Studying begomovirus infections in susceptible and resistant cassava breeding lines

S. WINTER¹, O.A. ARIYO^{1,2}, M. KOERBLER¹, K. DIETRICH¹, and A.G. O. DIXON²

¹DSMZ, Plant Virus Division, Braunschweig, Germany; ²International Institute of Tropical Agriculture, Ibadan, Nigeria

Introduction

Screening for virus resistance in cassava in the field relies on natural infestations with whitefly vectors transmitting the particular virus(es) present at a given time and location, hence comprising several unknown factors. The evaluation of host resistance from a virological point of view is a comparison of defined characters, e.g. virus accumulation in resistant versus susceptible plants, hence:

We have established methods, to inoculate cassava with defined begomoviruses to study virus infections in resistant and susceptible cassava breeding lines.

Viruses, constructs and inoculations

Partial, head-to-tail dimers of DNA-A and DNA-B genomic components were constructed for virus species/ strains of African cassava mosaic virus, ACMV [NG] and ACMV[KE], and for East African cassava mosaic virus, EACMV [KE] and EACMV-UG2 [KE].

For biolistic inoculation, total DNA from infected plants (2µg/shot) or mixtures of begomovirus cloned DNA-A and DNA-B multimers (0.5µgA/0.5µgB/shot) were introduced into cassava by microprojectile bombardment of DNA coated onto 1 micron gold particles. Biolistic inoculation was done with the Helios gene gun at 200-300 psi applying 2-3 shots/ plant.

Grafting experiments were performed for verification and reference and to study virus movement/accumulation in resistant/susceptible branches.

Partial multimeric constructs of cloned DNA-A and DNA-B genomic components of begomoviruses to reach high infection rates in cassava. DNA-A and DNA-B mixes from heterologous viruses form pseudo-recombinant viruses.

Quantification of virus accumulation

A real time PCR was developed for quantitation of virus in infected plants. SYBR Green I or Taq-Man fluorescence was measured. 18S DNA sequences were used as endogenous control for normalisation.

Cassava breeding lines

Cassava breeding lines and local landraces with varied resistance status were subjected to virus inoculation experiments

Accession	Source/locality	Parents	Resistance to CMD
TME 117	SW Nigeria	Unknown	HS
TME 3	SW Nigeria	Unknown	HR
TME 4	SW Nigeria	Unknown	HR
96/1089A	IITA Nigeria	M94/0461 * / 90/01554	HR
96/1039	IITA Nigeria	M85/00680 */ 90/01554	нѕ
96/0304	IITA Nigeria	91/02327 * / M94/0461	нѕ
96/0160	IITA Nigeria	30572 * Atu	HR

HS=highly susceptible, HR=highly resistant

Begomovirus infections in cassava

in TME 117, *susceptible, -* 96/0304, 96/1039

Virus infections introduced by microprojectile bombardment, a) EACMV-UG2 [KE] DNA-A/B; b) EACMV-[KE] DNA-A/B c) EACMV-[KE] DNA-A/B / ACMV [NG]

Inoculations with cloned resembled wild viruses type infections (a,b).

infections Mixed resulted in serious disease phenotypes (c).

EACMV-[KE-Kilifi] CA123A /EACMV-UG2 Ca055 B

Inoculations with chimerical virus resulted clones severe disease phenotypes

in TME 4, *resistant*, - TME 3, 96/1089A, 96/0160

Virus infections introduced by microprojectile bombardment,

a) cloned EACMV-UG2[KE] Ca55-A/B; b) cloned EACMV-[KE-Kilifi] CA123A / EACMV-UG2 Ca055 B; c) Cutting from recovered symptomless, TME4 grafted on EACMV [KE-Kwale] infected rootstock.

Inoculations with cloned homologous components of viruses did not establish infections (a). Inoculation with pseudorecombinant virus (b) resulted in virus infections with severe symptoms on 2-4 leaves followed by recovery. Graft-inoculation of EACMV-UG2 to TME 4 resulted in virus invasion, symptom expression and recovery. Cuttings excised from completely recovered plant parts (c) were still carrying virus, supporting replication, symptom expression and recovery.

Evaluation of virus accumulation in resistant cassava

/EACMV-UG2 Ca055 B

EACMV-[KE-Kilifi] CA123A

In TME 117 a high, relatively constant virus load is maintained.

Consecutive leaves following 1.symptomatic leaf

In TME 4, symptomatic leaves (1-4) show comparable concentrations, virus nonsymptomatic leaves have variable virus content, ranging from absence of virus (10-11) to 105 times the virus positive baseline reference.

ACMV/EACMV-UG2 graft inoculation

ACMV/EACMV-UG2 In graft inoculated branches of TME117 and TME4, the TME4 branch recovers from symptoms and virus is still barely detected.

Conclusions

- · Inoculation by microprojectile bombardment of begomoviruses (cloned or total DNA) resulted in infections in susceptible cassava breeding lines;
- Upon inoculations with chimerical virus clones, a pseudorecombinant virus EACMV-UG/EACMV-UG2 is formed with severe symptom phenotypes in susceptible and resistant cassava varieties; Similarly, mixed virus infections result in serious virus synergism.
- Cassava lines with resistance against CMD, proved resistant against all begomoviruses tested;
- In resistant cassava, virus replication is supported for a limited time and subsequently aborted, leading to plants recovered from symptoms and virus.
- However evidence is pending whether resistant cassava recovers free of virus!

Virus concentration is only a fraction of susceptible TME 117.