Cyanogenic Glucosides Participation in Nitrogen Transport in Cassava:
Implication for the Generation of a Cyanogen-free Cassava Plant
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Southern blot analysis shows the integration of the T-DNA (CYP79 genes) into the genome of each

CONCLUSSIONS

Cyanogenic glucosides are present in many crop plants meluding caszava, sorghum, transtormant. + [J Transgenic cassava plants were generated with organ-specific inhibition
barley, cherry, apricot, plum, peach, mango and lima beans. These compounds yield ? Cabl tr““"f”rm“lmﬂ ? Patatin transt of CYP79D1 and CYP79D2 by utilizing either an Arabidopsis thaliana leaf-
cvanide tollowing de-glycosylation and are thought to protect plants from herbivores. + WI1 2 3 4 WT 1 . , 3 i specific Cabl promoter or th Eﬁ Solanum tuberosum tuber-specific class T
Among the cyanogenic crops, cassava 12 the most agronomically mmportant. Cassava roots T s e g e B ' — = 5 g ,1 |
are consumed as a major source of carbohydrates by over 600 million people. The leaves, iia E | patatin promoter.
roots and stems of cassava, however, contam potentially toxic levels of cyvanogenic T . ) ) ) ) )
glycosides (linamarin (95%) and lotaustralin (5%)). = &4 1 Root linamarin content was unaltered in transformants in which

- CYP79D1/D2 transcripts were reduced to non-detectable levels in roots.
Chronic, low-level cyanide exposure has been associated with the development of goiter A S
and tropical ataxic neuropathy, whereas acute cyanogen poisoning, particularly during i f-’:‘ 1 In contrast, root linamarin content of transformants having

tamies, has been associated with outbreaks of Konzo, a paralytic dizorder, and m some

substantially reduced CYP79D1/D2 transcripts in leaves was less than 1%
cages death (Osuntokun, 1981; Bourdoux et al., 1978, Howlett et al., 1990).

of wild-type levels.

While both leaves and roots have the ability to synthesize limamarin i vifro, 1t has been

. . ; | [J These results suggest that linamarin made in the leaves is transported to
reported that linamarin can be transported from leaves to roots ag well (Selmar, 1994; Du 55 ‘ e ‘ ‘ ansp

et al.. 1995). The first dedicated step in linamarin synthesis is the conversion of valine to RT-PCR demonstrates the complete loss or reduction of CYP79D1 and CYP79D2 transcripts the roots (Figure 2).
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(Andersson et al., 2000). We present here the selective inhibition of linamarin WT 1 2 3 4 5 - WT 1 2 3 I [J Analysis on the growth of transgenic cassava in media lacking ammonia
svnthesis in cassava by expressing the CYP79D1 and CYP79D2 genes in an antisense Leaf _ _ - suggests that cyanogenic glucosides may function as an important mobile
orientation in leaves or roots using either an Arabidopsis thaliana leat-specific Cabl CYP79DI nitrogen source in young plants, in addition to their proven ability to deter
promoter or the Solanum tuberosum tuber-specific class I patatin promoter, - herbivory (Figure 2)
respectively. Our objective m generating transgenic plants m which linamarm synthesis CYP79D2 "
was zelectively mhibited mn roots or leaves was to determine the relative contribution ot =
- and root-synthesized i oot lnamasin comot P [l e - ~ ————
leat- and root-synthesized linamarm to the total root inamarin content. Figure 2. Model for the movement of cyanogenic glucoside as a source of reduced
P nitrogen 1 cassava.
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[ Linamarin quantification was performed by a Thermo-Fimnigan Trace 2000
mstrument, on a 30 meter long, 0.25 micron film thickness Restek XTI-5 capillary
gas chromatography column as described m Suitunga and Sayre (2003). Each ot the
rns wasg normalized for the mternal standard (phenyl f-D-glucoside) and linamarin 1s
expressed ag a % of the quantity present in wild-type untranstormed plants.
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After 6 weeks

1 Growth analysis on ammonmm-free media was conducted by growing nodal
cuttings of wild-type and transtormants m normal Murashige Skoog media (Murashige
and Skoog, 1962) i the presence or abzence of ammoma. MS media without
ammonium nitrate (Caizson Laboratories, Rexburg, ID) was supplemented with 38 mM
potagsmum nitrate.
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