contrasting, showing intense and
25	uniform GUS staining in secondary phloem (Fig. 6C). In contrast, GUS staining was
26	noticeably absent in the central tissue, which comprised secondary xylem (Fig. 6C).

Planta

1	
2	When the pattern of GUS staining was evaluated in whole in vitro plants, the promoter
3	was observed to be stronger in roots than in leaves (not shown). We determined that
4	levels of GUS enzymatic activity in roots and leaves to be 12.4 \pm 3.7 and 2.1 \pm 0.17 pmol
5	4-MU per minute per μ g protein, respectively (Fig. 6D). This result indicated that,
6	effectively, promoter activity was stronger in roots. Thus, the result confirmed that the
7	CP1 promoter fragment had a pattern of differential expression, with a preference for
8	roots, but restricted to the secondary phloem of this organ. This finding suggests that
9	the CP1 promoter and the CP2 shorter version of the promoter pMec1, are both new
10	candidates for the expression of genes of interest in storage roots.
11	
12	Discussion
13	
14	The lack of promoters that are suitable for the expression of genes in roots storing
15	carbohydrates is a constraint in using cassava as a model for the expression of those
16	genes of interest whose products accumulate in roots. To help improve this deficiency,
17	we focused our attention on isolating and evaluating the expression of the promoter
18	sequences of genes that code for GARPs whose expression is high in cassava stems
19	and storage roots (de Souza et al. 2006).
20	
21	To evaluate the promoter fragment CP2 in cassava, cross-sections of roots were
22	examined. These showed strong GUS expression distributed uniformly throughout all
23	tissues of this organ. The fact that the expression was also intense in parenchymatous
24	tissues makes this promoter valuable. Starch accumulates in these tissues, which are
25	usable for human and animal consumption, and for applications in the starch industry.
26	However, staining demonstrated a more pronounced expression in the bundles of

xylem, phloem, and vascular cambium, in a manner that closely resembles the patterns conferred by the specific promoter of a major latex-like protein (MII) in storage roots of sugar beet (Beta vulgaris L.; Oltmanns et al. 2006). In addition, expression occurred in that region of the cortex that constitutes root peel. which is used in animal feed and which protects roots from soil diseases. That is, the proteins that control pathogens and insect pests such as the cassava burrower bug (Cyrtomenus bergi Froeschner; Bellotti et al. 1999) can be expressed through this promoter. As is known, pCaMV35S still figures as one of the most heavily used promoters in genetic transformation of dicotyledonous and monocotyledonous for reaching high levels of constitutive expression (Gandhi et al. 1999). In cassava, this promoter has proved weak in root tissues, and is ruled out as the best candidate for expressing new, or improving existing traits in this organ (Zhang et al. 2003a). Sarria et al. (2000) pointed out that gene transcripts under its control may decline with maturity. Even though the pattern of expression of genes conferred by pCaMV35S is weak and heterogeneous in cassava roots, in leaves, it can direct high levels of variable GUS expression in greenhouse plants (Beltrán et al. 2009). Hence, this promoter continues to be heavily used for improving traits in this crop (Zhang et al. 2003b; Jørgensen et al. 2005). Although data on the detection of transcripts for the fusion CP2:: GUSPlus suggest that promoter fragment CP2 is active in leaves, the intensity of GUS staining and guantitative data on enzymatic activity reveal that CP2 is really much less active (by 3.5 times) in this tissue than in stems and roots. In the different organs of each transgenic

Planta

2	
4	
5	
5	
6	
7	
8	
9	
10	
11	
10	
12	
13	
14	
15	
16	
17	
18	
10	
19	
20	
21	
22	
3 4 5 6 7 8 9 10 11 2 13 4 15 6 7 18 9 20 1 22 3 4 5 6 7 8 9 10 11 2 13 4 15 6 7 18 9 20 1 22 3 24 5 26 7 8 9 30 1 32 33 4 35 6 7 8 9 10 10 10 10 10 10 10 10 10 10 10 10 10	
24	
25	
20	
20	
27	
28	
29	
30	
31	
22	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
45 46	
47	
48	
49	
50	
51	
51 52	
53	
54	
55	
56	
57	
58	
58 59	
60	

line, mRNA levels do not always reflect β-glucuronidase activity (data not shown). This
 phenomenon has not, until now, been reported in cassava, although it has already
 been demonstrated in other species such as strawberry (*Fragaria*) and *Agapanthus* (Schaart et al. 2002; Mori et al. 2007). The possibility has not been ruled out that the
 effects of position and/or post-transcriptional regulation may reduce the translation rate,
 inhibiting GUS enzymatic activity.

8 In biotechnology, to evaluate the range of concentration of transgenic protein is 9 important, as transgenic plants with the desired levels of expression can be selected for 10 specific applications (Furtado et al. 2009). The tendency is usually to select events with 11 the highest levels of expression (more mRNA), but they do not always result in being 12 the most adequate for expressing the desired trait. In some cases, such as in the 13 modification of plant growth and development, controlled levels of expression of the 14 transgenes involved may be more advisable (Phillips et al. 1992). In this study, we 15 evaluated the expression of the β -glucuronidase protein, directed by the promoter 16 fragment CP2, in different transgenic lines. According to the levels of expression found, 17 we classified roots as having null, low, medium, or high enzymatic activity.

18

7

The number of copies of a transgene does not, in itself, seem to explain differences in enzymatic activity. Possibly, the effect of the position characterizing each integration into the genome and/or the post-transcriptional control was responsible. In the best cases, levels of enzymatic activity in roots surpassed those reported for the same type of tissue in beets, using the specific promoter *MII* (Oltmanns et al. 2006). For future evaluations of transgenic events in the field, with new traits of agronomic interest, transgenic events will need to be evaluated with a broad range of expression to select

2	
3	
3 4	
5	
6	
7	
7 8	
8	
9	
10	
11	
12	
13	
14	
15	
16	
10	
17	
18	
19	
20	
21	
9 10 11 12 13 14 15 16 17 18 19 20 21 22	
23 24 25 26	
24	
25	
26	
27	
28 29	
29	
30	
31	
32	
33	
33 34 35	
35	
36	
37	
36 37 38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
49 50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
00	

1

1	the most promising. With regard to plant morphology, all the lines analysed in the field
2	had a normal appearance, producing vigorous roots similar to those of the control.
3	
4	Results suggested that the CP2 promoter fragment would be useful for future
5	biotechnological applications in cassava. For example, powerful promoters in stem and
6	leaf phloem may be useful for conferring resistance to the cassava stem borer
7	(Chilomima clarkei Amsel) (Bellotti 2002), or for controlling the cassava hornworm
8	(Erinnyis ello L.; Bellottii 2002). Both lepidopteran pests cause serious problems in
9	Latin America's cassava fields.
10	
11	Considering the high level of activity in roots, the CP2 promoter fragment may also be
12	useful for increasing the contents of micronutrients and/or proteins in this organ, or it
13	could be used to modify starch characteristics among other traits of industrial
14	importance. Thus, this promoter could be used to combine different traits in a single
15	event that requires high levels of simultaneous expression in roots and vascular stem
16	tissues. An example of such an event is producing varieties whose aerial parts resist
17	pests and diseases, while roots exhibit improved nutritional qualities.
18	
19	These results are pioneering in the establishment and analysis of transgenic lines in
20	confined fields, following the biosafety standards established by CIAT and the
21	Colombian government. These include live barriers that isolate the crop, or the
22	emasculation or bagging of flowers, to mitigate pollen movement. Because cassava is
23	heterozygous and propagates vegetatively, our experiments had to demonstrate
24	stability of expression of transgenes across successive cycles of propagation, whether
25	in vitro clonal, or in the greenhouse or field (Taylor et al. 2004).

26

Page 21 of 36

Planta

1 2
3 4
5 6 2
7 8 3
9 10 4
11 12 5 13
13 14 6 15
16 7 17 7
18 19 8
20 21 9
22 23 10
24 25 11
26 27 12 28
29 30
31 32 14
33 34 15
35 36 16
37 38 17
39 40 18 41
42 10
44 45 20
46 47 21
49 22
51 23
53 24
55 25
57 58
42 19 43 20 44 20 45 21 46 21 48 22 50 23 51 23 53 24 54 25 56 25 57 25

Page 22 of 36

Planta

1	effectively, the CP1 promoter directs the expression of <i>crtB</i> in cassava roots, producing
2	a significant increase of carotenes in this organ (unpublished data).
3	
4	With different promoters, including the constitutive, we observed considerable
5	differences in the activity levels of β -glucuronidase in carrot on comparing transgenic
6	plants grown in vitro with those grown in the greenhouse (Wally et al. 2008). In this
7	study, we had aimed to minimize in vitro effects by analysing plants grown in the
8	greenhouse. In quantitative terms, in leaves and roots, the CP1 promoter shows a very
9	similar behaviour to UBQ3, which was recently suggested as ideal for expressing
10	proteins in carrot tap roots. CP1 even surpassed the potency of, for example,
11	promoters pCaMV35S, D35S, and <i>rol</i> D in carrot (Wally et al. 2008).
12	
13	Finally, the results presented can be considered as pioneering in the evaluation of
14	transgenic plants in the field, and as bringing this crop into the new era of seeking
15	biotechnological products to benefit producers and consumers.
16	
17	Acknowledgements
18	
19	The authors express their gratitude to Orlando Vacca, Magdalena García, Carlos
20	Dorado, and Pablo Herrera for their technical assistance in the production and
21	maintenance of cassava lines in the greenhouse and field; and to Mathew Bouniol,
22	Cristian Olaya, and Yamid Sanabria for their assistance with photography. This
23	research was sponsored by HarvestPlus (www.harvestplus.org) with funding provided
24	by the Bill and Melinda Gates Foundation.
25	
26	

Planta

1	References
2	
3	Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and
4	PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
5	
6	Amutha R, Gunasekaran P (2001) Production of ethanol from liquefied cassava starch using co-
7	immobilized cells of Zymomonas mobilis and Saccharomyces diastaticus. J Biosci Bioeng 92(6):560-564
8	
9	Bao JR, Lazarovits G (2002) Evaluation of three procedures for recovery of GUS enzyme and colony
10	forming units of a nonpathogenic strain of Fusarium oxysporum, 70T01, from inoculated tomato roots. Can
11	J Plant Pathol 24:340–348
12	
13	Bao JR, Velema J, Dobinson KF, Lazarovits G (2000) Using GUS expression in a non pathogenic
14	Fusarium oxisporum strain to measure fungal biomass. Can J Plant Pathol 22:70–78
15	
16	Bellotti AC (2002) Arthropod pests. In: Hillocks RJ, Thresh JM, Bellotti AC eds. Cassava: biology,
17	production and utilization. CAB International p. 209-235.
18	
19	Bellotti AC, Smith L, Lapointe SL (1999) Recent advances in cassava pest management. Annu Rev
20	Entomol 44:343–370
21	
22	Beltrán J, Jaimes H, Echeverry M, Ladino Y, López D, Duque MC, Chavarriaga P, Tohme J (2009)
23	Quantitative analysis of transgenes in cassava plants using real-time PCR technology. In Vitro Cell Dev
24	Biol Plant 45:48–56. DOI 10.1007/s11627-008-9159-5
25	
26	Bradford MM (1976) A rapid and sensitive method for quantification of microgram quantities of protein
27	using the principle of protein-dye binding. Anal Biochem 78:248–254
28	
29	de Souza CRB, Carvalho LJCB, de Almeida ERP, Gander ES (2006) A cDNA sequence coding for a
30	glutamic-acid-rich protein is differentially expressed in cassava storage roots. Protein Pept Lett 13:653-657
31	

Page 24 of 36

~	
2	
3	
4	
4	
3 4 5 6 7 8 9 10 11 2 13 14 15 16 17 18 19	
č	
6	
7	
8	
a	
10	
11	
12	
13	
15	
14	
15	
10	
16	
17	
17	
18	
10	
13	
20	
21	
<u> </u>	
22	
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38	
23	
24	
25	
25	
26	
07	
21	
28	
29	
30	
00	
31	
32	
02	
33	
34	
0-	
35	
36	
00	
37	
30	
50	
39	
40	
41	
42 43	
43	
44	
44	
45	
46	
40	
47	
48	
49	
50	
51	
-	
52	
53	
54	
55	
56	
57	
58	
59 60	

1	de Souza CR, Aragão FJ, Moreira EC, Costa CN, Nascimento SB, Carvalho LJ (2009) Isolation and
2	characterization of the promoter sequence of a cassava gene coding for Pt2L4, a glutamic acid-rich protein
3	differentially expressed in storage roots. Genet Mol Res 8(1):334-44
4	
5	Dellapenna D (1999) Nutritional genomics: manipulating plant micronutrients to improve human health.
6	Science 285:375–379
7	
8	Fregene M, Puonti-Kaerlas J (2002) Cassava biotechnology. In: Hillocks RJ, Thresh JM, Bellotti AC eds.
9	Cassava: biology, production and utilization. CAB International p. 179-207
10	
11	Furtado A, Henry R, Pellegrineschi A (2009) Analysis of promoters in transgenic barley and wheat. Plant
12	Biotechnol J 7(3):240-253
13	
14	Gandhi R, Maheshwari SC, Khurana P (1999) Transient gene expression and influence on foreign gene
15	expression in Arabidopsis thaliana. In Vitro Cell Dev Biol Plant 35:232-237
16	
17	González AE, Schopke C, Taylor NJ, Beachy RN, Fauquet CM (1998) Regeneration of transgenic cassava
18	plants (Manihot esculenta Crantz) through Agrobacterium-mediated transformation of embryogenic
19	suspension cultures. Plant Cell Rep 17:827-831
20	
21	Hardegger M, Sturm A (1998) Transformation and regeneration of carrot (Daucus carota L.) Mol Breed
22	4:119–127
23	
24	Ihemere U, Arias-Garzón D, Lawrence S, Sayre R (2006) Genetic modification of cassava for enhanced
25	starch production. Plant Biotechnol J 4:453–465
26	
27	Jefferson RA (1987) Assaying chimeric genes in plants: the GUS gene fusion system. Plant Mol Biol Rep
28	5:387-405
29	
30	Jørgensen K, Bak S, Busk PK, Sørensen C, Olsen CE, Puonti-Kaerlas J, Møller BL (2005) Cassava plants
31	with a depleted cyanogenic glucoside content in leaves and tubers: distribution of cyanogenic glucosides,

Planta

	1	their site of synthesis and transport, and blockage of the biosynthesis by RNA interference technology.
	2	Plant Physiol 139:363-374
	3	
	4	Kim SY, May GD, Park WD (1994) Nuclear protein factors binding to a class I patatin promoter region are
	5	tuber-specific and sucrose-inducible. Plant Mol Biol 26:603-61.
	6	
	7	López C, Jorge V, Piegu B, Mba C, Cortés D, Restrepo S, Soto M, Laudie M, Berger C, Cooke R, Delseny
	8	M, Tohme J, Verdier V (2004) An unigene catalogue of 5700 expressed genes in cassava. Plant Mol Biol
	9	56(4):541–554
	10	
	11	Mori S, Oka E, Umehara H, Suzuki S, Kobayashi H, Hoshi Y, Kondo M, Koike Y, Nakano M (2007)
	12	Somaclonal variation and stability of GUS gene expression in transgenic agapanthus (Agapanthus praecox
	13	ssp. orientalis) plants at the flowering stage. In Vitro Cell Dev Biol Plant 43:79-87. DOI: 10.1007/s11627-
	14	006-9012-7
	15	
	16	Oltmanns H, Kloos DU, Briess W, Pflugmacher M, Stahl D, Hehl R (2006) Taproot promoters cause tissue
	17	specific gene expression within the storage root of sugar beet. Planta 224:485-495. DOI: 10.1007/s00425-
	18	006-0230-3
	19	
	20	Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids
,	21	Res 29(9):e45
	22	
/	23	Phillips JP, Xing T, Gartland JS, Gartland KMA, Elliott MC (1992) Variation in β -glucuronidase activity of
	24	clones of transformed sugar beet roots. Plant Growth Regul 11:319-325
	25	
	26	Qu LQ, Xing YP, Liu WX, Xu XP, Song YR (2008) Expression pattern and activity of six glutelin gene
,	27	promoters in transgenic rice. J Exp Bot 59(9):2417-2424. DOI: 10.1093/jxb/ern110
	28	
	29	Reilly K, Bernal D, Cortés DF, Gómez-Vásquez R, Tohme J, Beeching JR (2007) Towards identifying the
-	30	full set of genes expressed during cassava post-harvest physiological deterioration. Plant Mol Biol 64(1-
-	31	2):187–203

1	
2	Sakurai T, Plata G, Rodríguez-Zapata F, Seki M, Salcedo A, Toyoda A, Ishiwata A, Tohme J, Sakaki Y,
3	Shinozaki K, Ishitani M (2007) Sequencing analysis of 20,000 full-length cDNA clones from cassava
4	reveals lineage specific expansions in gene families related to stress response. BMC Plant Biol 7:66
5	
6	Sarria R, Torres E, Angel F, Chavarriaga P, Roca WM (2000) Transgenic plants of cassava (Manihot
7	esculenta) with resistance to Basta obtained by Agrobacterium-mediated transformation. Plant Cell Rep
8	19:339–344
9	
10	Schaart JG, Salentijn EMJ, Krens FA (2002) Tissue-specific expression of the β -glucuronidase reporter
11	gene in transgenic strawberry (<i>Fragaria × ananassa</i>) plants. Plant Cell Rep 21:313–319. DOI:
12	10.1007/s00299-002-0514-4
13	
14	Schopke C, Taylor NJ, Carcamo R, Konan NK, Marmey P, Henshaw GG, Beachy RN, Fauquet CM (1996)
15	Regeneration of cassava plants (Manihot esculenta Crantz) from microbombarded embryogenic
16	suspension cultures. Nat Biotechnol 14:731-735
17	
18	Taylor N, Chavarriaga P, Raemakers K, Siritunga D, Zhang P (2004) Development and application of
19	transgenic technologies in cassava. Plant Mol Biol 56:671–688
20	
21	Taylor N, Edwards M, Kiernan R, Davey C, Blakesly D, Hemshaw G (1996) Development of friable
22	embryogenic callus and embryogenic suspension culture systems in cassava (Manihot esculenta Crantz).
23	Nat Biotechnol 14:726–730
24	
25	Wally O, Jayaraj J, Punja ZK (2008) Comparative expression of β -glucuronidase with five different
26	promoters in transgenic carrot (Daucus carota L.) root and leaf tissues. Plant Cell Rep 27(2): 279-287
27	
28	Zhang P, Bohl-Zenger S, Puonti-Kaerlas J, Potrykus I, Gruissem W (2003a) Two cassava promoters
29	related to vascular expression and storage root formation. Planta 218:192-203
30	

1		
2 3	1	Zhang P, Jaynes JM, Potrykus I, Gruissem W, Puonti-Kaerlas J (2003b) Transfer and expression of an
4 5	2	artificial storage protein (ASP1) gene in cassava (Manihot esculenta Crantz). Transgenic Res 12:243-250
6 7	3	
8 9	4	
10	5	
11 12	6	
13 14	7	
15 16	8	
17	9	
18 19	10	
20 21	11	
22	12	
23 24	12	
25 26	13	
27 28	14	
29	15	
30 31	10	
32 33		
34 35	18	
36	19 20	
37 38	20	
39 40	21	
41	22	
42 43	23	
44 45	24	
46 47	25	
48	26	
49 50	27	
51 52	28	
53	29	
54 55	30	
56 57	31	
58 59		
59 60		

Table 1 Primer sequences used to isolate and clone promoter pMec1 from cassava.

Primer		-
CAS III 5' ACT GCT GGT GCT GCC TCT TCT GTT 3' Fin-Cas I 5' GAGGAGGAGGAGGAGGAGGAGGAGGACT 3' Cas-P II 5'CAAGCATCAACCAAGCACAATGTA 3' PCI 5' ATT CTG CAG GAG GAG GAG GAG GAG GAG GAG 3' PCII 5' ATT CTG CAG CGT TGA CGG AAA GAA ACG 3'	Primer	
CAS III 5' ACT GCT GGT GCT GCC TCT TCT GTT 3' Fin-Cas I 5' GAGGAGGAGGAGGAGGAGGAGGAGGACT 3' Cas-P II 5'CAAGCATCAACCAAGCACAATGTA 3' PCI 5' ATT CTG CAG GAG GAG GAG GAG GAG GAG GAG 3' PCII 5' ATT CTG CAG CGT TGA CGG AAA GAA ACG 3'	CAS II	5´ TTG AAC CAA TGG GAA CTC ACC AC 3´
Fin-Cas I 5' GAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAG		5' ACT GCT GGT GCT GCC TCT TCT GTT 3'
PCI 5' ATT CTG CAG GAG GAG GAG GAG GAG GAG GAG 3' PCII 5' ATT CTG CAG CGT TGA CGG AAA GAA ACG 3'		5´ GAGGAGGAGGAGGAGGAGGACT 3´
PCI 5' ATT CTG CAG GAG GAG GAG GAG GAG GAG GAG 3' PCII 5' ATT CTG CAG CGT TGA CGG AAA GAA ACG 3'	Cas-P II	5'CAAGCATCAACCAAGCACAATGTA 3'
PCII 5´ ATT CTG CAG CGT TGA CGG AAA GAA ACG 3´		
PCNI 5' CAG TOT COA TGG CTG TTA CTA COT A 3'		5' ATT CTG CAG CGT TGA CGG AAA GAA ACG 3'

1	Table 2 Potential	regulatory of	elements v	within the	Mec1 promoter	from cassav	a (<i>Manihot es</i> a	<i>culenta</i>). The
<u> </u>								

matches to known motifs have 100% similarity according to a search of the PLACE database. Positions given are relative to the 5'-end of the promoter. The orientation of the motifs is indicated (+, forward; -, 3 4 5

reverse).

Motif	No.	Sequence	Position	Function
	of			
ACGTTBOX	motif 1	AACGTT	393(+)	T-box binding of bZIP Proteins
ARFAT	1	TGTCTC	952(+)	ARF (auxin response factor) binding site
ASF1MOTIFCAMV	1	TGACG	31(+)	ASF-1 binding site present in CaMV35
	1	TUACU	51(+)	promoter; transcriptional activation by auxi
				and/or salicylic acid
CBFHV	1	RYCGAC	611(+)	Binding site of barley CBF1; dehydratio
021111			011(1)	responsive elements
CCAATBOX1	1	CCAAT	485(-)	Present in promoters of heat shock proteins
CTRMCAMV35S	1	TCTCTCTCT	940(+)	Enhancing gene expression, found in th
				CaMV35S promoter
EBOXBNNAPA	1	CANNTG	709(+)	E-box, a cis-acting element of napA storage
				protein gene of Brassica napus
ELRECOREPCRP1	1	TTGACC	822(-)	EIRE, an elicitor responsive element of parsle
			()	PR1 genes
GAREAT	2	TAACAAR	429(-), 616(-)	GARE, GA-responsive element
GT1GMSCAM4	3	GAAAAA	190(+), 381(+),	
			564(+)	isoform-4 involved in pathogen- and salt-induce
				response
IBOX	4	GATAAG	45(+), 106(+),	
			167(+), 297(+)	genes
LTRECOREATCOR1	1	CCGAC	612(+)	Core of low temperature responsive element
5				(LTRE) of cor15a gene in Arabidopsis
MYBCORE	1	CNGTTR	709(+)	Binding of ATMYB1 and ATMYB2 from
				Arabidopsis; water stress response
	-	00474	140()	
MYBST1	1	GGATA	446(-)	Core motif of MybSt1 (a potato MYB homolog
NODCON1GM	5	AAAGAT	72(+),133(+),	binding site Putative nodulin consensus sequences
NODCONTGIN	5	AAAGAT		Putative hodulin consensus sequences
			194(+),259(+), 324(+)	
NODCON2GM	7	СТСТТ	511(+),789(+),	Putative nodulin consensus sequences
	'	01011	840(+),867(+),	T utative noutlin consensus sequences
			914(+),945(+),	
			535(-),	
SEBFCONSSTPR10	1	YTGTCWC	951 (+)	Binding site of the potato silencing elemen
A			001 (1)	binding factor (SEBF) gene found in promoter of
,,				pathogenesis-related gene (PR-10a)
SEF4MOTIFGM7S	1	RTTTTTR	406(+)	SEF4 binding site; consensus sequence found
0	•			promoter of soybean 7S globulin gene
SURE1STPAT21	1	AATAGAAAA	528(+)	Sucrose responsive element (SURE) conserve
	-			among genes regulated by sucrose.
SP8BFIBSP8BIB	2	TACTATT	672(+), 438(-)	SPBF binding site (SP8b) present in sweet potat
-			() / ()	sporamin (gSPO-B1) and beta-amylase genes.
WBBOXPCWRKY1	1	TTTGACY	822 (-)	Binding of WRKY proteins, present in amylas
		_		genes from different species.
WBOXNTCHN48		CTGACY	1007 (+)	A W box identified in tobacco class I bas
				chitinase gene CHN48, binding to NtWRKY
	1	1	1	possibly involved in elicitor-response

8

Figure Legends

9

13

3 4 5 Fig. 1 Sequence of the cloned *Mec1* gene. The cloned gene includes 1012 bp promoter sequence (uppercase letters) followed by 670 bp coding region (lowercase letters,) including an intrinsic intron (136 bp, shaded) and finally by 244 bp 3'-non coding sequence (uppercase letters). Initiation-, stop-codon and TATA-box are presented bold and italic. Sequence of the CP2 fragment is underlined. Sequence of the 7 CP1 fragment including the intrinsic intron and 27 bp coding sequence is shown in italic

Fig. 2 (A) Representation of the T-DNA region with promoter CP2 fused with gene GUSPlus and hptll under promoter 35S, used as selective marker. T is the terminator region. (B) Selection of transgenic plants through the PCR of a 191-bp-long fragment of the GUSPlus gene and 182 bp of the hptll gene. (C) Independent transgenic events (10, 22, 26, and 24) are distinguished by Southern blotting. NT is nontransgenic; P is the plasmid

Fig. 3 Histochemical detection of the expression of the fusion CP2::GUSPlus in tissues of 7-month-old transgenic cassava plants (line 10) grown in the field. Cross-sections of (A) roots, (B) stems, (C) petioles, and (D) leaves. (E) Inset of root section delineated in (A). TS refers to tissue system, of which there are three: I, II, and III. (F) Inset of stem section delineated in (B). (Symbols: pp = phelogen/pheloderm, e = epidermis, mp = palisade parenchyma, ms = spongy parenchyma, p = parenchyma, pt = pith, px = primary xylem, sx = secondary xylem, vc = vascular cambium, x = xylem.)

Fig. 4 Quantification of GUS enzymatic activity in extracts of different organs of transgenic cassava (Line # 10) containing the fusion CP2:: GUSPlus and in non-transgenic cassava (NT). Root P is root pulp, i.e. TSII and TSIII; Root C is root cortex, i.e. TS

Fig. 5 Variability of the expression of the fusion CP2:: GUSPlus in mature roots (7 months old) of transgenic cassava grown in confined fields. (A) Patterns of histochemical GUS staining for the non-transgenic control (NT) and lines with null, low, medium, and high expression. (B) The corresponding value in real-time PCR of quantification of messenger RNA levels for the fusion CP2:: GUSPlus. (C) Quantification of β-glucuronidase enzymatic activity in the same tissues

Fig. 6 Evaluation of the expression of the fusion CP1:: GUSPlus in leaves and roots of the best transgenic carrot line. (A) Schematic representation of the T-DNA used in the transformation. T is the terminator region. (B) GUS staining in a mature leaf. p = parenchyma and v = vascular tissues. (C) GUS staining in mature storage root. sx = secondary xylem; vc = vascular cambium; sp = secondary phloem. (D)Quantification of enzymatic activity in roots and leaves of the same transgenic line and a non-transgenic control (NT)

1	GAGGAGGA	GGAGGAGG	AGGGACTA	TTTCGTTG	ACGGAAAG	AAACGATA	AGAACATT	TTAATAGA
65	TGTAAGAA	AAGATAGG	GACTATTT	CGTTGACG	GAAAGAAA	CGATAAGG	ACATTTTA	ATAGATGT
129	GAGAAAAG	ATAGAGAC	TATTTCGT	TGACAAAA	AGAAACGA	TAAGCATG	TTTTAATA	GATATGAA
193	AAAAGATA	AAGACGTT	ΤΤΑΑΤΑΤΑ	TTTATGAA	AATATAGA	GAGGGACG	ATTTCGTT	GACGGAAA
257	GAAAAGAT	GAGGAGGG	ACTATTTC	ATTGACGG	AAAGAAAC	GATAAGGA	CGTTTTAA	TAGATATG
321	AGGAAAGA	TAGGGACT	ATTTCATT	GACGGAAA	GAAACAAT	AAGGACGT	TTTAATAG	ATATGAAA
385	AAGGTAAA	AACGTTTT	AATAGATT	TTTGAAAA	TGTAGGGA	CTAACTTG	TTAATAAT	AGTAATAT
449	CCAAAAAC	TAAATAAA	GGGTTTTA	ATTGAGGG	TAAAATTG	GATTTTAA	ACATTTTC	TCTCTCCT
513	CTTTTATT	TAATTTTA	ATAGAAAA	GAGGACGG	AAGGACTA	TTTCGTTG	ACGGAAAA	ΑΑΑΑΑΤΑΤ
577	AAGGACGT	TTTAATAG	GTTTCTAA	AAATATAG	GGACCGAC	TTGTTAAT	AATGGCAA	TACTCAGA
641	GACTAAAT	TATAAATC	TCCCAAAT	ATATATTT	ACTATTTA	GAAAACAT	TAATATAT	TATATATT
705	TTCACAGT	TGATAATA	ATTGATGA	CGAAGAAA	TCTCATGG	ATCTAGCT	ACAAGATC	AACTTGTT
769	TAACATTA	GTATCAAC	CATTTTGC	CATTTCTC	TTTGATTT	CAGTGAGA	TGAGGGGT	CAAATCCC
833	AAGATTCC	TCTTTCTT	AAGTGCTC	CCACCTCG	TTCTCTTT	CATACATG	AACTTCTG	GCCCTTCA
897	ATTCTC TA	TATAAGCC	ACTCTTAT	TCATCCTC	TCTCTGCA	CCATCTCT	CTCTTTCT	GTCTCTCC
961	TTCCTGTT	TGCTTCTC	AGCTTTAT	TTTTTAGT	TTCTATTT	CCTTGGCT	GACT atg g	ctactgct
1025	gaggtaac	ccatcaat	catttctt	gttaagct	ttgattca	ggttcttg	attttaat	tattgatc
1089	tcattagt	ttcagcag	ctttacat	gataatga	aagaattt	tatcttaa	agatcttt	tgatgaat
1153	tttgattt	taggtagt	aacagcac	agactgca	cttcctga	ggaaaaat	cagctgaa	gaagtgaa
1217	ggtttcag	agattgta	acagaaga	ggcagcac	cagcagta	gagccagt	tgctgaag	agcccaag
1281	gaagcaga	gccagttg	cagtatct	gaagaacc	aaaggaga	ctgatgat	gctccggc	tgaagtag
1345	cggttgaa	actaaaga	ggttgtag	aagttgaa	gaggccaa	gactgtga	cagaagag	ccaacagt
1409	agagaaaa	ctgaagaa	gaagaaga	gactccta	aggaagaa	acaccaga	gcctgtgg	ttgttaag
1473	gagactcc	taaagagg	aaccaaca	gcagagac	cgttgttg	aggaggct	cccaaaga	gacaaccg
1537	aggctgca	accgaagc	agaagcac	cggcaccg	gaatctgc	accagcat	cagcaccg	gaaactcc
1601	agctgaag	aagaagtt	ccaaagga	ggaagaag	gtgatgag	aagaaatc	tgaagcag	aagttgaa
1665	gctgagaa	gactgag t	<pre>aatgagat</pre>	AGCTCTGC	AGGGTTTA	ATTGGTTT	TTGCATGC	CGTGCTGT
1729	AATTTTCG	TATTGTTA	GGTTGTGG	TCTAATAA	GAGTTTTA	TTTGAACC	AATGGGAA	CTCACCAC
1793	ATGGCAGA	CATGCATT	TGCAACAG	TATGGCGA	TGTTTTGG	GTACTCAT	TTATACTA	CGTGGCAA
1857	CAAGCATG	TGTGCCTA	TTGGTTCC	AAGCAGTT	CCATGAAT	TTTATATA	CATTGTGC	TTGGTTGA
1921	TGCTTG							

IGTGG . AACAG TATGGGG. GTTCC AAGCAGTT CCAIG..

Eco RI

CP 2

NT

NT

24

24

35 S

26

26

hpt II

22

22

GUSPlus

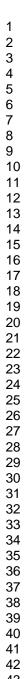
Ρ

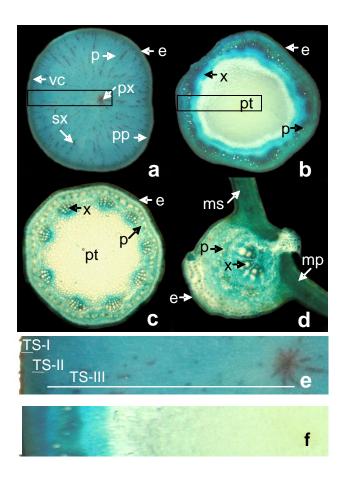
_

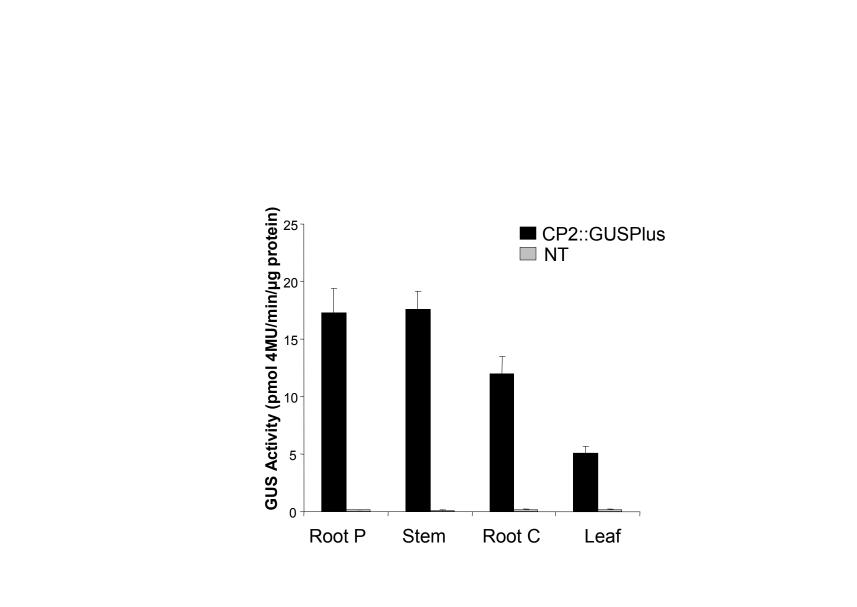
Ρ

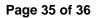
GUSPlus

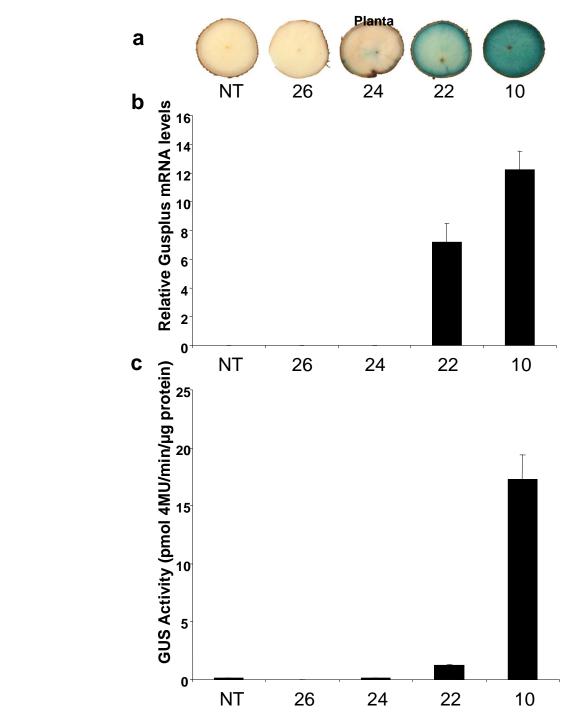
hpt II

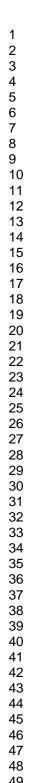

а

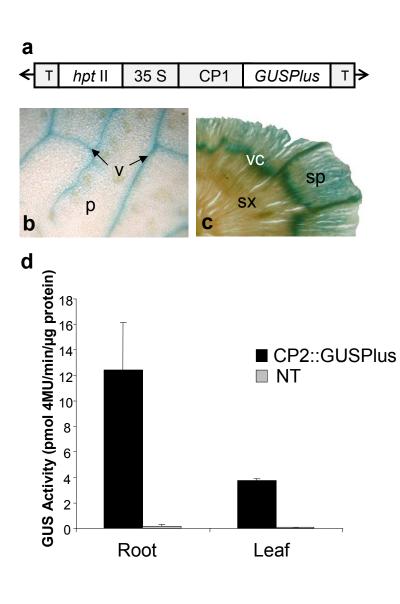

b


С


←


10





3 4 5 6 7 8 9 10 13 15 16 17 19 $\begin{array}{c} 20\\ 21\\ 22\\ 23\\ 24\\ 25\\ 26\\ 27\\ 28\\ 29\\ 30\\ 31\\ 32\\ 33\\ 35\\ 36\\ 37\\ 38\\ 39\\ 40\\ \end{array}$ 42

