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ABSTRACT Morphology of the third antennal segment and compound eyes of adults of the
whitefly species Bemisia tabaci (Gennadius), B. argentifolii Bellows & Perring, B. tuberculata
(Bondar), Trialeurodes vaporariorum (Westwood), T. variablilis (Quaintance), and Aleurotrachelus
socialis (Bondar) were studied using scanning electron microscopy to aid in identification of adult
whiteflies in cassava and beans in Colombia. Random amplified polymorphic DNA polymerase chain
reaction markers proved complementary to the morphological identification of whitefly species and
the only rapid method to distinguish individuals in the Bemisia tabaci species complex. From each
species of whitefly, a region of the mitochondrial 16§ rDNA gene was amplified, cloned and the
sequence determined. Parsimony and distance analyses were performed and the results were similar
to those based on morphology. The distance between the two species of Trialeurodes was greater
than expected for two species within the same genus. The combination of morphological and
molecular traits is useful in understanding the diversity and evolution of these whitefly species.
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WHITEFLIES ARE AGRICULTURAL pests in most tropical
and subtropical countries. Bemisia tabaci (Genna-
dius), Bemisia argentifolii Bellows & Perring, Bemisia
tuberculata  (Bondar), Trialeurodes vaporariorum
(Westwood), Trialeurodes variabilis (Quaintance),
Trialeurodes abutiloneus (Haldman), Aleurotrachelus
socialis (Bondar), and Aleurocanthus woglumi
(Ashby) are considered the important whitefly pests
in Colombia and Central America (Caballero 1992).
Identification of adults found on Manihot esculenta
(Crantz) or Phaseolus vulgaris (L.) often is necessary
in our investigation of whiteflies as vectors of viruses.
Conventional taxonomy and identification of white-
flies is based on morphological characters of the pupal
stage. The pupa may present difficulties because of
variation in setae or shape of pupal cases. In some
polyphagous species, the variation is correlated with
the host plant and environmental factors (Russell
1948; Mound 1963, 1983; David and Ananthakrishnan
1976; Mohanty and Basu 1986). It is not always possible
to find pupae when collecting whiteflies from the field,
particularly on young plants. For practical reasons it is
desirable to be able to identify whitefly adults.

Few studies have been done on the morphology of
adult whiteflies. Hill (1969), Bink-Moenen (1983),
and Gill (1990) analyzed adult morphological struc-
tures in light microscope studies of whitefly species
from temperate regions. Our study adds both mor-
phological and molecular information on three species
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of economic importance found in tropical America, B.
tuberculata, T. variabilis, and A. socialis, as well as the
better-known species B. tabaci, B. argentifolii, and T.
vaporariorum. The terminology and description of
morphological structures of adult whiteflies used in
this article are given by Gill (1990). Using a scanning
electron microscope (SEM) enables the detection of
variation of the sensorial receptors on the antenna and
the number of ommatidia connecting the upper and
lower compound eyes of adult whiteflies encountered
on cassava and beans in Colombia.

Bemisia tabaci B biotype is reported to be a distinct
species called B. argentifolii (Perring et al. 1992, 1993,
Bellows et al. 1994). The molecular data are not con-
vincing because the variation at the mitochondrial 18S
rDNA gene is only a single unique nucleotide differ-
ence between B. tabaci biotype A and B. argentifolii
(Campbell et al. 1994). Detailed studies (Brown et al.
1995, Frohlich et al. 1999) suggest that B. tabaci should
be considered a cryptic species complex and that B.
argentifolii, a member of the complex, is a recent
introduction from the Old World to the Americas. In
a study based on the ribosomal internal transcribed
spacer (ITS 1), the authors reached the same conclu-
sion (DeBarro et al. 2000). Bemisia argentifolii is wide-
spread in many countries of Latin America including
Colombia (Quintero et al. 1998). In tomatoes, this pest
causes hundreds of millions of dollars annually in di-
rect damage and as a vector of whitefly-transmitted
viruses (Polston and Anderson 1997). In beans, this
pest is associated with an increased incidence of gemi-
niviruses. Although increased host range, silverleaf
symptoms, and increased populations of whiteflies are
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indicators that the population is B. argentifolii, mor-
phology is not reliable to distinguish between white-
flies in the Bemisia tabaci complex. Pupal morpholog-
ical features contain sufficient variation that they are
not reliable characteristics to distinguish between B.
tabaci biotype A and B. argentifolii (Rosell et al. 1997).

Molecular detection methods using polymorphisms
of PCR (random amplified polymorphic DNA
[RAPD]-PCR) products were developed to distin-
guish native Australian populations of B. tabaci and B.
argentifolii (De Barro and Driver 1997). A RAPD
PCR-based test is very convenient because the sam-
ples can be preserved in alcohol and relatively large
numbers of samples can be processed rapidly.

Both morphological and molecular data are useful in
determining taxonomic relationships. Because there is

.- little fossil evidence and significant variability in the

key traits in both nymphs and adult whiteflies, mo-
lecular data can be important in determining phylo-
genetic relationships (Campbell et al. 1996). The ITS
region of the nuclear 185 rDNA gene was used to study
phylogenetic relationships in the Aleyrodidae (Camp-
bell et al. 1994). Molecular analysis of the genus Be-
misia was made by comparing the mitochondrial 16S
rDNA gene and a variable portion of mitochondrial
cytochrome oxidase I (COI) gene (Frohlich et al.
1999). These studies demonstrated that different
markers have different degrees of variability. The nu-
clear 18S data were the least variable and the COI data
the most variable. Here we analyzed both the rela-
tionships between three genera as well as species of
Trialeurodes and Bemisia. The 3 half of the mitochon-
drial 16S gene was chosen because it proved useful in
studies of distantly related taxa (Simon et al. 1994),
and was proposed for the study of whiteflies (Frohlich
et al. 1996), and was useful in distinguishing drosophi-
lid genera (DeSalle 1992). We have also tested the
utility of RAPD PCR to identify whiteflies in tropical
America.

Materials and Methods

Whiteflies were collected in June 1997 from cassava
and bean fields and were reared in cages in green-
houses. Specific sites in Colombia and host plant are
as follows: B. tabaci, Palmira, Valle de Cauca, on beans;
B. tuberculata, Quilcasé, Cauca, on cassava; T. vapo-
rariorum, Fusagasugd, Cundinamarca, on beans; T.
variabilis, Quilcasé, Cauca, on cassava; A. socialis, Pes-
cador, Cauca, on cassava. Bemisia argentifolii was col-
lected on Arachis sp. in Palmira, Valle de Cauca, and
was compared with B. tabaci biotype A using RAPDs,
esterase enzymes, host range, and symptom severity
(Quintero et al. 1998). Whitefly pupae from each
colony were collected and brought to the laboratory
in petri dishes, where the adults were allowed to
emerge. Pupae samples were sent to the USDA Agri-
cultural Research Service in Beltsville, MD, to confirm
their identification. The B. tabaci biotype A from Costa
Rica (CR), Puerto Rico (PR), and Israel, as well as the
T. vaporariorum from Arizona (AZ), were described
previously (Frohlich et al. 1999).
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To prepare the adult whiteflies for inspection with
the SEM, they were collected using an aspirator and
stored in 70% ethanol (EtOH). Specimens were im-
mersed in a graded series of EtOH (80, 90, 100%) for
20 min for each step and cleaned with xylene over-
night to remove the wax adhering to the surface of the
specimens. They were immersed in EtOH:xylene (1:1,
vol:vol), transferred to 100% EtOH, and critical-point
dried in CO, with a Tousimis 780A apparatus (Rock-
ville, MD). The antennae were cut from the heads and
viewed in a horizontal position for optimal resolution.
Specimens were mounted in holders with a conduc-
tive lacquer adhesive. The specimens were coated
with 18 nm of gold in a sputter coater and viewed with
a SEM (JEOL JSM-820, Tokyo). In total, 13 males and
15 females of B. tabaci biotype A, 12 males and 16
females of B. argentifolii, and five males and five fe-
males of B. tuberculata, T. vaporariorum, T. variabilis,
and A. socialis were examined. Adults of each species
studied were preserved and stored in 70% EtOH. Rep-
resentative specimens of each whitefly culture were
deposited in the insect collection at CIAT, Cali, Co-
lombia.

RAPD PCR Analysis. Total DNA was isolated from
individual whiteflies using a method developed for
plants (Gilbertson et al. 1991) with volumes of re-
agents appropriate for the low weight of the whiteflies.
The DNA was amplified using the PCR. The primers
used were Operon F2 (5’ GAGGATCCCT3') (Oper-
on, Alameda, CA), F12 (5’ACGGTACCAG3'), H9
(5'TGTAGCTGGG3'), and HI16 (5'TCTCAGC-
TGG3') (De Barro and Driver 1997). The reactions
were carried out using Taq polymerase and program-
mable thermal controllers (PTC-100, MJ Research,
Waltham, MA). The reaction conditions for the first
cycle were 5 min at 94°C, 2 min at 40°C, and 3 min at
72°C. This was followed with 39 cycles of 1 min at 94°C,
1.5 min at 40°C, and 2 min at 72°C. The PCR products
were run in agarose gels, stained with ethidium bro-
mide, and visualized using UV light.

PCR, Cloning and Sequence Analysis of a Region of
the 16S Mitochondrial DNA. The mitochondrial DNA

‘was amplified using the PCR. The primer 4119 (5’

CGCCTGTTTAACAAAAACAT) was the forward
primer and primer 4118 (5 CCGGTCTGAACTCA-
GATCACGT 3') was the reverse primer (Xiong and
Kocher 1991). The PCR reaction conditions were 30
cycles of 1 min at 95°C, 50 s at 50°C, and 50 s at 72°C.
In the last cycle, the 72°C reaction was for 10 min. The
products were purified using the Wizard PCR purifi-
cation columns (Promega, Madison, WI) and were
visualized by agarose gel electrophoresis with
ethidium bromide. The PCR products were cloned
into the plasmid PCR script amp SK(+) (Stratagene,
LA, Jolla, CA). Plasmid DNA was purified using Wiz-
ard plasmid purification columns (Promega). Nucle-
otide sequences were determined using an ABI Prism
377 sequencer (Perkin-Elmer, Foster City, CA) by the
dideoxynucleotide chain termination procedure
(Sanger et al. 1977) using the ABI dye terminator
reaction ready kit. The sequence data were analyzed




514 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA

using DNAMAN Version 4.13 (Lynnon Biosoft, Vau-
dreuil, Quebec).

Phylogenetic Analyses. Phylogenetic analyses were
done with multiple individuals within populations.
DNA sequences were aligned using the ClustalW al-
gorithm (Thompson et al. 1994) by the ClustalW 1.7
program (BCM Search Launcher at the Human Ge-
nome Center, Baylor College of Medicine, Houston,
TX). Because different tree building algorithms make
different evolutionary assumptions, data were evalu-
ated by parsimony, neighbor joining, and maximum-
likelihood. All analyses were performed with PAUP,
version 4.0b2, for Macintosh (Swofford 1999). For
parsimony, the branch-and-bound method was used
(characters unordered, equal weight). Bootstrapping
was performed with the branch and bound option for
2,000 replicates (stepwise sequence addition, tree-
bisection-reconnection [TBR], MulTrees option).
For neighbor joining, distances were calculated using
the Kimura two-parameter model. Maximum-likeli-
hood trees were constructed with a transition/trans-
version ratio of 2.0 by heuristic search (100 replicates,
random addition sequence, MulTrees, TBR) (Swof-
ford 1999).

Results

Morphology Comparison of Six Whitefly Species.
When specimens are stored in 100% EtOH, it is more
difficult to remove all the wax adhering to the surface.
Although this usually does not prevent the identifi-
cation of whiteflies, it does lower the quality of the
micrographs. The best results were obtained when
fresh specimens were processed quickly at least until
the overnight treatment in xylene. After that treat-
ment, storage in 70% EtOH did not cause degradation.

The genitalia were viewed to confirm the sex of the
individuals examined. Females of all whitefly species
examined in this study tended to be larger than males.
All whiteflies used for observation of the compound
eyes were positioned on their side. The upper com-
pound eye is located below the ocellus, and the lower
compound eye is located above and near the clypeus.
The number of ommatidia connecting the upper and
lower compound eyes was of specific importance. The
upper and lower compound eyes of B. tabaci (Fig. 1A)
and B. argentifolii (Fig. 1B) were connected by one
ommatidium in both sexes. The upper and lower com-
pound eyes of B. tuberculata (Fig. 1C) were connected
by two ommatidium in both sexes. The upper and
lower compound eyes of T. vaporariorum (Fig. 1D)
were completely divided in both sexes. Only two spe-
cies, T. variabilis (Fig. 1E, male) and A. socialis (Fig
1F, female), had a different number of ommatidia
between the sexes. The upper and lower compound
eyes of T. variabilis and A. socialis in males were
connected by four ommatidia compared with only
three in females. A characteristic, not apparent in the
micrographs, is that the eye of T. variabilis is not
pigmented but the lower compound eye of A. socialis
is black, and that the upper compound eye is red.
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The differences in size between the sexes did not
significantly affect the modal length of the sensorial
cone or its position on the antenna. In all whiteflies
studied, the sensorial area on the third antennal seg-
ment was apical. All species in both sexes had two
primary sensoria near the sensorial cone on the third
antennal segment. The second sensoria are not always
visible (Fig. 2) because the antennal segment was
selected for the optimum view of the sensorial cone.
In the third antennal segment of B. tabaci and B.
argentifolii, the first primary sensorium was subapical,
and the second primary sensorium was apical. They
were separated by one ring with respect to each other.
The sensorial cone of B. tabaci averaged 7.2 um in
length compared with 8.2 yum for B. argentifolii and did
not reach the first primary sensorium. The position of
the sensorial cone with respect to the primary sensoria
and the shape of the cones were important in differ-
entiating the species. There was a 12% difference in
the average length of the sensorial cone between B.
tabaci biotype A and B. argentifolii. Although this
difference was statistically significant (analysis not
shown), the range of the length of the senorial cones
overlapped. In the third antennal segment of B. ¢u-
berculata, the first primary sensoria were apical and
subapical, and were located on separate rings. The
sensorial cone was farther from the first primary sen-
sorium than in B. tabaci or B. argentifolii, and the
sensorial cone was larger (10.2 um long). In the third
antennal segment of T. vaporariorum, the sensorial
cone arose on the same ring near the first primary
sensorium. In B. tabaci the sensorial cone was on a
separate antennal ring. In T. vaporariorum the senso-
rial cone did not extend beyond the second primary
sensorium and was longer than in B. tabaci (10.4 wm
long). In the third antennal segment of T. variabilis,
the primary sensoria were both on the same ring. The
sensorial cone lay between the primary sensorium and
was farther from the second primary sensorium than
in T. vaporariorum. The length of the sensorial cone
was 111 pm. In the third antennal segment of A.
socialis, the sensorial cone was the longest of the
species studied (19.9 um) and reached the second
primary sensorium. The central peg on the primary
sensoria was elongated and was surrounded by a flow-
erlike ring of erect spinules.

RAPD PCR Analysis of Whiteflies. Of the oligonu-
cleotide primers that were tested for RAPD PCR anal-
ysis, the primers H9 and H16 synthesized fewer PCR
products and were useful in distinguishing between
the whiteflies tested in this study. Using the primer H9
(Fig 3) for B. argentifolii and T. vaporariorum, there
were prominent PCR products at ~600 and 800 bp that
can sometimes make distinguishing the two species
difficult. There was a PCR product in B. argentifolii at
~950 bp, and T. vaporariorum had a PCR product at
~500 bp that was important for distinguishing be-
tween these two species. There were PCR products of
~350, 550, and 600 bp that were similar in B. tabaci
biotype A and B. tuberculata. These species could be
identified by a 250 bp PCR product in B. tuberculata,
and an =900 bp product in B. tabaci A biotype. The H9

A
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Fig. 1. Compound eyes of adult female whiteflies found on cassava and beans in Colombia. (A) Bemisia tabaci biotype
A on beans, (B) Bemisia argentifolii on beans, (C) B. tuberculata on cassava, (D) Trialeurodes vaporariorum on beans, (E)
T. variabilis on cassava, (F) Aleurotrachelus socialis on cassava. Bar = 10 pm.

primer was most useful in distinguishing between B.
tabaci biotype A and B. argentifolii. At =600 bp there
were PCR products of similar size in both biotypes, but
the biotype A had several unique PCR products in-
cluding doublet bands at 300-350 bp. The B. argenti-
folii had PCR products at =600, 700, and 900 bp com-
pared with one product of ~850 bp in B. tabaci bio-
type A.

The primer H16 was useful to distinguish among the
whitefly species (Fig. 3). Although there were some
common bands in the 500-1000 bp range for both B.
tabaci biotype A and B. argentifolii, there were three
products amplified from B. argentifolii of ~350, 450,
and 550 bp that were consistently present. Trialeu-
rodes vaporariorum was distinguished by having only
three prominent PCR products and an ~700 bp prod-
uct that is not present in B. argentifolii.

When the reactions were run using the primers F2
and F12, there were a large number of PCR products
(data not shown). Although the pattern of the PCR
products can be used to distinguish the whitefly spe-
cies, the results often were more difficult to interpret
because of the large numbers of PCR products. There-
fore F2 and F12 were less useful than H9 and H16 to
distinguish between the whiteflies in this study.

Mitochondrial 16S Gene Comparisons. After align-
ment, 450 characters were used in a parsimony analysis
(unordered, equal weight) of which 233 were con-
stant, 51 were variable and uninformative, and 166
were both variable and informative. The branch-and-
bound search vielded eight parsimonious trees of
equal length (=377) (trees not shown). A bootstrap
analysis produced the 50% majority-rule consensus
tree shown in Fig 4. The retention index of the tree was
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Fig. 2. Third antennal segment of adult male whiteflies found on cassava and beans in Colombia. Arrows point to the
primary sensoria. (A) Bemisia tabaci biotype A on beans, (B) Bemisia argentifolii on beans, (C) B. tuberculata on cassava,
(D) Trialeurodes vaporariorum on beans, (E) T. variabilis on cassava, (F) Aleurotrachelus socialis on cassava. Bar = 10 pwm,

0.82 and the consistency index was 0.86. Tree recon-
struction by both neighbor joining and maximum-
likelihood produced relationships between the termi-
nal taxa that were exactly the same as those produced
by parsimony (trees not shown). With respect to the
Bemisia tabaci species complex, two robust clades are
strongly supported. The first consists of B. argentifolii
individuals from Colombia Sucre, Beans, Yuca, and a
B. tabaci sequence from Israel. Values from the dis-
tance table (Table 1) indicate that there is no differ-
ence between the B. tabaci Israeli sequence and B.
argentifolii yuca. The second clade consists of New
World sequences from B. tabaci biotype A from Costa
Rica, Puerto Rico, Arizona, and Colombia.

The relationship between the three genera, Bemisia,
Trialeurodes, and Aleurotrachelus, was not clear. Con-
sidering that T. vaporariorum and T. variabilis are in
the same genus, the mean distances were much
greater as compared with the mean distance between
the whiteflies in the genus Bemisia.

Discussion

The structure, size, and position of the sensorial
cone with respect to the primary sensoria on the third
antennal segment differed among the six species of
whiteflies studied. Although sensorial cones are found
on segments III-VII, the third segment is the longest
and shows the most sensoria. There are also other
modifications of specific importance found on adult
whiteflies, such as the male genitalia, the position of
the combs and brushes on the legs, and the ventral wax
plates. In some genera, such as Paraleyrodes, Tetraleu-
rodes, and Dialeurodes, the antennae are distinct be-

tween the sexes, but for the genera studied here few
differences were noted between the sexes. The posi-
tion of the sensorial cone with respect to the primary
sensoria was the only morphological trait that was
statistically different for B. tabaci biotype A and B.
argentifolii. Because of the overlap in range and the
difficulty in measuring this trait accurately (the an-
tennae must be cut off and laid flat on the viewing
platform), it is not useful for studies monitoring the
range of these species. The characteristic may be im-
portant because few differences have been noted be-
tween these species. Additional studies using popula-
tions collected from different host plants and
geographical locations are needed to determine if the
differences found in this study remain consistent over
the range of B. argentifolii and B. tabaci biotype A.
In the case of B. tabaci and B. argentifolii, it is
proposed that they be considered a species complex,
and morphological features do not reliably distinguish
between them. The oligonucleotide primers found
useful in RAPD analysis to separate the native Aus-
tralian B. tabaci from B. argentifolii were tested first on
known whiteflies from colonies and then on popula-
tions of whiteflies from 10 countries in South and
Central America. Because the host plants for B. tabaci
biotype A (not found on cassava) and B. tuberculata
(principal host cassava) are mutually exclusive, the
similarities in the RAPD banding pattern using primer
H9 did not cause confusion in identifying these white-
flies. Using H9 to distinguish between B. argentifolii
and T. vaporariorum led to some ambiguous results,
and they do have many common host plants. A similar
result occurred between T. vaporariorum and B. tabaci
biotype A using the primer H16. Therefore, the results
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primer H16

A

Fig. 3. RAPD PCR products from individual whiteflies. Lane 1: B. tabaci biotype A. Lane 2: B. argentifolii. Lane 3: B.
tuberculata. Lane 4: T. vaporariorum. Lane 5: T. variabilis. Lande 6: A. socialis. M: Markers indicated by arrows are ~500, 1000,
and 1600 bp (1 kb DNA ladder, BRL). Oligonucleotide primers were Operon H9 (3A) and H16 (3B).

are most reliable if both the H9 and H16 primers are
used in RAPD analysis of individual whiteflies.
Based on mt18S sequence data and morphological
differences, it was suggested that T. infermedia may
belong in a different genus within the tribe Trialeu-
rodini than T. vaporariorum and T. packardi (Camp-

B. tuberculata
B. tabaci PR
1.00 B. tabaci AZ

56 B. tabaci CR
1.00 5 B. tabaci CIAT 2
B. tabaci CIAT 1

B. tabaci Israel
1.00 B. argentifolii Sucre
B. argentifolii Beans

B. argentifolii Yuca
100 —— 4 socialis CIAT 2
b— 4. socialis CIAT 1

1.00 T. vaporariorum AZ
85 l_-E T. vaporariorum CIAT

T. variabilis CIAT

Fig. 4. Cladogram shows the relationship between the
whiteflies in this study. The cladogram is based on the most
parsimonious tree inferred from the analysis of 450 bases of
a region of the mitochondrial 16S gene. Numbers above the
branches indicate the level of statistical support for the cor-
responding node from 2,000 bootstrap replicates (PAUP ver-
sion 4.0b2 for Macintosh, Swofford 1999).

bell et al. 1994). The relatively large mean distance of
the mtl6S sequence data between T. vaporariorum
and T. variabilis may also reflect intergeneric differ-
ences. The eyes of these two species were very dif-
ferent. In T. vaporariorum the compound eye is split
and in T. variabilis the sections of the compound eye
are connected with three (females) or four (males)
ommatidia. Detailed comparative molecular and mor-
phological studies of the species in the tribe Trialeu-
rodini are needed to clarify the taxonomic relation-
ships. The mt16S gene sequences of the Arizona and
Colombia populations of T. vaporariorum were >99%
identical. This is similar to the identity found between
populations of B. argentifolii, which have recently
spread throughout the Americas, and less than the
variation found in B. tabaci biotype A. Because T.
vaporariorum is thought to be indigenous to the Amer-
icas (Vet et al. 1980), one would expect the variation
to be greater. More populations of T. vaporariorum
need to be analyzed to determine the range of diver-
sity within this species.
Mitochondrial DNA is maternally inherited and has
a rapid rate of evolutionary change relative to the
nuclear genome. These properties make mtDNA suit-
able for systematic studies among closely related taxa.
As expected, the molecular analyses of the sequence
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Table 1. Mean distances for a 3’ region of mitochondrial 168 ribosomal gene in 15 individual whiteflies representing different species
and populations

Whitefly 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 B. tabaci B Sucre 000 001 001 001 010 010 009 010 010 022 035 035 037 037 036
2 B. tabaci B CIAT cass 000 000 000 008 009 008 009 009 021 034 034 036 036 035
3 B. tabaci B CIAT bn 000 000 009 010 009 009 009 021 034 035 037 036 035
4 B. tabaci Israel 0.00 008 009 008 009 009 021 034 034 036 036 035
5 B. tabaci A CIAT 1 000 00L 001 002 000 022 034 035 036 035 038
6 B. tabaci A CR 000 001 002 001 023 035 036 037 036 039
7 B. tabaci A AZ 000 002 001 022 034 036 037 036 038
8 B. tabaci A PR 000 002 022 035 036 036 036 038
9 B. tabaci CT 2 000 022 034 035 036 036 038
10 B. tuberculata CIAT 000 028 028 037 036 038
11 A. socialis Mon 000 007 040 039 043
12 A socialis CIAT 0.00 041 040 041

13 T vaporariorum CIAT
14 T vaporariorum AZ
15 T variabilis CIAT

0.00 0.00 039
0.00 0.38
0.00

Genetic divergences were calculated by PAUP, version 4.0b2, for Macintosh (Swofford 1999). Mean distances were calculated as

d,, (i.5)

d (i.4)

Wi

KEeS

where S = the set of characters not excluded, w, = weight of character k, x; and x;; = the states of character k in taxa i and j, and diff (x;,
x;) = the change cost from xy, to x;,. AZ, Arizona; PR, Puerto Rico; CR, Costa Rica.

data of the 3’ region of the mt16S gene placed all the
whiteflies of the same genera in related clades.

There is considerable molecular information avail-
able for the 16S gene of different world wide popu-
lations of the B. tabaci species complex. Given the
rapid spread of B. argentifolii, the lack of diversity
between populations in Costa Rica, Arizona, the north
coast of Colombia, and in inter-Andean regions of
Colombia was expected. The individuals of Colombian
B. argentifolii were at least 98.2% identical with the B.
tabaci of Israel, Yemen and Sudan (Frohlich et al.
1999). There is only slightly more diversity within the
few characterized populations of B. tabaci biotype A.
When the Colombian population was compared with
the reported sequences from individuals in the bio-
type A of Arizona, Costa Rica, and Puerto Rico, the
identity was 97% or higher (Frohlich et al. 1999).
Although the data are still very limited, it appears that
the 3 region of the mt16S gene shows the New World
population of B. tabaci to be more homogeneous than
studies that used esterases as the determinate of vari-
ability (Wool et al. 1989, 1994). Since the expression
of esterases can be induced by environmental factors
such as applications of insecticides, the maternally
inherited genetic marker appears to be a better indi-
cator of diversity between populations of whiteflies.
Other markers such as the mitochondrial cytochrome
oxidase subunit I gene (Frohlich et al. 1999) and the
nuclear ribosomal ITS regions (DeBarro et al. 2000)
may be even more useful in understanding diversity
within the Bemisia complex.

Within the Bemisia complex, the relationship of B.
tuberculata is clear because it has distinct morpholog-
ical characteristics both in the pupa and the adults.
The mt16S gene data indicate that B. tuberculata is
evolutionarily more distant than are B. tabaci biotype
A and B. argentifoli.

The combination of morphological differences in
the adults and the mitochondrial DNA molecular data
should be useful in understanding the evolution and
taxonomy of the six whitefly species examined in this
study. These results extend the morphological and
molecular comparison between B. tabaci biotype A
and B. argentifolii, and report on a molecular method
to distinguish between these species. Although B. tu-
berculata, A. socialis, and T. variabilis have narrow host
ranges, these little studied species are of economic
importance on cassava in the American tropics and
deserve greater attention as part of the whitefly com-
plex causing increased crop losses.
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