Inducing embryogenic tissue for transformation of cassava *Manihot esculenta*, Crantz

P Chavarriaga, D López, M García, JJ Ladino, O Vacca and Joe Tohme

Conservation and Use of Tropical Genetic Resources, CIAT, AA 671, Cali, Colombia

INTRODUCTION

Totipotent cells are necessary to transform plants and regenerate transgenic lines. In cassava, somatic embryos (SE) and Friable Embryogenic Callus (FEC) have been extensively employed to obtain transgenics. We have worked on the improvement of methods to produce embryogenic tissues, and have developed a very efficient and cheaper methodology which employs liquid medium to induce somatic embryos. The system is called Liquid Film Stationary System (LFSS). It helps reducing costs by using recyclable containers and by eliminating gelling agents. The principles of LFSS we explain below.

RESULTS AND DISCUSSION

Inducing embryogenic structures

Advantages of using LFSS:
- Uses recyclable containers.
- No gelling agent.
- Reduces amount of medium (0.4 ml LFSS v.s. 2.7 ml in solid medium).
- Generates abundant and excellent quality, embryogenic structures.
- Better nutrition of explants (homogeneous medium v.s. nutrient-depleted areas in solid medium)

MATERIALS AND METHODS

Diagram depicting the main steps to produce embryogenic tissues.

1. In vitro cassava plants propagated in vitro
2. Excision of axillary buds
3. Buds to produce embryos in LFSS
4. Organized embryogenic structures in LFSS
5. Embryo maturation
6. Subculture of embryos on medium to induce FEC
7. Somatic embryo synchronization
8. Transformable embryos in cotyledon stage
9. Purified, proliferated and transformable FEC

Massive production of embryogenic tissues in LFSS

Organized embryogenic structures

Induction of FEC

Transformable, purified FEC

Plant regeneration

Maturation of embryos from FEC

Perspectives

Producing FEC using LFSS seems promising. Initial attempts have shown excellent results.