1	Phaseolin diversity as a possible strategy to improve the nutritional value
2	of common beans (Phaseolus vulgaris)
3	
4	
5	Carlos A. Montoya ¹ , Jean-Paul Lallès ² , Stephen Beebe ³ , Pascal Leterme ^{1*}
6	
7	
8	Running title: Improving the nutritional value of bean protein
9	
10	
11	¹ Prairie Swine Centre, PO Box 21057, 2105 8th Street East, Saskatoon, SK, S7H 5N9, Canada
12	
13	² INRA, UMR1079 SENAH, F-35590 Saint-Gilles, France
14	
15	³ Centro Internacional de Agricultura Tropical, AA 6713, Cali, Colombia
16	
17	
18	
19	
20	
21	* Corresponding author: Pascal Leterme
22	tel: 1-306-667-7445, fax 1-306-955-2510
23	email: <u>pascal.leterme@usask.ca</u>

24 Abstract

25 This article proposes a new way to improve the protein quality of the common bean (*Phaseolus* 26 *vulgaris*). It is based on the natural variability found in the different types of phaseolin, its main 27 storage protein (40-50% of the total protein). Despite the fact that it is deficient in methionine 28 content, phaseolin still represents the main source of that amino acid in the seed. More than 40 29 genetic variants, differing in subunit number (2-6) and molecular weight (40-54 kDa) have been 30 analyzed. The similarity of the amino acid composition among phaseolins, suggests that a 31 nutritional improvement cannot be expected from that side. Conversely, important variation in 32 phaseolin susceptibility to proteolysis (ranging from 57 to 96% after cooking) has been observed, increasing the theoretical availability of methionine by up to 37%. Therefore, breeding programs 33 34 based on highly digestible phaseolin types could lead to the production of beans with higher 35 protein quality.

Keywords: common bean, phaseolin diversity, sulphur amino acid, nutritional value
 37

38 **1. Introduction**

39 The common bean (*Phaseolus vulgaris*) represents one third of the total world production of 40 pulses (19.3 Mt/year; FAO, 2007). It is mainly produced in Latin America and Central Africa, 41 where it is a staple food for many people due to its energy, protein, dietary fiber and minerals content (Haytowitz, Marsh & Matthews, 1981; Norton, Bliss & Brezan, 1985). In those regions, 42 43 the intake per capita ranges from 1 to 40 kg/year (Leterme & Muñoz, 2002; FAO 2007). In 44 developed countries, bean consumption is also encouraged due to its health promoting properties. 45 For example, the daily intake of pulses is known to reduce the risk of coronary heart disease and 46 type-II diabetes (Leterme, 2002; Tharanathan & Mahadevamma, 2003).

47 However, as a protein source, common beans have several disadvantages: they require long 48 cooking periods (Leterme & Muñoz, 2002), their proteins are poorly digested -even after 49 cooking- and the presence of water-soluble oligosaccharides can cause flatulence. The low 50 apparent protein digestibility of beans can be explained by the low digestibility of its protein 51 fractions (Genovese & Lajolo, 1996), endogenous losses as a result of consuming beans 52 (Oliveira & Sgarbieri, 1986; Marquez & Lajolo, 1991) and the presence of anti-nutritional 53 factors (Genovese & Lajolo, 1996). Additionally, the low methionine content of beans make 54 worse the nutritional value of their proteins. 55 Attempts have been made to improve the protein quality of the common bean through 56 breeding programs or genetic manipulation (Gepts & Bliss, 1984; Aragao et al., 1999; Taylor, 57 Chapman, Beyaert, Hernandez & Marsolais, 2008). The principal target has usually been 58 phaseolin, since it is the main storage protein in seeds and makes up a high and variable (30-59 50%) proportion of the total protein and despite the fact that phaseolin is deficient in methionine, 60 cysteine and tryptophan. To our knowledge, the high diversity in phaseolin types and their 61 susceptibility to digestion have barely been considered as parameters to take into account in 62 order to improve bean protein quality.

63 The present review examines these parameters as possible ways to improve the protein64 quality of the common bean.

65

66 2. Protein fractions of common bean

The major components of pulse proteins are globulins and albumins (Table 1). In contrast to
other legumes, common bean contain high amounts of glutelin (7-15 vs 20-30%, respectively).
Moreover, its main globulin fraction, phaseolin (7S fraction) represents 40 to 50% of the total

seed nitrogen whereas the other globulin fraction (11S) represents only 10% (Derbyshire, Wright
& Boulter, 1976; Ma & Bliss, 1978). The other nitrogenous fractions of common bean are
prolamin (2 to 4%) and the free AA pool (5 to 9%) (Ma & Bliss, 1978). The AA composition of
the seed and its different protein fractions is detailed in Table 2. Differences in AA composition
can be observed between the different fractions, even for AA present in low amounts, such as
methionine.

76

77 **3. Phaseolin diversity**

Phaseolin is a glycoprotein containing neutral sugars, conferring on it a high source of
variation in the MW of its subunits (Brown, Ma, Bliss & Hall, 1981). The molecular diversity of
phaseolin has been used as an evolution indicator of the common bean domestication in Central
America and in the Andes region. It provides solid botanic, archaeological and historical
information due to polymorphism, environmental stability and biochemical complexity
characteristics (Gepts, 1988).

Each electrophoretic profile of phaseolin subunits is the result of a series of complex events at molecular level, avoiding two identical types of phaseolins. Therefore, it is possible that each type of phaseolin is derived from a unique ancestor (Gepts & Bliss, 1986).

Bean domestication studies have shown that two phaseolins are mainly found (90%) in
cultivated beans: the S (Sanilac) and T (Tendergreen) phaseolins (Gepts & Bliss, 1986; Koening,
Singh & Gepts, 1990). The S phaseolin is mainly present in the cultivars of Central America,
from Mexico to the North of Colombia. The T phaseolin is mainly present in cultivars of the
Andes, including south of Peru, Bolivia, Argentina and Chile (Gepts & Bliss, 1986; Beebe,
Rengifo, Gaitan, Duque, Tohme, 2001). However, within each centre of domestication, other

phaseolin types have been found in wild cultivar. For example, the I phaseolin (Inca) was found
between the two geographical centres defined above (i.e. between Ecuador and Peru) (Koening
et al., 1990).

96 The electrophoretic profile in one dimension shows that phaseolins are composed of 2 to 6 97 polypeptides differing according to their molecular weight (MW) (ranging from 40 to 54 kDa) 98 (Figure 1; Salmanowicz, 2001; Montoya et al., 2008c). These polypeptides also differ in their 99 isoelectric point (Brown et al., 1981). Phaseolin is thus a family of proteins varying in isoelectric 100 point, polypeptide composition and MW, due to the proportion of each polypeptide present in the 101 whole molecule (Bollini & Vitale, 1981). The differences in MW and isoelectric point observed 102 among polypeptides reflect differences in DNA sequences, coding for two different polypeptide 103 sub-families, α -phaseolin polypeptides (435 to 444 AA residues) and β -phaseolin polypeptides 104 (421 AA residues) (Slightom, Drong, Klassy & Hoffman, 1985), both derived from the same 105 ancestor. Recently, different subunit precursor profiles for S, T and I phaseolin (S, $\alpha\beta$; T, $\alpha\beta\beta$; I 106 ββ) have been evidenced by mass spectrometry (Montoya, Leterme, Beebe, Souffrant, Molle & 107 Lallès, 2008b). It could be explained by differences in the sequences of the α - and β -gene 108 precursors for each phaseolin type (Kami & Gepts, 1994; Kami, Becerra, Debouck & Gepts, 109 1995). Differences in MW could also be due to pre- and post-translational modifications that 110 lead to the differentiation of polypeptides of phaseolin, or small insertions-deletions, limited 111 duplications and nucleotide substitutions (Brown et al., 1981). Moreover, the carbohydrate 112 composition and the number of phosphate binding sites of phaseolin (Paaren, Slightom, Hall, 113 Inglis & Blagrove, 1987; Lawrence, Izard, Beuchat, Blagrove & Colman, 1994) also contribute 114 to the MW diversity observed for the same protein precursor (Montoya et al., 2008b). Similarly 115 with wild soybean lines, Fukuda et al. (2005) found variations in AA sequences of the subunits

of soybean storage globulins β-conglycinin (7S) and glycinin (11S) that affected their
electrophoretic mobility.

118

119 **4. Digestibility of the protein fractions**

120 In general, legume proteins are usually regarded as highly resistant to proteolysis in the 121 digestive tract of monogastric animals and humans. The resistance has been confirmed in vitro 122 (Nielsen, Deshpande, Hermodson & Scott, 1988; Shutov, Kakhovskaya, Bastrygina, Bulmaga, 123 Horstmann & Müntz, 1996), although there are contradictory results (Aubry & Boucrot 1986; 124 Rubio, Grant, Caballe, Martinez-Aragon & Pusztai, 1994; Clemente, Vioque, Sanchez-Vioque, 125 Pedroche, Bautista & Millan, 1999). The resistance or susceptibility to digestion depends on the 126 structural characteristics of each protein. For example, a high percentage of β -sheet structures, 127 typical for 11S and 7S fractions, may limit the access of proteolytic enzymes (Deshpande & 128 Damodaran, 1989; Yu, 2005). Similarly, other constituents in the protein, including 129 carbohydrates (glycoprotein), can also increase protein resistance to hydrolysis (Deshpande & 130 Nielsen, 1987b; Genovese & Lajolo, 1996).

131

132 *4.1 Phaseolin is resistant to digestion*

Raw phaseolin is highly resistant to in vitro hydrolysis (digestion from 10 to 27%) and in
vivo digestion (digestibility values ranging from 28 to 36%) (Table 3; Levy-Benshimol &
Garcia, 1986; Genovese & Lajolo, 1998; Montoya, Lallès, Beebe, Montagne, Souffrant &
Leterme, 2006). The low degree of hydrolysis could be explained by: a compact and rigid
structure (Desphande & Damodaran, 1989); a secondary structure rich in β-sheets (10% of αhelix, 50% β-sheet, 9% β-turns and 31% of random conformation) (Deshpande & Damodaran,

139 1989); glycosylation (Paaren et al., 1987) and the fact that phaseolin is not very hydrophilic,
which limits the accessibility of proteases (Nielsen et al., 1988). The central region of raw
phaseolin subunits (MW of 45, 48 and 52 kDa) is the most sensitive to protease attacks, thus
generating large indigestible fragments with MW ranging from 22 to 33 kDa (Deshpande &
Nielsen, 1987a; Jivotovskaya, Senyuk, Rotari, Horstmann & Vaintraub, 1996).

144

145 4.2 Thermal treatment improves digestibility

146 The structure of phaseolin changes during thermal treatment, resulting in an increase in the 147 rate of hydrolysis in vitro (82%; Nielsen et al., 1988; Nielsen, 1991) and digestion in vivo (90%; 148 Phillips, Eyre, Thompson & Boulter, 1981; Marquez & Lajolo, 1991; Montoya et al., 2006). 149 Heat treatment does not cause a major change in the secondary structure of phaseolin but alters 150 its tertiary and quaternary structures. The result is a 7- to 9-fold increase in hydrophilic surfaces 151 (Deshpande & Damodaran, 1989), indicating a breakdown of the phaseolin subunit interactions, 152 leading to a higher degree of hydrolysis (Nielsen, 1991). Denatured β-phaseolin subunits are 153 more susceptible to trypsin hydrolysis than α -phaseolin subunits (+20% in the predicted cleavage 154 sites). Some differences between β -phaseolin subunits have also been observed (Montoya, 155 Lallès, Beebe, Souffrant, Molle & Leterme, 2009). 156 For comparison, in soybean β -conglycinin, only α -subunit polypeptides were recognized in 157 ileal digesta of pigs consuming soybean (Fisher et al., 2007). In contrast, for the 11S fraction of

158 various legume seeds, α -polypeptides were shown to be more susceptible to in vitro hydrolysis

159 than β-polypeptides (Plumb & Lambert, 1990; Perrot, Quillien & Guéguen, 1999). Differences in

160 thermal stability, surface hydrophobicity, solubility and heat-induced association of individual α ,

161 α ' and β subunits of β -conglycinin were observed (Maruyama et al., 1999; 2002). Also, the same

162 research group, screening wild soybean lines, found variations in AA sequences on the same 163 subunit that affected electrophoretic migration and thermal stability in β -conglycinin and 164 glycinin (Fukuda et al., 2005). In spite of high sequence homologies between β -conglycinin 165 subunits, differences in antibody immune-reactivity were observed due to differences in the AA 166 sequence of the recognised epitopes (Fu, Jez, Kerley, Allee & Krishnan, 2007). Slight 167 differences in the structure of a monomer can cause changes in quaternary structure (Banerjee, 168 Das, Ravishankar, Suguna, Surolia, Vijayan, 1996) and thus susceptibility to hydrolysis. 169 Heating seems to have variable effects on the different phaseolin types. Comparing the 170 degree of hydrolysis (DH) of 43 different phaseolin types by means of an in vitro technique, 171 Montoya et al. (2008c) found that DH range from 57 to 96%, depending on the phaseolin type 172 (Figure 2). Such variations in DH values can be ascribed, as mentioned previously, to differences 173 in subunit composition (Figure 1), subunit precursor origin (α or β) and trypsin susceptibility 174 between phaseolin subunits (Montoya et al., 2008b; 2009). Montoya et al. (2009) hypothesize 175 that the lowest DH values of S phaseolin, compared with the T and I phaseolins, could be 176 explained by the high α -phaseolin content in the whole molecule (DH values of 50, 33 and 0% in 177 S, T and I phaseolins, respectively).

178

179 4.3 Other protein fractions

Raw albumin and glutelin have also low DH values (26-32 and 42%, respectively) (Genovese & Lajolo, 1998). For albumin, it is due to a high number (e.g. n = 7 for the Bowman-Birk trypsin
inhibitor) of disulphide bridges and the presence of carbohydrates (12% by weight; Genovese & Lajolo, 1996). After heat treatment, the resistance of albumin to proteolysis is maintained or
slightly increased (DH 13-18%, Table 3) (Marquez & Lajolo, 1981; Moreno, Maldonado, Wellne

185 & Mills, 2005). For bean glutelin, heat treatment has virtually no effect (Genovese & Lajolo,

186 1998). For common bean legumin (11S fraction), only α -polypeptides may be partially degraded,

187 while β polypeptides remain intact, even after heat treatment (Momma, 2006).

188

189 **5. Improvement of the nutritional value of common bean**

190 5.1 Treatments

191 In general, common beans are consumed by humans after soaking and thermal treatment,

reducing the concentration of tannins, phytic acid and soluble- and heat-labile anti-nutritional

193 factors such as phytohemagglutinin, protease inhibitors and oligosaccharides. This improves

194 palatability and the digestibility and availability of some nutrients (Barampama & Simard, 1994;

195 Wu et al., 1996), although protein digestibility generally remains low (Oliveira & Sgarbieri,

196 1986; Marquez & Lajolo, 1991).

197

198 5.2 Transgenic plants

199 In pulses, improving the sulphur-containing AA content has been a challenge for many 200 research groups. Several studies have been conducted with soybeans to improve the lysine and 201 tryptophan contents (Falco et al., 1995; Galili, Galili, Lewinsohn & Tadmor, 2002). In common 202 beans, attempts have been made to improve methionine deficiency by introducing a transgene 203 coding for a methionine-rich proteins (e.g. 2S albumin) from the Brazil nut (Bertholletia excelsa 204 H.B.K., Lecythidaceae) (Aragao et al., 1999). The methionine content increased from 10 to 23% 205 in the bean lines expressing this albumin. However, during seed maduration, the albumin was 206 either not stored correctly in the cotyledon tissue and degraded prematurely or that the 2S mRNA 207 is less stable in beans than in Brazil nut in some transgenic bean lines. Additionally, the 2S

albumin is characterized by high resistance to proteolytic hydrolysis, both in raw and heat-treated forms, as explained above. Therefore, an increase in the methionine content using the 2S albumin would not increase the methionine availability of common bean. Other attempts have been made to increase the methionine and tryptophan content of common beans by modifying the sequence of β -phaseolin subunits. However, such modified subunits were poorly expressed (only 0.2% present in beans) due to either degradation in the Golgi vesicles or in the formation of protein bodies (Hoffman, Donaldson & Herman, 1988; Nutall, Vitale & Frigerio, 2003).

215

216 5.3 Changing the percentages of protein fractions

217 Another strategy to increase the methionine content of common beans consists of modifying 218 its protein fractions by decreasing the percentage of those with low contents of limiting AA 219 (Gepts & Bliss, 1984). Various attempts have been made to change the amount of phaseolin 220 (Gepts & Bliss, 1984), phytohemagglutinin (Osborn & Bliss, 1985) or both (Burow, Ludden & 221 Bliss, 1993). However, seeds containing phaseolin still have higher available methionine levels, 222 compared to seeds devoid of phaseolin. Despite a low methionine content (Table 1), phaseolin is 223 still the major source of that AA. This is due to its high proportion (40 to 50%) in common bean, 224 the little differences in methionine content (Gepts & Bliss, 1984) and to a higher DH value after 225 thermal treatment, compared to other protein fractions.

Recently, Taylor et al. (2008) evaluated the overall AA composition of genetically related
lines of common beans deficient in selected seed storage proteins (phaseolin,

228 phytohemagglutinin and/or arcelin). They found several changes in the free AA content in bean

229 lines deficient in storage proteins, including a reduction of S-methyl-cysteine and γ-glutamyl-S-

230 methyl-cysteine (a non-protein AA that cannot substitute the requirements of methionine or

cysteine in the diet). In contrast, the sulphur-containing AA (especially cysteine) content
increased by 40% in beans devoid of store protein (phaseolin, phytohemagglutinin and arcelin)
as compared to beans with only high phytohemagglutinin and arcelin contents. However, further
work is required to evaluate the potential nutrional value of bean lines deficient in storage
proteins.

236

237 5.4 Amino acid composition of phaseolin

Differences in methionine content (7.5 to 10 mg/g protein) have been reported between phaseolin of different beans lines (Ma & Bliss, 1978; Chagas & Santoro, 1997). Montoya et al. (2008c) compared 18 purified phaseolins and found only slight differences in AA composition among phaseolins. Also, differences in methionine content have been evidenced between some of the phaseolin subunits (Kami & Gepts, 1994). However, those differences are not sufficient to increase the nutritional value of phaseolins, according to the AA score (Montoya et al., 2008c).

245 5.5 Diversity in phaseolin digestibility

Montoya et al. (2008c) explored the possibility of taking advantage of the wide diversity in phaseolin types by investigating their DH, since the DH value may reflect AA availability. Therefore, we compared the sequential hydrolysis (pepsin for 2h followed by pancreatin for 4h) of 43 phaseolin types (Montoya et al., 2008c). We found DH values ranging from 11 to 27% for uncooked phaseolins and from 57 to 96% for heat-treated phaseolins (Figure 2).

The protein digestibility-corrected AA score (PDCAAS) of these isolated phaseolin types
 was calculated. PDCAAS is the reference method for measuring protein quality in humans and is

253 based on the comparison of the digestible content of each essential AA in a test protein with that

254 of the essential AA requirements of preschool-age children (2 to 5 years-old). The AA score is 255 corrected for the digestibility, determined by in vivo or in vitro methods (Nielsen, 1998; 256 Schaafsma, 2000). Based on PDCAAS, the S-containing AAs are the limiting AAs in phaseolins, 257 followed by threonine (Montoya et al. 2008c). The DH value of the heat-treated phaseolins 258 combined with PDCAAS values were then used to estimate the potential nutritional quality of 259 each phaseolin. The phaseolins with the highest DH value could provide 37% more of sulphur-260 containing AA requirement than those with the lowest DH value (Figure 2). Moreover, only the 261 phaseolins with the highest DH values could provide the whole requirement of leucine, lysine, 262 aromatic AAs and threonine. In other words, the estimated nutritional value of heated phaseolins 263 was influenced more by their DH value than their AA composition (Montoya et al., 2008c). 264 The effect of the DH of phaseolin on its nutritional value cannot be extrapolated to the total 265 protein fraction of the whole seed, as the seed contains different protein fractions, anti-nutritional 266 factors and structural components (e.g. fibre) that could affect protein digestibility. Therefore, 267 one common bean line was selected to express either S, T or I phaseolins in the same genetic 268 background and the protein DH values of these selected beans were determined after thermal 269 treatment. The DH value of the total bean protein containing the I phaseolin was found to be 270 higher than the one for the bean containing the S phaseolin (Montoya, Gomez, Lallès, Souffrant, 271 Beebe & Leterme, 2008a). Interestingly, a similar ranking was observed for heat-treated S, T, 272 and I purified phaseolins (Figure 2). This result suggests that differences in the DH between bean 273 lines could be essentially explained by the susceptibility of different phaseolins to hydrolysis 274 (Montoya et al., 2008a).

The pattern of DH values of heated phaseolins (Figure 2) clearly showed that the S and T phaseolins, present in more than 90% of cultivated beans, were among the ten phaseolins with

277 the lowest DH and lowest estimated nutritional value. Thus, if the phaseolin type influences the 278 DH value of total bean protein as previously presented, we could hypothesize that phaseolins 279 with the highest DH values would increase the nutritional value of common bean protein. In 280 order to demonstrate this, we calculated the possible effect of phaseolin type (with different DH 281 values) on the potential nutritional value of the total bean protein. The PDCAAS of each protein 282 fraction was combined with its percentage in total protein (Table 4). As an example, we observed 283 that the beans containing the To1 and J1 phaseolins (DH = 96%) provided 28% more sulphur-284 containing AA than the bean containing the S phaseolin (DH = 58%) and 16% more than the 285 bean with the T phaseolin (DH = 71%). The requirements of histidine, isoleucine and aromatic 286 AAs for preschool children could only be met with the beans containing the To1 and J1 287 phaseolins, as compared to the beans with S phaseolin. Additionally, the phaseolins with the 288 highest DH values provided amounts of leucine, lysine, threonine and valine in excess of the 289 corresponding requirements for this child population.

290 Given this, estimates such as those presented above must be confirmed in vitro on beans with 291 similar composition characteristics but differing in their phaseolin type. Transferring a phaseolin 292 type from one cultivar to another can be made by plant breeders using backcrossing and it is 293 possible to obtain genetically-selected beans after only 2 or 3 generations (Montoya et al., 294 2008a). This does not affect the balance in the different protein fractions or the viability of the seed. Thus, it is likely that the use of highly-digestible phaseolin will generate highly-digestible 295 296 beans. Finally, the true nutritional value of those beans should always be assessed in vivo, since 297 high digestibility values of legume proteins do not necessarily guarantee a high nutritional 298 utilization of the proteins (Rubio & Seiquer, 2002).

299

300 In conclusion, exploiting the natural variability of phaseolin types with respect to their

- 301 protein digestibility seems to be a promising strategy to improve the nutritional quality of bean
- 302 protein. The phaseolins with the highest DH values could increase the bio-availability of sulphur-
- 303 containing AAs and other essential AAs. Therefore, DH values of heat-treated phaseolins could
- 304 be used as a criterion in breeding programs for improving the nutritional value of common bean.

References

- Adsule, R. N., & Kadam, S. S. (1989). Proteins. Nutritional Chemistry, processing Technology, and Utilization (1, pp. 68-89). CRC Handbook of World Food Legumes.
- Aragao, F. J. L., Barros, L. M. G., Sousa, M. V., Sa, G., Almeida, E. R. P., Gander, E. S., & Rech, E. L. (1999). Expression of a methionine-rich storage albumin from the Brazil nut (*Bertholletia excelsa* H.B.K., Lecythidaceae) in transgenic bean plants (*Phaseolus vulgaris* L., Fabaceae). *Genetics and Molecular Biology*, 22, 445-449.
- Aubry, M., & Boucrot, P. (1986). Etude comparée de la digestion des viciline et lectine radiomarquées de *Pisum sativum* chez le rat. *Annals of Nutrition and Metabolism*, 30, 175-182.
- Babar, V. S., Kadam, S. S., & Salunkhe, D. K. (1989). Jack bean. Nutritional Chemistry, processing Technology, and Utilization (2, pp. 107-113). CRC Handbook of World Food Legumes.
- Banerjee, R., Das, K., Ravishankar, R., Suguna, K., Surolia, A., & Vijayan, M. (1996).
 Conformation, protein-carbohydrate interactions and a novel subunit association in the refined structure of peanut lectin-lactosa complex. *The Journal of Molecular Biology*, 259, 281-296.
- Barampama, Z., & Simard, R. E. (1994). Oligosaccharides, antinutritional factors, and protein digestibility of dry beans as affected by processing. *Journal of Food Science*, *59*, 833-838.
- Beebe, S., Rengifo, J., Gaitan, E., Duque, M. C., & Tohme, J. (2001). Diversity and origin of Andean Landraces of common bean. *Crop Science*, 41, 854-862.
- Bhushan, R. & Pant, N. (1986). Composition of globulins from Phaseolus vulgaris, Vigna mungo and V. radiata. *Trans Isdt & Ucds*, 11, 129-132.

- Bollini, R., & Vitale, A. (1981). Genetic variability in charge microheterogeneity and polypeptide composition of phaseolin, the major storage protein of *Phaseolus vulgaris*; and peptide maps of its three major subunits. *Physiologia Plantarum*, *52*, 96-100.
- Brown, J., Ma, Y., Bliss, F., & Hall, T. (1981). Genetic variation in the subunits of globulin-1 storage protein of French bean. *Theoretical and Applied Genetics*, *59*, 83-88.
- Burow, M. D., Ludden, P. W., & Bliss, F. A. (1993). Suppression of phaseolin and lectin in seeds of common bean *Phaseolus Vulgaris* L.: Increased accumulation of 54 kDa polypeptides is not associated with higher seed methionine concentrations. *Molecular Genetics and Genomics*, 241, 431-439.
- Chagas, E. P., & Santoro, L. G. (1997). Globulin and albumin proteins in dehulled seeds of three *Phaseolus vulgaris* cultivars. *Plant Foods for Human Nutrition*, *51*, 17-26.
- Clemente, A., Vioque, J., Sánchez-Vioque, R., Pedroche, J., Bautista, J., & Millán, F. (1999). Protein quality of chickpea protein hydrolysates. *Food Chemistry*, *67*, 269-274.
- Derbyshire, E., Wright, D. J., & Boulter, D. (1976). Legumin and vicilin, storage proteins of legume seeds. *Phytochemistry*, 15, 3-24.
- Deshpande, S. S., & Damodaran, S. (1989). Structure-digestibility relationship of legume 7S proteins. *The Journal of Food Science*, *54*, 108-113.
- Deshpande, S. S., & Nielsen, S. (1987a). *In vitro* enzymatic hydrolysis of phaseolin, the major storage protein of *Phaseolus vulgaris* L. *The Journal of Food Science*, *52*, 1326-1329.
- Deshpande, S. S., & Nielsen, S. (1987b). *In vitro* digestibility of dry bean (*Phaseolus vulgaris* L) proteins: the role of heat-stable protease inhibitor. *The Journal of Food Science*, *52*, 1330-1334.

- Falco, S. C., Guida, T., Locke, M., Mauvais, J., Sanders, C., Ward, R. T., Webber, P. (1995). Transgenic canola and soybean seeds with increased lysine. *Biotechnology*, *13*, 577–582.
- FAOSTAT. (2007). FOASTAT database. Food supply: crop primary equivalent. May 15, 2007. Online at: <u>http://www.fao.org/statistics/yearbook/vol_1_1</u>
- FAO/WHO/UNU. (2007). Protein and amino acid requirements in human nutrition. WHO Technical Report Series; No. 935
- Fisher, M., Voragen, A. G. J., Piersma, S. R., Kofod, L. V., Joergensen, C. I., Guggenbuhl, P., Nunes, C. S., & Gruppen, H. (2007). Presence of indigestible peptide aggregates of soybean meal in pig ileal digesta residue. *Journal of the Science of Food and Agriculture*, 87, 2229-2238.
- Freitas, R. L., Texeira, A. R., & Ferreira, R. (2004). Characterization of the proteins from *Vigna unguiculata* seeds. *Journal of Agricultural and Food Chemistry*, *52*, 1682-1687.
- Fu, C. J., Jez, J. M., Kerley, M. S., Allee, G. L., & Krishnan, H. B. (2007). Identification, characterization, epitope mapping, and three-dimensional modeling of the α-subunit of βconglycinin of soybean, a potential allergen for young pigs. *Journal of Agricultural and Food Chemistry*, 55, 4014-4020.
- Fukuda, T., Maruyama, N., Kanazawa, A., Abe, A., Shimamoto, Y., Hiemori, M., Tsuji, H., Tanisaka, T., & Utsumi, S. (2005). Molecular analysis and physicochemical properties of electrophoretic variants of wild soybean *Glycine soja* storage proteins. *Journal of Agricultural and Food Chemistry*, 53, 3658-3665.
- Galili, G., Galili, S., Lewinsohn, E., Tadmor, Y. (2002). Genetic, molecular, and genomic approaches to improve the value of plant foods and feeds. *Critical Reviews in Plant Sciences*, 21, 167–204.

- Genovese, M. I., & Lajolo, F. M. (1996). Effect of bean (*Phaseolus vulgaris*) albumins on phaseolin *in vitro* digestibility, role of trypsin inhibitors. *Journal of Food Biochemistry*, 20, 275-294.
- Genovese, M. I., & Lajolo, F. M. (1998). Influence of naturally acid-soluble proteins from beans (*Phaseolus vulgaris* L.) on *in vitro* digestibility determination. *Food Chemistry*, *62*, 315-323.
- Gepts, P. (1988). Phaseolin as an evolutionary marker. In P. Gepts (Ed.), Genetic Resources of *Phaseolus* beans (pp. 215-241). *Current Plant Science and Biotechnology in Agriculture*.
- Gepts, P., & Bliss, F. A. (1984) Enhanced available methionine concentration associated with higher phaseolin levels in common bean seeds. *Theoretical and Applied Genetics*, *69*, 47-53.
- Gepts, P., & Bliss, F. A. (1986). Phaseolin variability among wild and cultivated common beans (*Phaseolus vulgaris*) from Colombia. *Economic Botany*, *40*, 469-478.
- Gomez, A., Carmona, A., & Seidl, D. S. (1993). Fractionation of *Canavalia ensiformis* protein.
 Distribution of the proteic antinutritional factors. In A. F. B. van der Poel, J. Huisman, & H.
 S. Saini (Eds.), Recent advances of research in antinutritional factors in legume seeds (pp. 235-239). *Proceedings of the 2th International Workshop on Antinutritional Factors (ANFs) in Legume Seeds*. Wageningen (Netherlands).
- Haytowitz, D. B., Marsh, A. C., & Matthews, R. H. (1981). Content of selected nutrients in raw, cooked and processed legumes. *Food Technology*, *35*, 73-74.
- Hoffman, L. M., Donaldson, D. D., & Herman, E. M. (1988). A modified storage protein is synthesized, processed, and degraded in the seeds of transgenic plants. *Plant Molecular Biology*, 11, 717-729.

- Jivotovskaya, A., Senyuk, V., Rotari, V., Horstmann, C., & Vaintraub, I. (1996). Proteolysis of phaseolin in relation to its structure. *Journal of Agricultural and Food Chemistry*, 44, 3768-3772.
- Kadam, S. S., Deshpande, S. S., & Jambhale, N. D. (1989). Seed structure and composition.
 Nutritional Chemistry, processing Technology, and Utilization (1, 23-50). CRC Handbook of World Food Legumes.
- Kami, J., Becerra, V., Debouck, D. G., & Gepts, P. (1995). Identification of presumed ancestral DNA sequences of phaseolin in *Phaseolus vulgaris*. *Proceedings of the National Academy of Sciences*, 92, 1101-1104.
- Kami, J., & Gepts, P. (1994). Phaseolin nucleotide sequence diversity in *Phaseolus vulgaris*. *Genome*, 37, 751-757.
- Koening, R. L., Singh, S. P., & Gepts, P. (1990). Novel phaseolin types in wild and cultivated common bean (*Phaseolus vulgaris*, Fabaceae). *Economic Botany*, *44*, 50-60.
- Lawrence, M. C., Izard, T., Beuchat, M., Blagrove, R. J., & Colman, P. M. (1994). Structure of phaseolin at 2.2 Å resolution. Implications for a common vicilin/legumin structure and the genetic engineering of seed storage proteins. *Journal of Molecular Biology*, 238, 748-776.
- Leterme, P. (2002). Recommendations by health organizations for pulse consumption. *British Journal of Nutrition*, 88, *Suppl 3*, S239-S242.
- Leterme, P., & Muñoz, L. C. (2002). Factors influencing pulse consumption in Latin America. *British Journal of Nutrition, 88, Suppl 3,* S251-S254.
- Levy-Benshimol, A., & Garcia, R. (1986). Digestibility of the globulin fraction of *Phaseolus vulgaris* seeds in mice. *Nutrition Reports International, 34,* 509-520.
- Ma, Y., & Bliss, F. (1978). Seed proteins of common bean. Crop Science, 18, 431-437.

- Marquez, U., & Lajolo, F. (1981). Composition and digestibility of albumin, globulins, and glutelins from *Phaseolus vulgaris*. *Journal of the Science of Food and Agriculture*, 53, 235-242.
- Marquez, U., & Lajolo, F. (1990). Nutritive value of cooked beans (*Phaseolus vulgaris*) and their isolated major protein fractions. *Journal of Agricultural and Food Chemistry*, 29, 1068-1074.
- Marquez, U., & Lajolo, F. (1991). *In vivo* digestibility of bean (*Phaseolus vulgaris* L.) proteins: the role of endogenous protein. *Journal of Agricultural and Food Chemistry*, *39*, 1211-1215.
- Maruyama, N., Salleh, M. R., Takahashi, K., Yagasaki, K., Goto, H., Hontani, N., Nakagawa, S., & Utsumi, S. (2002). Structure-physicochemical function relationships of soybean β-conglycinin heterotrimers. *Journal of Agricultural and Food Chemistry*, *50*, 4323-4326.
- Maruyama, N., Sato, R., Wada, Y., Matsumura, Y., Goto, H., Okuda, E., Nakagawa, S., & Utsumi, S. (1999). Structure-physicochemical function relationships of soybean β-conglycinin constituent subunits. *Journal of Agricultural and Food Chemistry*, 47, 5278-5284.
- Marzo, F., Alonso, R., Urdaneta, E., Arricibita, F. J. & Ibanez, F. (2002). Nutritional quality of extruted kidney bean (*Phaseolus vulgaris* L. var. Pinto) and its effects on growth and skeletal muscle nitrogen fractions in rats. *Journal of Animal Science*, *80*, 875-879.
- Momma, M. (2006). A pepsin-resistant 20 kDa protein found in red kidney bean (*Phaseolus vulgaris* L.) identified as basic subunit of legumin. Note. *Bioscience, Biotechnology, and Biochemistry*, 70, 1-4.
- Montoya, C. A., Gomez, A. S., Lallès, J. P., Souffrant, W. B., Beebe, S., & Leterme, P. (2008a).
 In vitro and in vivo protein hydrolysis of beans (*Phaseolus vulgaris*) genetically modified to express different phaseolin types. *Food Chemistry*, 106, 1225-1233.

- Montoya, C. A., Lallès, J. P., Beebe, S., Montagne, L., Souffrant, W. B., & Leterme P. (2006).
 Influence of the *Phaseolus vulgaris* phaseolin level of incorporation, type and thermal treatment on gut characteristics in rats. *British Journal of Nutrition*, *95*, 116-123.
- Montoya, C. A., Lallès, J. P., Beebe, S., Souffrant, W. B., Molle, D., Leterme, P., (2009).
 Susceptibility of phaseolin (*Phaseolus vulgaris*) subunits to trypsinolysis and influence of dietary level of raw phaseolin on protein digestion in the small intestine of rats. *British Journal of Nutrition*,101, 1324-1332.
- Montoya, C. A., Leterme, P., Beebe, S., Souffrant, W. B., Molle, D., Lallès, J. P., (2008b).Phaseolin type and heat treatment influence the biochemistry of protein digestion in rat intestine. *British Journal of Nutrition*, *99*, 531-539.
- Montoya, C. A., Leterme, P., Victoria, N. F., Toro, O., Souffrant, W. B., Beebe, S., Lallès J. P. (2008c). The susceptibility of phaseolin to in vitro proteolysis is highly variable across *Phaseolus vulgaris* bean varieties. *Journal of Agricultural and Food Chemistry*, 56, 2183-2191.
- Moreno, F. J., Maldonado, B. M., Wellne, N., & Mills, E. N. (2005). Thermostability and *in vitro* digestibility of a purified major allergen 2S albumin (Ses i 1) from white sesame seeds (*Sesamun indicum* L.). *Biochem Biophys Acta*, 1752, 142-153.
- Nielsen, S. S. (1991). Digestibility of legume proteins. Food technology, 45, 112-118.
- Nielsen SS. 1998. Protein quality test. Food analysis. Second Edition. Aspen Publishers, USA. 265-279.
- Nielsen, S. S., Deshpande, S. S., Hermodson, M. A., & Scott, M. P. (1988). Comparative digestibility of legume storage proteins. *Journal of Agricultural and Food Chemistry*, 36, 896-902.

- Norton, G., Bliss, F. A., & Brezan, R. (1985). Biochemical and nutritional attributes of grain legumes. In R. J. Summerfield, & E. H. Roberts (Eds.), *Grain Legume Crops* (pp. 73-114). London (UK).
- Nutall, J., Vitale, A., & Frigerio, L. (2003). C-terminal extension of phaseolin with a short methionine-rich sequence can inhibit trimerisation and results in high instability. *Plant Molecular Biology*, 51, 885-894.
- Oliveira, A. C., & Sgarbieri, V. C. (1986). Effect of diets containing dry beans (*Phaseolus vulgaris*, L.) on the rat excretion of endogenous nitrogen. *Journal of Nutrition*, 116, 2387-2392.
- Osborn, T.C., Bliss, F. A. (1985). Effects of genetically removing lectin seed protein on horticultural and seed characteristics of common bean. *Journal of the American Society for Horticultural Science*, *110*, 484-488.
- Paaren, H., Slightom, J., Hall, T. C., Inglis, A., & Blagrove, R. (1987). Purification of a seed glycoprotein: N-terminal and deglycosylation analysis of phaseolin. *Phytochemistry*, *26*, 335-343.
- Perrot, C., Quillien, L., & Guéguen, J. (1999). Identification by immunoblotting of pea (*Pisum sativum*) proteins resistant to *in vitro* enzymatic hydrolysis. *Sciences des Aliments*, 19, 377-390.
- Phillips, D. E., Eyre, M. D., Thompson, A., & Boulter, D. (1981). Protein quality in seed meals of *Phaseolus vulgaris* and heat-stable factors affecting the utilisation of protein. *Journal of the Science of Food and Agriculture, 32,* 423-432.
- Plumb, G. W., & Lambert, N. (1990). A comparison of the trypsinolysis products of nine 11S globulin species. *Food Hydrocolloid*, *3*, 465-473.

- Rubio, L. A., Grant, G., Caballé, C., Martinez-Aragón, A., & Pusztai, A. (1994). High in vivo (rat) digestibility of faba bean (*Vicia faba*), lupin (*Lupinus angustifolius*), and soybean (*Glycine max*) globulins. *Journal of the Science of Food and Agriculture*, 66, 289-292.
- Rubio, L. A., & Seiquer, I. (2002). Transport of amino acids from in vitro digested legume proteins or casein in caco-2cell cultures. *Journal of Agricultural and Food Chemistry*, 50, 5202-5206.
- Salmanowicz, B. P. (2001). Phaseolin seed variability in common bean (*Phaseolus vulgaris*) by capillary gel electrophoresis. *Journal of Applied Genetics*, *42*, 269-281.
- Sathe, S. K., Deshpande, S. S., & Salunke, D. K. (1984). Dry beans of *Phaseolus*. A review. Part
 2. Chemical composition: carbohidrates, fiber, minerals, vitamins, and lipids. *CRC Critical Reviews in Food Science & Nutrition*, 21, 41-93.
- Schaafsma, G. (2000). The protein digestibility-corrected amino acid score. *Journal of Nutrition*, *130*, 1865S-1867S.
- Seena, S., Sridhar, K. R., & Bajía, B. (2005). Biochemical and biological evaluation o ANF unconventional legume, *Canavalia maritima* of coastal sand dunes of India. *Tropical and Subtropical Agroecosystems*, 5, 1-14.
- Shutov, A. D., Kakhovskaya, I. A., Bastrygina, A. S., Bulmaga, V. P., Horstmann, C., & Müntz, K. (1996). Limited proteolysis of β-conglycinin and glicinin, the 7S and 11S storage globulins from soyban [*Glycinine max* (L.) Merr.] structural and evolutionary implications. *European Journal of Biochemistry*, 241, 221-228.
- Slightom, J. L., Drong, R. F., Klassy, R. C., & Hoffman, L. M. (1985). Nucleotide sequence from phaseolin cDNA clones: the major storage proteins from *Phaseolus vulgaris* are encoded by two unique gene families. *Nucleic Acids Research*, 13, 6483-6498.

- Taylor, M., Chapman, R., Beyaert, R., Hernandez, C., & Marsolais, F. (2008). Seed storage protein deficiency improves sulphur amino acid content in common bean (*Phaseolus vulgaris*): redirection of sulphur from γ-glutamyl-S-methyl-cysteine. Journal of Agricultural and Food Chemistry, 56, 5647-5654.
- Tharanathan, R. N., & Mahadevamma, S. (2003). Grain legumes- a boon to human nutrition. Trends *Food Science and Technology*, 14, 507-518.
- Wu, W., Williams, W. P., Kunkel, M. E., Acton, J. C., Huang, Y., Wardlaw, F. B., & Grimes, L.
 W. (1996). Thermal effect on net protein ratio of red kidney beans (*Phaseolus vulgaris* L.). *Journal of the Science of Food and Agriculture*, 71, 491-495.
- Yu, P. (2005). Protein secondary structures (α-helix and β-sheet) at a cellular level and protein fractions in relation to rumen degradation behaviours of protein: a new approach. *British Journal of Nutrition*, *94*, 655-665.

	Crude protein	Protein fi	ractions, %	of total prote	ein	
Pulse	(g/kg DM)	Albumin	Globulin	Prolamin	Glutelin	Reference
Canavalia ensiformis	240-280	30-36	52-60	2-4	7-8	Seena et al. (2005); Gomez et al. (1993)
Glycine max	300-500	10	85-95	-	-	Adsule & Kadam (1989)
Lupinus albus	310-350	10-20	80-90	-	-	Babar et al. (1989)
Phaseolus vulgaris	213-313	12-30	54-79	2-4	20-30	Ma & Bliss (1978); Sathe et al. (1984)
Pisum sativum	212-329	21	66	-	12	Adsule & Kadam (1989); Kadam et al. (1989)
Vicia faba	229-385	20	65	-	15	Adsule & Kadam (1989); Kadam et al. (1989)
Vigna unguiculata	209-346	45	51	1	3	Kadam et al. (1989); Freitas et al. (2004)

			1 . •	c	•	• 1	
Table 1. Crude	nrotein	content at	nd nrotein	tractions	1n	various nulse	C
	protein	content a	na protein	machons	111	various puise	.

			Protein fraction						
	Requirements ^a	Total	Phaseolin	11 S	Albumin	Glutelin	Prolamin	\mathbf{NNP}^{b}	
Essential									
Arginine		63	53	48	65	61	71	65	
Histidine	18	30	32	30	35	35	24	31	
Isoleucine	31	48	49	49	43	62	57	64	
Leucine	63	95	83	87	66	114	101	109	
Lysine	52	76	64	78	109	81	59	70	
Methionine	26°	12	9	15	10	20	16	12	
Phenylalanine	$e 46^d$	65	31	36	40	54	74	97	
Threonine	27	47	30	49	74	46	39	44	
Valine	42	57	59	70	49	66	79	71	
Non-essential									
Alanine		51	36	69	49	49	47	55	
Aspartic acid		120	152	95	142	112	95	102	
Cysteine		1	3	6	2		1	1	
Glutamic acid	ļ	140	160	131	128	145	124	124	
Glycine		56	40	80	47	44	52	53	
Proline		38	35	51	50	40	91	38	
Serine		68	102	73	55	43	48	43	
Tyrosine		40	47	29	35	28	23	22	
References		1,2	3, 4	5, 6	6	6	6	6	

Table 2. Amino acid composition (mg/g protein) of the total and different protein fractions of the common bean.

^a Suggested pattern of AA requirement for preschool children (aged 2 to 5 years) (FAO/WHO/UNU, 2007) ^b NNP, N non protein ^c Value includes Met + Cys ^d Value includes Phe + Tyr

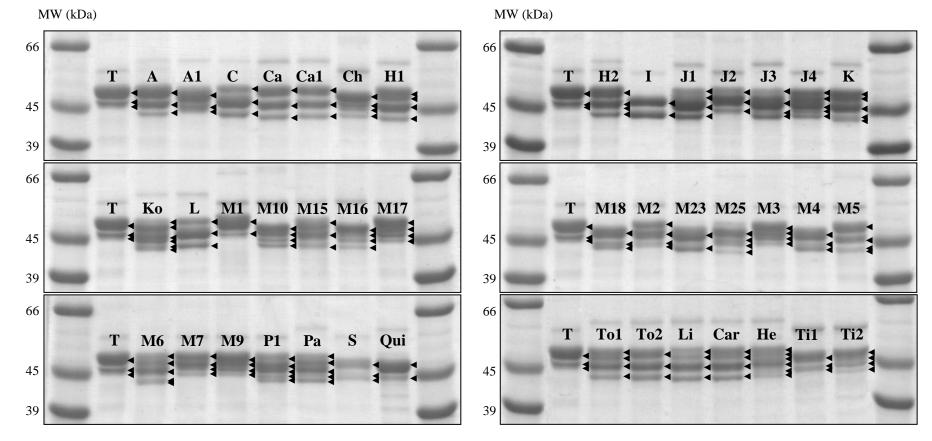
1 Marzo et al. (2002)

4 Montoya et al. (2008c) 2 Montoya et al. (2008a) 5 Derbyshire et al. (1976)

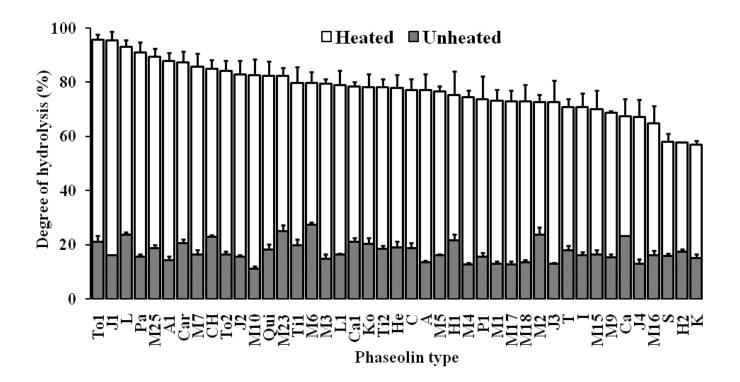
3 Bhushan & Pant (1986)

6 Ma & Bliss (1978)

	Treat	tment	
Site	Raw	Cooked	Reference
In vivo			
Fecal		96	Phillips et al. (1981)
Fecal	28	91	Levy-Benshimol & Garcia (1986)
Fecal		90	Marquez & Lajolo (1990)
Fecal	33	91	Montoya et al. (2006)
In vitro			
Pepsin-pancreatin	10	82	Marquez & Lajolo (1981)
Pepsin-pancreatin	23	88	Genovese & Lajolo (1998)


Table 3. In	vivo	and in	vitro	protein	digesti	bility	values	of raw	and	cooked	phaseolin	s in rats.

	Total	Phasec	olin			Total estimated							
	seed	S	Т	J1	To1	11S	Albumin	Glutelin	N-fraction	S	Т	J1	To1
DH (%)	64	58	71	96	96	60	21	42	100				
Total protein (%)		45	45	45	45	8	20	20	5				
PDCAAS ^a (%)													
Histidine	106	105	127	172	172	100	41	82	172	90	100	120	120
Isoleucine	98	93	113	153	153	95	29	8	206	85	94	112	112
Leucine	96	78	94	128	128	83	22	76	173	72	80	95	95
Lysine	93	73	88	119	119	90	44	65	135	70	77	91	91
Met + Cys	33	27	33	45	45	49	10	32	50	28	31	36	36
Phe + Tyr	145	100	122	164	164	85	34	75	258	89	99	118	118
Threonine	111	65	80	108	108	109	58	72	163	74	81	93	93
Valine	86	83	101	136	136	100	25	66	169	74	82	98	98


Table 4. In vitro protein digestibility corrected amino acid score (PDCAAS) of common bean protein fractions and estimated PDCAAS for the total protein of beans, assuming that each seed has a different phaseolin type and according to its degree of hydrolysis (DH).

^a PDCAAS = (AAx/ReqAAx) * DH. Where AAx the level of a X AA in the protein; Req AAx the requirements for children of 2 to 5 years-old- in X AA; and DH the

degree of hydrolysis of the protein

Figure 1. Electrophoretic subunit pattern of different phaseolin types determined using 1-D SDS-PAGE. Arrow heads indicate each subunit of a phaseolin type. Molecular weight markers (MW) are indicated on the left of the figure. Reproduced from Montoya et al., 2008c with the kind permission of JAFC (license number; 2175541338291).

Figure 2. Degree of hydrolysis of different unheated and heated phaseolins after in vitro hydrolysis (120 min pepsin + 240 min pancreatin). Values are means of 3 measurements for each phaseolin. Reproduced from Montoya et al., 2008c with the kind permission of JAFC (license number; 2175541338291).