Antimicrobial and insecticidal properties of isolated from seeds of the tropical forage legume Clitoria ternatea (L.)

S. KELEMU, C. Cardona and G. Segura

Centro Internacional de Agricultura Tropical (CIAT), A.A. 6713, Cali, Colombia, South America

Introduction

Seeds use strategies to germinate and survive in soils that are densely inhabited by a wide range of microfauna and microffora. Various antimicrobial proteins such as chitinases, β -glucanases, thionins, ribosome-inactivating proteins and permatins have been detected in seeds. These are believed to play a role in plant defense because of their strong antimicrobial activity. This belief is supported by their ability to confer resistance (to pathogens) in transgenic plants containing genes that encode them.

Other plant-derived proteins have insecticidal properties that can, for example, protect seeds from attack by larvae of various bruchids and inhibit the growth and development of *Helicoverpa punctigera* (Wallengren) larvae.

We report here the isolation, purification, and characterization of a protein from *C. ternatea* seeds. This protein, designated 'finotin', has antifungal, antibacterial and insecticidal properties.

Materials and methods

Biological materials

The various test fungi and plant pathogenic bacterium were obtained from collections maintained at CIAT. The bruchids *Zabrotes subfasciatus* and *Acanthoscelides obtectus* were obtained from the permanent mass-reared population maintained at CIAT.

Isolating and purifying the antifungal protein

Proteins were extracted from10 g seeds macerated in 100 mL of sterile distilled water for protein purification. The macerated suspension was filtered through several layers, of cheesecloth and centrifuged at 13 000 × g for 30 min. After several steps of cleaning, the supernatant was concentrated by lyophilization, then re-suspended in sterile distilled water at 10% of the original volume. The sample was resolved by preparative, granulated-bed IEF (Bio-Rad Laboratories), with a pH range of 3.5 to 9.5, according to the manufacturer's instructions and fractionated. Fractions with antifungal activity were analyzed.

Antifungal and antibacterial activity bioassay

Discs of thick filter paper (#7) containing 300-µL seedextract filtrate were placed in petri dishes containing PDA. One sclerotium of *R. solani* was then placed in the center of the dish and incubated at 28 °C. For the antibacterial activity assay, a 100-µL bacterial suspension in sterile deionized water with an optical density at 600 nm (OD₆₀₀) of 0.1 was evenly spread over nutrient agar (Difco, USA) in a plate. Microbial growth was assessed by measuring inhibition zones between the filter-paper disc and the visible microbial growth after 48 h of incubation for fungi and 24 h for bacteria.

Insect rearing and feeding tests

Tests were conducted with two species of bruchids that are key pests of stored beans around the world: the Mexican bean weevil or *Z. subfasciatus* (Boheman), and the bean weevil or *A. obtectus* (Say).

To test insecticidal effects of the protein on both bruchid species, 'artificial' seeds (with flour of a susceptible common bean variety) were prepared, using techniques devised by Shade et al. (1986. Environ. Entomol. 15:1286-1291).

Infestation procedures were as follows: for Z. subfasciatus, seeds for each protein concentration were infested with at least 8 pairs of bruchids per seed. After 5 days, the seeds were examined under a dissecting microscope and any eggs in excess of 5 to 6 per seed were destroyed with a needle. For A. obtectus, seeds for each protein concentration were infested with 5 to 6 neonate larvae per seed.

Result and Discussion

Antifungal activity

The crude extract from seeds of *C. ternatea* CIAT 20692 showed strong antifungal activity on the test fungus *R. solani.* This activity could be eliminated by treatment with Pronase E [Figure 1], indicating that the active compound is a protein. Seeds release this heat-stable, proteinaceous, antifungal compound after mechanical disruption of their seed coat or after germination (data not shown).

Identifying and purifying the antifungal protein

To identify the specific protein(s) responsible for the antifungal activity, we created a new protocol, which involves (1) resolving the seed extract by an IEF gel, (2) neutralizing the gel to eliminate the pH gradient, (3) lightly and uniformly coating the gel with warm PDA, (4) inoculating the gel/PDA composition with *R. solani* sclerotia, and (5) wrapping the inoculated gel/PDA with saran wrap to prevent loss of moisture and incubating it at 28 °C for 2 days. This protocol, in fact, greatly facilitated our task.

R. solari was inhibited in the area where proteins with alkaline pl (isoelectric point) were found (Figure 2). The specific antifungal protein was identified by cutting out ultra-thin-layer polyacrylamide gel areas, corresponding to individual protein bands in a duplicate Coomassiestained gel. Proteins were eluted from the sliced gels and tested for antifungal activity. The results of these tests show that a highly basic protein (numbered 1 in Figure 2) was responsible for the antifungal activity (Figure 3).

The peptide was well separated from the other proteins on IEF gels, making the purification procedure, using preparative, granulated-bed IEF, a relatively easy

task. Five of the fractions showed activity with decreasing intensity, starting with the highly alkaline pl [Figure 4]. Both SDS-PAGE (Figure 5) and IEF gels (data not shown) showed that fraction 1 was pure and free of other proteins.

Antifungal and antibacterial activity

Finotin was active against several important plant pathogens: Colletotrichum lindemuthianum (Sacc. & Magnus) Lams.-Scrib. and Xanthomonas axonopodis pv. phaseoli (Smith) Dye from common beans;

Figure 2. Extracts thom Landos infrantes baseds recoved by solvectint toolusing (EFE) pet (a) newstanded in a buffer costed with potent dextrace ager (PAO), and includited with one Photostonia soluri scherolam. The growth inhibition cover includited with one Photostonia costen soluri and and an annexed of costenasias part of the gal A higherine (EFE gal paids for antihypatic at Costenasias) blue 16 of (b) were out out to dentify the antihungal protein; (c) (EF gal pH gradient layor)

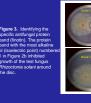


Figure 4. Purification of an antifungal protein from Cilitona ternates seeds, using weparative, granulated bed isoelectric focusing. Five fractions, scooped from he gel (starting from the alkaline part of the gel as fraction 1 or F1), ternonstrated antifungal activities, with F5 having the least inhibitory activity oainst crowth of *Phizoctoria solari*.

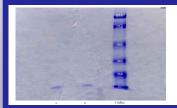


Figure 5. SDS-PAGE analysis of purified protein fraction from *Ciltoria ternatea* seeds. Lanes 1 and 2, fraction 1 from two separate purifications; lane 3, SDS-PAGE molecular weight marker (low range).

Lasiodiplodia theobromae (Pat.) Gr. & Maub. and C. gloeosporioides (Penz.) Sacc. from Stylosanthes spp.; Bipolaris oryzae and Pyricularia grisea Cav. from rice; and R. solani from Brachiaria spp.

Insecticidal activity

Mortality of the bruchids Zabrotes subfasciatus (Boheman) and Acanthosceldius obtectus (Say) was very low (less than 3%) on artificial seeds. The artificial seeds were enriched with increasing concentrations of the test protein (finotin), leading to increasing levels of mortality. Maximum levels (100% larval mortality) were reached at the dosage of 5% for Z. subfasciatus and 1% for A. obtectus. Probit analysis (Table 1) showed that the protein is highly toxic to both bruchid species at LC_{sc} values, which can be considered as low (less than 2%). The LC₅₀ value for A. obtectus (0.36%) was about four times less than that for Z. subfasciatus (1.21%), meaning that the protein is more toxic for A. obtectus. The protein is highly toxic to first-instar larvae of both bruchid species; dissection of infested seeds revealed that up to 75% of larvae did not reach second-instar stage

Responses to different concentrations in terms of days to adult emergence are shown in Table 2. Developmental times of those few insects that survived the various concentrations were prolonged. Response correlated with dosage: the higher the dosage the longer the developmental time. This is further proof of the protein's toxicity to both bruchid species.

	Bruchids	
Parameter	Z. subfasciatus	A.obtectus
No. tested	147	155
LC ₅₀ (95% FL) ^a	1.21 (0.99 -1.47)	0.36 (0.28-0.43)
LC ₉₅ (95% FL) ^a	2.88 (2.17-5.21)	0.77 (0.61-1.28)
Slope ± SEM	4.3 ± 0.88	4.9 ± 0.96

Table 2. Effects of increasing concentrations of a purified protein (finotin) isolated from *Ciltoria ternatea* seeds on the biology (days to adult emergence) of the bean bruchids Zabrotes subfasciatus and Acanthoscelides obtectus.

Protein concentration*	Days to adult emergence**	
(% w/w)	Z. subfasciatus	A. obtectus
0.0	43.1e	34.4c
0.0625	45.0e	33.8c
0.125	51.5d	35.2c
0.25	55.6c	49.4b
0.5	57.3c	63.4a
1.0	72.7b	NE
2.0	80.0a	NE
5.0	NE	NE

*Background flour was prepared from seeds of common bean cv. ICA Pijac. ** Means within a column followed by the same letter are not significantly different according to Fisher's protected LSD. ANOVA on data testing for differences among dosages (protein concentrations): for Z subdissilatus, F =106.9, dl = 6.21, P<0.001; and for A. obtectus, F = 184.9, dl = 4.16, P<0.0001. N. KE means no adul emergence, that is, 100% laval mortality.