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ABSTRACT 

 

 This thesis examines the micro-scale variability in tree species composition, diversity 

and tree structure through a combination of ground-based plot studies and computer-

based analyses of terrain characteristics in two contrasting tropical forest sites; a 

tropical montane cloud forest environment, and a lowland Amazonian forest 

environment.  The aim is to measure the micro-scale spatial variability in tree species 

diversity, composition and structure in tropical forests, and to quantify the role of 

topography, through both direct and indirect resource partitioning (of essential 

resources such as energy and water), in controlling this variability.  Ten 25m x 25m 

plots have been established in each site, distributed widely around the region.  High-

resolution digital elevation models (DEMs) have also been generated for each site, 

and a range of 12 terrain-based characteristics calculated which capture some of the 

likely controls on essential resources such as light and water.   

Tree diversity and composition is found to vary significantly between plots in each 

study site, with species richness varying from 31 to 52 species in a montane forest, 

and between 31 and 82 species in the lowland Amazonian site.  Analyses of habitat 

associations of tree species with respect to the terrain characteristics showed that 36% 

of compositional variability in the montane site is explained by elevation, whilst just 

16% of compositional variability is explained in the lowland site, also through 

elevation (though this pattern is attributed to an edaphic gradient brought about by 

river migration).  This indicates that some habitat association occurs, but that a 

significant portion of compositional variability remains unaccounted for, at least using 

the terrain characteristics used in this study.  This leads to the conclusion that a 

combination of equilibrium and non-equilibrium, both abiotic and biotic based 

processes are maintaining diversity in tropical forests. 

When diversity patterns are examined, a mid-elevation tree diversity peak is observed 

in the montane site (R2 = 0.70, highest diversity at 1850 m), a pattern attributed to a 

combination of the mid-domain effect and species-area relationships.  Furthermore, 

species richness is found to correlate significantly with slope mean curvature, with 

greater richness found on convex slopes (R2 = 0.73).  Fewer patterns are found in the 

lowland site, with generally lower diversity in the more frequently flooded sites, 

though no terrain-based patterns are found to explain variability in diversity between 

non-flooded sites. 
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Structure is observed to vary significantly between sites, and between-plots within 

each site yet surprisingly little of this variability is explained by terrain-based 

characteristics.  Indeed, not even a significant elevational gradient in forest structure 

was observed in the montane site, though TopModel (a terrain characteristic 

indicative of soil moisture) explained 67% of variability in the DBH/Height ratio.  

The interpretation of this result was inconclusive.  In the lowland site two marked 

clusters in structure were evident, separating higher and lower elevation plots.  The 

shorter stature found in the low elevation plots was attributed to the disturbance effect 

of regular flooding.  No further terrain-based correlations with structure were found. 

Finally, analysis of spatial heterogeneity of terrain and its relationship with tree 

diversity indicated that regions spatially heterogeneous in elevation in the montane 

environment were also more diverse (R2 = 0.53).  In the lowland site no significant 

correlations were observed. 

Overall this thesis has found some interesting correlations between terrain 

characteristics and tree species composition and diversity, and has provided some 

novel methodologies for testing the processes behind the maintenance of species 

diversity in tropical forests.  These results lead to the conclusion that a combination of 

equilibrium and non-equilibrium, abiotic- and biotic- based processes are maintaining 

diversity in tropical forests. 
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Chapter 1 

 

1 Research goals and introduction 
 

This opening chapter presents the aims and objectives of the study, and a brief 

overview of the research strategy and structure of the thesis.  This sets the context for 

the review of associated literature found in Chapter 2. 

 

1.1 Hypothesis 

 

Tree species diversity, forest structure and species composition in tropical forests are 

heterogeneously distributed in space at the micro-scale, and topography plays an 

important role in generating this spatial variation. 

 

1.2 Aim 
 

The aim of this thesis is to measure the micro-scale spatial variability in tree species 

diversity, composition and structure in tropical forests, and to quantify the role of 

topography, through both direct and indirect resource partitioning (of essential 

resources such as energy and water), in controlling this variability. 

 

1.3 Objectives 
 

Tree species diversity and structure in tropical forests are heterogeneously distributed 

across the land surface, a notion strongly supported in the literature with differences 

in diversity, composition and structure observed at a broad range of spatial scales (for 

example Pitman, 2000; Hawkins et al., 2003; Hawkins and Diniz-Filho, 2004).  A 
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central issue in tropical ecology is to understand the processes which drive this spatial 

variability since those processes must be at least part responsible for the maintenance 

of high levels of tree diversity in tropical forest systems.  Since trees are the dominant 

structural organisms of tropical forests, tree species diversity is also central to theories 

explaining why these forests are also so diverse in other plant and animal groups. 

In this thesis I endeavour to use methods of terrain analysis to quantify environmental 

conditions (controlled through topography) at the micro-scale, and liken species 

diversity and composition (principally) and tree structure (secondarily) to these 

environmental conditions, to understand the important interaction between 

environment and diversity in tropical forests.  The term micro-scale is used in this 

thesis to refer to spatial variability at the local scale, over distances of 20m – 100m 

depending on the degree of topographic variability, though this may also be referred 

to as the plot-landscape scale. 

 

Specifically, the objectives of this thesis are: 

 

1. To use field-collected data on tree diversity, composition and structure in 

tropical forests to quantify the degree of spatial variation at the micro-scale. 

2. To examine the relationship between topographic characteristics and species 

composition in order to assess the degree of topographically controlled habitat 

association in tropical tree species. 

3. To identify the role of topographic characteristics on maintaining levels of tree 

diversity, through the control of essential resources 
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4. To identify the role of topographic conditions in generating distinct structural 

characteristics in the forest, and how this may control or be controlled by 

variation in tree species diversity. 

5. To quantify the effect of spatial environmental heterogeneity in the generation 

and maintenance of tree species diversity at the micro-scale. 

 

Using two contrasting study sites found in a tropical montane cloud forest (TMCF) in 

Colombia and a tropical lowland forest (LRF) in Amazonian Ecuador, this thesis 

combines intensive field-based plot measurement of diversity, composition and 

structure of tropical trees, and compares the patterns of spatial variation found in the 

field with the topographic conditions as measured through high resolution digital 

elevation models.  A number of terrain derivatives, some of which control the spatial 

distribution of essential resources (energy and water), are applied for this purpose.  In 

addition to direct comparison of topographic conditions with the observed structure 

and diversity at the site of each plot, the role of spatial heterogeneity in these 

topographic conditions is also examined.   

 

The research presented in this thesis is principally empirical and academically driven, 

but these analyses are applied within the context of the current debate on theories on 

the maintenance of species diversity in tropical forests (discussed in Section 2.3), and 

its implications for science-based species conservation planning.  For the latter point, 

some effort is maintained to make the methodology used here easily applicable to 

other regions, by using readily available sources of data and replicable methodologies. 

 

This research is innovative in the field of tropical ecology in the following ways: 
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• Though habitat associations of tropical tree species have been studied with 

respect to topography (see Section 2.3.2), only basic topographic 

characteristics have been used (slope, elevation and landscape unit) whilst this 

thesis applies advanced methods of terrain analysis to examine habitat 

associations in tree species composition for a wide variety of resource-based 

terrain characteristics over a range of scales. 

• There are few examples of studies which endeavor to find relationships 

between quantified topographic characteristics and tree diversity in tropical 

forests (see Section 2.3.3.5), and this thesis is the first known example of 

applying terrain analysis to understanding micro-scale spatial variability in 

diversity. 

• Although there is a strong theoretical body of literature stating that 

environmental heterogeneity is significant in shaping spatial variability in 

diversity in tropical forests (see Section 2.5), this has never been rigorously 

tested in tropical forests and this thesis makes a first attempt through a 

combination of field data collection and analyses and the application and 

validation of spatial models for diversity control. 

 

This thesis focuses on the role of the environment on tree diversity, composition and 

structure, though it is important to acknowledge the important role of biotic processes 

(especially ecological interactions such as competition, allelopethy, or herbivory etc.).  

Although these are not analysed here, nor thoroughly discussed in the text, biotic 

interactions have also been found to be important in the maintenance and generation 

of diversity (Huston, 1994).  The objectives of this thesis are only related to 
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environmental interactions, but it is important at this point to note that biotic 

interactions are also of importance but not centrally addressed. 

 

It is also important to emphasize that the direct role of soil on tree diversity, 

composition and structure is not explicitly analysed in this thesis (no soil sampling 

was performed), though it is regularly discussed in the text.  This is in order to ensure 

that the methodology applied here is readily applicable to other regions, only 

requiring topographic data.  However, soil attributes are often strongly controlled by 

topography, and the possible significance of specific topographic characteristics on 

soil type and quality is discussed both in the literature review (Section 2.3.3.4) and in 

the analysis chapters.  In this sense no direct measurement of soil-diversity 

relationships are made, but topography is used a possible indicator of some soil 

conditions. 

 

1.4 Overview of this thesis 
 

This thesis is split into seven chapters.  They are structured in a way to lead the reader 

through the theoretical and empirical background of the research problem, explain and 

justify the research design and present results in the three major thrusts of the thesis, 

that of micro-scale variation in composition and diversity, micro-scale variation in 

structure and the role of spatial environmental heterogeneity in species diversity.  

Specifically: 

 

1.4.1 Chapter 1 
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This short chapter has introduced the aims and objectives of the thesis, and has 

outlined the general structure of the thesis. 

 

1.4.2 Chapter 2 

 

Some background is provided on the theoretical and empirical context of the thesis, 

reviewing the state of knowledge of key themes related to the objectives.  Specifically 

the chapter outlines the context of biodiversity and tropical forests, stressing the 

importance of conservation and the high levels of diversity found in tropical forests.  

Some information is provided on the role of tree species diversity to overall 

biodiversity in tropical forests.  A brief introduction on spatial variation in diversity is 

provided along with an introduction to the equilibrium and non-equilibrium 

hypotheses for species diversity maintenance in tropical forests.  Specific attention is 

given to the theoretical and empirical findings in relation to elevational gradients (of 

particular relevance to the TMCF site) and habitat associations (a topic under 

vigorous debate in relation to LRF).  A brief summary of interactions between 

environment and tree diversity and structure is presented.  The chapter finishes by 

introducing the theme of spatial heterogeneity, covering both theoretical and 

measurement aspects.   

 

1.4.3 Chapter 3 

 

Chapter three presents the research strategy and methodology, starting by introducing 

the study sites.  The chapter then provides information on the desk-based terrain 

analysis of topography and environmental data.  Although terrain analysis is not 
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discussed in chapter 2, theoretical issues related to the calculation of the specific 

terrain characteristics used in the thesis are analysed in this chapter.  Field 

methodologies are then discussed, and the methods for integrating field-based data 

with the terrain characteristics are introduced.  The chapter finishes by introducing the 

methodology for quantifying spatial environmental heterogeneity. 

 

1.4.4 Chapter 4 

 

Chapter four starts the results and analysis section of the thesis, examining the 

topographic controls on tree species composition and diversity.  For each site (TMCF 

and LRF) a brief description of diversity, composition and structure is given, firstly at 

the site-level and secondly at the plot-level through between-plot comparisons 

(Objective 1).  Statistical analyses are then presented to identify the degree to which 

composition is controlled by terrain characteristics (Objective 2).  The chapter also 

examines the topographic controls on species diversity (Objective 3).  The chapter is 

structured firstly by site, then by compositional and diversity patterns.  The chapter 

concludes by examining the differences between each site, and providing some 

preliminary conclusions. 

 

1.4.5 Chapter 5 

 

Chapter five examines the tree structural variability at the two sites, examining both 

the average structural characteristics for each site and each plot within each site, but 

also the distribution of structural forms.  Effort is made to identify the topographic 

controls on structure through statistical analyses (Objective 4).  Some analysis and 
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discussion is provided on the complex relationship between diversity and structure, 

though this is limited in scope due to data restrictions.  As in Chapter Four, this 

chapter concludes by summarizing the key results, though conclusions are left for 

Chapter Seven. 

 

1.4.6 Chapter 6 

 

Chapter Six exclusively examines the role of spatial environmental heterogeneity on 

tree species diversity (Objective 5), through presentation of the results of the 

environmental modelling and comparison with the plot data, for each site separately.  

Multi-variate statistics are applied to the results of previous chapters to provide a 

broader vision of spatial variability in diversity taking into account both terrain 

characteristics and their spatial heterogeneity. 

 

Chapter 7 

 

Although preliminary conclusions are provided at the end of each analysis chapter (4-

6), this chapter attempts to coherently present the most important findings and place 

them within the context of current literature and theory presented in Chapter Two. 
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Chapter 2 

 

2 Literature review 
 

 

2.1 Introduction : The biodiversity and conservation context 

 

The world’s biodiversity is being lost at a staggering rate, and conservation of 

biological resources is now a challenge that all nations must strive to achieve, and is 

being pursued through international treaties such as the Convention for Biological 

Diversity (CBD).  Though this thesis is not directly oriented towards conservation 

objectives, it is important that any study of biological diversity be placed within this 

context, as science plays an important role provision of accurate biological 

information and in the search for practical solutions to biodiversity loss. 

 

The overall goal of the Convention on Biological Diversity (Article 1, CBD, 1992)) is 

“….to conserve and sustainably use biological diversity for the benefit of present and 

future generations”.  Under this agreement, which most countries have signed to, each 

country is required to provide an inventory of biological resources within the country, 

and to pro-actively ensure its conservation. Parties to the Convention are committed 

to develop effective and scientifically sound protocols and methodologies to conserve 

biological diversity, that is ecosystem, species and genetic diversity.  In the field of in 

situ conservation, the CBD calls on nations to: 
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 “Develop, where necessary, guidelines for the selection, establishment 

and management of protected areas or areas where special measures 

need to be taken to conserve biological diversity.” 

Article 8 (CBD, 1992) 

 

Biological diversity is of importance to the world for numerous reasons.  Firstly, 

humans throughout history have used biological resources to for food, fibre and fuel.  

Alonso et al. (2001) report that close to 30 percent of pharmaceuticals on the market 

today have been developed from plants and animals.  Some of these uses include 

“antibiotics extracted from fungi and from sources such as the African clawed frog’s 

skin, an extract of the saliva of the vampire bat is used in treatment for hardening of 

the arteries, wild yams contain chemicals with anti-inflammatory properties and 

ovarian and breast cancer treatments have been developed from the bark of the Pacific 

yew tree found in the northwestern United States” (Alonso et al., 2001).  Our entire 

agricultural system is built upon biodiversity.  Of some 270,000 described species of 

plants, 30,000 are edible, and 7,000 of these have been actively cultivated over history 

(FAO, 1997).  A small percentage of the world’s biological diversity has actually 

been screened for potential uses, and a potentially significant percentage of the world 

diversity has not even been discovered or catalogued (Erwin, 1991; Johnson, 1995).  

The extent to which biodiversity will provide solutions to new threats in the future is 

unknown (Aylward and Gammage, 1992), especially as society faces an uncertain 

environmental future in the face of rapid land-use and climatic change.   On top of 

these tangible uses, biodiversity has been shown to be of importance for ecosystem 

functioning (Naeem et al., 1994; Folke, 1996; Johnson et al., 1996; Fonseca and 

Ganade, 2001; Wolters, 2001; Kennedy et al., 2002; Worm et al., 2002), and amongst 
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other things maintains global biogeochemical and hydrological systems.  However, 

the functional role of biological diversity is still not fully understood (Bengtsson, 

1998; Wardle, 1999), and is the subject of considerable discussion.  Finally, 

conservation of biodiversity is also considered important for what are generally 

termed “spiritual” reasons, including that humans have a responsibility to conserve 

the worlds biodiversity regardless of its significance or value (Ehrenfeld, 1988; 

Wilson, 1992). 

 

Despite this economic, functional and spiritual importance, little has been achieved to 

halt or reduce what is being termed the sixth great biological extinction (Pimm et al., 

1995), and continued efforts are required to halt what is believed to be an irreversible 

loss (Wilson, 1992).   

 

Though this thesis does not directly address conservation issues with respect to 

biodiversity, it is hoped that accurate spatial information on where diversity is found 

will help provide more informed decision-making on biodiversity conservation.  This 

literature review focuses on patterns of variation of species diversity, composition and 

structure of trees in tropical forests.  Emphasis is made to highlight studies in tropical 

forest environments, though important papers from other biomes are also presented.  

In most cases there is greater volume of both empirical and theoretical studies for 

lowland tropical forests compared with the less-studied tropical montane forest 

environments, though the same can also be said for temperate versus tropical 

environments. 
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The chapter begins by reviewing diversity in tropical forests, providing the context of 

this study.  Some discussion is provided as to the significance of tree diversity for 

total forest biodiversity, followed by a more detailed introduction of tropical forests, 

and specifically the two types of tropical forest studied here.  The chapter then moves 

on to the central issue of the thesis, that of micro-scale spatial variation in diversity 

and composition, presenting both theoretical perspectives and empirical results.  Some 

of the abiotic driving mechanisms of diversity are also briefly discussed, though there 

is an large volume of literature in this area that cannot be covered in detail within this 

chapter.  The chapter then moves on to discuss spatial variation in structural patterns 

in tropical forests, with special reference to the important interaction between 

structure and diversity, through partitioning of resources (principally light), though 

literature on this is scarce.  Finally, the chapter provides some background on the 

concept of spatial heterogeneity, and its significance to diversity and composition in 

tropical forests, and concludes with a discussion on sampling in tropical forests, an 

important bridge to the following chapter of materials and methods.  What is not 

discussed here are general techniques for terrain analysis and environmental 

modelling issues, as this is not the focus of the thesis rather these are tools which are 

used here for the study of tropical forest diversity and structure.  In general terms, 

terrain characteristics are chosen and used in this thesis to represent partitioning of 

essential resource, principally energy and water.  Though some biological literature 

presented in this chapter use topographic characteristics in the study of diversity, 

composition or structure, these examples are few and often limited in scope.  A 

specific discussion of the terrain characteristics used in this thesis is reserved to the 

methods chapter (Chapter 3), where not only the terrain analysis methodology is 

presented but also a detailed analysis of the reason for its use, its potential biological 
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significance in terms representing essential resources, and the issues involved with its 

calculation. 

 

2.2 Diversity in tropical forests 

 

Tropical forests cover approximately 7% of the global terrestrial surface, across the 

continents of Asia, Africa and Latin America, and are thought to contain over half of 

the world’s species (Wilson, 1992).  There is a great deal of variability in tropical 

forests around the globe, with a broad range of structures and species compositions.  

Asian forests tend to be dominated by Dipterocarps (Whitmore, 1984) whilst in the 

neotropics tropical forests are not dominated by any particular family though 

Leguminosae are typically most common (Gentry, 1990), though within these broad 

regions there is significant compositional variation.  Tropical forests contain 

overwhelming levels of diversity compared with their temperate counterparts (Huston, 

1994), though biomass is comparable or even less than in temperate forests 

(Whittaker and Niering, 1975).  Whilst 1-Ha in a particularly diverse temperate forest 

may contain 15-20 tree species (greater than 10cm diameter at breast height (DBH)), a 

tropical forest may contain over 200 tree species (Gentry, 1990; Huston, 1994; 

Hawkins et al., 2003).  Indeed, Whitmore et al. (1985) reports 233 vascular plant 

species in just 100m2 of lowland tropical forest in Costa Rica, equivalent to one-sixth 

of all flora of the British Isles. 

 

Despite being a treasure trove for biological diversity (Wilson, 1992; Crawley, 1997), 

and of great importance for the global climate system (Melillo et al., 1996), tropical 

forests are also undergoing rapid loss through deforestation for agricultural expansion 
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and logging (Skole and Tucker, 1993; Melillo et al., 1996; Lambin and Ehrlich, 1997; 

Maio Mantovani and Setzer, 1997; Read et al., 2003).  Deforestation rates vary 

between regions and continents, with Fearnside (1990) using satellite remote sensing 

(LANDSAT TM images) to approximate deforestation rates of 0.5% yr
-1
 in the 

Brazilian Amazon (21,130km2 lost per year 1978 - 1989, of the total 4,000,000 km2 of 

Amazonian forest).  There is considerable uncertainty in monitoring the true rates of 

deforestation across regions (Grainger, 1993), but most approximations range from 

0.5 – 1.3 % per year (FAO, 1990). 

 

The term tropical forest refers to all forests within the tropical region (typically 

defined as between the Tropics of Cancer and Capricorn), including tropical dry 

forests, tropical montane forests, tropical montane cloud forests and lowland rain 

forests, amongst others.  The physical environment for each of these types of forests is 

different, resulting in different levels of species diversity, different species 

compositions and different forest structures (Huston, 1994).  A complete review of the 

different types of tropical forest is a available in Burley et al. (2004).  This study 

examines diversity, compositional and structural patterns in a tropical lowland rain 

forest (LRF) and a tropical montane cloud forest (TMCF), which are described later in 

Section 2.2.2. 

 

2.2.1 Relationship between tree diversity and biodiversity 

 

This study only examines tree diversity in tropical forests, but the degree to which 

tree diversity is related to total biodiversity (i.e. diversity in all other groups of 

organisms) has been the subject of a number of studies.  According to Huston (1994), 
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organisms can be sub-divided into two classes - structural and interstitial.  Structural 

organisms actually form the physical environment (examples include trees and corals) 

and to a certain extent alter the physical surroundings (e.g. microclimate), whilst 

interstitial organisms inhabit this environment (examples are insects, birds, 

vertebrates, herbaceous plants etc.).  Different processes and factors affect these two 

types of organism, with structural organisms directly affecting the diversity of the 

interstitial organisms.  Ecological theory further predicts that loss of biodiversity at 

the base of the ecosystem (basal species), for example plants, will impact on the 

whole system (Siemann et al., 1998; Knops et al., 1999).  Though theory clearly 

emphasizes the importance of plant diversity (and especially tree diversity) on ‘total’ 

biodiversity, and many authors cite tree diversity as being strongly correlated with 

diversity in other groups (Huston, 1994), empirical studies show conflicting findings 

as to the validity of this relationship (Su et al., 2004).  Ingerpuu et al. (2001) show 

vascular plant species richness to strongly correlate with bryophyte species richness (r 

= 0.76, p = 0.007) in 10 different stands in an Estonian boreo-nemoral moist forest.  

Similarly, Aptroot (2001) found that an Elaeocarpus tree in montane forest in Papua 

New Guinea showed the presence of over 200 species of ascomycetes, including 173 

lichenized ascomycetes, many of which are thought to be host-specific.  Nieder et al. 

(2001) further discuss host-specificity with respect to epiphytes, providing a strong 

case for a strong (one-way) relationship between tree diversity and epiphytic and 

bryophytic diversity.  There are other significant correlations in the literature between 

plant species richness and butterflies (Simonson et al., 2001), arthropods (Siemann et 

al., 1998), tetrapods (Barthlott et al., 1999), herbivores and predators and parasites 

(Knops et al., 1999), amphibians, mammals, birds and reptiles (Currie, 1991) and 

belowground biota (Wardle et al., 2004), though it is important to note that the 
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majority of these studies are not all in tropical forests.  However, some studies fail to 

find such relationships, for example between butterfly richness and plant species 

richness in Madagascar (Kremen, 1992), and in the British Isles little coincidence 

between hotspots in butterflies, dragonflies, liverworts, aquatic plants and in breeding 

birds are found (Prendergast et al., 1993).  In tropical forests specifically, Lawton et 

al. (1998) found few relationships between changes in richness in one group of taxa 

with changes in an array of other groups (taxa of butterflies and insects) under some 

kind of habitat modification.  Unfortunately this study did not include tree (or plant) 

species.  These findings amongst others lead Su et al. (2004) to conclude that cross-

taxon relationships are site and taxon specific and no general rule can be extracted.  

However, the significant levels of host-specificity to plant species identified in 

tropical forests, for example in arthropods (Erwin, 1982; Erwin, 1991) or fungi 

(Aptroot, 2001), make it highly likely that greater plant diversity also signifies to a 

certain extent greater diversity in other taxa. 

 

In conclusion it cannot conclusively be stated that high tree species diversity in 

tropical forests indicates high diversity in other taxa, though there are undoubtedly 

important processes whereby tree diversity should theoretically generate high 

diversity in other groups.  These mechanisms include host-specificity, the fact that 

trees are a basal species in the ecosystem, and through their structural role in the 

forest filter largely homogenous physical inputs (solar radiation, temperature and 

rainfall) to create a heterogeneous under-canopy.  Furthermore, evidence of direct-

cycling of nutrients by tropical trees affects edaphic conditions immediately around 

the individuals (Clinebell II et al., 1995) creating a mosaic of physical and chemical 

soil conditions, broadening the resource-niche space and potentially encouraging 



 17 

greater diversity in other taxa (especially belowground biota and herbs and shrubs).  

Quantification of the cross-taxon congruence in tropical forests through coordinated 

plot studies would be a significant achievement for tropical ecology, but for the 

purposes of this thesis it is likely that tropical tree diversity is to a certain extent 

representative of biodiversity as a whole. 

 

2.2.2 Diversity and structure in the study sites 

 

This study examines diversity, structure and composition of trees in two tropical 

forests in the Northern Andes and Choco Biogeographic Region (Gentry, 1982), and 

in the western Amazon (Andean fringe), both of which represent global conservation 

priorities and contain very high levels of biological diversity. 

 

The northernmost part of the Andes is subdivided into three mountain ranges that 

generate a very complex geographical pattern of exceptional biological diversity 

(McNeely et al., 1990; Stattersfield et al., 1997). The Colombian Andes are also the 

most densely populated areas in the country (CIESIN, 1998), hence the last remnants 

of Andean montane forests are priorities in the national (IaVH, 1997), and 

international conservation agenda (Barthlott et al., 1999; Myers et al., 2000).  

Colombia ranks among the Earth’s highest conservation priorities due to its 

exceedingly high diversity coupled with the threats posed by human development and 

commercial resource exploitation (Dinerstein et al., 1995). It is one of the richest 

countries in terms of species diversity per unit area comprising an estimated 14-15% 

of the planet’s flora and fauna in 0.77% of its surface (International, 1997).  

Furthermore, Johnson (1995) ranked Colombia first in the world in terms of species 
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richness in birds (1,752 species) and butterflies (3,500 species), and second in terms 

of plants (45,000 species) and amphibians (407 species).  Since many plant and 

animal species have not been documented, particularly in tropical forests (Claridge, 

1995), the documented diversity of Colombia is expected to increase substantially 

with further biological inventory work. 

 

The western Amazon (bordering the Andean fringe in Peru, Ecuador and Colombia) is 

also identified as one of 20 global biodiversity priorities (Myers et al., 2000).  Pitman 

(2000) established a network of plots in Ecuador and Peru, finding extremely high 

diversity in tree species throughout the region, with other plot studies in the region 

further confirming this (Duivenvoorden, 1994; Duivenvoorden and Lips, 1995; 

Romoleroux et al., 1995).  The reasons for the high levels of plant diversity found in 

the Amazon regions of Ecuador, southern Colombia and Northern Peru are the topic 

of heated discussion, with Prance (1982) proposing evidence of this region being a 

Pleistocene forest refuge. 

 

The two sites studied here represent two contrasting tropical rain forest types of the 

Neotropics; tropical montane cloud forest (TMCF), and lowland rain forest (LRF).   

 

2.2.2.1 Neotropical Tropical Montane Cloud Forests (TMCF) 

 

Cloud forests are defined according to the presence of forest in areas of frequent or 

persistent ground level cloud (Bruijnzeel and Proctor, 1995), and occur in both 

temperate and tropical environments. Tropical montane cloud forests (TMCF’s) are 

exclusive to mountains in tropical regions. Their altitudinal distribution is highly 
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variable depending on climatic factors, with TMCF occurring as low as 350m in 

coastal regions where fog forms at lower altitudes, stretching as high as 3,500m in 

inland mountain systems such as the Andes (Bruijnzeel and Proctor, 1995).  TMCF 

occurs in three regions of the globe; SE Asia, Central Africa and Central and South 

America.  

 

In 1970 they were estimated to cover 50 million hectares, but reported deforestation 

rates in excess of 1.1% per year (greater than that for lowland rainforests) has caused 

a serious reduction in their coverage, putting them at serious risk (Hamilton et al., 

1995). These deforestation rates are caused by land hunger and the spatial expansion 

of agriculture, and are predicted to continue under the current population explosion in 

many of the areas where TMCF’s occur (CIESIN, 1998).  Castaño (1991) 

approximates that just 10% of Colombia’s original TMCF now remains. Furthermore, 

there is now growing concern as to the effect of climate change on these ecosystems 

(Loope and Giambelluca, 1998; Pounds et al., 1999; Still et al., 1999). 

 

The hydrological significance of TMCF has been shown to be important for 

downstream water resources (Bruijnzeel and Proctor, 1995), due to their constant 

provision of streamflow even during the dry season (Zadroga, 1981), brought about 

by considerable volumes of cloud interception throughout the year (Gonzalez, 2000). 

 

Tropical montane cloud forests are renowned for the large numbers of endemic 

species, highly dependent on their climatic environments (Bubb et al., 2004).  This is 

especially the case for plants (Kappelle, 2004; Leimbeck et al., 2004), and birds with 

Long (1995) reporting that ten per cent of the world’s 2,609 restricted-range bird 
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species are confined to or mainly found in cloud forests.  TMCFs also contain 

exceptional levels of diversity in epiphytes (Nieder et al., 2001), bryophytes and 

orchids (Muller et al., 2003), with a high concentration of threatened plant species and 

some important rare-agricultural wild relatives (Bubb et al., 2004).  The best plot 

based study of plant diversity in TMCF in the neotropics is a study by Clinebell II et 

al. (1995) presenting 69 lowland and montane 0.1Ha plots established by Alwyn 

Gentry around the entire continent, with 13 plots throughout the Andes above 500m 

(ranging from 560m – 3000m) having an average of 109 species in the 0.1 Ha (DBH 

> 10cm). 

 

More specifically to the region around Tambito (an Andean site on the western slope 

of the western cordillera, placing it within the Choco Biogeographc Region), plot 

studies of plant species diversity in the Choco Biogeographic Region on the Pacific 

Coast of Colombia and Ecuador confirm exceptionally high levels of diversity 

(Gentry, 1990, 1995; Galeano et al., 1998).  Specifically, Galeano et al. (1998) studied 

all vascular plant species in 0.9Ha of forest (in 12 transects) finding a record 970 

species for that sampling scheme, with Araceae, Cyatheaceae, Piperaceae and 

Rubiaceae being the most dominant families.  In all, there are thought to be some 

8,000 vascular plant species in the Choco Biogeographic Region (Forero and Gentry, 

1989), though large tracts of the forest are unknown to science, especially in the 

exceptionally wet (and remote) parts (Galeano et al., 1998). 

 

Tree height in TMCF is generally less than in the lowlands (Table 1), with reported 

canopy heights of 5-33m in TMCF compared to 25-65.4m in LRF (summarised in 

Letts, 2003), though emergent trees still reach great height in TMCF, with Kappelle 
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(2004) reporting emergent trees of 33-55m height in Costa Rica.  Most studies report 

stem density to increase with altitude, with Kappelle (2004) reporting average stem 

densities for TMCF in the region of 500-1000 stems Ha-1 for TMCF counting all stems 

with DBH > 5 cm, and 1600 – 3500 stems Ha-1 when all individuals with DBH > 2.5cm 

are counted.   

 

 
 

 
 

Table 1  Structural parameters for LRF and TMCF, from Letts (2003), based on studies by 

Richards (1996), Kitayama and Aiba  (2002), Hafkenscheid (2000), Heaney and Proctor 

(1989), and Leigh (1999) and this study. 

 

2.2.2.2 Tropical Lowland Rainforest (LRF) 

 

Tropical lowland (evergreen) forests occur in perhumid lowland climates where water 

stress is either intermittent or non-existent, typically below 1200m elevation 
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(Whitmore, 1998).  LRF is principally found in the Neotropics, in the Amazon region 

and along the Pacific coast, though there are also lowland rain forest regions in 

Africa.  In the Amazon region, with approximately 4,000,000 km2 of LRF, the forest 

is often further split into vegetation types related to flooding frequency, with terra 

firme forest found on higher relief not subjected to flooding and várzea forest which is 

seasonally flooded, sometimes for extended periods of time. 

 

Based on Alwyn Gentry’s 0.1Ha plots established throughout the Neotropics, an 

average of some 149 species are found per plot in the lowlands (< 500m elevation), 

with all individuals with DBH > 10cm (Clinebell II et al., 1995).  This is considerably 

higher richness than was found in montane plots.  In and around the Yasuni National 

Park region in Ecuador, there is documented high diversity in a 25-Ha plot (Valencia 

et al., 2004), and at the time of publication in 1994 this area had the highest recorded 

plant diversity per hectare in the world (based on the sampling method), with 473 

species (DBH >5cm) found in a 1-Ha square forest plot, with Fabaceae, Lauraceae 

and Sapotaceae being the most dominant families (Valencia et al., 1994). 

 

Tree height in LRF is typically greater than in TMCF, with a higher canopy, lower 

stem density and greater basal area.  Clark and Clark (2000) report stem densities of 

462 – 504 stems Ha-1 in La Selva in Costa Rica (30m elevation) counting all 

individuals DBH > 10cm.  Webb et al. (1999) report average canopy height of 14.9 – 

22.9m, stem densities of 550 – 945 stems Ha-1, and average DBH of 23.5 – 25.6cm in 

a lowland rain forest counting all individuals DBH > 10cm in American Samoa (48m 

– 339m), with Proctor et al. (1983) reporting similar densities of 615 – 778 stems Ha-1 

(DBH > 10cm) for an LRF in Sarawak, with basal area ranging from 28 – 57 m3 Ha-1. 



 23 

 

2.3 Spatial variation of tree diversity and composition in tropical forests 

 

Spatial variation in species composition and diversity occurs at a range of scales, from 

global to regional to the micro-scale, and the processes behind such variability are 

different depending on the scale in question (Condit et al., 1992).  On the global scale, 

latitude is often cited as explaining the strongest global-level spatial variation in 

diversity, with a general decline in diversity with greater latitude, though latitude 

itself is not the physical driving mechanism, but more specifically climate is amongst 

other factors (discussed in detail in Hawkins and Diniz-Filho, 2004).  Within tropical 

forests, that have the highest levels of diversity on the planet, there is also a 

significant degree of spatial variability in diversity and composition at a range of 

spatial-scales, from the continental scale (for example Gentry, 1990) down to the 

regional scale (for example Gentry, 1995; Kress et al., 1998) and the local scale 

(discussed in Rosenzweig, 1995).  Within this section the local-scale drivers of spatial 

variation of diversity and composition will be reviewed, as this is the scale relevant to 

this study. 

 

However, spatial patterns in diversity and composition cannot be discussed without 

the important consideration of the temporal dimension.  The spatial pattern of 

diversity observed today is at least in part a function of temporal history over a range 

of timescales (Smith and Huston, 1989; Huston, 1994).  In tropical forests, temporal 

variation in the context of large spatial and temporal scales is discussed in depth with 

respect to refuge theory (Gentry, 1982; Prance, 1982), whereby it is hypothesized that 

the current distribution of plant diversity hotspots is brought about by long-term 
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climatic stability in these zones (though significant evidence is now available that 

refutes this theory, but is not discussed here), both in the Amazon region (Prance, 

1982) and the Choco Biogeographic Zone (Gentry, 1982).  Temporal variability at 

this broad-scale is of little relevance to this study, but the micro-scale spatial 

variability in diversity central to this thesis is a function of shorter time-scale 

dynamics (Condit et al., 1992), principally gap dynamics and succession, though 

broader-scale disturbance regimes (such as drought (Condit et al., 1992), or tropical 

storms) may also impact the micro-scale configuration of species composition and 

diversity. 

 

There are two over-arching hypotheses for the maintenance of high levels of species 

diversity through time in tropical forests, eloquently described by Denslow (1987) 

asking whether tropical forests comprise of “sets of highly coevolved niche-

differentiated tree species in stable or semi-stable floristic assemblages”, the so-called 

equilibrium hypothesis, or if tropical forests consist of “diffusely coevolved, broadly 

generalist species which slowly drift in relative abundance within a few large life-

history guilds”, the so-called non-equilibrium hypothesis.  Hubbell (1979; Hubbell 

and Foster, 1986) has been the main proponent of non-equilibrium processes acting to 

maintain species diversity.  The non-equilibrium hypothesis, or "null" model of tree 

dynamics holds that “species-rich tropical tree communities are maintained on a local 

scale by a balance of extinction and immigration, and on a global scale by a balance 

of extinction and speciation” (Yu et al., 1998). All species are considered ecologically 

equivalent, such that species having equal initial abundances have equal probabilities 

of extinction or fixation.  Also key to Hubbell’s null model is disagreement over the 

existence of density-dependence in tropical forests (Janzen, 1970; Connell, 1971), and 
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the implication that species on the whole are adaptively equivalent.  Density 

dependence (the so-called Janzen-Connell model in tropical forests) dictates that 

individuals of the same species are likely to perform poorly around each other, due to 

higher concentrations of host-specific natural enemies (fungal pathogens and 

herbivores) and as they compete for the same resource-niche, subsequently 

diminishing growth and survival.  Advocates of the non-equilibrium theory for the 

maintenance of species diversity have provided empirical data rejecting the existence 

of density-dependence in tropical forests (Hubbell, 1979; Condit et al., 1992).  

Equilibrium based explanations for species diversity centre on the concept of niche 

differentiation in tropical species, first advocated by Ashton (1977), and since 

supported by studies such as that of Phillips et al. (2003), and support the existence of 

the Janzen-Connell model of density-dependence.  The validity of the non-

equilibrium hypothesis has been questioned, with Terborgh et al. (1996) providing 

evidence from Peru of strong density-dependence.  In his study, Terborgh and 

colleagues test the idea that in a non-equilibrium state, a disturbed forest would not 

necessarily regenerate to its former composition.  Other authors have since provided 

further evidence supporting a certain degree of determinism in species composition in 

tropical lowland forests (Pitman et al., 1999; Pitman, 2000; Pitman et al., 2001), and 

an extensive and vigorous discussion of equilibrium vs. non-equilibrium hypotheses is 

present in the literature (see for example Yu et al., 1998).  Currently there is strong 

empirical evidence supporting both equilibrium and non-equilibrium hypotheses, and 

tropical ecology continues to rigorously debate the issue, though some accept that a 

combination of both mechanisms are at play in tropical forests (Brokaw and Busing, 

2000).  In an attempt to examine the existence of equilibrium or non-equilibrium 

dynamics in a tropical rain forest in Malaysia, He et al. (1996) found no clear spatial 
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pattern in diversity but concluded that a large amount of undetermined variation may 

originate from small-scale processes (<20m).  This thesis in part attempts to provide 

more empirical evidence to fuel the equilibrium vs. non-equilibrium discussion, 

through testing of habitat associations and spatial partitioning of diversity and 

composition in different topographically controlled niches at the micro-scale. 

 

Whichever theory for the maintenance of species diversity in tropical forests is taken, 

it cannot be denied that forests change considerably in both the long- and short- term.  

Condit et al. (1992) provides data on short-term dynamics in species composition and 

diversity in a 50-Ha plot in Barro Colorado Island, showing that although species 

richness remains unchanged some 40% of the species (approx. 300 in total) changed 

in abundance by more than 10% in just 3 years.  Temporal dynamics must be 

carefully considered throughout this study, as measurement of diversity at any one 

time is just a snapshot of a temporally dynamic system. 

 

Specifically to lowland tropical forests, science is only beginning to understand in any 

detail how variable species composition and diversity is over space (Pitman, 2000).  It 

has long been established that tropical tree species tend to occur in low densities in 

Amazonian forests, with Black et al. (1950) stating that the average density of an 

Amazonian tree species is less than 1 individual Ha-1.  Over the years this figure has 

not changed much despite intensive plot studies throughout the region, with Pitman et 

al. (2001) concluding that the commonest species rarely exceed 90 individual Ha-1 

and often account for just 3-12% of all stems.  This also means that a 1-Ha plot is 

likely to capture a small-subset of all species in the local pool, and through lack of 
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large enough datasets ecologists are only just beginning to understand the geographic 

patterns of species distributions in the Amazon (Pitman, 2000). 

 

Within this section, two specific themes of geographic variation in composition and 

diversity are examined in detail, namely the role of elevational gradients on diversity 

(particularly relevant to TMCF environments) and habitat associations of tropical tree 

species (elevational gradients in composition).   

 

2.3.1 Elevational gradients in diversity 

 

Elevational gradients of diversity have been the subject of many studies, as they 

represent a natural environmental gradient and a perfect opportunity for examining 

the factors and processes that generate and maintain species diversity (Sanders, 2002).  

Adiabatic-lapse rates dictate that temperature decreases with elevation through a 

lowering of atmospheric pressure, but elevational gradients also often represent 

gradients in wetness (through both rainfall, accumulated soil moisture, fog inputs and 

reduced evapotranspiration) (Whittaker and Niering, 1975). 

 

Elevational gradients are often seen as a mirror of the latitudinal gradient in richness 

(Stevens, 1992), with global patterns in species richness often being described by a 

decrease in richness with greater latitude (Hawkins and Diniz-Filho, 2004), and at any 

single latitude a decrease in richness with elevation (Rahbek, 1997).  This simplified 

view of elevational gradients however is not supported by all studies (Lees et al., 

1999; Colwell and Lees, 2000; Sanders, 2002), and considerable literature is available 
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on both the empirical patterns (Terborgh, 1977; Vasquez and Givnish, 1998; Grytnes, 

2003) and the theoretical explanation of these patterns (Stevens, 1992; Rahbek, 1997). 

 

In general terms, two patterns in richness have been identified along the altitudinal 

gradient for different habitats and for different taxa: a monotonic decrease in species 

richness with elevation (Terborgh, 1977; Vasquez and Givnish, 1998) and a unimodal 

hump-shaped (the shape of a normal distribution) mid-elevation peak in richness 

(Whittaker and Niering, 1975; Lees et al., 1999; Colwell and Lees, 2000; Nor, 2001; 

Kessler, 2002; Vetaas and Grytnes, 2002; Brehm et al., 2003), with Grytnes (2003) 

finding both patterns in seven transects in Norway. 

 

Several explanations are provided as to the mechanism behind such relationships.  

The influence of area on species richness is stated to be “one of community ecology’s 

few genuine laws” (Schoener, 1976).  Indeed, species-area relations have been 

discussed for nearly a century in the ecological literature (Gleason, 1922), and 

recently reviewed by Lomolino (2000).  Many authors have examined the effect of 

area specifically on species richness in elevational gradients, finding it to be important 

(Whittaker and Niering, 1975; Stevens, 1992; Rahbek, 1997).  In simple terms, 

assuming that an elevational gradient is representative of a floristic gradient, greater 

area at any elevation would increase the probability of higher species richness. 

 

Some authors also contend that mid-elevations are habitat-sinks due to the high 

probability of range-overlap (termed the mid-domain effect), because species ranges 

are bounded by the highest and lowest elevation possible in the region (Colwell and 

Lees, 2000). 
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Rapoport’s rule (originally conceived in the context of the latitudinal gradient, but 

adjusted to the elevational gradient) interprets elevational patterns in richness based 

on the observation that there is greater temporal climatic variation in higher 

elevations, Stevens (1992) and subsequently Blackburn and Gaston (1996), advocated 

that species elevational ranges increase with elevation.  The result, according to 

Stevens (1992) is a monotonic decrease in richness with elevation.   

 

Others liken the elevational gradient simply to productivity, and contest that patterns 

in species richness are merely a function of the productivity gradient, with different 

productivity versus diversity theories explaining the monotonic (for example 

Hutchinson, 1959; Macarthur, 1965) and hump-shaped patterns in species richness 

(for example Tilman, 1982; Rosenzweig, 1995). 

 

Empirical evidence of the elevational gradient in richness in tropical forests is 

variable, with Kappelle (2004) reporting that the richness in flowering epiphytes 

decreases with increasing altitude, whilst pteridophytic plant groups (particularly 

ferns and mosses) increase in richness with altitude, whilst Vasquez and Givnish 

(1998) find a gradual decrease in vascular plant richness from lowland tropical dry 

forest to tropical montane cloud forest in Mexico.  Based on the Clinebell et al. (1995) 

compilation of 0.1Ha tree plots distributed throughout the neotropics, no clear 

elevation pattern was found, although high elevation plots tended to have lower 

species richness. 
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Tests of the theoretical controls on elevational gradients in richness conclude that 

multiple factors determine the patterns.  Sanders (2002) finds a mid-elevation peak in 

diversity in ant species richness in three US States, attributing the patterns to both 

species-area effects and Rapoport’s rule.  Similarly, Rahbek (1997) tested four null 

models (Rapoport’s, monotonic productivity, hump-shaped productivity and 

area/geometric constraints) using bird diversity in South America as an example, 

rejecting in this case Rapoport’s rule and the monotonic productivity model.  In 

reality, evidence suggests a large degree of site-specificity in richness and elevational 

gradients, and patterns are likely a cause of a combination of processes, including 

species-area, productivity and Rapoport’s rule.  Mid-elevation peaks tend to be more 

common than monotonic patterns, but there are few clear examples of either for 

vascular plant species richness in elevational gradients in the tropics. 

 

2.3.2 Habitat associations among tropical forest tree species 

 

A central question in understanding the geographic distribution of tropical rain forest 

tree species, and indirectly to the maintenance and spatial variation in species 

diversity, is the degree to which abiotic or biotic factors restrict or limit fine-scale 

geographic distribution.  Lowland rain forest species have historically been 

considered to be generalists (Pitman, 2000), though some authors have suggested 

edaphic specialization in lowland rain forest tree species (for example Clark et al., 

1998; Palmiotto et al., 2000).  Central to equilibrium-based explanations of tropical 

forests diversity is the concept of niche-differentiation, and this has been tested 

through studies of habitat association presented in this section. 
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In LRF, there are two clear scales of habitat association in tropical tree species 

(Pitman, 2000).  There is little doubt of the clear compositional differences between 

flooded (varzea) and non-flooded forest (terra-firme) (Phillips et al., 2003) brought 

about by different degrees of flooding tolerance of the species present (Pitman et al., 

2001).  However, there is a more controversial debate on the degree of habitat 

association amongst tropical tree species within these broad forest classes.   

 

In the 1960’s and 1970’s some studies, particularly from Dipterocarp forests in the old 

world, presented evidence that fine-scale species distributions in tropical forests are 

driven by habitat preferences (Ashton, 1964; Wong and Whitmore, 1970; Austin et 

al., 1972; Ashton, 1976).  A number of subsequent studies examined similar 

relationships (Newbery et al., 1986; Baillie et al., 1987).  In most of these cases parent 

material was identified as the most important physical factor driving fine-scale 

distribution patterns (Austin et al., 1972; Baillie et al., 1987), though not all studies 

found evidence of strong habitat preferences in tropical forest species (Wong and 

Whitmore, 1970; Newbery et al., 1986).   

 

More recently a resurgence of the issue has resulted in a half dozen of focused studies 

published over the past 5 years.  The majority, based in Neotropical lowland forests 

(except for Webb and Peart (2000; Debski et al., 2002; Potts et al., 2002; Palmiotto et 

al., 2004)), have looked in detail at habitat associations within forest types in search 

of explanation of micro-scale variability in tree composition and diversity.  Indeed, 

the concept of habitat heterogeneity and tree species specialization has become central 

to theories explaining the maintenance of tropical tree species diversity (discussed in 
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detail in Pitman, 2000; Harms et al., 2001), and especially related to the non-

equilibrium theory of Hubbell and Foster (1986). 

 

Tuomisto et al. (2003) provide three useful models for evaluating micro-scale tree 

species distributions and habitat associations in LRF, terming them the random-walk, 

uniformity and the environmental heterogeneity model.  The random-walk model is 

based on a simple view of the non-equilibrium hypothesis proposed originally by 

Hubbell and Foster (1986), whereby species are randomly distributed across the 

landscape, but spatially-autocorrelated due to dispersal limitations.  Stochastic 

processes, such as tree-fall, principally drive this model of tree species distribution.  

Under this model, species presence is not indicative of presence of any other species, 

and floristic similarity is expected to decrease with inter-site difference.  The 

uniformity model (or more accurately “more-or-less” uniformity) is based on Pitman 

et al. (1999; 2000; 2001) and Terborgh et al. (1996), with generally constant species 

composition over wide-areas.  Most species are expected to be widespread, and their 

presence at a site is non-random, but due to a biological characteristic which makes 

them compete successfully and dominate over a wide range of forest tracts (Pitman et 

al., 2001).  After a disturbance, a similar species composition is expected to recover 

(Terborgh et al., 1996).  In this sense, species composition is expected to vary little 

with local site conditions, and spatial auto-correlation is not necessarily present.  The 

final model, environmental heterogeneity, advocated by (Poulsen and Balslev, 1991), 

and the variable composition brought about by non-random, spatially auto-correlated 

environmental heterogeneity.  In the case of this study, Tuomisto et al. (2003) rejects 

the uniformity model, lending support to a combination of the random walk model 



 33 

and the environmental heterogeneity model, concluding that it is edaphic variability 

that most strongly segregates the species. 

 

These three models for examining habitat associations in tropical trees present a 

useful means of evaluating the processes behind specialization or generalization in 

tropical species, capturing contemporary theories of equilibrium, non-equilibrium and 

combined dynamics. 

 

Harms et al. (2001) found that 82% of species in a 50-Ha plot in Barro Colorado 

Island showed no habitat association with basic landscape units, concluding that 

specialisation plays a limited role in spatially distributing species composition and 

diversity, lending support to the “uniformity” theory advocated by Pitman et al. 

(1999).  Valencia et al. (2004) find some habitat association related to landscape units 

in a 50-Ha plot in Yasuni National Park in Ecuador with 25% of species showing 

habitat specialisation, but conclude in favour of the random-walk model attributing 

the environmental heterogeneity effect on tree species distributions as only minor.  

Webb and Peart (2000) lend support to the environmental heterogeneity model, 

through examination of habitat associations in 45 species in a mixed dipterocarp 

forest in Borneo, finding 44% of species to have habitat specialization to light and 

physiographic conditions, but still they fail to account for fine-scale distributional 

patterns in the remaining 56% of species.  Phillips et al. (2003) perform a more 

rigorous analysis of habitat association amongst 849 Amazonian species across 88 

plots, focusing on edaphic constraints to species distribution and finding that 77% of 

species are significantly related to edaphic habitat, lending strong support to the 

environmental heterogeneity model.  Mantel tests are used in this case to examine 
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distance related floristic similarity (central to the random-walk model), finding only a 

weak distance related effect.  Vormisto et al. (2000) also found strong edaphic 

specialization in four plant groups (melastomes, palms, trees, and pteridophytes), also 

using Mantel tests, though in a later paper (Vormisto et al., 2004) the degree to which 

palm distributions are related to topography is questioned.  Clark et al. (1999) 

approximate that 30% of species in La Selva, Costa Rica, have edaphically biased 

distributional patterns, and Potts et al. (2002) find 43 out of 60 species studied to have 

some degree of edaphic specialization, both of these cases providing a strong case for 

the environmental heterogeneity model. 

 

There are fewer studies and much less theoretical background available for species 

habitat associations in TMCF environments, though limitations to species ranges are 

likely to be far clearer due to the sharper environmental gradients.  Vasquez and 

Givnish (1998) examined elevational gradients in family composition, showing clear 

gradients in abundances for certain families.  Sugden (1982) presents similar evidence 

of altitudinal zonation for some selected tree species in a Colombian cloud forest, also 

showing clear patterns of elevational limits to distribution.  Furthermore, many 

botanical monographs and species descriptions present elevational range as a factor in 

describing species distribution.  Though these studies are few, there is little doubt that 

elevational gradients represent strong floristic gradients too, however no studies 

examine habitat association at the fine-scale based on topographic characteristics in 

TMCF environments. 

 

In conclusion, there is no single model for habitat association in lowlands that stands 

out as the dominant process, with different results for different sites and different 
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habitat measures (edaphic or landscape/topographic), though the more rigorous and 

data rich studies (namely Phillips et al., 2003) find clearer patterns of specialization in 

tropical tree species, especially related to edaphic conditions.  Attention however is 

brought to the possible role of direct-cycling by trees, whereby tree species 

themselves control in some part the edaphic conditions around them through litterfall, 

suggested by Clinebell et al. (1995).  However, none of the studies of habitat 

association for LRF and TMCF presented in this review use DEM-derived 

topographic variables beyond simple elevation, slope, or landscape unit.  In most 

cases, landscape unit is defined through a combination of rules of elevation, slope and 

convexity, none of which are calculated in the context of a GIS (for example Valencia 

et al., 2004).  This lack of quantified terrain analysis is clearly a research gap in 

tropical studies, despite an early paper applying GIS terrain analysis to explain 

compositional variation in a temperate forest in West Virginia (Twery et al., 1991). 

 

2.3.3 Environmental controls on diversity 

 

Whittaker (1999) states that ‘most ecologists have to contend with systems of 

bewildering complexity, in which it is hard to separate the wood from the trees’, and 

nothing could be truer in the context of discussing environmental interactions with 

diversity.  There is a massive amount of published material that discusses 

environmental interactions with diversity, covering many different ecosystems and 

many different taxa.  Effort is made in this section to maintain the literature review 

brief and focused on micro-scale environmental drivers of tree or plant diversity in 

tropical forests.  In general terms, readers particularly interested in this section are 
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strongly urged to consult Givnish (1999), who provides a comprehensive review of 

environmental interactions with diversity in the context of tropical forests.  

 

The discussion presented here is separated into diversity relations with climate and 

productivity, light environment and gap dynamics, other types of disturbance, soil 

quality and finally topography and topographic heterogeneity, though in reality these 

distinctions are fairly arbitrary as many of these factors are related or act in 

combinations to affect plant diversity (see for example discussion on the combined 

effect of productivity and disturbance on diversity in Kondoh, 2000). 

 

2.3.3.1 Climate and productivity 

 

The productivity-diversity relationship is denied by few, but there is heated debate as 

to the shape of the relationship, with a number of very detailed reviews on the subject 

(Maranon and Garcia, 1997; Givnish, 1999; Waide et al., 1999; Schmid, 2002).  

Productivity strictly speaking in this context is defined as the ‘rate of conversion of 

resources to biomass per unit area’ (Waide et al., 1999), though many authors 

examine the relationship in the context of water or energy gradients as surrogates of 

productivity (see Hawkins et al., 2003 for an example). 

 

Waide et al. (1999) present a comprehensive survey of literature on the productivity-

diversity relationship, finding that 30% of 200 related articles report a unimodal 

pattern, 26% a monotonic increase, 12% a monotonic decrease and 32% of articles 

found no significant pattern at all.  But in general, the contemporary literature 

strongly supports the unimodal relationship, with Weiher (1999) going as far as 
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suggesting it may become an “ecological law” alongside the species-area law of 

Schoener (1976).  However, the debate is far from over, and field-based results 

showing the contrary cannot be overlooked.  Chase and Leibold (2002) contest that 

the different patterns found are a function of scale, and that the relationship changes 

shape depending on the scale of study, with a unimodal relationship at the local scale 

and a monotonic increase at the regional scale.  This is also supported by Weiher 

(1999), and has been strongly supported by Waide et al. (1999). 

 

Perhaps the most comprehensive and frequently cited regional scale test of the 

productivity-richness relation has been provided by Currie (1991), who found a strong 

monotonic increase in tree species richness along a potential evapotranspiration (as a 

surrogate of productivity) gradient across the USA.  However, specifically to tropical 

forests Waide et al. (1999) report that there are few examples of clear relationships 

between productivity and diversity in tropical forests.  The clearest example of 

climate-diversity relations in tropical forests is that of the high diversity found in 

regions of high precipitation at both the local scale (Huston, 1980; Phillips et al., 

1994) and regional scale (Gentry, 1982; Clinebell II et al., 1995; Gentry, 1995).  

Wright (1992) also contends that greater seasonal variability in precipitation reduces 

plant diversity.  No other clear patterns have been found. 

 

There are a plethora of explanations as to why a productivity-diversity relationship 

exists.  Those that refer to both local scale productivity gradients and diversity include 

competitive exclusion and environmental stress (Huston, 1979, 1994), changes in 

environmental heterogeneity with productivity and plant abilities to resist predation 

(Givnish, 1999; Waide et al., 1999), though there is no agreement on a robust 
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explanation, and patterns and processes tend to vary on a site-by-site basis (Givnish, 

1999).  Because of the inconclusive nature of the literature and high degree of site-

specificity evident, this is not discussed here in great detail, though readers interested 

in more in depth presentation and discussion of the various hypotheses to explain the 

productivity-diversity relationship are referred to Waide et al. (1999). 

 

2.3.3.2 Light environment and gap dynamics 

 

Disturbance in ecology is defined as ‘any relatively discrete event in time that disrupts 

ecosystem, community, or population structure and changes resources, substrate 

availability, or the physical environment’ (Pickett and White, 1985).  Disturbance in 

tropical forests includes herbivory, predation, climatic variability, but perhaps the 

most common and controversial forms of short-term disturbance in tropical forests are 

those of tree-fall or branch-fall, resulting in an environmental and ecological response 

referred collectively as gap dynamics (Denslow, 1987).   

 

Prior to discussing the implications of gap dynamics on tree species diversity, some 

background is provided on the process of gap formation in tropical forests.  In a large 

census of gaps in 12-Ha of primary forest in French Guiana, Van Der Meer  and 

Bongers (1996) found 1.5% of trees (DBH > 10cm) fell in a single year, with 1.3% of 

individuals losing a large branches.  Some 4.9% of the standing basal area was found 

to be damaged or felled in a single year.  Key characteristics in studying gap 

dynamics include the gap size, orientation, frequency (i.e. temporal variability) and 

distribution (i.e. spatial variability).  Hubbell et al. (1999) contend that gaps occur 

randomly in both space and time, though some empirical evidence concludes the 
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contrary.  Salvador-Van Eysenrode et al. (2000) conclude for an Ecuadorian western 

Amazonian rain forest that gaps form stochastically in time, but are spatially clustered 

(in TBS – the same study site as the thesis).  The spatial clustering contributes to 

increased wind turbulence around existing gaps, soil properties, topography (also 

confirmed by Poorter et al., 1994), and possibly biotic factors such as fungal attacks 

(Uhl et al., 1988).  Nelson et al. (1994) also finds tree falls to be non-stochastic in 

space, this time using remote sensing to map the frequency of large blowdowns in the 

Brazilian Amazon, though the study detects broad-scale variability in tree fall due to 

storm occurrence and rainfall.  Though this scale of variability is not relevant to the 

micro-scale discussed here, the implication of higher frequency in areas of greater 

rainfall may mean that on the local-scale tree falls are more frequent in areas of higher 

soil moisture.  The micro-scale variation in the spatial distribution and nature of gaps 

with relation to topography has been studied by Gale (2000) in the Pacific lowlands in 

Ecuador, finding higher concentrations of gaps in upper- and mid- slopes, with the 

lowest occurrence of gaps on ridges.  The reasons for which were principally 

attributed to wind, with leeward slopes being most exposed.  Given these observed 

patterns, topography is a key variable that affects (through direct and indirect 

mechanisms) the probability of a tree-fall (Gale, 2000), and so some of the terrain 

characteristics developed in the next chapter capture elements of gap dynamics. 

 

The effect of a gap on the light environment is dramatic.  Under closed-canopy 

conditions, the understorey typically receives only 1% of full sunlight in energy 

receipt, with a 200m
2
 small gap receiving 9% full sunlight and a large 400m

2
 gap 

receiving 25-35% full sunlight (all in terms of photosynthetic photon flux density – 

PPFD) (Chazdon and Fetcher, 1984).  This increase in light intensity is crucial for 



 40 

germination of light demanding seedlings and saplings (Denslow, 1987; Meer et al., 

1998; Dalling et al., 1999).  It also provides a diverse set of light-related niches, with 

both vertical and lateral penetration of light to the sub-canopy and understorey 

(Terborgh and Mathews, 1999).  Tomlinson (1987) describes many of the types of 

tree architecture existing in tropical forests including monolayer or deep cylindrical 

crowns, and leaf angles and orientations, many of which are adaptations related to 

light receipt.  Some species are clearly better adapted to specific light environments 

than others, with some studies showing this to be the case through focused 

comparisons of specific species, examining their morphological and physiological 

strategies for surviving in different light environment (Dalling et al., 1999; Terborgh 

and Mathews, 1999).  Aside from gaps, canopy structure and topography has also 

been shown to affect the light environment, with Tateno and Takeda (2003) showing 

higher levels of light availability at the forest floor on steeper slopes, due to a 

combined effect of vertical and lateral penetration of the canopy. 

 

Gap dynamics are central to many contemporary theories of species diversity 

maintenance in tropical forests.  Recent literature on non-equilibrium dynamics in 

tropical forests has focused on gap dynamics, arguing that this process, stochastic in 

both space and time, results in chance occupants rather than the best adapted species 

recruiting in the micro-environment (due to dispersal limitations).  Hubbell et al. 

(1999) first coherently presented this theory, providing compelling evidence of non-

species specific recruitment in gaps in a 50-Ha plot on Barro Colorado Island, as well 

as undifferentiated levels of vascular plant species richness in gaps and in closed 

canopy forest.   
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Hubbell’s paper once again stirred an intense discussion on equilibrium vs. non-

equilibrium maintenance of diversity, excellently reviewed by Brokaw and Busing 

(2000).  The resultant effect on species diversity if the non-equilibrium theory is 

accepted is one of relatively little variability (i.e. equal levels of diversity in both 

gaps, early regeneration and regenerated forest, although this is only observed when 

diversity is measured as richness per stem).  Conversely, the opening of a greater 

diversity of niches along the light gradient from the center of the gap to the 

surrounding canopy-covered understorey (often referred to as the gap-understorey 

continuum) means that gaps generate higher levels of species diversity under the 

equilibrium theory of niche-partitioning (Brokaw and Busing, 2000).   

 

However, the intermediate disturbance hypothesis (IDH) is also an additional aspect 

of gap dynamics central to theories of tree species diversity.  The IDH was first 

proposed by Connell (1978) for both tropical forests and coral reefs, and was 

reviewed more recently with special reference to tropical forests by Sheil and Burslem 

(2003).  The hypothesis dictates a hump-shaped unimodal curve of diversity along a 

disturbance gradient, measured in terms of frequency or intensity.  Connell (1978) 

suggests a successional process, whereby colonizing species (good dispersers, shade 

intolerant and fast growing) at first establish in the gap.  The second stage of 

succession involves the slower establishment of shade tolerant species, which 

compete with the colonizers for energy and water in a state of coexistence.  The final 

stage involves the competitive exclusion of the colonizers, and the dominance of 

shade tolerant species.  Connell suggests that the middle successional stage is most 

diverse through the existence of both colonizers and shade-tolerant species, therefore 
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sites with intermediate levels of disturbance frequency and intensity tends to maintain 

the greatest number of species. 

 

In a survey of 197 published works making empirical tests of the IDH, Mackey and 

Currie (2001) find that the majority of studies find no significant relation at all of a 

unimodal pattern of species richness along the disturbance gradient (36%), with just 

17% confirming a mid-disturbance peak.  This study included a broad range of taxa 

and ecosystems, but for the tropics there are very few examples.  Hubbell et al’s 

(1999) model of the effect of gap dynamics on species diversity rejects the IDH, 

despite both models being marked as non-equilibrium models.  But a more recent 

study shows very strong empirical evidence for the existence of a peak in diversity 

along a disturbance gradient in tree falls in Guiana (Molino and Sabatier, 2001).  In 

their review, Sheil and Burslem (2003) discuss in detail these two contrasting studies 

and actually suggest that Hubbell’s results are consistent with the IDH, with site-

specific conditions leading to the confused pattern.  In conclusion, more large-scale 

and long-term studies are required to further understand the role of the IDH, but there 

is fairly compelling evidence of at least some variability in tree diversity being 

explained by gap dynamics and the IDH. 

 

Putting gap dynamics to one side, there is also the important issue of light quality in 

tropical forests, especially in montane environments.  Letts (2003) discusses in depth 

two aspects of light quality; photosynthetically active radiation (PAR) and ultra-violet 

radiation (UV).  PAR refers to the frequencies of solar radiation used by plants in 

photosynthetic production, and is not a constant percentage of total solar radiation, 

varying depending on atmospheric attenuation through cloud cover (Letts, 2003).  
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Spatially varying levels of PAR therefore have potentially important implications for 

composition, diversity and structure.  For example, in terms of structural implications, 

Flenley (1992) observed that light-demanding plants grown in high humidity and 

lowered PAR are tall, with long internodes and large, thin, pale green leaves. 

 

Ultra-violet radiation can cause damage to macromolecules (Letts, 2003).  For 

example, Teramura (1983) showed that seedling growth is stunted following exposure 

to UV-B radiation.  Ultra-violet radiation is important in montane forests, as TMCF 

vegetation is exposed to higher UV-B radiation than any other forest biome as a result 

of the short path-length of incident radiation (Ziska, 1996) and the reflection from 

clouds below, which may increase UV-B radiation by up to 70% (Flenley, 1995).  

Caldwell et al. (1980) finds that ultra-violet radiation levels increase substantially 

with altitude.  Numerous studies have indicated plant adaptations to high UV 

radiation levels (Sullivan et al., 1992; Ziska et al., 1992; Ziska, 1996), implying that 

high levels of UV radiation may have an important effect on tree composition and 

structure specifically.  The degree to which light quality (PAR and UV-B) affects 

species diversity and composition has not been studied. 

 

2.3.3.3 Other disturbances 

 

Although gap dynamics are undoubtedly the dominant micro-scale disturbance 

process in tropical forests (Denslow, 1987), other temporal disturbances have been 

observed to affect species composition and diversity.  Condit et al. (1992) provide a 

detailed account of the effects of drought on Barro Colorado Island, causing 

widespread mortality in species with different degrees of drought tolerance.  Although 
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the disturbance was equal in severity across the whole region, spatial heterogeneity 

and non-homogeneous distribution of species likely means that the drought may affect 

change in the spatial distribution of diversity on the micro-scale, although this was not 

studied.  Another type of disturbance of great importance to lowland rain forests is 

that of flooding, caused by river level fluctuation of as much as 14m, which can 

submerge large tracts of forest for periods from a few days to 270 days (Junk et al., 

1989).  Ferreira (1997) finds species richness to be lower in heavily flooded regions, 

largely to do with dominance of a handful of species well adapted to prolonged root 

submergence, though in a later study finds no clear relationship in species richness 

across three landscapes with low, intermediate and high frequency of flooding 

(Ferreira, 2000). 

 

Intermediate-scale disturbances have also been found to affect forest dynamics, 

including the effect of river-meandering (Salo et al., 1986).  Salo and colleagues use 

satellite images to conclude that 27% of lowland rain forest in the Western Amazon 

exhibits evidence of recent erosional and depositional activity, suggesting that this 

disturbance is another important process in maintaining high diversity in Amazonian 

forest through prevention of competitive exclusion and creation of environmental 

heterogeneity.  Furthermore, studies in western Amazon also indicate that river 

meandering may have been stronger through enhanced flows in the recent past as a 

result of tectonic activity (Rasanen et al., 1986).  This intermediate scale disturbance 

affects the successional stage of forest, as well as altering the substrate for soil 

formation (Huston, 1994), though little other attention has been given to the role of 

river-meandering in studies of tropical lowland forest diversity. 
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2.3.3.4 Soils and nutrients 

 

Though this study does not explicitly include soil in the fieldwork nor desk-based 

modelling, many topographic factors are indicative of soil texture and soil quality, and 

there is an extensive body of research which examines edaphic specialization in 

species (discussed previously in Section 2.3.2), and the role of edaphic conditions on 

species diversity (discussed here). 

 

There are a number of studies that have used digital elevation models (DEMs) to map 

soil attributes (for example Bui et al., 1999; Ryan et al., 2000), typically texture 

(Gobin et al., 2001), nutrients  (Chen et al., 1997) and organic matter content.  

However, these methods often require large calibration and validation datasets, 

including soil surveys or geological maps, and are not performed in this thesis for 

reasons outlined in Chapter 1.  However, some topographic characteristics are likely 

to capture soil gradients, and these must be considered in the analysis.  Topography 

plays an important role in controlling the distribution of soil quality (discussed in the 

next paragraph), but the distribution of soil texture is highly dependent on soil 

substrate (Takyu et al., 2002) and many topographic patterns in soil texture tend to be 

site-specific (Gobin et al., 2001). 

 

In terms of plant diversity, nutrients (in much of the literature referred to simply as 

soil quality) have been found to be both beneficial and detrimental to species richness, 

with contrasting results of monotonic increase in richness across an increasing soil 

nutrient gradient (Proctor et al., 1983; Palmiotto et al., 2000), a unimodal distribution 

with species richness peaking in mid-nutrient levels (Huston, 1982), and monotonic 
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decrease in richness across the nutrient gradient (Hall and Swaine, 1976; Huston, 

1982; Oliveira and Mori, 1999).  There are text-book examples of the latter 

relationship, where nutrient-poor soils harbor low tree diversity in the caatinga in 

Amazonia and kerangas in SE Asia (Whitmore, 1998).  Huston (1994) contends that 

these patterns are spurious, originating from the co-linearity between precipitation and 

nutrient levels (representing a productivity gradient, producing a unimodal pattern), 

and that nutrients are indeed of little importance in controlling species richness.  

Clinebell et al. (1995) argue the same, using detailed soil data in 69 0.1-Ha tree plots 

of Alwyn Gentry, finding species richness to be independent of soil quality, as well as 

clear inverse correlations between precipitation and soil nutrient concentrations 

(principally through greater leaching).  However, Oliveira and Mori (1999) provide 

evidence that high precipitation is not necessarily synonymous with poor soils, 

providing support for the argument that low nutrient content in soils reduces growth 

rates and stimulates competition, maintaining high diversity and preventing 

competitive exclusion (Berendse, 1999).  In conclusion, a number of studies present 

different relationships between soil quality and diversity, and the nature of this 

relationship may indeed be site-specific. 

 

Many studies of edaphic specialization and soil quality - diversity relations use 

topography as a factor in determining the edaphic conditions, finding that valley or 

toe slope regions tend to have fertile soils and ridge landscapes have low fertile soils 

(Clark et al., 1998; Clark et al., 1999), due primarily to greater degrees of leaching on 

convex slopes. 
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2.3.3.5 Topography  

 

Although topography itself is not a physical resource crucial to plant growth and 

survival, it is a fundamental environmental variable which partitions critical resources 

such as energy, light and nutrients.  Many studies already discussed in Section 2.3.2 

use topography to identify habitat specialization, based on the physical environmental 

conditions found in different topographically defined landscape units (valley, slope, 

ridge etc.).  Although habitat association of species with relation to topography has 

already been discussed, there are also a select few studies that examine micro-

topographic patterns of diversity (rather than composition).  Webb et al. (1999) 

presents the most detailed direct analysis of topographic patterns in diversity variation 

in a tropical rain forest in American Samoa, finding significantly higher tree species 

richness on ridges compared to slopes and valleys.  No detailed analysis of the 

reasons behind this is provided, but the authors do mention the possible role of 

frequent visits by birds and large insects to the more exposed ridges, thus increasing 

seed deposition.  This is the only suggestion of such a process in the literature and 

may be of relevance for further testing, though the high diversity on ridges might also 

be due to the documented lower soil quality (Clark et al., 1998; Clark et al., 1999), 

and of the negative monotonic nutrient-diversity relationship discussed in Section 

2.3.3.4.  Koponen et al. (2004) also studies micro-topographic patterns of tree species 

richness variability in a tropical freshwater swamp forest in French Guiana, finding 

greater richness in lower-sites more regularly flooded, though the extent of the 

topographic analysis was in fact in the distinction of lower and upper sites.  Finally, 

Enoki (2003) presents analysis of species composition on different “topographic 

indices” (slope and a basic measure of mean curvature termed ‘configuration’), 
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finding that species composition was somewhat related to topographic indices, though 

no pattern in terms of species richness was evident.  Unfortunately the steepness and 

configuration variables were not measured using robust techniques of terrain analysis. 

 

With the part exception of Enoki (2003), no studies have thoroughly analysed species 

composition or diversity patterns with relation to a broad range of quantified 

topographic characteristics, making this thesis the first example of this kind of 

analysis applied to tropical forest composition and diversity studies. 

 

2.4 Spatial variation of structure in tropical forests 

 

This section provides a brief review of literature on structural variability in tropical 

forests.  It is less thorough than the review already presented for diversity, as it is 

relevant to only one objective, though there is also less theoretical debate on the topic. 

 

As already presented in Section 2.2.2.1 and Section 2.2.2.2 structure varies 

significantly between tropical forest ecosystems, with many documented reductions in 

stature and increases in stem density with greater elevation (Pendry and Proctor, 

1996; Pendry and Proctor, 1997; Kappelle, 2004), but there is also micro-scale 

variability aside from elevational gradients (for example Robert and Moravie, 2004).  

Aubréville (1938) first coined the phrase ‘forest mosaic’ to describe the micro-scale 

variability in forest structure, producing a diverse set of micro-environments in the 

canopy, sub-canopy and understorey.  Since then detailed studies of gap dynamics and 

succession have described much of this variability (discussed in Section 2.3.3.2), but 

there is still a large degree of spatial variability in structure which is not accounted for 
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by disturbances (Schaik and E, 1985) which has been overlooked in the literature 

(Trichon et al., 1998). 

 

The elevational gradient in stand height has been attributed to many factors, including 

high humidity (Odum, 1970), nutrient limitation (Vitousek, 1984; Vitousek and 

Sanford, 1986), low temperature (Kitayama and Aiba, 2002), soil acidity 

(Hafkenscheid, 2000), leaf wetness (Letts, 2003) and cloud cover (Grubb, 1977; Letts, 

2003).  Once again, a certain degree of site-specificity is evident in the literature, but 

all these studies only use elevational data and do not perform analyses of micro-scale 

variation which may provide a clearer picture of the factors at play in reducing tree 

stature.   

 

In terms of micro-scale variability in tree structure without considering the elevational 

gradient, Robert and Moravie (2004) find no patterns in diameter distributions with 

respect to slope, but do find that the height of a tree per unit diameter does increase on 

gentler slopes.  Webb et al. (1999) analysed forest structure in different topographic 

landscape units (ridge, slope and valley), and found stem densities to be highest on 

ridges with a limiting maximum diameter on ridges, a low stature and a respective 

low height/diameter which they attribute to windcropping.  In general, there are few 

studies of micro-scale forest structure variability beyond the extensively researched 

role of gap dynamics. 

 

2.4.1 Structure – diversity interaction 
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Also of relevance to this thesis is the relationship between structure and diversity, 

though there is very little available in the literature about this two-way relationship.  

Many of the equilibrium based theories of species diversity and gap dynamics are 

based on the diversification of niches through a disturbance that drastically changes 

forest structure.  However, beyond these stochastic and drastic structural changes, 

structural heterogeneity in a closed canopy also potentially increases the number of 

niches available in the light environment (Huston, 1994), though there is little 

literature which explicitly investigates this theme. 

. 

Givnish (1999) reports that amongst other factors that have been found to generate 

high species diversity in tropical forests, there is a negative effect on diversity with 

increasing diameter at breast height (DBH), and a positive effect with increased stem 

density and forest stature.  The reasons behind such relationships are questionable, 

and may be statistical artifacts of diversity indices, or co-linearity between already 

discussed drivers of forest structure (Section 2.4). 

 

Also of importance when considering this relationship is the potential circular nature 

of the comparison, with different species themselves having very different structural 

forms (Tomlinson, 1987), therefore it would be expected that highly species diverse 

sites would also be structurally heterogeneous.  Furthermore, under Huston’s (1994) 

categorizing of interstitial and structural organisms, it is also expected that a diverse 

structural environment (however this be generated) provides a diverse set of niches 

for organisms in other groups, such as insects, amphibians and small mammals.  This 

is to some degree confirmed by empirical studies (for example Tews et al., 2004).  In 

this sense, structural heterogeneity may in fact be a more suitable indicator of 
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diversity in other taxa than in trees (for which the lack of relationship has been 

discussed in Section 2.2.1). 

 

Though there are a number of possible theoretical linkages between structure and 

diversity, there are few empirical studies that explicitly study this two-way 

relationship, as it is clearly very difficult to separate cause and effect.  In this thesis a 

brief examination of this relationship will be made. 

 

2.5 Spatial environmental heterogeneity and its quantification 

 

The term environmental heterogeneity is used in a number of different senses in the 

literature, making discussion of the topic confused without an accurate definition.  

Environmental heterogeneity within the context of this study refers to the diversity of 

environments within a certain local spatial extent, for this reason it will be referred to 

as spatial environmental heterogeneity in order to stress the spatial nature of the 

variable.  Spatially environmentally heterogeneous sites therefore exist where there 

are sharp gradients in whatever environmental factor is being examined.  Many 

different terms are used to portray the same phenomena, including habitat 

heterogeneity, habitat diversity, habitat complexity, structural heterogeneity, and 

spatial complexity (Tews et al., 2004). 

 

Spatial environmental heterogeneity has long been associated with diversity at both 

the species level (Huston, 1994; Rosenzweig, 1995) and the genetic level (Hedrick et 

al., 1976; Hedrick, 1986; Volis et al., 2004), though as Araújo et al. (2001) point out 

this positive relationship has often been ‘assumed rather than measured’.  The role of 
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environmental heterogeneity on species diversity is in theory strongly supported by 

Macarthur (1969), stating that ‘the number of species that stably coexist in an area is 

dependent on the relative abundance of limiting resources and the range of values 

over which these resources are distributed’, and many authors have since supported 

the positive relationship between spatial heterogeneity with related niche-based 

justifications (Ricklefs, 1977; Tilman, 1982). 

 

Despite what appears to be general acceptance of the relationship between spatial 

environmental heterogeneity and diversity (Huston, 1994), there are few empirical 

tests of the relationship, and in some case the methods used are less than satisfactory.  

Positive relationships between spatial environmental heterogeneity and plant diversity 

have been found at the local (Nilsson et al., 1989; Burnett et al., 1998; Barberis et al., 

2002; Lundholm and Larson, 2003) and regional scale (Rey Benayas and Scheiner, 

2002; Pausas et al., 2003).  In these studies environmental heterogeneity has been 

measured based on topography (Harner and Harper, 1976; Burnett et al., 1998; 

Barberis et al., 2002), soil substrate (Nilsson et al., 1989), or soil depth (Lundholm 

and Larson, 2003).  Only one study reports a poor relationship between richness in 

vertebrates and higher plants and spatial environmental heterogeneity (Araujo et al., 

2001).  None of these studies are performed in tropical forests, all originating from 

temperate ecosystems. 

 

Lundholm and Larson (2003) are the only authors to observe an important unimodal 

relationship between environmental heterogeneity and the productivity gradient, 

showing clearly in a limestone pavement that the greatest heterogeneity (based on 

microtopography and soil depth) is found in the middle of the productivity gradient.  



 53 

This has important implications for the many studies that have observed unimodal 

diversity peaks in mid-productivity levels (discussed in Section 2.3.3.1). 

 

However, the measurement of spatial heterogeneity in many of these studies is highly 

variable, and in some cases questionable.  Most apply grid or transect methods, 

whereby fine-scale environmental data is degraded to a coarse-scale grid of 

environmental heterogeneity through analysis of range, richness, standard deviation, 

variance or evenness of environmental conditions within each coarse-scale grid 

(Burnett et al., 1998; Pausas et al., 2003).  In other cases, the method used to quantify 

environmental heterogeneity is ambiguously described (Harner and Harper, 1976).  

These methods should not be confused with measurement of habitat heterogeneity in 

the landscape ecology literature, which tend to focus on factors such as habitat patch 

types, patch arrangement and patch shape (Li and Reynolds, 1994), referring more to 

land-use, and which are less relevant to this study as the forests studied here are non-

fragmented. 

 

To the best knowledge of the author, there have been no rigorous and quantified tests 

of the role of spatial environmental heterogeneity at the local scale on tropical tree 

diversity in the humid tropics.  The concept of environmental heterogeneity in tropical 

forests provides a degree of unification between non-equilibrium and equilibrium 

based theories of species diversity maintenance.  If in lowland rain forests the random 

occurrence in both space and time of tree and branch fall means that recruitment in 

gaps is dominated by chance occupants (Brokaw and Busing, 2000), but that there is 

also some degree of niche-specialization in some tree species (for example Phillips et 

al., 2003, also discussed in depth in Section 2.3.2), spatially heterogeneous 
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environments would potentially provide a diverse local seed pool for gap recruitment 

because habitat preferences would mean that the pool of potential immigrants were 

diverse, increasing the chances that a specialist to the conditions in the gap may arrive 

through short-distance seed dispersal.  The potential implication of a greater number 

of specialist species finding their particular niche is likely to increase diversity, 

through optimizing the resource-partitioning, potentially increasing the different 

number of species that the community may support (Hill and Hill, 2001).  In spatially 

heterogeneous landscapes, the rapid arrival of specialists to a gap may speed up the 

process of succession and increase levels of competition, resulting in there being 

greater diversity in temporally dynamic regions (i.e. possibly a left-skewed IDH 

curve). 

 

In this sense, the potential role of spatial environmental heterogeneity on tropical tree 

diversity is through explicitly spatial processes such as seed dispersal, predation, 

herbivory and competition.  With respect to seed dispersal, there is a great deal of 

literature on seed dispersal mechanisms (for example Howe and Smallwood, 1982; 

Chambers, 1994; Wehncke et al., 2003), and a great volume of studies which quantify 

seed dispersal processes for specific taxa in tropical forests (Peres and Baider, 1997; 

Wenny, 1999; Yumoto et al., 1999), many finding the majority of seed dispersal 

processes acting over distances in the region of 20m – 1km, with the majority of seeds 

traveling less than 200m (Wehncke et al., 2003). 

 

At this point much of this discussion is pure conjecture with a number of different 

ways of hypothesising the role of environmental heterogeneity on diversity.  It is best 

to test for diversity relationships with spatial heterogeneity then analyse the potential 
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mechanism behind the pattern, though within the scope of this thesis this is a large 

theme and only the first step in the analysis of spatial environmental heterogeneity 

can be achieved here. 

 

2.6 Field sampling methods 

 

A recent article by Phillips et al. (2003) reviewed different sampling methods for 

studies of forest diversity and dynamics.  Though these results were too late to impact 

on the field-based gathering of diversity, composition and structure data for this 

thesis, it is nevertheless worth a mention here.  A comparison of effort (in terms of 

person days) and results of floristic inventory were made for 0.1-Ha plots (made up of 

ten 2m x 50m plots) and 1-Ha plots (square, 100m x 100m), finding that the smaller 

0.1Ha plots were more efficient in terms of capturing floristic inventories with the 

minimum of effort.  However, the best choice of plot size and shape is heavily 

dependent on the ecological questions being raised. 

 

When considering field sampling methods and possible field sampling errors, 

attention is especially raised to the temporal dynamism of tropical forests, explicitly 

discussed in Section 2.4, and its relation to plot studies.  Though long-term and large-

scale projects such as that undertaken in Barro Colorado Island benefit from frequent 

censuses over time, and many other large-scale plot-based monitoring projects are 

now underway (Burslem et al., 2001), this study is based on diversity data from a 

single snap-shot in time.  Small plots are used in this study to capture the micro-scale 

variability central to the objectives outlined in Chapter 1, but this also makes the plot 

studies particularly sensitive to stochastic processes such as tree-fall which also 
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operate at the micro-scale.  It is important that these issues be considered throughout 

the thesis, as sampling issues are critical both in setting out the research methodology 

(Chapter 3) and in interpreting the results of the analyses (Chapters 4 – 7). 

 

Finally, this thesis applies a simple a priori objective sampling strategy, based on 

stratification of plots across a 2 dimensional environmental gradient (presented in 

Section 3.5.1).  After a detailed review of the literature, no other example of an 

objective model for locating plot studies has been found, though Phillips and Raven 

(1997) do call for stratified sampling schemes in tropical forest plot studies.  Though 

the sampling scheme adopted in this thesis is simple and fairly basic, it is the first 

known application of this kind of method to tropical diversity plot establishment. 

 

2.7 Conclusions 

 

This chapter has outlined some of the theories for maintenance of species diversity at 

the local scale in tropical forests, and provided results of empirical studies related to 

the spatial variability in species diversity, composition and structure.  Despite 

contradictory findings in many cases, likely due to site-specificity, there is strong 

evidence that at least a percentage of variability in diversity is brought about by 

equilibrium related processes, and that environmental factors are important in driving 

this variability (along with biotic factors).  In many cases it is topography that has 

been attributed or used to explain the spatial variability, but terrain-based 

characteristics are normally limited to simple elevation, slope and slope position (or 

landscape unit).  This thesis therefore applies rigorous analysis of terrain 
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characteristics through GIS to quantify the role of topography in controlling species 

diversity, composition and structure over space through niche-partitioning. 
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Chapter 3 

 

3 Research Strategy and Methods 
 

3.1 Overall research strategy 
 

In order to address the hypothesis and aims outlined in the first chapter, this study 

combines field-based data collection with desk-based spatial analysis and modelling.  

The experimental design is to associate field measured tree diversity and structure 

with carefully selected GIS-derived topographic variables, in order to understand 

which of these factors, if any, are important in shaping the micro-scale variation in 

tree diversity and structure. 

 

Two study sites are chosen from proximal but very different tropical environments in 

order to highlight differences in environmental controls on diversity and structure.  

The first site, Reserva Tambito situated on the western cordillera of the northern 

Andes in Colombia is a tropical montane cloud forest (TMCF), with steep topography 

creating a highly variable environment through the site.  The complex topography 

creates a mosaic of micro-climates, with the physical inputs to the system (water, 

radiation, nutrients) highly variable around the catchment, and in one way or another 

are controlled by the topography.  Persistent canopy level cloud also provides 

hydrological and nutrient inputs to the system, and also has many other indirect 

effects on the ecosystem.  The second site, Tiputini Biodiversity Station (TBS) 

situated in the western Amazon in lowland Ecuador, is a tropical lowland rain forest 

(LRF) with gentle slopes, almost no elevational gradient but a complex network of 

small streams running into a main river channel which is of 30m width.  Above the 
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canopy the climate and physical inputs are homogenous, but on the ground a great 

deal of micro-scale variation is found.  In this sense the canopy serves as a filter of the 

energy inputs, partitioning these resources unequally below the canopy.  River 

channels have cut 20-30m deep valleys, and highly dynamic flow levels in the main 

stream (the River Tiputini) causes widespread and frequent, though not persistent, 

flooding of large tracts of low lying forest. 

 

These two sites are designed to contrast each other, and provide additional insight into 

how ecology interplays with topographic variation.  In all cases throughout this thesis, 

each results chapter starts by treating each site independently, but the chapters finish 

by examining the similarities and dissimilarities in the patterns found at each site, and 

attempt to extract generalities.  All efforts are made to ensure that the same field and 

desk-based methodologies are adopted in each study site, though fieldwork was not 

performed at each site during the same period.  Fieldwork in Tambito occurred 

between 1999 and 2001, with fieldwork in TBS starting in 2000 and for the purposes 

of this thesis finished in 2003.  For this reason, some improved field methods were 

adopted for TBS, though they do not affect the validity of the site-comparisons. 

 

One of the important factors in the field-based experimental design was to ensure that 

the field-based data is directly comparable with the GIS derived topographic data.  

This basically means that square plots must be used (for comparison with grid-based 

raster surfaces), and that the plots must be of a size equal to or an exact multiple of 

the cell size in the raster based topographic data.  Furthermore, the central hypothesis 

of this study is related to micro-scale variation, and so the field data must capture 

micro-scale variation. 
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In the literature a number of plot sizes have been used for ecological studies, 

including rectangular 0.1Ha plots (Gentry, 1995), square 1Ha. 100m x 100m plots 

(Pitman, 2000), and also rectangular 25-Ha plots (Valencia et al., 2004) and 

rectangular 50-Ha plots (Condit et al., 1996).  Plot size in all these cases was decided 

based on the hypotheses being tested, but also depended on the resources at hand.  As 

with any piece of research there are limitations to the amount of data collection that 

can be feasibly achieved (Phillips et al., 2003), with time and resources always being 

restrictive in some sense.  This thesis is no exception, and so these limitations made it 

necessary to decide on the best balance between the number of plots studied and the 

size of each plot.  Taking into account the issues of scale and compatibility with cell-

based grids, ten plots were established in each study site of size 25m x 25m.  This 

exactly matches one cell in the cartographically derived DEMs for each study site, 

evading problems of aggregating or downscaling the topographic data for comparison 

with the plot-based data.  Though more plots would have been preferable to add 

greater statistical significance, and also to allow split-sample validations when 

comparing modelled variables with measured variables, resource, time and 

accessibility restrictions have prevented the establishment of more plots. 

 

Originally this thesis was to use aerial imagery to actually measure diversity at the 

broad-scale.  This was aimed at producing a result in itself as a method for monitoring 

diversity, but was also designed to solve some of the problems of lack of field-based 

data with which to compare with the GIS data.  Despite a considerable investment in 

field-data collection and image processing, this method was not sufficiently refined, 

and has been dropped from this thesis as a chapter in itself, and the results are not 
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used to enhance the statistical significance of the correlations between diversity and 

topographic characteristics.  However, some preliminary results were achieved, which 

show potential for further development.  This line of research lacks the scientific rigor 

for inclusion in the body of the thesis itself, but does merit some tangential mention.  

For this reason, Appendix 1 presents some of these advances.  Further work in this 

area is being undertaken by others in the HERB research group. 

 

Of most importance in the analysis of topographic characteristics was the digital 

elevation model (DEM) itself, since all of the topographic characteristics are in some 

way derived from it.  It is evident later in this chapter that a great deal of effort was 

invested in generating the DEMs for each of the study sites.  In the case of Tiputini 

two DEMs are used throughout the analysis.  Despite complicating both the analysis 

and the interpretation, this decision is justified based on the critical importance of 

DEM quality on the accuracy of the results.  Some discussion and preliminary 

analysis is presented in this chapter to understand the qualities and associated 

problems with each DEM.  This becomes important in later chapters when 

interpreting the results. 

 

Also of key importance to this thesis is the selection of terrain characteristics.  Given 

the lack of prior analysis of terrain characteristics in the context of diversity and 

structure in tropical forests that has been explored in Chapter 2, selection of these 

variables is made with the objective of covering a broad range of terrain conditions 

considered potentially important for both diversity and structure.  Special attention is 

made in selecting characteristics that directly affect essential resources for tropical 

trees such as light, temperature and water, and also factors which may have some 
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indirect effect on other important factors (such as soils, micro-climate).  Whilst there 

is an extensive body of research attempting to map soil characteristics explicitly based 

on digital elevation models (Gessler et al., 1995; Bui et al., 1999; Ryan et al., 2000; 

Lookingbill and Urban, 2004), results are variable and often require large calibration 

and validation datasets which are not available for this study.  It is likely that some 

terrain characteristics capture a degree of soil variability (type and quality), but this 

indirect relationship is unknown and un-quantified.  In any case, some evidence 

suggests that soil may not be all that important for tropical forest ecology (discussed 

in Section 2.3.3.4), through direct cycling and the fact that most of the nutrient 

dynamics take place in the litter and organic layers (i.e. a function of the vegetation 

and not of the soil) (Vitousek, 1984; Clinebell II et al., 1995; Berendse, 1999). Based 

on the experimental design of comparing measured diversity and structure with GIS-

based terrain analyses, it was deemed better to include numerous terrain 

characteristics, some of which represent similar terrain conditions and contain degrees 

of co-linearity.  Whilst this co-linearity is problematic to results interpretation later in 

the thesis, subtle differences in the potential significance of the terrain characteristics 

themselves sometimes help in isolating the precise causal process.  However, in order 

to ease the analysis, certain terrain characteristics are discussed in greater detail than 

others, and given greater importance in the interpretations. 

 

This chapter is split into the two major methodological thrusts of this thesis, which 

were the preparation of terrain-based spatial data and the field-based diversity and 

structure data collection.   This does not necessarily reflect the chronological order in 

which this research was elaborated, and indeed little of the environmental or spatial 

data was available when field-work commenced (since the collection of field data 
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began before the thesis formally commenced and required the most significant time 

and effort of all the aspects of the thesis).  For this reason a priori sampling strategies 

were not used in Tambito, and the sampling strategy used in TBS used factors not 

entirely compatible with the final environmental and terrain variables presented here.   

 

First a brief description of each study site is given, followed by a detailed description 

of the methodologies adopted to define and calculate the terrain characteristics.  

Secondly, the chapter addresses the field-based data collection, providing detail on the 

methodologies used in each study site.  On the whole, the same methodologies were 

used in each study site, but in some cases site-specific conditions necessitated slight 

differences in methodologies.  For this reason, each site is discussed separately.  

Finally, the methodology for the spatial heterogeneity modelling is presented, as the 

method is identical for both sites. 

 
3.2 Reserva Tambito 
 

Reserva Tambito, Cauca, Colombia (2
o 
30’N, 76

o 
59’E) lies on the western slopes of 

the Western Cordillera of the northern Andes.  It is located within the Choco 

biogeographic region, identified as one of the major global biodiversity hotspots (see 

for example Myers et al. (2000)).  The altitudinal range is extensive, rising from 

1053m to 2860m, with steep slopes (10-70 degrees), and varying altitudinally 

controlled climates creating a gradient from lower montane cloud forest (LMCF) to 

upper montane cloud forest (UMCF) in the upper reaches of the catchment (>1700m).  

Large volumes of epiphytes are found clinging to branches and leaves throughout the 

catchment (Jarvis, 2000).  The total area of the two catchments covers 2150 hectares.  

The current land-cover within the catchment is mainly primary forest (72% of 
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catchment), with an area of pasture around the Tambito cabin (4% of catchment) and 

a larger area of surrounding secondary forest (26% of catchment).  Tambito has 

played an important role historically for the region, providing a stop-over for farmers 

traveling from the coastal regions to the large market in El Tambo, some 30km from 

Tambito.  All that is evident of this history today is a deeply cut path crossing the 

reserve, and the original cabin site of Tambito where researchers are now 

accommodated.  It is unclear to what extent Tambito was forested in the past, but 

personal communications with local land-owners indicate that the majority of today’s 

forest is at least 50 years old.   

 

The northerly catchment, termed the Palo Verde, is made up of primary forest, whilst 

the Tambito catchment has large tracts of primary forest with regions of secondary 

growth (approximately 15-20 years old) and a small deforested area around the 

accommodation cabins.  The steep and variable topography and the dense understorey 

make movement around the catchments difficult. 
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Figure 1 The topographic complexity in Reserva Tambito.  Photo taken at 1500m from the 

main cabins at around 3pm.  Cloud presence is typical of the afternoon hours, with the late 

afternoon often characterised by canopy level cloud presence at all elevations. 

 

3.3 Tiputini Biodiversity Station 
 

Tiputini Biodiversity Station (0
o
 33’S, 76

o
 09’W) is located in the Orellana Province 

of Ecuador.  It lies in eastern Amazon, some 110km from the edge of the Andes.  The 

research reserve is located directly opposite Yasuni National Park on the River 

Tiputini in the important eastern Andean biological hotspot (Myers et al., 2000), with 

an altitudinal range from just 200 m.a.s.l. to 270 m.a.s.l.   

 

In total, the reserve covers an area of approximately 2400Ha. of primary lowland 

rainforest.  There is a network of streams within the region, ranging from small 

ephemeral channels to larger permanent channels such as the River Tiputini itself.  
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Though no record of river levels exists for the region, the River Tiputini at the station 

has been observed to vary in stage by as much as 15m, causing widespread flooding 

within the surrounding ‘varzea’ forest.  The reserve contains a range of habitats from 

those that are never flooded to forest regularly found underwater.   

 

A very detailed description of the Yasuni National Park region as a whole is provided 

by Pitman (2000), and readers are directed to this work for specifics on the geology, 

history, culture and biology for the region. 

 

 

Figure 2 River Tiputini at low flow.  During highflow the river exceeds the banks and floods 

the adjoining forest. 

 

3.4 Generation of biophysical data 
 

3.4.1 Reserva Tambito 
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The work in Tambito contained in this thesis benefited from prior work performed by 

researchers (including the author) in Reserva Tambito during the period 1997 to 

present under the auspices of the HERB project (http://www.kcl.ac.uk/herb) and the 

Negret Project (http://www.kcl.ac.uk/negret).  Rincon-Romero (2001) produced a 

series of raster grids of biophysical variables for use in hydrological modelling, and 

some of this same data has been used in this thesis. 

 

3.4.1.1 Meteorological and hydrological monitoring 

 

There are two fully equipped hydrological and meteorological stations at the study 

site.  One of the stations is located in the deforested area (the Campo Plot, 1450masl, 

Figure 3), whilst the other is located in primary forest on the Cerro El Perro hillside in 

the Palo Verde catchment (Bosque Plot, 1650masl).  Each station is equipped with an 

array of solar radiation pyranometers (upward and downward facing for determining 

solar and net solar radiation), temperature probes, rainfall gauges, humidity probes, 

soil moisture sensors buried at varying depths and wind sensors, in addition to 

hydrological apparatus whose data are beyond the requirements of this study. 
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Figure 3 Hydrological and climatological monitoring station at the Campo and Bosque plot, 

Tambito 

 

The Campo station has provided a total of 4 years worth of data, with occasional 

periods lacking data.  The Bosque station has been more problematic (chiefly due to 

humidity and energy problems), and the data is highly fragmented over the period 

1997 – 2002.  The Campo station reports temperatures averaging 18.3 degrees 

Celsius, with humidity in excess of 90% for much of the time and an annual rainfall at 

the Campo plot of 3900mm. In addition to this, a six-year manual rainfall record from 

Tambito has been monitored, and indicates a bi-modal seasonality with 

October/November and February/March being the wettest months (Figure 4). The 

dryer season (<300 mm month-1) is from June to September.  80% of the total annual 

rainfall falls between October and May and only 20% falls between June and 

September inclusive.  The record indicates high sensitivity to El Nino and La Nina 

(Figure 5).  In 1997 (a strong El Nino year), just 20mm of rain fell in the 3 months 

from June to September. 
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Mulligan and Jarvis (submitted) used rainfall stations distributed around the 

catchment to conclude that rainfall linearly increases with elevation at 405 mm per 

year per 100m elevation.  Tambito is located in a highly dynamic environment where 

climatic conditions change across small distances.  In addition to the rainfall inputs, a 

significant amount of input from cloud interception is also to be expected (Gonzalez, 

2000; Jarvis, 2000).  Wind speeds are generally low (with hourly averages 2000-2001 

less than 0.5 ms-1 and five minute averages less than 0.66 ms-1), and only 1.2% of 

five-minute average values are greater than 3 ms-1.  Monthly average solar radiation 

(1997-2001) varies from 101 Wm
-2
 (January) to 378 Wm

-2
 (July) Hourly average 

solar radiation is generally low, especially in the afternoons (when cloud cover tends 

to be more frequent).  Monthly average radiation varies from 101 Wm
-2
 (January) to 

378 Wm-2 (July).  Hourly average radiation is generally lower than TBS with a peak 

at 11am of 540 Wm-2.  Values are below 10 Wm-2 from 7pm through to 5am. 

 

 

10 Day Running Mean Rainfall Record for Tambito, 1995 - 

2000
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Figure 4 Rainfall (mm) manually measured daily for the Tambito study site, taken at 

1450masl in the region around the cabins. 
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Annual Rainfall Variation for Tambito 
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Figure 5 Monthly distribution of rainfall measured manually on a daily basis in the Tambito 

study site 

 

3.4.1.2 DEM generation 

 

The digital elevation model (DEM) for the study site is the most fundamental physical 

variable, which is used as a baseline dataset to calculate all terrain characteristics.  For 

Tambito, two potential sources of elevation data were available.  These were 

cartographic map sheets, at 1:25,000 scale and 3 arc-second elevation data from the 

Shuttle Radar Topography Mission (SRTM).  ASTER satellite images were also 

sought for the study area, to provide a third potential source for a high resolution 

DEM, but all images as of publication of this thesis contained cloud in and around 

Tambito. 

 

Topographic data for Tambito was available from three 1:25,000 scale map sheets 

(sheets 343 I a, b and c) from the Instituto Geografico Agustin Codazzi (IGAC) based 
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in Bogota.  Rincon-Romero (2001) digitized contour lines and rivers from these 

sheets, and made this data available.  The contour data on these maps was originally 

derived from aerial photos, and represents the canopy-top topography rather than the 

topography at ground level.  Furthermore a small patch outside of the Tambito twin-

catchments but nevertheless within the region for which there is data lacks contour 

information due to clouds in the original image.  This area is nevertheless outside of 

the region under investigation in this thesis and no plots are located in this region.  

This data was re-projected to decimal degrees, and used to produce a DEM with 

equivalent 25m grid resolution (0.000225 decimal degrees).  Arc/Info’s TOPOGRID, 

based on the established algorithms of Hutchinson (1988; 1989), was used to produce 

the DEM using both contour lines and rivers, using tolerance parameters of 5 for 

“tolerance 1”, representing the density and accuracy of input topographic data, and a 

horizontal standard error of 1 and vertical standard error of 0.  The resultant DEM 

contains a total of 69,678 cells, covering an area of 7.3km x 5.8km, ranging in 

elevation from 1086m to 2093m.  Slope and aspect were calculated using Arc/Info 

(which uses the method developed by Burrough (1986)) to visually assess the quality 

of the DEM, and to provide basic terrain characteristics for use in analysis and 

modelling outlined later in this thesis.  A single scale 3 x 3 window was used in 

calculating these derivatives as there is little ecological reason why broader scale 

measures of these variables might influence tree species diversity, structure and 

composition except through the role of spatial heterogeneity explored in Chapter 6.  

Figure 6 displays these three basic topographic properties, displayed using hillshading 

in Landserf to enhance visualisation. 
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Figure 6 The cartographically derived DEM with 25m cell resolution (left), with the derived 

slope (center) and aspect (right).  Slope varies from 0o (cream) to 58o (red).  Aspect is in 

degrees, ranging from 0o (red) to 90o (white) to 180o (blue) and 270o (white). 

 

SRTM data was also made available for the study region, with cell resolution of 3 arc-

seconds (approx. 90m).  This was made available by NASA and the USGS late in the 

process of this PhD in April of 2003.  Unfortunately, Tambito contained a large 

percentage of no data regions (43%) in the SRTM DEM, where steep topography 

produced strong shadowing, preventing the calculation of elevation due to insufficient 

textural detail in the original radar images.  The SRTM DEM for Tambito is not used 

in this study, as there is too much missing data (which covered central and important 
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parts of Tambito where plots had been established).  Further information on SRTM 

data for Tambito is also available in Jarvis et al. (2004). 

 

3.4.1.3 Terrain characteristics 

 

Using the cartographically derived DEM (from hereon referred to simply as DEM), a 

number of terrain characteristics were calculated for comparison with measured 

diversity and structure from plot studies.  These characteristics were selected to 

represent a broad range of terrain properties which may control structure and diversity 

through their role in shaping essential resources. 

 

3.4.1.3.1 Potential Solar Radiation Receipt 

 
Section 2.3.3.2 discussed in detail the potential implications of the light environment 

on tree composition, diversity and structure, stressing the combined role of light 

quality and quantity.  Here a number of light-related factors are presented, capturing 

both quantity and quality in terms of absolute solar radiation receipt and the intra-

annual and diurnal variation.  Absolute top of atmosphere radiation is calculated (this 

section), and two aspect-derived characteristics are presented and their significance on 

solar radiation thoroughly analysed using measured data (Section 3.4.1.3.2). 

 

A simple radiation model is used to calculate total potential radiation receipt, based on 

the orbital parameters of the sun, the latitude of the study site and the slope and aspect 

of the terrain.  The solar radiation sub-model of the BENDUM hydrological model 

reported in Mulligan (1999) was used for the purposes of this study.  This model 

calculates on an hourly basis the potential radiation receipt based on the orbit of the 
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sun at the specified latitude, and the slope and aspect of the ground surface.  The 

hourly time-steps are then aggregated to produce an annual total radiation receipt.  

The result is a grid of potential solar radiation receipt in the absence of cloud cover or 

atmospheric attenuation in Wm
-2
, shown in Figure 7.  This “top of atmosphere” 

radiation receipt should be adjusted to actual solar radiation receipt but insufficient 

information is available on the spatial distribution of cloud cover in the Tambito 

catchments to sufficiently grasp the spatial variation in actual radiation receipt 

through cloud cover variation.  For these reasons this study has used unadjusted 

values of potential receipt.  Total potential solar radiation receipt varies spatially in a 

significant way from 5,600 to 9,600 Wm-2, with north-east facing slopes receiving the 

least amount, and the greatest radiation receipt on the common gentle-sloping south-

west facing hillsides. 

 

 

Figure 7 Total potential solar radiation receipt across the Tambito study site.  Blue indicates 

lower receipt (5,600 W/m2), green intermediate levels (8,400 W/m2) and yellow high levels 

(9,600 W/m2). 
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3.4.1.3.2 Quantitative Measures of Aspect 

 
Aspect is a critical factor that controls the solar radiation receipt to the land surface.  

Steep slopes of different aspects may receive quite different levels of solar radiation 

and this dependence is evident in Figure 7.  In Tambito, situated at just 2oN latitude, 

there is relatively little intra-annual variation in top of atmosphere solar radiation 

compared with higher latitudes, nevertheless the role of aspect (and slope) is 

important and some annual variability in radiation receipt exists according to slope 

and aspect.  Section 3.4.1.3.1 applies a solar radiation model to quantify potential 

light receipt around the catchment, using aspect as one of the key variables.  This 

model does not adjust radiation receipt for atmospheric attenuation by clouds, but 

provides an overall figure of absolute annual receipt in solar radiation. 

 

However, “top of atmosphere” solar radiation receipt fails to account for two 

important aspects of solar radiation: 

 

1. Spatial and temporal variation in cloud cover in the twin-catchments of 

Tambito, which significantly reduces solar radiation receipt at the land-

surface 

2. Daily and annual variation in solar radiation receipt, brought about by a 

combination of orbital parameters and temporal variation in cloud cover 

 

The daily and monthly variability in solar radiation receipt is potentially just as 

important as absolute potential solar radiation receipt, and so two aspect related 

characteristics are calculated: eastness and northness following Zar (1999):   
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Equation 1   Eastness = sin ((aspect * π ) / 180) 

Northness = cos ((aspect * π ) / 180) 

 

For example, northness for an aspect of 360 degrees is 1, for 90 degrees is 0, and 180 

degrees is -1. 

 

Understanding the complex role of these two variables on light receipt at the land 

surface is complicated by the combination of numerous factors.  Measured data from 

an upward pointing pyranometer in the Campo station in Tambito (aspect 7
o
, 

northness 0.99, eastness 0.12) is used alongside the modelled solar radiation data and 

the eastness and northness variables in order to shed some light on the variability of 

solar radiation at the ground surface, and the significance of northness and eastness.  

This detailed analysis is important for interpreting relationships found in subsequent 

chapters between composition, diversity and structure and northness and eastness.  

Firstly, the role of eastness and northness on top of atmosphere solar radiation is 

examined, followed by a detailed analysis of their significance in seasonal and diurnal 

variation in solar radiation receipt.  The section finishes by providing some 

concluding remarks as to the significance of northness and eastness. 

 

Deviation of the actual solar radiation receipt from the modelled solar radiation is not 

constant, and varies during the year (Figure 8), and depending on the time of day.  

The modelled solar radiation receipt for the Campo station is uni-modal, with a peak 

in radiation receipt in the months of May, June and July.  However, the measured 

solar radiation receipt at all times of day is in fact relatively low for May and June, 

peaking in July and August.  Indeed, the greatest deviation from the modelled solar 
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radiation occurs in the months from March – June, coinciding with the wet season.  

This indicates higher levels of atmospheric attenuation (cloud cover) during these 

months. 

 

 

Annual variation in solar radiation receipt in Tambito
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Figure 8 Annual variation in solar radiation receipt at different times of day, using measured 

data from the Campo station and the average modelled monthly top of atmosphere solar 

radiation receipt (all hours) for reference. 

 

Relating this annual variation in cloud cover to the northness and eastness variables, 

the entire Tambito twin catchments are used (i.e. all slopes) to compare northness and 

eastness with modelled solar radiation receipt.  A significant degree of variation in 

potential solar radiation receipt exists between different degrees of northness, and the 

higher levels of cloud cover during the months March – June have an important 

effect.  Strongly north facing slopes (positive values in northness) have the highest 

peaks in potential solar radiation receipt during the summer period (May – July), 

whilst south facing slopes have the opposite, with the highest potential radiation 

receipt in the winter period from October – November and lowest receipt May – July 

(Figure 9).  Meanwhile, potential solar radiation receipt varies little on slopes with 
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different degrees of eastness.  This has important implications for the northness value, 

with strongly north facing slopes receiving the greatest amount of potential solar 

radiation at the same time as atmospheric attenuation is lowest (Figure 8).  Inversely, 

south facing slopes receive the least potential solar radiation in the months with 

greatest cloud cover.  The resultant annual variation in solar radiation receipt is likely 

to be more pronounced than that shown in Figure 9, with north facing slopes receiving 

greater solar radiation (contrary to the expectation in the northern hemisphere), and 

strongly north or south facing slopes also having the greatest range in solar radiation 

receipt throughout the year. 

 

Annual variation in modelled solar radiation 

receipt across different degrees of northness
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Figure 9 Variation in modelled solar radiation (top of atmosphere) for different degrees of 

northness throughout the year in Tambito, averaged for all 69,678 pixels. 
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Annual variation in modelled solar radiation 

receipt across different degrees of eastness
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Figure 10 Variation in modelled solar radiation (top of atmosphere) for different degrees of 

eastness throughout the year in Tambito, averaged for all 69,678 pixels. 

 

Looking at daily variation in radiation receipt, measured solar radiation at the Campo 

station is compared with the modelled solar radiation receipt for the pixel representing 

the Campo station (Figure 11).  The measured solar radiation receipt at the Campo 

station peaks at 11am, with an annual average radiation receipt of 560Wm-2 at this 

hour.  The afternoon hours have lower than expected solar radiation receipt as a result 

of build-up of cloud in the catchment, though on average the morning build up of 

radiation receipt is very well represented by the model (in comparable, not absolute 

terms), indicating that cloud cover builds up in the afternoon hours.  This has 

important implications for eastness, as east facing slopes (positive values for eastness) 

receive the greater amount of sun in the morning hours, when atmospheric attenuation 

is generally lower.  Inversely, west-facing slopes tend to receive the greatest radiation 

receipt in the afternoon hours when cloud cover is higher, potentially resulting in 

lower radiation. 
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Modelled versus measured solar radiation at the 

Campo Station in Tambito, annual average
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Figure 11 Modelled and measured hourly solar radiation receipt in Tambito, averaging hourly 
measurements from throughout the year 

 

Combining daily variation in radiation receipt and monthly variation, Figure 12 

compares modelled with measured solar radiation for four months through the year, 

once again just for the Campo plot.  As can be seen, the deviation from the modelled 

radiation receipt is variable throughout the year, with greatest deviation in April in the 

afternoon hours.  In July and especially October little deviation is evident.  Examining 

the absolute values rather than the relative differences, although the peak in modelled 

potential radiation is generally quite even throughout the year at around 1300Wm-2 

(ranging from 1210 – 1350Wm-2), the measured solar radiation at this peak varies 

from 335Wm
-2
 in January (26% of potential) to 720Wm

-2
 in July (58% of potential). 
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Modelled versus measured solar radiation at the 

Campo Station for January, Tambito
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Modelled versus measured solar radiation at the 

Campo Station for April, Tambito
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Modelled versus measured solar radiation at the 

Campo Station for July, Tambito
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Modelled versus measured solar radiation at the 

Campo Station for October, Tambito
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Figure 12 Hourly modelled radiation receipt against measured radiation receipt for the 

Campo station for four different months, January (top left), April (top right), July (bottom 

left) and October (bottom right). 

 

These rather complex patterns of solar radiation receipt make the interpretation of the 

variables solar radiation, northness and eastness difficult.  Whilst potential solar 

radiation receipt is based on a mathematical model, combining slope, aspect, and 

latitude, significant variations of cloud cover through the year shows that this is 

unlikely to capture the actual radiation receipt at the ground surface.  However, 

without accurate spatio-temporal information as to the distribution of cloud cover 

(which incidentally in the field is observed to both drop down from the top of the 

catchment and flow up the catchment from the Pacific in the afternoon hours), the 

solar radiation variable cannot be adjusted for actual radiation receipt.  For this 
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reason, northness and eastness are used as two other light related variables, which 

indicate a complex combination of factors.   

 

Northness has been shown to indicate annual variation in radiation receipt, with 

strongly north facing slopes more likely to receive the greatest amount of solar 

radiation (greatest potential receipt at same time as the least atmospheric attenuation), 

depending of course on slope.  Strongly north- or strongly south- facing slopes also 

have the greatest annual variation in radiation receipt, with neutral northness values 

(approx. 0) having little annual variation.   

 

Eastness is a more complex variable, with less pronounced annual variation in solar 

radiation across different degrees of eastness, but a potentially strong daily variation.  

Generally, cloud cover is shown to build up in the afternoon hours, though this 

deviation of measured from modelled solar radiation is shown to vary depending on 

the month.  However, in general terms east facing slopes are more likely to receive 

higher solar radiation (average and maximum), whilst west facing slopes likely 

receive lower radiation levels (average and maximum), depending of course on the 

slope. 

 

In reality northness and eastness attempt to combine spatial and temporal variation in 

radiation receipt into single indices but the result is somewhat confused.  Nevertheless 

they are used as terrain characteristics in this study as no other simple means of 

capturing both spatio-temporal variation in cloud cover and daily or annual variation 

in potential radiation receipt exists. 
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It should also be noted that northness and eastness become important in terms of 

exposure, especially if there are strong and steady winds.  Wind speeds for Tambito 

have long term average hourly values (means of 10-minute readings at the Campo 

station, intermittently 1997 -2001) of 0.48ms
-1
 with a range of 0 to 2.43 ms

-1
.  Means 

of five-minute averages (of 1-minutes data) give an average of 0.6 m/s and a max of 

5ms
-1
.  0% of hourly averages are >3 ms

-1
 and 1.2% of 5-minute averages are >3ms

-1
.   

In the Campo plot, wind direction was dominantly from the south-easterly direction, 

though this might reflect topographic funnelling as well as the site-specific 

topographic exposure and the dominant wind direction for the region (combined NE 

trades and a westerly flow from the Pacific).  Indeed, wind direction is likely to vary 

considerable around the catchment based on topographic funneling and micro-

meteorology.  Without distributed weather stations around the catchment measuring 

wind speed and direction it is impossible to accurately map exposure to wind, but it is 

likely that northness and eastness say little about exposure to wind. 

 

3.4.1.3.3 Mean Curvature 

 

The terrain analysis software Landserf (Wood, 2004)) was used to calculate the 

topographic mean curvature.  This is a derivative ranging from negative to positive 

values, which in simple terms represents the trend in change of slope, negative 

numbers signifying concave slopes and positive numbers convex slopes.  Typically, 

valleys and toe slopes are concave, and ridges are convex.  Competition for light will 

be more intense in concave slopes, where the topography and the forest canopy 

produce less surface area for light receipt per unit area in plan form.  This effect is 

discussed in Gale (2000) with relation to gaps, concluding that ridges have greater 
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light receipt and more importantly greater variability in the access to that light 

(through lateral penetration of the canopy, for example).  Curvature is also important 

for micro-climatic exposure, and especially in Tambito may be strongly related to the 

exposure to cloud at the forest canopy.  It is likely that convex, exposed slopes receive 

greater cloud presence at the canopy level.  This may be important as cloud 

interception provides an additional nutrient input to cloud forests (Vitousek and 

Sanford, 1986), and epiphytes tend to concentrate in regions with persistent cloud 

presence at the forest canopy epiphyte (Nieder et al., 2001).  Letts (2003) also argues 

that persistent leaf wetness is an important factor in the stunting of trees in cloud 

forests compared to lowland rain forests (through reduced photosynthesis), so greater 

exposure may also reduce productivity in this way.  Finally, curvature may also be 

strongly associated with soil quality, with highly convex slopes typically being the 

most leached and nutrient poor (Clark et al., 1998; Clark et al., 1999; Phillips et al., 

2003). 

 

The calculation of mean curvature is made using a moving window of user-defined 

size, with different window sizes capturing variation which occurs at different spatial 

scales.  Nelson (2001) and Wood (1996; 1996) recommends considering multiple 

scales in terrain analyses, and aggregating multi-scale results into a single map if the 

most appropriate scale of analysis is not known.  For Tambito, the mean curvature 

was calculated using moving windows of sizes from 3 x 3 cells up to 15 x 15 cells, 

with a step interval of 2 cells, and the results of each scale aggregated through equal-

weighted averaging.  There are no precedents of using mean curvature in tropical 

forest diversity studies, and for this reason the ideal analysis-scale is unknown.  The 

multi-scale approach used here does not limit the analysis to a single scale, though 
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later in the thesis when mean curvature is found to correlate, detailed single-scale 

comparisons are made for the range of scales from 3x3 to 15x15 cell moving 

windows.  This strategy permits the identification of potential patterns with mean 

curvature without having to analyse numerous scales, but also allows the 

identification of the optimal scale when promising correlations are found.  It is 

important to note that small window sizes are likely to be more sensitive to DEM 

error, and there are means of quantifying this error (Albani et al., 2004), though 

measurement of error bounds is not applied in this thesis.  The final result of multi-

scale mean curvature is shown in Figure 13. 

 

 

Figure 13 Multi-scale mean curvature for Tambito.  Blue signifies concave slopes (-3), white 

planar slopes with no curvature (0) and red signifies convex slopes (+3). 

 

Numerous other measures of curvature exist, including profile and plan curvature 

(curvature only in the direction of slope and perpendicular to it), minimum and 

maximum curvature, and longitudinal and cross-sectional curvature.  Rather than 

complicate the analysis with different measures of curvature, only mean curvature is 
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used here (in addition to toposcale, discussed in section 3.4.1.3.6), though further in 

depth studies of the role of different types of terrain curvature on composition, 

diversity and structure would be worthwhile. 

 

3.4.1.3.4 TopModel 

 

The most commonly and popularly used terrain index to indicate soil moisture is the 

TopModel wetness index (also known as the Compound Topographic Index) (Beven, 

1978; Pack et al., 1988; Gessler et al., 1995).  Topmodel is calculated using flow 

directional paths across the landscape to calculate the upslope flow accumulation area 

for any cell, and combining this with slope to indicate the likely levels of surface 

overland flow and sub-surface throughflow.  Note that it does not take into account 

absolute nor spatial variation in levels of atmospheric water input.  This terrain 

characteristic is in part indicative of soil-water availability to plants.   

 

The equation for calculating the topmodel wetness index is: 

 

Topmodel = ln (Upslope Area) 

   Tan (slope) 

 

Topmodel was calculated using PCRaster, which uses a third-order finite difference 

method for flow direction and accumulation calculation.  Streams and rivers are 

highlighted as having very high topmodel wetness index values, and ridges and peaks 

have very low wetness values (Figure 14).  It is important to note that the wetness 

value can change abruptly from one cell to the next, with cells adjoining rivers not 



 87 

necessarily having high levels of wetness.  This is important in terms of DEM and 

GPS positional error, with small errors in positional or elevational error potentially 

resulting in significant changes in wetness.  Furthermore, the topmodel wetness index 

may not be entirely accurate at the 25m-cell scale in Tambito as fine-scale 

topographic variation at the ground surface (and sub-pixel topographic variation) is 

not captured in the DEM, and may be significant in changing flow directions.  Further 

to this, some flow lines appear to be predominantly at 45o, 90o, 135o etc. angles, and 

this occurs as a result of the D8 algorithm used to define the flow direction in 

PCRaster.  The combination of these potential errors and the abrupt change in wetness 

that occurs between neighbouring cells urges caution when interpreting results 

involving topmodel. 

 

 

Figure 14 Topmodel wetness index for Tambito, dark blue indicating high wetness values. 

 

3.4.1.3.5 Slope Position 
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Slope position is a terrain derivative that measures the relative position of a cell from 

valley floor to ridge.  Independent of absolute elevation, this index provides a 

measure of the position of each cell with respect to landscape features, namely ridges 

and streams.  Slopes close to ridges may be more exposed compared with slopes in 

valleys where competition for light is likely higher (depending on the steepness of the 

valley), and the sheltered topography may create warmer and temporally more 

homogenous micro-climates (depending on wind direction).  Proximity to streams 

may also be important indirectly for presence/absence of seed dispersing species 

(birds, mammals).  In the science of terrain analysis slope position is fairly 

ambiguous, but numerous tropical diversity studies have used slope position (either 

approximated or measured in the field) to explain variation in structure, composition 

and diversity (Webb et al., 1999; Clark and Clark, 2000; Valencia et al., 2004), and 

for this reason it is used here. 

 

Slope position was calculated using an Arc/Info Arc Macro Language (AML) script 

provided to the author by David Hatfield of the United States Department of 

Agriculture (USDA) Forest Service.  It is calculated using the following equation: 

 

Equation 2           Slope Position =    (Elevation – Elevation of nearest valley)       * 100 + 0.5 

(Elevation of nearest Ridge – Elevation of nearest valley)  

 

Values in the output grid range from 0 (valley floor) to 100 (ridgetop).  Valleys and 

ridges are defined through calculation of upslope and downslope flow accumulation 

respectively (ridges calculated by multiplying the DEM by –1 and analyzing flow 

accumulation of the resultant grid).  As this variable is calculated using an Arc/Info 

AML flow direction and accumulation is calculated using the basic 8 directional flow 
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method (ESRI, 2001), though it should be noted that better methods for flow 

accumulation exist using multi-directional proportional flow algorithms 

(TauDEM/TARDEM for example (Tarboton, 2004), also discussed in Mulligan 

(2004)).    

 

The AML requires user parameterisation of the flow accumulation threshold beyond 

which the cell becomes a valley or ridge.   In other words, when large limits are used 

only large valleys and ridges will be identified as such, and small valleys and ridges 

will be considered somewhere mid-slope.  For the purposes of this study a multi-scale 

approach was used (though the term multi-scale in this case refers to the scale of flow 

accumulation threshold rather than moving window size), through calculation of slope 

position using flow accumulation thresholds of 200, 300, 400 and 500.  The selection 

of these thresholds were based on recommendations from the valley/ridge 

identification AML author (Zimmerman, personal communication).  The four 

resultant maps were then aggregated through averaging, resulting in a single grid of 

slope-position (Figure 15). 
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Figure 15 Multi-scale slope position for Tambito.  Red signifies cells close to the ridges 

(100), white signifies mid-slopes (50) and blue signifies cells close to the valley bottom (0). 

 

3.4.1.3.6 Landscape Feature Identification 

 

Characterising a landscape into a range of features captures various aspects of the 

terrain in one single classification, and these classes may contain distinct 

environmental processes generating clear patterns in structure and diversity of the 

forest.  Though these classifications are in essence a simplified derivative of many of 

the variables already discussed (curvature, slope etc.), they capture multiple terrain 

attributes creating an easily identifiable and interpretable set of landscape classes. 

 

Two topographic feature extraction algorithms were used in this study.  The software 

Landserf produces a landscape feature classification using the algorithms of Wood 

(1996; 1996; 1998).  This uses a moving window of defined size to classify a 

landscape into ridges, passes, peaks, pits, channels and planar slopes.  In this case, a 
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moving window of 5 x 5 cells was used to produce two classifications of the 

landscape in Tambito; one using the standard method, and the other using an 

additional network parameter to ensure connectivity of features such as channels and 

ridges.  These classifications are shown in Figure 16.  In addition to this single-scale 

classification, a multi-scale fuzzy feature classification was also used in Landserf, 

using scales from 3 x 3 cells to 15 x 15 cells.  Once again, this range in moving 

windows is selected relatively subjectively, considered to be representative of meso- 

to micro- scale topographic variability.  This fuzzy feature classification provides 

membership probabilities to each class, ranging from 1 (signifying membership at all 

scales) to 0 (no membership at any scale). 

 

   

Figure 16 Feature extraction using the Landserf algorithm.  The left image shows the 

classification of features under standard analysis, and the right image shows the same analysis 

with the addition of network rules.  In both cases, the landscape is classified into peaks (red), 

ridges (yellow), passes (green), planar slopes (grey) and channels (blue). 
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The second algorithm adopted for landscape characterization uses the method of 

Zimmerman (2004) to classify into channels, toe slopes, slopes and ridges.  This 

method is based on moving windows that examine the relative elevation of 

surrounding cells to the central cell (curvature).  The method differs slightly from the 

calculation of curvature.  Integration into a single multi-scale measure is achieved by 

starting with the standardized exposure values of the largest window then adding 

standardized values from smaller windows only where they exceed the values of the 

larger scale map.  This produces a terrain derivative in itself (termed toposcale 

throughout this thesis), representing a measure of absolute exposure, closely related to 

curvature. 

 

To produce a landscape classification, the topographic exposure (toposcale) is then re-

classified into four classes, with high positively exposed cells classes as ridges, 

neutrally exposed cells as slopes, and high negatively exposed (sheltered) cells 

classified as toe slopes and channels.   

In this case, moving windows of sizes from 3 x 3 cells to 15 x 15 cells were used to 

calculate the topographic exposure, producing a map of topographic exposure 

between –370 and +330.  Cells with values –670 to –150 were classified as channels, 

-150 to –80 were classified as toe slopes, -80 to +80 as slopes, and +80 to +330 as 

ridges.  These classes were manually selected based on visual inspection of the result, 

as recommended by Zimmermann (2004).  Though subjective, this produces a 

realistic classification given sufficient field knowledge, though the result is limited in 

its application to other regions, and indeed in regions containing contrasting 

topography (lowlands to mountains, for example).  The result of this analysis is 

shown in Figure 17. 
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Figure 17 Calculation of “topoclasses” using Zimmerman’s method.  The left figure 

represents the toposcale grid (red representing positive values and blue represent negative 

values), and the right figure shows the reclassification of this grid into channels (blue), toe 

slopes (light green), slopes (darker green) and ridges (brown). 

 

Visually assessing the topclass classification of Figure 17, it clearly fails to identify 

the main river channels (Rivers Palo Verde and Tambito) in places, but accurately 

captures ridges.  In conclusion, greater attention should be given to the feature and 

network feature classifications in the analysis rather than the topoclass variables. 

 

3.4.1.3.7 Terrain characteristic summary 

 

12 terrain characteristics have been produced (nine quantitative, three categorical), 

and will be used in the analysis.  These characteristics represent light related variables 

(solar radiation, northness, eastness, slope and to some extent toposcale and mean 

curvature), water availability (topmodel, slope and to some extent elevation), 
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temperature (elevation), micro-climate (toposcale, mean curvature and to some extent 

slope and slope position) and landscape unit (feature, network feature and topoclass).  

Some characteristics are more useful than others, and special attention in the analysis 

chapters will be given to elevation, slope, mean curvature, topmodel (taking note of 

the potential problems), the feature and network feature classifications and northness, 

eastness and solar radiation (the latter three should really be considered together).  

The potential ecological significance of slope position is less clear and for this reason 

will receive less attention, despite having been used extensively in some other similar 

studies (Webb et al., 1999; Clark and Clark, 2000).  Furthermore, toposcale is 

considered to be very similar to mean curvature but less rigorously tested and used as 

a terrain evaluation method, likewise for its landscape classification variable 

topoclass. 

 

In subsequent chapters, co-linearity between variables makes interpretation difficult.  

In the following section this co-linearity is calculated and presented, but it is also 

useful to show how the different variables are calculated and show in a graphic form 

the path of derivation for each variable Figure 18. 
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Figure 18 Derivation of each terrain characteristic from the original DEM 

 

3.4.1.3.8 Cross-Correlation Matrix 

 

Many of these characteristics use similar methods and base themselves on the DEM in 

order to calculate specific properties, and so it is important to examine the cross-

correlation of each pair of variables.  Table 2 provides a summary of values for each 

map, and Table 3 shows a cross-correlation matrix between these various terrain 

properties.  In many of the analyses separations are made between continuous 

variables and the categorical variables (feature, network feature and topoclass). 
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Variable (unit) MIN MAX MEAN
Standard 

Deviation

DEM (m) 1144 2903 2022.67 425.46

Slope (degrees) 0.2 57.8 29.85 9.89

Eastness (index) -1 1 -0.40 0.59

Northness (index) -1 1 0.04 0.70

Slope Position (index) 0 101 51.08 30.07

Mean Curvature (index) -2.99 2.96 0.01 0.78

Toposcale (index) -368 331 -0.47 100.10

Solar Radiation (J/m
2
) 5598 9662 8996.55 671.50

TopModel Wetness Index 6.1 20.8 9.00 1.58  

Table 2 Summary values for all Tambito continuous terrain characteristics. 

 

Layer DEM Slope Eastness Northness
Slope 

Position

Mean 

Curvature
Toposcale

Solar 

Radiation
Topmodel

DEM - -0.09 0.13 0.05 0.39 0.24 0.28 0.02 -0.08

Slope - 0.02 0.15 -0.14 -0.09 -0.10 -0.58 -0.33

Eastness - 0.15 0.00 0.00 0.00 -0.42 -0.03

Northness - 0.01 0.01 0.00 -0.35 -0.04

Slope 

Position
- 0.77 0.82 0.09 -0.42

Mean 

Curvature
- 0.94 0.06 -0.50

Toposcale - 0.07 -0.46

Solar 

Radiation
- 0.17

Topmodel -

 

Table 3 Cross-correlation matrix between all continuous terrain properties used in the 

Tambito case study.  Values represent the correlation coefficient.  Correlation coefficients 

greater than 0.7 (positive or negative) are highlighted in dark grey, and light grey is used for 

correlation coefficients of 0.3 to 0.7 (n=69, 678).  In reality, most of these correlations are 

significant (95% level) due to the large number of samples. 

 

The most significant correlations occur between slope position, mean curvature, and 

toposcale.  Toposcale logically negatively correlates with slope position indicating 
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that valleys tend to be found in areas with a low slope position.  Toposcale correlates 

closely with mean curvature, due to their similarity in calculation with only the 

hierarchical multi-scale method used in toposcale causing a difference in the two 

results.   

 

3.4.2 Tiputini Biodiversity Station 

 

Field studies in lowland rain forest were made in Tiputini Biodiversity Station.  

During the process of this study hydrological and meteorological monitoring stations 

were installed, and some of this data is available for this thesis. 

 

3.4.2.1 Meteorological and hydrological monitoring  

 

A Campbell Scientific automated weather station installed by Boston University has 

been operating in the station since 1997, though the climate data is intermittent with 

periods of no data due to technical failures. From Sept. 1997 – March 2003 the logger 

has a total of 1339 days of data (67% of the time), with Figure 19 showing the period 

when monitoring was made, and the daily rainfall for these days.  For the period of 

1997-2004, mean temperature has been 24.8oC, with a daily mean maximum and 

minimum temperature of 28.3oC and 22.4oC respectively.  The lowest temperatures 

are in June (23.7
o
C), and the highest temperatures in January (25.8

o
C).  Mean annual 

rainfall is 2895 mm, with the majority of rainfall occurring between 2pm and 5pm. 

The greatest rainfall occurs in July (409mm/month), and the least in January 

(89mm/month).  Relative humidity is on average 96.6% (highest in June/July and 

lowest in December/January).  Monthly average radiation varies from 80 Wm-2 in 

June to 189 Wm
-2
 in January.  Hourly average radiation is highest at 1200 hours (801 
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Wm-2) and is less than 5 Wm-2 from 8pm through to 6am.  Hourly wind speed 

averages 0.57 ms-1, and is highest when radiation is lowest.  Hourly wind speed peaks 

from 1pm-3pm at 0.81 ms-1 and follows a sinusoidal diurnal pattern (matching that of 

radiation).  The highest wind speeds are from the S, SE and NE.  Wind direction is 

usually from the SE (32%) or else NE, E or SE (18% each), 7% of winds are from the 

SW and less than 5% from all other directions.  More detailed analysis of wind speeds 

are included in Section 3.4.1.3.2. 

 

10 Day Running Mean Rainfall Record for TBS, 1997 - 2003
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Figure 19 10-day running mean rainfall series for Tiputini Biodiversity Station 1997 – 2003, 

recorded with the Boston University Campbell Scientific meteorological station installed at 

the station facilities.  Note the missing data from 1999 – 2001. 

 

3.4.2.2 DEM generation 

 

Topography plays a fundamental role in examining relationships between biophysical 

parameters and tree diversity and structure, but the generation of a DEM for TBS 



 99 

provided a considerable challenge to this study.  Prior to this research no DEM was 

available for the study site, and the topographic landscape made the generation of a 

representative DEM difficult.  Whilst the study site is very flat on the macro-scale, 

there are complex networks of streams that have created complex micro-scale 

topographic variation, with some steep-sided valleys of just 10m depth and 30m 

width, for example.  In many cases this ground level topographic variation is not 

evident in the canopy, causing cartographic maps to overly simplify the topography.  

For these reasons, different sources of DEM data were sought, with the hope of 

finding the best representation of small-scale topographic variation, whilst capturing 

the macro-level differences. 

Three potential sources of DEM data were available for the TBS study site.  These 

were 1:50,000 cartography (sheet P111-D4 Zamona Yuturi), the SRTM mission 3-arc 

second DEM product, and ASTER stereo pair satellite images.  DEMs were generated 

for each of these sources. 

 

The 1:50,000 cartography was scanned and georeferenced using ArcView.  Contours 

(20m interval), rivers and spot heights were then digitized on screen, and the 

TOPOGRID command in Arc/Info used to produce a 25m DEM using the same 

parameters as were used in Tambito.  The resultant DEM can be seen in Figure 20, 

along with some basic derivatives (slope and aspect) for assessing DEM quality.  As 

can be seen, the slope is greatest around contour lines, and the interpolation algorithm 

fails to produce smooth slopes between the contour lines, especially where there are 

large distances between 20m contour lines.  This is a known limitation of many 

interpolation techniques for DEM generation in flat regions (Hutchinson, 1989), and 

one that could not be overcome despite numerous attempts using different tolerances. 
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Figure 20 Results of DEM generation using the cartographic maps, producing a 25m grid cell 

resolution DEM (top), with the derived slope (left) and aspect (right).  Slope varies from 0o 

(light blue) to 31o (red).  Aspect is in degrees, ranging from 0o (red) to 90o (white) to 180o 

(blue) and 270o (white). 

 

SRTM data was made available by NASA in March 2003, providing a 3-arc second 

DEM for the study area derived from stereo radar data.  TBS was extracted from this 

global dataset, and is displayed in Figure 21 along with derivates (aspect and slope).  
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The spatial resolution at this equatorial latitude is 92m.  None of the no-data cells in 

the SRTM data which caused problems in Tambito were present in the TBS study 

site. 

 

 

  

Figure 21 Results of DEM generation using the SRTM satellite derived DEM producing a 

100m grid cell resolution DEM (top), with the derived slope (left) and aspect (right).  Slope 

varies from 0o (cream) to 12o (red).  Aspect is in degrees, ranging from 0o (red) to 90o (white) 

to 180o (blue) and 270o (white). 
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The third and final source for DEM data used in this study was from the ASTER 

satellite sensor.  The ASTER satellite uses two telescopes to acquire stereo pair 

images in the visible and near-infra-red bands (VNIR) with spatial resolution of 15m.  

The primary sensor takes vertical images, whilst the backward looking telescope 

compliments this image with a sideways facing image taken just a few seconds after 

the vertical image.  The stereo pair can then be used to produce high resolution 

DEMs, with 15m resolution.  It is important that no cloud is present in the original 

image for DEM generation to be successful and since stereo properties are used, DEM 

production is better in areas of variable topography (where vertical height differences 

are greater than the horizontal grain of the ASTER image itself – 15m).  This is not 

always the case to TBS.  Furthermore care is suggested due to the documented effect 

of noise in the spectral bands of the stereo-pair relative to the cell to cell height 

differences in this area (Toutin, 2002). 

 

The ASTER Earth Observing System Data Gateway (EDG) was used to search for 

cloud free ASTER images covering TBS.  Only one suitable image was available with 

15% cloud cover from 12
th
 April 2003, which included some light cloud to the north-

west of TBS.  This ASTER image is shown in Figure 22. 
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Figure 22 The VNIR ASTER image from 12th April 2003, used to extract a 15m DEM, 

displayed using bands 2 (red), 3 (infra-red) and 1 (green).  Whole image (left) shows heavy 

cloud cover in the western and south-eastern sector of the image, but TBS is cloud free 

(right). 

 

The ASTERDEM extension (AsterDTM-V2, 2004) to PCI image processing software 

was used to automatically extract the DEM without the need for any ground control 

points or user input.  The result is a geopositioned DEM with relative elevation 

values.  These values were converted into metres above sea level using the SRTM 

data as a calibration set for the entire image (vertical error in SRTM data is claimed to 

be less than 16m).  The resultant DEM of TBS is shown in Figure 23, along with 

derived slope and aspect. 
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Figure 23 Results of DEM generation using the ASTER satellite image producing a 15m grid 

cell resolution DEM (top), with the derived slope (left) and aspect (right).  Slope varies from 

0o (light blue) to 68o (red).  Aspect is in degrees, ranging from 0o (red) to 90o (white) to 180o 

(blue) and 270o (white). 

 

Though the higher spatial resolution of the ASTER DEM is appealing, and the fact 

that the ASTER DEM captures the general topographic trend of higher elevations in 

the north-central zone of the DEM, and in a broad sense the river channel, serious 

questions are raised about the validity of the DEM for capturing the micro-scale 

topographic variation.  The undulating peaks observed in Figure 23 are unlikely to be 



 105 

representative of the true topography, though this DEM is the only one to contain 

steep slopes that are observed in the field at the micro-scale.  Furthermore, the DEM 

contains 46,000 sinks (of the 396,000 total cells), rendering it hydrologically unsound, 

and methods for pit removal (in Landserf, for example), fail to adequately correct this 

problem.  For these reasons, and the fact that vertical height differences are not 

greater than the horizontal grain of the ASTER image in TBS, the ASTER DEM is 

not used in the analysis, as little confidence can be placed on the quality of the DEM. 

 

Excluding the ASTER DEM, the two DEMs (TOPO and SRTM) capture the general 

trend of higher altitudes in the northern part of the study area, and south-west of the 

reserve on the southern side of the Tiputini River.  However, the DEMs differ greatly 

on the fine scale, neither adequately capturing the true micro-scale topographic 

variation observed in the field.  The cartographically derived DEM (hereon referred to 

as “TOPO DEM”) is hydrologically sound, and shows predominantly smooth 

networks of ridges and valleys, but fails to capture some of the micro-scale 

topographic variation observed on the ground.  The SRTM DEM is also 

hydrologically sound, but the coarse resolution captures even fewer micro-scale 

features, representing the study site as topographically homogenous and flat.  Both the 

TOPO DEM and the SRTM DEM likely underestimate the topographic variation.  

Without a lengthy high precision GPS survey it is impossible to assess which DEM is 

most representative of the true topography.  Both DEMs will be used in the analysis.  

The TOPO DEM is likely the better quality DEM due to its higher resolution.  

However, the potential applicability of these analyses in other tropical forested 

regions is significantly easier using the SRTM DEM, as it has global coverage and is 

readily available (see for example http://srtm.csi.cgiar.org).  Table 4 shows summary 
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statistics for each DEM.  The cross-correlation (Pearson’s Correlation Coefficient) 

between the TOPO DEM and the SRTM DEM (calculated after resampling of the 

TOPO DEM to the coarser resolution of the SRTM DEM (92m) using Arc/Info 

RESAMPLE) is 0.76, indicating that there are differences between the two.  Section 

3.7 examines these differences in greater detail. 

 

Layer
Cell Size 

(m)

No. of 

Cells
Minimum Maximum Mean

Standard 

Deviation

TOPODEM 25.0 142450 193.7 269.0 227.6 14.54

SRTM DEM 92.6 10400 202.0 278.0 236.5 9.73  

Table 4 TBS DEM summary statistics (above) and cross-correlation matrix (below) showing 

correlation coefficients, n=10,400 (all DEMs were re-sampled to 92m to enable direct 

comparison). 

 

3.4.2.3 Terrain characteristics 

 

As for Tambito, the same terrain characteristics were calculated for comparison with 

measured diversity and structure in the plots.  Many of the methods were the same as 

have already been described in Section 3.4.1.3 of this chapter. 

 

3.4.2.3.1 Solar Radiation Receipt 

 

The solar radiation sub-model of the BENDUM hydrological model reported in 

(Mulligan, 1999) was used on each DEM to calculate the total solar radiation receipt 

expected for each pixel.  Once again, no correction was made for atmospheric 

attenuation or cloud cover. 
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Figure 24 Total potential solar radiation receipt across the TBS study site, using the 

TOPODEM (left) and SRTM DEM (right).  Blue indicates lower receipt, green intermediate 

and yellow high. 

 

Both the absolute and relative values for the two DEMs vary greatly, with the TOPO 

DEM being more variable (given the steeper slopes) with radiation receipt ranging 

from 8657 – 9662 Wm
-2
 and the SRTM DEM having very little variability (9467 – 

9662 Wm-2).  These differences are brought about by the steeper slopes present in the 

TOPO DEM. 

 

3.4.2.3.2 Quantitative Measures of Aspect 

 

Aspect was converted to northness and eastness for each of the two DEMs following 

the same method of Zar (1999) adopted for Tambito.  Northness and eastness 

variables in TBS are relevant in terms of solar radiation receipt and in terms of 

exposure to wind.  Given the low slopes, solar radiation receipt varies little, and 

indeed northness and eastness variation are likely to have little influence on total solar 

radiation receipt and the daily and annual variation in this receipt (unlike in Tambito).  

Data from the Boston University automated weather station and the modelled solar 
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radiation receipt for the cell representing that station is presented for monthly 

variation (Figure 25) and for daily variation (Figure 26) in solar radiation receipt. 

 

0

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12

Month

R
a
d
ia
ti
o
n
 R
e
c
e
ip
t 
(W
m
-2
)

Measured Solar Radiation Receipt

Modelled Solar Radiation Receipt

 

Figure 25 Monthly variability in solar radiation receipt for TBS, showing modelled 

(BENDUM) and measured receipt for the Boston University AWS.  The measured data is 

averaged for data periods between 1997 – 2004. 
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Figure 26 Daily variability in solar radiation receipt for TBS, showing modelled (from the 

BENDUM model) and measured receipt for the Boston University AWS.  The measured data 

is averaged for data periods between 1997 – 2004. 

 

Though the modelled solar radiation receipt is bi-modal, with greatest potential 

receipt in March and September, variation in cloud cover produces a uni-modal 

distribution in actual receipt, with greatest receipt in January, and least receipt in June 

and July due to increased cloud cover.  Daily variation follows much more closely the 

modelled receipt, with slight lowering in radiation receipt during the early afternoon 

due to increased cloud cover (12pm – 3pm).  Despite this variation, the low slopes 

and likely homogenous cloud cover over the study site mean that northness and 

eastness have little relevance for light in TBS. 

 

However, of greater significance in TBS than was the case in Tambito is wind, and 

northness and eastness measure the exposure to wind.  Data from 1997 to 2004 

(containing some missing periods) from the Boston University weather station 

installed in TBS is analysed to show that the average wind speed is 0.51ms
-1
.  The 

highest windspeeds occur from the SE direction (average 0.57ms-1), and indeed this is 

the dominant wind direction for 32% of the time.  85% of the time wind blows from 

the directions of NE, E, SE or S (Figure 27).  The highest absolute wind speeds are 

also in the SE direction, with the maximum windspeed measured at 7ms-1 in the SE 

direction, and over 500 hours of wind above 2.5ms
-1
 in this direction, compared to 

just 2 hours in the NW direction (Figure 28).  After the SE direction, the easterly 

direction is frequent (dominant direction 17% of the time) and has the highest 

frequency of high winds (79 occurrences above 2.5ms-1). 
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Figure 27 Wind speed and wind directional frequency in TBS based on 7 years (intermittent) 

of measured wind data from the Boston University automated weather station in TBS. 
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Figure 28 Frequency of wind events for different wind speeds separated for each direction 

TBS based on 7 years (intermittent) of measured wind data from the Boston University 

automated weather station in TBS. 
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The significance of this for eastness and northness is that regions with high – 

intermediate positive values of eastness (east facing) receive the greatest winds.  

Northness indicates less in terms of wind direction, though slopes with low northness 

and with high eastness (i.e. SE facing) are exposed to wind. 

 

3.4.2.3.3 Mean Curvature 

 

Mean curvature was calculated for TBS with the same method adopted for Tambito, 

using moving windows of sizes 3, 5, 7, 9, 11, 13, and 15 cells for the TOPODEM 

(25m cell size like Tambito), and 3 and 5 cells for the SRTM DEM, once again to 

ensure that each result is at the same geographic scale.  Limitations in requiring odd 

sizes of moving window greater than 3 cells explain the use of these window sizes.  

The results of each scale were aggregated using equal-weighted averaging.  The final 

result of multi-scale mean curvature is shown in Figure 29. 

 

  

Figure 29 Multi-scale mean curvature for TBS using the TOPODEM (left) and SRTM DEM 

(right).  Blue signifies concave slopes (-3), white planar slopes with no curvature (0) and red 

signifies convex slopes (+3). 
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3.4.2.3.4 Topmodel Wetness Index 

 

Topmodel wetness index was calculated for each DEM using the same method as was 

used for Tambito.  However, in the case of TBS TopModel was calculated on the 

larger DEM area in order to capture more accurately the wetness including the entire 

catchment.  In reality, this was only possible for the SRTM DEM, as this has 

complete continental coverage, but a region including a large proportion of the lower 

catchment was included in the calculation for the TOPODEM (55km x 40km).  This 

must be considered a limitation, and potential source of error in the topmodel 

variable, especially for the TOPO DEM. 

 

  

Figure 30 Topmodel wetness index for TBS, using the TOPODEM (left) and SRTM DEM 

(right), dark blue indicating high wetness values. 

 
The TOPODEM and SRTM DEM both capture the main river channel, although the 

SRTM DEM loses the continuous flow direction for a short stretch of the river below 

TBS.  This is not important to the result, as all plots are upstream of this, and none are 

located in the channel itself.   
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3.4.2.3.5 Slope Position 

 

Slope position was calculated using the same procedure as for Tambito for both of the 

DEMs (Figure 1).  The flow accumulation thresholds varied between DEMs based on 

the cell size in order to ensure that the results were directly comparable at the same 

geographic scale, regardless of cell size.  The TOPODEM used thresholds of 200, 

300, 400 and 500, and the SRTM DEM used thresholds of 54, 81, 108, 135 (smaller 

thresholds due to the larger cell size).  The result for each threshold was aggregated 

using equal-weighted averaging in all cases. 

 

  

Figure 31 Multi-scale slope position for TBS for the TOPODEM (left) and SRTM DEM 

(right).  Blue signifies cells close to the ridges (100), yellow signifies mid-slopes (50) and 

green signifies cells close to the valley bottom (0). 

 

3.4.2.3.6 Landscape Feature Identification 
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Landscape features were identified using the same method as for Tambito, using the 

algorithm described by (Wood, 2004).  A moving window of 7 x 7 cells was used for 

the TOPODEM and 3 x 3 cells for the SRTM DEM.  These classifications are shown 

in Figure 32.  Additionally, multi-scale fuzzy feature memberships were calculated. 

 

    

  

Figure 32 Feature extraction using the Wood’s algorithm (2004) using the TOPODEM (top), 

SRTM DEM (bottom).  The left image shows the classification of features under standard 

analysis, and the right image shows the same analysis with the addition of network rules.  In 

both cases, the landscape is classified into peaks (red), ridges (yellow), passes (green), planar 

slopes (grey) and channels (blue). 

 

Whilst the TOPO DEM produces a feasible distribution of channels, ridges and some 

peaks, especially for the network feature classification, the result of the feature and 
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network feature classification for the SRTM DEM appears to reflect little of the actual 

landscape found in TBS, with not even the main River Tiputini being classified as a 

channel.  This is likely due to the larger cell size, and relatively minor topographic 

variation present in the DEM.   

 

Zimmerman’s (2004) method was also used to identify landscape features, using 

moving windows of sizes 3, 5, 7, 9, 11, 13, and 15 cells for the TOPODEM, and 3 and 

5 cells for the SRTM DEM.  Cells with “toposcale” values –670 to –150 were 

classified as channels, -150 to –80 were classified as toe slopes, -80 to +80 as slopes, 

and +80 to +330 as ridges.  Once again, this subjective selection of limits was made 

based on visual interpretation of the resultant classification.  This is a strong limitation 

for the quality and applicability of this terrain characteristic in other regions.  The 

result of this analysis is shown in Figure 33. 
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Figure 33 Calculation of “topoclasses” using Zimmerman’s method, using the TOPODEM 
(top), SRTM DEM (bottom).  The right figure represents the toposcale grid (red representing 
positive values and blue represent negative values, and grey represent neutral values), and the 
left figure shows the reclassification of this grid into channels (blue), toe slopes (light green), 

slopes (darker green) and ridges (brown). 

 

Once again, the TOPO DEM appears to produce the best landscape classification, and 

it is important that this be considered in the following analysis chapters.  The SRTM 

DEM classification fails in some sections to capture the main channel.   

 

3.4.2.3.7 Summary of terrain characteristics and DEMs 

 

As for Tambito, 12 terrain characteristics have been produced (nine quantitative, three 

categorical).  These characteristics represent light related variables (solar radiation, 

northness, eastness, slope and to some extent toposcale and mean curvature), water 

availability and disturbance (topmodel, slope and to some extent elevation and slope 

position), temperature (elevation), micro-climate (toposcale, mean curvature, 

eastness) and landscape unit (feature, network feature and topoclass).  Once again 

extra attention is given to certain characteristics, whilst caution is urged in analyzing 

toposcale, topoclass and slope position.   

 

Also of importance in TBS are the two DEMs.  In almost all terrain characteristics, 

the TOPO DEM visually performs the best, with the SRTM data producing on the 

whole realistic looking results, but with a greater cell size that results in a loss of 

some topographic detail.  In conclusion, the TOPO DEM is likely the best DEM in a 

general sense, though correlations with the SRTM DEM are of significant interest due 

to its global coverage and potential application in other regions.   
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3.4.2.3.8 Cross-Correlation Matrix 

 

Table 5 provides a summary of values for each terrain derivative, and Table 6 and 

Table 7 show cross-correlation matrices between these various terrain properties for 

each DEM.  The correlations are not explicitly discussed in this chapter, though these 

results are relevant to some of the results interpretation in later chapters. 

 

MIN MAX MEAN STD MIN MAX MEAN STD

DEM (m) 193.7 270.0 227.5 14.74 202.0 278.0 236.24 9.9

Slope (degrees) 0.0 31.2 3.1 3.41 0.0 10.5 2.08 1.4

Eastness (index) -1.0 1.0 0.0 0.69 -1.0 1.0 0.03 0.7

Northness (index) -1.0 1.0 0.0 0.72 -1.0 1.0 0.01 0.7

Slope Position (index) -48.0 149.0 51.3 35.14 0.0 100.0 47.15 30.0

Mean Curvature (index) -1.9 2.6 0.0 0.16 -1.0 1.0 0.00 0.2

Toposcale (index) -661.3 706.2 -0.9 90.36 -198.3 225.1 0.19 55.1

Solar Radiation (J/m
2
) 8657.0 9662.0 9632.1 51.99 9457.0 9662.0 9646.89 15.6

TopModel Wetness (index) 7.1 25.4 11.6 2.16 8.1 23.4 11.1 1.91

TOPODEM SRTM DEM
Variable (unit)

 

Table 5 Summary values for all TBS terrain characteristics, using both DEMs
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DEM (m)
Slope 

(degrees)

Eastness 

(index)

Northness 

(index)

Slope 

Position 

(index)

Mean 

Curvature 

(index)

Toposcale 

(index)

Solar 

Radiation 

(mmol/m
2
)

TopModel

DEM (m) - 0.01 0.01 0.04 0.40 0.24 0.40 0.01 -0.21

Slope (degrees) - 0.03 -0.01 -0.03 0.05 0.04 -0.80 -0.55

Eastness (index) - 0.00 0.02 0.00 0.00 0.03 -0.03

Northness (index) - 0.01 0.00 0.01 0.20 0.01

Slope Position (index) - 0.41 0.61 0.02 -0.32

Mean Curvature 

(index)
- 0.73 -0.04 -0.33

Toposcale (index) - -0.03 -0.32

Solar Radiation 

(mmol/m
2
)

- 0.38

TopModel -

 

Table 6 Cross-correlation matrix of terrain characteristics for the TOPO DEM for TBS (n = 143,220) 
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SRTM DEM DEM (m)
Slope 

(degrees)

Eastness 

(index)

Northness 

(index)

Slope 

Position 

(index)

Mean 

Curvature 

(index)

Toposcale 

(index)

Solar 

Radiation 

(J/m
2
)

TopModel

DEM (m) - 0.15 0.01 0.00 0.50 0.43 0.59 -0.12 -0.40

Slope (degrees) - -0.05 0.00 0.01 0.08 0.03 -0.77 -0.48

Eastness (index) - 0.02 0.01 0.00 0.02 0.22 0.02

Northness (index) - 0.00 0.00 0.00 0.44 0.01

Slope Position (index) - 0.46 0.61 -0.01 -0.39

Mean Curvature 

(index)
- 0.34 -0.05 -0.50

Toposcale (index) - -0.04 -0.34

Solar Radiation (J/m
2
) - 0.32

TopModel -

 

Table 7 Cross-correlation matrix of terrain characteristics for the SRTM DEM for TBS (n = 10,504).
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3.5 Establishment of plots 
 

Tree diversity plots were established in order to examine landscape controlled 

patterns in diversity and structure, and to provide validation datasets for testing some 

of the modelling hypotheses.  These plots were established using methodologies 

designed to permit easy comparison with spatial datasets, without compromising the 

quality of the biological data gathered in the field.  Transects such as those used by 

Gentry (1995) would be of little use to this study, as the plots would cover numerous 

incomplete pixels in the GIS data.  It was important that the same method be used in 

both field sites, and so given that both field sites had topographic data available at 

25m resolution, field plots of 25m x 25m were used in this study.  This size represents 

a fair balance between having sufficient individuals in the sample to provide a 

realistic figure for the diversity and structure at that point (and not being overly 

sensitive to the precise positioning of the corners), without limiting the number of 

different plots that could be established given the time and resource constraints.  It 

was important to have sufficient plots to have statistical significance in the 

comparisons with environmental data, and so ten plots were established in each field 

site.  Whilst more plots would be preferable, limited time and resources did not permit 

anymore than 10 plots. 

 

3.5.1 Positioning of plots 

 

Access and field conditions were markedly different between the two field sites, and 

so there were some minor differences in the field sampling.  Poor GPS coverage, 

steep slopes and a dense understorey made conditions considerably more difficult in 

Tambito.  Though no formal sampling scheme was used, the plots were located in 
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regions geographically distinct, evenly covering the elevational gradient and covering 

both catchments of Tambito.  Existing paths were used to locate six of the ten plots, 

with the location of the corner decided when a predetermined altitude was reached 

(measured using an altimeter), and by walking 5m to the right of the path.   In some 

cases the topography made it impossible to establish a plot in that exact position, and 

so the closest feasible area was used.  The remaining four plots were established along 

paths especially opened for this study, geographically distant from the first six plots.  

Plots were marked based on tape measurement of 25m x 25m areas on the ground, 

hence under steep conditions the plan area of the plots might be expected to be less 

than 625m2.  This is a standard means of demarcating plots in ecological studies 

(Phillips et al., 2003) though attention should be noted that the plots do not therefore 

necessarily completely compare to the GIS-based cell size of the DEM in steep 

environments.  A Garmin 12XL was used to locate the geographic position of the 

center of each plot, using averaging for at least 10 minutes per plot.  The dense 

vegetation and steep topography often interfered with the GPS signal, resulting in 

horizontal RMS errors of up to 20m.  Efforts were made to use differential GPS and 

take plot coordinates with better GPS equipment, but the signals were to weak for a 

Trimble ProXL GPS to function.  The distribution of these plots around the 

catchments is shown in Figure 34. 
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Figure 34 Position of plots in Tambito, positioned in both the Palo Verde and Tambito 

catchments 

 

Conditions in Tiputini allowed easy access to any point in the study site, due to a 

thorough system of paths, a cleaner understorey and lower slopes.  Under  these 

circumstances, a formal sampling strategy was made using the TOPO DEM (the only 

DEM available early in the study).  The aim of the sampling strategy was to choose a 

minimum number of unrelated factors, and attempt to locate a plot in each 

combination of these factors, thereby producing a stratified sampling of the landscape 

characteristics.  Altitude was selected as one of these factors, important for indicating 

the frequency of flooding from rise in the water level in the river (discussed in Section 

3.3)).  The 25m TOPO DEM for TBS was classified into four equal area classes 

(quartiles, Class 1 : 193 – 210m, class 2 : 210 – 220m, class 3 : 220m – 236m and 

class 4 : 236 – 270m).  In this case Class 1 represented areas regularly flooded, with 
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class 2 receiving occasionally floods, and classes 3 and 4 representing terra firma 

forest where no flooding takes place, based on the observed rise in river level whilst 

in the field.  Equal area classes were used to ensure objectivity, though an alternative 

method may have been to use subjectively chosen but more meaningful cut-offs 

between classes. 

 

The other factor chosen was upslope area (also known as flow accumulation), 

indicative of soil wetness, proximity to river and slope position.  This was also 

classified into four equal area classes (Class 1 : 0 – 3 upslope cells, Class 2 : 3 – 8 

upslope cells, Class 3 : 8 – 21 upslope cells, and Class 4 : > 21 upslope cells). 

 

All permutations of these 2 factors with 4 classes were then calculated, producing 16 

‘sampling units’ for TBS shown in Figure 35. 
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Figure 35 Sampling strategy used to locate ground plots in TBS 

 

Although this sampling strategy could be improved, at the time of field sampling 

many of the now available terrain characteristics had not been developed.  The need 

for stratified sampling schemes for plot establishment was raised by Phillips et al. 

(2003) and this is the first known use of this type of a priori environmentally based 

sampling site determination. 

 

Plots were located at pre-defined locations so that 10 of the 16 sampling units were 

represented (Table 8).  Care was also taken to ensure that the plots covered the full 

geographic coverage of the station.  In each case the NW corner of each cell in the 

GIS data was located using a Trimble Pro XL GPS in the field, and the plot marked 

out to represent exactly one cell in the GIS.  Inevitably GPS error (+/- approximately 

10m) caused deviation from the pre-determined plot location, though this was actually 

minimal (average deviation from the exact plot corner of 3m). 

 

In addition to the 25m x 25m plots, an additional 1-Ha plot was studied, taking 

advantage of an already established plot of Nigel Pitman (Pitman, 2000), though the 

data from this plot is not presented in this thesis due to incomparability.  The 

geographic distribution of the plots is shown in Figure 36. 
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Plot DEM Class Upslope Class Sampling Unit

1 1 1 1

2 3 3 11

3 2 4 14

4 1 2 5

5 1 4 13

6 2 3 10

7 2 2 6

8 4 2 8

9 4 3 12

10 4 1 4  

Table 8 Sampling strategy units for each of the ten established plot. 

 

 

Figure 36 Geographic distribution of the 10 25m x 25m plots established in Tiputini 

Biodiversity Station. 

 

3.5.2 Plot Descriptions 
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These short descriptions of the plots are intended only to provide some background 

should the reader wish to get an idea of plot conditions when individual plots are 

referenced in the following chapters.  To ensure some standardization of the 

descriptions, they are presented in table form with the most striking features 

described.  This information is based on purely subjective descriptions of conditions 

observed in the field whilst establishing the plot. 

 

3.5.2.1 Tambito 

 

The plots in Tambito were distributed across a large elevational gradient, 

encapsulating some very different environmental conditions (Table 9). 

 

Plot Elevation

Approx. 

Slope 

(degrees)

Topography Understorey
Presence of 

Cloud
Epiphytism

Frequency 

of tree falls

Light Levels 

at ground

1 1651 27 Planar hillside Light Medium Low Low Low

2 1684 34 Hillside w ith ridges Dense Medium Medium High High

3 1449 29 Ridge Dense High Medium High High

4 1966 24 Planar hillside Medium High Medium Medium Medium

5 1299 31 Steep valley bottom Light Low Low Low Low

6 1749 33 Hillside w ith ridges Medium Medium Medium High Medium

7 2253 22 Hillside below  peak Dense High High Medium Low

8 1856 32 Hillside below  ridge Dense High High High High

9 1950 9 Flat ridge Light High High Low Low

10 1600 27 Planar hillside Medium Medium Medium Medium Medium  

Table 9 Brief description of conditions in the Tambito plots. 

 

3.5.2.2 Tiputini 

 

The plots in Tiputini were visibly less variable than those for Tambito, but still some 

important characteristics are worth mentioning (Table 10). 
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Plot Elevation

Approx 

Slope 

(degrees)

Topography Understorey
Frequency 

of tree falls

Light 

Levels at 

ground

Proximity to River
Flooding 

Regularity

1 208 2 Flat Light Low Medium Directly alongside river (7m above normal flow level) Occasional

2 219 20 Steep hillside Dense High Low No river closeby Never

3 210 5 Undulating with small river Medium Low Medium Small river through plot, but distant from main channel Occasional

4 201 1 Flat Medium Medium Medium 50m from main river Regular

5 200 2 Flat with channel in corner Light Low High Directly alongside main river (3m above normal flow level) Regular

6 220 5 Planar hillside Medium Medium Medium 200m from main river Occasional

7 219 10 Undulating with small river Light Medium Medium 500m from main river, but alongside large stream Occasional

8 262 5 Planar hillside Light Low Medium Distant from any river Never

9 238 5 Planar hillside Light Medium Medium Distant from any river Never

10 224 8 Undulating Medium Medium Medium Distant from any river Never  

Table 10  Brief description of conditions in the TBS plots. 

 

3.5.3 Measurement and sampling of individuals 

 

Field data collection in the 25m x 25m plots was essentially the same for both 

Tiputini Biodiversity Station and Reserva Tambito.  Diameter at breast height (DBH) 

was used to decide which individuals would enter the data collection.  All individuals 

with DBH greater than 5cm were included, chosen to represent all established trees 

and to exclude saplings. For each individual the following measurements were taken: 

 

• Diameter at breast height (DBH) 

• Diameter at base 

• X, Y and Z Position in plot 

• Height of first branch (approximated) 

• Total height of tree (approximated) 

• Botanical sample collected 

 

These structural factors were measured based on them being simple and quick to 

measure in the field.  Tree girth (DBH), tree height and basal area (calculated from 

diameter at base height) are the most basic structural parameters for a tree, and are 

measured in all studies of structural variation in tropical forests (Federov, 1966; 
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Proctor et al., 1983; Vasquez and Givnish, 1998; Webb et al., 1999; Clark and Clark, 

2000; Ferreira, 2000; Koponen et al., 2004).  Height of the first branch is also 

measured as an indicator of the vertical shape of the canopy, with emergent trees 

having the first branches high in the canopy, whilst sub-canopy individuals often 

branch much lower in the trunk relative to the total height.   

 

The only difference in data collection between sites was that TBS benefited from the 

use of a laser rangefinder to provide precise x, y and z coordinates for each tree within 

the plot (relative to the corner GPS position).  The laser rangefinder was also used to 

measure the height of trees above 10m in TBS.  In Tambito, each plot was separated 

into 25 quadrants of 5m x 5m and each individual was positioned to the quadrant.  No 

data were taken on exact x, y and z positions of each tree, except for 3 plots where the 

laser rangefinder became available and the plots were revisited (plots 1, 2 and 3).  

Unfortunately, local political instability from 2002 – present made subsequent visits 

to Tambito impossible, and so accurate x, y z positions for other plots was not 

possible. 

 

All tree heights were approximated by the author in all plots and in both sites, except 

that trees greater than 10m in height were measured using the laser rangefinder in 

TBS.  The laser rangefinder was used as a guide to make the manual approximations, 

with regular checks on approximations using the rangefinder.  Whilst the absolute 

heights may contain some error, it is expected that the relative heights within and 

between plots are representative. 
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Each individual was collected and preserved temporarily in alcohol according to the 

traditional methods of botanical sample preservation.  The samples were then dried 

for 48 hours at 32oC, and stored as a permanent collection in the Natural History 

Museum of Popayan (Tambito samples) and the University San Francisco of Quito 

(TBS samples).  Identification of the samples was made to species level whenever 

possible, though many identifications could be no more precise than genus level.  

Emphasis was made in distinguishing species, even where the species could not be 

named.  The full taxonomy may not have been ascertained for all individuals, but 

there is accurate data on whether an individual is of the same species as any other 

individual.  

 

3.5.4 Production of plot DEMs 

 

The tree position data taken using the laser rangefinder in TBS and for the three plots 

in Tambito provided x, y and z coordinates of every individual in the plot.  This data 

was used to produce high resolution digital elevation models for each plot.  The 

elevation values in these plot DEMs represent the elevation of the ground surface, as 

measured by ground based topographic survey using a rangefinder with combined 

digital compass and inclinometer.  Inverse distance weighted interpolation, using the 

nearest 10 points was used to create 50cm resolution DEMs.  Slope was calculated as 

a derivative.  The plot DEMs for the 25m x 25m plots in TBS are shown in Figure 37. 
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Plot 1

Plot 2

Plot 3

Plot 4

Plot 5 Plot 10

Plot 9

Plot 8

Plot 7

Plot 6

Elevational Range: 2.7m

Mean Elevation: 201.2m

Mean Slope: 6.13o

Slope coefficient of variabiliy:  0.73

Elevational Range: 11.3m

Mean Elevation: 227.7m

Mean Slope: 21.4o

Slope coefficient of variabiliy:   0.80   

Elevational Range: 4.8m

Mean Elevation: 208.7m

Mean Slope: 10.0o

Slope coefficient of variabiliy:  0.65

Elevational Range: 2.1m

Mean Elevation: 202.1m

Mean Slope: 5.0o

Slope coefficient of variabiliy:  0.82

Elevational Range: 6.2m

Mean Elevation: 262.4m

Mean Slope: 10.4o

Slope coefficient of variabiliy:  0.48

Elevational Range: 6.0m

Mean Elevation: 220.2m

Mean Slope: 10.9o

Slope coefficient of variabiliy:   0.53

Elevational Range: 3.1m

Mean Elevation: 202.4m

Mean Slope: 5.2o

Slope coefficient of variabiliy:  0.89   

Elevational Range: 7.9m

Mean Elevation: 227.4m

Mean Slope: 13.5o

Slope coefficient of variabiliy:   0.57

Elevational Range: 11.2m

Mean Elevation: 226.0m

Mean Slope: 22.3o

Slope coefficient of variabiliy:   0.60

Elevational Range: 8.2m

Mean Elevation: 222.3m

Mean Slope: 18.0o

Slope coefficient of variabiliy:  0.72
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Figure 37 High resolution (50cm) plot DEMs for the 25m x 25m diversity and structure plots 

in TBS, with the green dots representing each tree individuals in the plot (and the original 

points used to generate the interpolated surfaces). 

 

3.6 Statistical analysis of plot data 
 

3.6.1 Analysis of compositional and structural similarity 
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The Mantel statistic can be used in its most basic form to examine the degree to which 

differences in species composition between sites is controlled by distance between the 

sites.  Geneticists have used Mantel tests extensively to measure isolation by distance 

in populations (Epperson, 2004).  In tropical ecology, the Mantel test is extended 

beyond comparison of composition with distance, to include environmental 

interactions (Phillips et al., 2003; Almeida et al., 2004), and attempt to understand 

how environmental factors may shape community composition.  The Mantel test itself 

is a modified version of the Pearson correlation coefficient, differing in that the 

natural dependence in the distance matrix is taken into account (Potts et al., 2002).  

The p-value is also calculated differently to determine whether there is significant 

correlation, using a one-tailed test of a sample of permutations (10,000 in the case of 

this thesis).  In addition to the simple Mantel test, the partial Mantel test examines 

three-way relationships, normally between geographic distance, environmental 

distance and species composition or genetic distance, identifying spurious 

relationships that may occur (i.e. distance only affecting species composition through 

its co-linearity with environmental distance).  Further discussion of the statistical 

method is provided by Epperson (2004).  Whilst some doubt has been expressed as to 

the validity of partial Mantel tests (Raufaste and Rousset, 2001), Castellano and 

Balletto (2002) used repeated simulations to show that the partial Mantel test is an 

accurate means of ascertaining causal relationships.  In this study partial Mantel tests 

were used in addition to the standard Mantel test to search for spurious relationships 

between significant correlations where variables exhibit some degree of co-linearity. 

 

The Mantel statistic was used to examine the environmental interaction of both 

composition and structure in the plots, using the software XLStat to calculate Mantel 
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statistics and the associated p-value.  For composition, a Jaccard coefficient was 

calculated based on the presence and absence of species for each plot pair.  The 

Jaccard coefficient is calculated using Equation 3. 

 

Equation 3  Jaccard (J) =          No. Species Common to both plots 

(No Species in Plot A + No Species in Plot B) 
 

The Jaccard coefficient is the most widely used compositional similarity measure 

(Magurran, 2004), and previous studies have used it alongside the Mantel statistics to 

assess environmental controls on species composition (Tuomisto et al., 2003). 

 

Geographic and environmental distance were also calculated for each plot pair using 

ten quantitative variables (horizontal distance, elevation, eastness, northness, mean 

curvature, slope, slope position, solar radiation, toposcale and topmodel).  The 

absolute difference was calculated between the values for each pair of plots, for each 

variable. 

 

The Jaccard coefficients and geographic and environmental distances were arranged 

in 10 x 10 similarity matrices, and the Mantel statistic applied.  Due to the geographic 

and environmental distances actually representing dissimilarity, negative Mantel 

coefficients are expected in the case of positive correlations (as similarity is being 

compared with dissimilarity).  The p-value was also calculated in XLStat (using 

10,000 random permutations), and presented alongside the Mantel coefficient.  In the 

case of Tiputini Biodiversity Station, the Mantel statistic was calculated for 

characteristics of all both DEMs, hence two separate sets of results are given. 
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In order to apply the same analysis to the structural data, the Kolmogorov-Smirnov 

(K-S) test was used to assess the similarity in the cumulative distribuion function for 

each of the three major structural variables (DBH, tree height and the DBH:Height 

ratio).  The K-S test produces a value representing the similarity of the distributions 

(based on their mean and standard deviation), that varies between 0 (equal 

distribution) and 1 (entirely different distributions).  For each of the 45 plot pairs, the 

K-S statistic was applied for each of the three structural variables, and the resultant 

coefficients arranged in a 10 x 10 dissimilarity matrices.  The Mantel statistic was 

then applied between these matrices and the respective distance matrix of geographic 

and environmental variables.  Due to both these matrices representing dissimilarity, 

positive Mantel statistics are expected in the case of positive correlation.  Likewise for 

the composition analysis, partial Mantel test were also used to search for potentially 

spurious relationships, and both DEMs were used for TBS, resulting in two sets of 

results for each geographic/environmental variable. 

 

3.6.2 Diversity indices 

 

In 1971, Hurlburt contended that “diversity per se does not exist” (quoted in (Peet, 

1974), and suggested that ecology abandons the term “diversity”.  Over 30 years later, 

diversity is very much a central issue in ecology, and if anything less clarity is 

available on its meaning. 

 

Magurran (2004, p.101) strongly recommends that a study does not use multiple 

diversity indices blindly, but carefully selects the appropriate index based on the 

research questions and the aspect of diversity that is being investigated.  Whilst this 

advice is applicable to many research projects, in the case of the research undertaken 
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in this thesis it would be dangerous to focus on one single aspect of diversity.  Firstly, 

it is unknown what aspects of diversity topography may influence, and secondly, if 

significant relationships are found between topographic factors and diversity (based 

on a number of different factors), understanding the type of diversity that correlates 

best is a requirement in itself, and may help provide explanation as to the processes 

that are involved in generating that relationship.  For this reason, this thesis does not 

apply Magurran’s recommendation, but bases many of the methods for quantifying 

diversity on her book “Measuring Biological Diversity” (2004).  Both diversity and 

richness measures are used.  Richness measures include species richness, genera 

richness, family richness, and the richness of “plot endemic species” (number of 

species that were found only in that plot). 

 

In addition to the richness measures, the following diversity indices were calculated 

for each plot and used in this study: 

 

Shannon  H’ = – S . pi . ln (pi) 

Simpson  D = 1 – ∑ (pi) 

Margalef DMg =  (S – 1) / ln (N) 

Menhinick  DMn = S / N0.5 

Berger-Parker BP = Sd / N 

 

Where,  S - species richness 

N - total number of individuals 

Ni - number of individuals in the i-th species 

pi - proportional abundance of the i th species = ni / N 
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Sd – number of individuals of the most dominant species 

 

The Shannon index is an entropy based measure of evenness, Simpson diversity index 

(note that 1-D is used here) is also a measure of evenness, whilst Margalef and 

Menhinick are species richness related indices adjusted for the total number of 

individuals in the sample (N).  Finally, Berger-Parker is a simple and intuitive 

measure of dominance.   

 

On top of these indices, Renyi’s scaleable diversity method is used to produce 

diversity plots which provide additional information as to the comparability of 

diversity between plots.  Renyi’s scaleable diversity index is calculated using the 

DIVORD 1.5 program (Tothmeresz, 1993) and using the formula: 

 

           Equation 4 

 

Where α is a scale parameter, which varies from 0 to 3.  This index is displayed in a 

plot with different scale parameters expressed along the x axis, and the diversity in the 

y axis.  This equation is particularly innovative in that the diversity value when the 

scale parameter is 0 represents the log of species richness, with a scale parameter of 1 

it represents the Shannon Index and with 2 it represents the Simpson Index.  As 

α tends to infinity, it represents the inverse Berger-Parker.  Typically α varies between 

0 and 3.  It permits easy interpretation of the diversity between different plots through 

examination of the relative shapes of the curves.  More importantly, in the event of 
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curves crossing it means that one plot is not more diverse than the other, but that it 

depends entirely on the type of diversity being examined. 

 

Following Magurran’s recommendation  (2004), special emphasis in this thesis is 

given to simple species richness and Simpson’s Index, for their robustness and 

simplicity in interpretation.  Whilst it would have been advantageous to also include 

in the analysis a taxonomic diversity index (Desrochers and Anand, 2004) such as the 

Clarke and Warwick taxonomic distinctiveness index (Clarke and Warwick, 1998), it 

was deemed impractical due to the level of incompleteness and uncertainty in the 

species identification. 

 

3.6.3 Structural Variables 

 

Eight structural parameters are analysed in this thesis.  These are based on direct 

measurement of some structural parameters, alongside some derivatives of these 

variables.  Direct measurement was made for stem density (expressed in terms of 

stemsHa-1), diameter at breast height (DBH) (expressed in cm), diameter at base 

height (DbaseH) (also expressed in cm), tree height (expressed in m), height to first 

branch (expressed in m).   

 

Based on these variables, three other variables were calculated; DBH/Height, 

DBH/DbaseH, and basal area (m
2
Ha

-1
).  Basal area is calculated based on both the 

DbaseH and the stem density, and reflects the amount of ground area occupied by tree 

trunk.  The other two variables (DBH/Height, cm m-1, and DBH/DbaseH, cm cm-1) 

are calculated in order to grasp the degree of investment of resources in different 

aspects of tree structure.  Bruenig and Huang (1990) first used the diameter/height 
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variable to examine resistance to wind, and since Webb et al. (1999) have used 

DBH/Height to examine structural relationships with topography in American Samoa, 

with the variable providing clear patterns.  Individuals with relatively wide trunks 

compared to their total height (i.e. a high DBH/Height) seemingly have invested 

greater resources in augmentation of trunk than in height, possibly indicating amongst 

other things a response to conditions for greater trunk strength, or in the case of the 

inverse a search for light.  These investments are strategically different: greater 

investment in height than girth leads to short term gain (of light) but long term 

weakness (a  pioneer strategy), greater investment in girth leads to short term loss of 

light but greater strength in the long term.  The balance between these strategies may 

vary with the exposure of the site.  The DBH/DbaseH variable is designed to measure 

the degree to which the tree base branches out at the base.  Trees with buttress trunks 

will have significantly lower DBH/DbaseH levels than trees without, and such 

individuals are likely to have greater stability against tree fall. 

 

Both these indices are likely to reflect both composition (i.e. some species will tend to 

have wider trunks relative to height than others) as well as morphological responses to 

site-specific conditions. 

 

3.6.4 Correlation of environmental and topographic variables with diversity 

 

For each site (and each DEM in the case of TBS), the environmental or topographic 

conditions are correlated with the diversity and structural measures.  All diversity 

measures were used in this analysis (family richness, genera richness, species 

richness, endemic species richness, Simpson’s, Shannon’s, Menhinick, Margalef, and 

Berger-Parker), and in the case of Chapter 5 all structural parameters are also included 
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(Stem density, DBH, DbaseH, Height, Height of first branch, basal area, DBH/Height, 

DbaseH/DBH).  The environmental and topographic variables are separated into two 

types of data; quantitative and categorical. 

 

Quantitative variables (elevation, northness, eastness, curvature, slope, slope position, 

solar radiation, topmodel and toposcale) are subjected Pearson product-moment 

correlation analyses.  In some cases where the data points warrant further study, non-

linear regressions are sought, the details of which are discussed specifically in the 

relevant sections.  For each correlation performed, a p-value is calculated in XLStat 

(using 10,000 random permutations).  When significant correlations are found, further 

tests are performed, the details of which are discussed in the same section. 

 

The categorical variables (landscape classification - feature, network feature and 

topoclass) could not be analysed in the same way.  They were compared to diversity 

and structural measures using Spearman Rank tests, and the respective p-value 

calculated.  In some cases the fuzzy feature membership was also analysed, 

comparing the fuzzy membership to a specific class with the diversity or structure 

using standard Pearson correlations. 

 

In addition to Pearson correlations and linear regressions, multi-variate analyses are 

also performed to search for combinations of variables that may explain variability in 

diversity, composition and structure.  For these purposes, multiple stepwise linear 

regression is applied using XLStat.  Multiple stepwise linear regression has been used 

in a number of similar studies to good effect (Clinebell  et al., 1995; Heikkinen and 

Neuvonen, 1997), though caution is taken in interpreting these results as combinations 
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of linear regressions may describe a large degree of variability in data, but reflect little 

in terms of the causal relations (Fowler et al., 1998).  Ideally split sample validation of 

regression models should be performed, but just the ten plots of data prevent this. 

 

3.7 Examination of DEM quality with respect to ground measured slope and 
aspect in TBS 

 

Understanding of the quality of the original DEMs and understanding the important 

role of scale in capturing the topographic variability found on the ground is crucial to 

permit insightful interpretation of the results in subsequent chapters.  This section 

examines the degree to which the coarse-scale DEMs of the region in TBS (TOPO 

and SRTM) represent the topographic conditions found on the ground at the sub-plot 

scales at which the trees experience them.  Whilst exhaustive GPS surveys would be 

one way of gathering this information, it is unfeasible due to the poor GPS satellite 

coverage under canopy and the subsequent low accuracy of the GPS derived altitude 

values. 

 

Understanding the representation of the terrain at different scales is important, and a 

comparison of the slope and aspect at these two scales will indicate the degree to 

which scale issues are important in this analysis. 

 

Figure 38 compares values in slope and aspect for the regional DEMs (TOPO and 

SRTM) against the plot DEMs for the same areas, firstly for plot mean slope and 

secondly for plot mean aspect (measured using northness and eastness, due to the 

circular nature of aspect). 
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In all cases there is considerable difference between plot-based slope and aspect and 

the DEM based slope and aspect.  For slope the SRTM DEM correlates best but not 

significantly (Pearson = 0.53, n=10), with the TOPO DEM reflecting little of the 

slope measured on the ground (Pearson = 0.11, n=10).  In both cases, the DEMs are 

grossly underestimating the slope levels measured at the sub-pixel scale.  Some 

limitations in the validity of this analysis is brought about by the difference in slope 

measure that is being used, as the slope in the DEMs is calculated using the elevation 

of surrounding cells in a 3 x 3 window, whilst the plot DEMs only take into account 

the within plot conditions.  Furthermore, geopositional inaccuracy for some plots 

means that part of the plot actually falls in a different cell, with a different slope 

value.   

 

Aspect derived northness (Figure 40) and eastness (Figure 39) compare even less.  

Neither the SRTM DEM (eastness Pearson = 0.28, n=10) nor the TOPO DEM 

(eastness Pearson = 0.14, n=10, northness Pearson = 0.30, n=10) show likeness with 

ground-measured aspect. 
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Correlation between DEM derived slope and 

plot measured slope in TBS
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Figure 38 Comparison of DEM derived slopes and the plot measured slopes for the two 

DEMs in TBS.  Slope from the plots was derived as a mean for all pixels. 
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Figure 39 Comparison of DEM derived eastness and the plot measured slopes for the two 

DEMs in TBS.  Eastness of the plots was derived as a mean for all pixels. 
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Correlation between DEM derived northness 

and plot measured slope in TBS
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Figure 40 Comparison of DEM derived northness and the plot measured slopes for the two 

DEMs in TBS.  Northness of the plots was derived as a mean for all pixels. 

 

The results of these two analyses indicate that what is measured at one scale (TOPO 

or SRTM DEMs, for example) does not represent the values of the variable at a finer 

scale (as measured using the plot DEMs).  However, without knowing the relevant 

scale for describing the variability in diversity, composition and structure of tropical 

tree species it is not necessarily true that the more information rich scale (plot DEMs) 

is necessarily better.  This is an important point, and one which is considered later in 

the thesis in the results sections. 

 

Given these disparities between ground-measured topography and its representation in 

the DEMs, some further analysis is warranted.  It is reasonable to assume that each 

DEM performs better in specific landscapes.  Erosion and drainage are likely the most 

important geomorphic processes in shaping the landscape, and so it is expected that 

greater small-scale topographic complexity would occur in regions with concave 
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slopes in the lower reaches of the hillside where erosion and streams are more 

prevalent compared with planar slope segments and convex slope crests.  The strength 

of these processes in lower reaches of the hillside may create complexity which is not 

captured in DEMs of this resolution, and thus cause the disparities found above.  Both 

DEMs used in this study are derived from tree-top topography, and it is likely that the 

canopy will smoothen complex topography found on the ground, especially small 

scale complexity derived from erosion and the generation of gullies. 

 

In order to test this hypothesis, mean profile curvature and slope position are 

correlated with the coefficient of variability in slope within the plots (a surrogate for 

topographic complexity).  No significant correlation is found with mean curvature nor 

topmodel, but slope position does show some very significant correlations (Figure 

41).  The TOPO DEM correlates closest CoeffVarSlopePLOT = -0.003 SlopePosTOPO + 

0.86, R2 = 0.84, R2 = 0.79, n=10), followed by the SRTM DEM (CoeffVarSlopePLOT = 

-0.004 SlopePosSRTM + 0.85, R2 = 0.47, n=10).  In all cases the trend is for greater 

ground measured complexity in topography in areas close to the valley bottom.  It 

would be logical therefore to conclude that the DEMs we are using are likely to 

provide better representation of the ground surface in areas higher in the hillside 

where erosion and water flow concentration is lower.  This is, however, not supported 

by the data (Table 11), with in most cases higher percentage errors in higher slopes.   
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Correlation between DEM derived slope position 

and plot derived variation in slope in TBS
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Figure 41 Scatterplot of ground-based measurement of topographic complexity (using the 

coefficient of variability in slope as a surrogate) against DEM derived slope position. 

 

These findings also indicate that broader scale features such as those used to define 

slope position (calculated through flow accumulation routines) are sound in the DEMs 

(best represented in TOPO), but more local topographic features such as curvature, 

slope and aspect are less representative (worst representation in TOPO, where the 

interpolation methods produce the greatest amount of smoothing).   

 

 

Table 11 Error in DEM representation of plot topography for all slopes, as well as for upper 

and lower slopes defined using the slope position variable. 
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Without further field-based research it is impossible to further quantify the errors and 

scale issues in the DEMs, nor understand under what conditions they are more 

accurate.  The conclusion of this analysis is that the DEMs are not representing very 

well local conditions (sub-25m pixel) like slope and aspect (though obvious 

methodological aspects in the comparison lower the statistical validity of this 

observation), with different DEMs performing better for different variables.  This may 

be important in later in-depth analyses with respect to the diversity and structure in 

the forests.  It is also important to note the relationship between slope position and 

topographic complexity. 

 

3.8 Heterogeneity Modelling 
 

There are few examples of models that quantify spatial heterogeneity of 

environmental variables that are explicitly designed for application to biological 

systems.  Spatial environmental heterogeneity within the context of this study refers 

to the diversity of environments within a certain local spatial extent.  Translating this 

concept into a raster grid like all the terrain variables is best done by considering it the 

variability of pixel values in cells surrounding a single central cell.  This type of 

analysis is often called kernel estimation (Wand and Jones, 1995) moving-window 

analysis (Fotheringham et al., 1996), convolution filtering (Lillesand and Kiefer, 

1999), or focal calculations  (Tomlin, 1993).  In order to quantify spatial 

heterogeneity, three main factors must be considered: 

 

1. The spatial function for weighting (geographic weighting) with respect to 

distance from the central cell (the shape of the kernel) 
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2. The size of the search window surrounding each cell (the radius is often called 

the bandwidth) 

3. The equation for actually quantifying the heterogeneity given the array of 

values for surrounding cells 

 

Given the lack of previous studies that adopt this kind of spatial analysis for tropical 

ecology, there was no basis on which to select an equation to accurately represent the 

average spatial function of neighbourhood interactions (such as seed dispersal, 

competition etc.).  Literature in the realm of genetics does provide some indication of 

a likely equation based on analyses of the probability of pollen transfer.  The spatial 

function of pollen-transfer is likely to be similar to that of seed dispersal due to their 

similarity in physical processes, both having wind and animal (and insect to a lesser 

extent for seeds) dispersal mechanisms.  Shaw (1995), Xu and Ridout (2001), and 

Paradis et al. (2002) used the radial half-Cauchy distribution for modeling pollen 

transfer, preferring this distribution to others for its characteristic long tail.  The half-

Cauchy distribution also provides a very flexible equation that permits simple 

adjustment of its shape through manipulation of the median distance variable.  

Provided the lack of data on actual probabilities and distances of seed dispersal for the 

average tropical tree, and a lack of data on the spatial nature of competition or other 

relevant biotic processes, the median distance variable provides an easy way of 

incorporating multi-scale analyses to cover all potential scales at which these 

processes may occur.  The half-Cauchy curve is produced using the following 

formula: 
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Equation 5  W (r) = (2 / π b) 1 / [1 + (r / b)2]    

  

 

Where W(r) is the probability of interaction with a neighbouring cell, b is the median 

distance of interaction and r is the distance from the central cell.  When the median 

distance is set to 0 the weighting for surrounding cells is also 0, increasing the median 

distance variable produces higher weighting to surrounding cells.  Figure 42 shows 

the shape of the distance-weighting curve for different median distances, ranging from 

0.01 to 9 cells.  For the analysis, a total of 16 kernels were used with median distances 

of 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1, 2, 3, 4, 5, 6, 7, 8, and 9.  This multi-scale 

approach is advantageous due to the lack of knowledge on the spatial function of 

neighbourhood interactions. 
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Figure 42 Distance weighting from the Half-Cauchy curve for different median distances 

from 0.01 cells (top-left) to 9 cells (bottom-right). 

 

In reality the curves shown in Figure 42 are 3-dimensional, and so for some clarity 

Figure 43 shows an example half-Cauchy kernel with median distance set to 1 cell. 
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Figure 43 3-dimensional representation of the half-Cauchy spatial function, with the height of 

the surface representing the weighting. 

 

The spatial function used here is uniform in all directions, though this could have 

been adjusted to provide higher weighting in specific directions, such as in the 

dominant wind direction with respect to wind-based seed dispersal.  In Tambito this 

would not be valid, as topographic funneling likely create different wind directions 

around the catchment (and there is insufficient data to fully analyse and understand 

wind patterns in the twin-catchments).  In TBS a more constant wind direction is 

likely, and indeed has been shown to be south-easterly.  The kernel could be adjusted 

to provide higher weighting in cells upwind, though this is not performed here as it 

would provide an extra variable and an extra level of complexity on results 

presentation and interpretation (for TBS the analysis is already complicated by two 

DEMs, 12 variables and 16 different scales).  This is clearly a limitation, and further 

studies should incorporate wind direction into this model, though other spatial 

neighbourhood processes such as competition and biotic interactions are not 

necessarily affected by wind direction. 
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The size of the search window should be selected based on the distance function used, 

so that the window covers all cells with a significant weighting that may affect the 

final result.  In reality, the size of the search window must also depend on processing 

power and the size of the grid that is being analysed, due to the intensive processing 

required to make a spatial heterogeneity calculation.  For this analysis a search 

window of 50 x 50 cells was used.  Even with the highest median distances the 

potential effect of cells outside this 50 x 50 cell kernel was calculated to be 

insignificant (<5% change in result when search window increased to 200 cells for 

test runs in Tambito and TBS).  The selection of the search window was therefore set 

at of 50 x 50 cells.  This avoided computational limitations, and also ensures that edge 

effects do not encroach on any of the plots (in the case of Tambito, Plot 7 is just 70 

cells from the border of the DEM). 

 

Definition of heterogeneity is somewhat similar to that of diversity, with no single 

number capable of describing all aspects of the phenomenon.  So as to compare like 

with like (i.e. diversity vs. heterogeneity) it was important to measure each variable in 

a similar way.  For this reason, the heterogeneity was calculated using the Simpson 

diversity index.  This is similar to the technique that was used effectively by Burnett 

et al. (1998) to compare geomorphological heterogeneity (aspect, slope, topmodel 

amongst other variables) with plant species diversity, though in this study a grid based 

system was used which lacks the fine-scale capacity of the method presented here.  

 

Simpson’s index is calculated based on the frequencies of categorical data.  Of the 12 

terrain characteristics studied here, nine are continuous and just three are categorical.  
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The continuous variables were therefore re-classified into equal interval classes, each 

class representing environment type ‘i’, thus making it possible to calculate 

Simpson’s index, where the heterogeneity for the centre cell was calculated using: 

 

Equation 6   Heterogeneity = 1 – Σ (pi
2) 

 

The frequencies (pi) are calculated from the environmental values of all cells in the 

surrounding 50 x 50 cell region. Individual contributions of each cell to the 

calculation of these frequencies were weighted by the spatial function. Given this 

approach, frequency pi represents the total relative probability of receiving inflowing 

seeds from an environment of type ‘i’.  In practical terms, the frequency (p) is the sum 

of all distance-weighted cells of environment type ‘i’.  

 

The creation of arbitrary classes creates the problem of threshold effects, where 

inaccurately higher heterogeneity is found on the interface between two arbitrarily 

defined classes.  To eliminate this threshold effect, the re-classification was repeated 

five times for each calculation of heterogeneity, splitting the topographic 

characteristics into 25, 26, 27, 28, and 29 different classes of equal intervals. The final 

heterogeneity was calculated from the mean of the results of these five iterations.  

Changing the number of classes changes the geographic location of splits between the 

classes. These classes were selected based on visual experimentation, and 

computational limitations.  For lower numbers of classes (i.e. 20 – 24), arbitrary 

boundaries were still observed, whilst greater number of classes vastly increased the 

time required to run the model. 
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In reality the calculation described above is fairly simple, and best understood by 

means of an example analysis shown in Figure 44.  The final result is a grid of spatial 

heterogeneity of each terrain derivative for each of the 16 scales.  In general terms, 

the analyses with low median distances produce complex small-scale distributions of 

environmental heterogeneity, while higher median distances produce smoother and 

broader scale measures of heterogeneity. 
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Figure 44 Example analysis of spatial heterogeneity for a model environment. 
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Many other methods could have been used to quantify heterogeneity, including a 

simple calculation of the surrounding coefficient of variation, absolute surrounding 

range, non distance-weighted approaches, geostatistical methods (variograms, for 

example), as well as a similar approach using other diversity indices or richness 

measures (Burnett et al., 1998; Nelson, 2004).  For this study a method was selected 

which most accurately reflects environmental heterogeneity in a species diversity 

relevant context, specifically through measuring heterogeneity with an evenness 

diversity index (Simpson’s) for direct comparison with species diversity.  Given the 

lack of previous research determining spatial heterogeneity in terrain characteristics 

for biological diversity studies, it is difficult to judge if the method adopted here is 

indeed the best method.  It is favourable in terms of measuring heterogeneity in terms 

of evenness, and permitting the comparison of like with like, though there is also 

some degree of information loss through the creation of categorical data from 

continuous surfaces.  For the purposes of simplicity in analysis and interpretation, this 

study only uses the Simpson’s index to quantify heterogeneity.  Further studies should 

develop different models and compare results. 

 

These methods for calculating heterogeneity were incorporated into an Arc Macro 

Language (AML) for use in Arc/Info.  Given the high level of processing that these 

types of spatial analyses require, it was important to automate this analysis.  Appendix 

2 shows the model used for quantitative variables, and Appendix 3 shows a slightly 

modified version used for the categorical variables (feature, network feature and 

topoclass).  The method itself is identical, with the only difference of not needing the 

multiple re-classification into “i” environments. 
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The heterogeneity at each plot was then extracted from the final grids for each of the 

16 scales, and for each topographic variable.  This was then correlated with the 

Simpson’s index based on the tree diversity measured within the plot, calculating both 

the Pearson correlation coefficient and the p-value. 
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Chapter 4 

 

4 Spatial variation in diversity and composition : Environmental interactions 
 

4.1 Introduction 
 

This chapter makes a basic analysis of spatial variations in diversity within the two 

study sites, using the plot data along with the basic terrain derivatives described in 

Chapter 3.  The aim of this chapter is to examine the patterns of spatial variation in 

composition and diversity, and begin to explore these patterns in the context of 

environmental variation.  The analysis is split into two separate sections, firstly 

examining compositional variation, and secondly examining the variation in richness 

and diversity. 

 

The central issue being tested in the compositional section is that of habitat 

association for tropical trees, though attention is brought to the distinction between 

species level- habitat associations and the compositional level (non-species specific) 

habitat association being studied here.  Numerous studies have recently searched for 

habitat associations in tropical tree species in a number of different environments, 

principally in tropical lowland forests (Vormisto et al., 2000; Webb and Peart, 2000; 

Harms et al., 2001; Vormisto, 2002; Phillips et al., 2003; Tuomisto et al., 2003; 

Valencia et al., 2004) but also in the elevational gradient of tropical montane forests 

(Sugden, 1982; Vasquez and Givnish, 1998).  In lowlands there is evidence that some 

association occurs (approximately 20 – 70% depending on the study), but it is also 

acknowledged that many species are almost randomly distributed across a landscape, 

with non-equilibrium processes (such as tree fall) controlling a large proportion of the 
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spatial distribution of composition (Harms et al., 2001).  In montane regions, studies 

have found elevation as an important variable associated with composition (Sugden, 

1982; Vasquez and Givnish, 1998), but these have generally been broad-scale studies, 

which have not used micro- and meso- scale terrain variation to search for habitat 

association.  This sections endeavours to statistically test if there is any habitat 

association in composition present in the plot data based on habitat as measured by 

the terrain derivatives. 

 

The diversity section moves up one level (from information at the species level to 

non-species specific diversity), endeavoring to look for spatial patterns in diversity, 

and test the data to discover whether or not specific topographic conditions favour the 

generation of high diversity.  As discussed in Chapter 2, some of the key drivers of 

diversity include productivity (often measured using energy or water as a surrogate), 

soil nutrients (however the relationship may be), and gap dynamics.  Different 

measures of diversity are examined (evenness/dominance and richness) for each plot 

and compared with the range of terrain derivatives being used in this study to test for 

association.  Where significant relationships are found, further tests are made to 

understand the physical processes that may be generating the relationship. 

 

Each study site is treated separately at first, but the chapter concludes by integrating 

the results from each site and discussing the over-arching ecological significance of 

the findings at both sites.  For TBS, both DEMs are used in the study, and for ease of 

interpretation the results of each analysis for each DEM are presented together. 

 

4.2 Reserva Tambito 
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4.2.1 Composition 

 

4.2.1.1 General Site Species Composition 

 

The ten 25m x 25m plots established in Tambito contained 1108 individuals, of which 

271 different species were identified, distributed in 52 families and 111 genera.  

Appendix 4 contains a full list of species found in Tambito.  Taxonomic identification 

was made to family level for 99.7% of species, to genus level for 87.6% of species, 

and to species level for 52.0% of species.  It is likely that some species as yet 

unidentified to genus level will be new genera to the area, and thus the number of 

different genera is likely an underestimate.  Table 12 provides a summary of family 

composition in Tambito, with Figure 45 and Figure 46 showing the distribution of 

species and individuals within families.   
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Family No. Genera No. Species No. Individuals No. Plots

Actinidaceae 2 2 13 7

Anarcadiaceae 1 1 1 1

Annonaceae 2 3 18 5

Aquifoliaceae 1 4 18 6

Araliaceae 2 3 13 3

Arecaceae 8 15 144 9

Asteraceae 1 1 2 1

Bignoniaceae 1 1 1 1

Bombacaceae 2 3 5 3

Burseraceae 1 6 21 5

Caesalpiniaceae 2 4 4 4

Caprifoliaceae 1 1 4 2

Caricaceae 1 1 1 1

Celastraceae 2 2 8 4

Chletraceae 1 1 1 1

Chloranthaceae 2 2 16 4

Chrysobalanaceae 1 2 2 2

Clusiaceae 3 16 47 10

Cyatheaceae 2 3 38 8

Elaeocarpaceae 1 2 6 4

Euphorbiaceae 7 10 63 9

Fabaceae 1 2 4 3

Flacourtiaceae 2 3 32 5

Hippocrateaceae 1 1 22 5

Hypocastanaceae 1 1 16 4

Icacinaceae 2 2 6 3

Lauraceae 5 28 65 9

Lecythidaceae 2 5 24 6

Marcgraviaceae 1 1 2 1

Melastomataceae 10 33 118 9

Meliaceae 3 8 28 9

Mimosaceae 1 4 9 4

Monimiaceae 2 5 6 5

Moraceae 6 15 34 7

Myristicaceae 2 3 22 6

Myrsinaceae 4 7 21 9

Myrtaceae 3 11 22 9

Ochnaceae 1 1 1 1

Piperaceae 1 2 3 3

Proteaceae 1 1 1 1

Rosaceae 1 3 12 4

Rubiaceae 8 31 201 10

Sabiaceae 1 1 1 1

Sapindaceae 1 2 3 3

Sapotaceae 1 4 12 4

Simaroubaceae 1 1 1 1

Solanaceae 2 3 3 3

Staphyleaceae 1 1 1 1

Styracaceae 1 1 2 1

Theaceae 1 1 1 1

Theophrastaceae 1 1 2 1

Verbenaceae 1 1 2 2

Other 5 5 5 5

TOTAL 118 271 1108 4.3 (AVG)  

Table 12 Summary of species composition per family in Tambito, including the number of 

plots where the family was present. 
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Figure 45 Distribution of species in families in Tambito 

 

 

Figure 46 Distribution of individuals in families in Tambito 

 

The most abundant families in terms of individuals are Rubiaceae (201 individuals), 

Arecaceae (144) and Melastomataceae (118), whilst Melastomataceae is the most 

species rich family (33), followed closely by Rubiaceae (31) and Lauraceae (28).  

Over 50% of all species are in just 6 families, and there is only one species present for 
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18 of the 52 families.  The most common species were Wettinia sp. (Arecaceae) with 

31 individuals in 6 different plots, Casearia arborea (L.C. Rich.) Urban 

(Flacourtiaceae) with 29 individuals in 4 plots, Cyathea sp1 (Cyatheaceae), a species 

of tree fern, with 29 individuals in 5 different plots, and an unidentified palm “oja 

pescado” (Arecaceae) also with 29 individuals and found in only one plot.  The 

average abundance per species was 4.1, and 40.6% of all species having just one 

individual in the ten plots. 

 

4.2.1.2 Between-Plot Compositional Variability 

 

4.2.1.2.1 General discussion 
 

There was significant variation in composition between-plots in Tambito.  Just two 

families were found in all ten plots (Clusiaceae and Rubiaceae) with 14 of the 52 

families (27.0%) occurring in only a single plot.  On average each family was present 

in 4.3 plots.  At the species level, the most broadly distributed species were 

Hyeronima oblonga (Tul.) Müll. Arg. (Euphorbiaceae) and Irarthea sp1 (Arecaceae), 

which were found in eight plots, with another palm species Chameadora sp1 

(Arecaceae) being found in seven different plots.  At the other end of the spectrum, 

some 188 of the 271 species (69.4%) were found in only one plot.   

 

This does not necessarily signify that a large proportion of species are highly 

restricted in their distribution, but may simply be a product of the small plot size used 

here.  Given the exceptionally high diversity of species in tropical forests, and the low 

densities that species tend to have (for example Pitman, 2000) it is unlikely that a 25m 
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x 25m plot captures the full alpha diversity of that particular habitat.  For this reason 

many species “absences” in the plots may indeed be false negatives brought about by 

the small plot size. 

 

The objective made here with the plots used in this study is that the within-plot habitat 

is homogenous, whilst the surrounding habitats are heterogeneous.  In other words, 

each plot captures the alpha diversity, whilst comparison between plots examines the 

beta diversity.  In reality it is near impossible to achieve this objective, because 

habitats vary spatially at very different scales, and that variation is gradual so no clear 

cut-off is identifiable.  Perhaps in highly heterogeneous sites (like Tambito) habitats 

significantly change over short distances such as 25m (making 25m x 25m plots 

comply with the objective of the sampling strategy), but in more homogenous sites 

(like TBS) 25m may only represent a small portion of the actual habitat.  Under the 

latter circumstance, the plot is not representative of the alpha diversity. 

 

Following this logic, for the objective to be achieved it is expected that the number of 

species within the plot would therefore smoothly increase as greater within-plot space 

is covered, but that beyond the plot new environments are encountered, thus 

increasing the accumulation of species. 

 

Species-area curves can be used to examine whether the species richness is saturated 

or still accumulating as the area inventoried increases.  The shape of species-area 

curves result from a number of factors, making them fairly subjective in terms of 

interpretation.  As greater area is included, it is expected that the number of species 

will also rise because new environments (ergo niches) are being included in the 
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sample.  In a heterogeneous environment like Tambito this is particularly the case.  

Regardless of the inclusion of new niches, space itself is a resource which species 

compete for, and in particularly diverse ecosystems like tropical forests the number of 

species is likely to saturate only over very large areas because there are many species 

and they can be widely distributed.  Thus very large plots are usually required, though 

such plots are very expensive, time-consuming and difficult to inventory in these 

environments. 

 

Despite these problems associated with the interpretation of species-area curves, they 

can provide some information, which coupled with other data and analyses provide a 

clearer picture.  Figure 47 shows the species-area curves for Tambito, using the plot 

quadrants to separate out areas of 5 x 5m, 10 x 10m, 15m x 15m, 20 x 20m and 25m x 

25m. 
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Figure 47 Species-area curves for Tambito, calculated by separating out the quadrants into 

increasingly sized plots. 
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As can be seen in Figure 47, the trend of species accumulation appears to continue 

beyond the 25m x 25m mark, with little evidence of saturation for any plot.  Only plot 

9 shows some level of saturation, with just 3 new species being found in the final 

225m
2
 of the plot.  Given the extremely high levels of diversity present in Tambito, 

and the reported low densities in tropical tree species (Pitman, 2000), it is expected 

that 625m
2
 of forest (one plot) will not be particularly representative of the total alpha 

diversity.  Therefore it is impossible to conclude that species are restricted in their 

distributions to the extent found in the plot data (69.4% of species restricted to one 

single plot), and this is in part attributable to the small plot-sizes used in the study. 

4.2.1.2.2 Single-variate analysis of quantitative environmental variables 
 

In order to understand the interaction of environment on composition, similarity 

matrices and statistical analyses using the Mantel test are used.  These tests compare 

between-plot compositional similarity, in this case measured with the Jaccard 

coefficient and presented in a matrix, with environmental “distance” between the 

plots, also represented as a similarity (or in this case the inverse – a dissimilarity) 

matrix.  Figure 48 shows scattergrams of compositional similarity against geographic 

or environment distance for each plot pair (thus 45 points in total).  Trendlines are 

displayed, including the coefficient of correlation.  Table 13 then displays the results 

of the Mantel tests, including the Mantel coefficient, and the one-tailed p-value for 

10,000 random permutations. 
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Figure 48 Scatterplots for plot-pairs of compositional similarity (measured with the Jaccard 

coefficient) and environmental distance (in this case the difference, i.e. dissimilarity) for 

Tambito. 

 

Variable Mantel Test One-tailed p-value Correlation

Distance -0.39 0.038 Significant

Altitude -0.60 0.000 Significant

Eastness -0.16 0.220 Not-significant

Nothness 0.28 0.088 Not-significant

Curvature -0.09 0.341 Not-significant

Slope -0.39 0.003 Significant

Slope Position -0.38 0.004 Significant

Solar Radiation -0.26 0.063 Not-significant

Toposcale -0.32 0.046 Significant

TopModel 0.37 0.032 Significant  

Table 13 Summary results of compositional similarity analysis with distance and 

environmental variables, using Mantel tests and a one-tailed Pearson for Tambito.  Note that 

compositional similarity was compared with environmental dissimilarity (difference), hence 

negative values in most cases.  The northness variable produces very different results due to 

the heavily skewed distribution of plots in strongly northward and strongly southward facing 

slopes. 

 

The Mantel tests indicate significant correlation between species composition and 

topography for six of the ten variables analysed.  The highest correlation is for 

elevation, with slope, distance, slope position and toposcale also having significant 
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correlations to the 95% significance level.  The topmodel variable also shows 

significant correlation, but in the inverse direction (i.e. the greater the compositional 

difference the more similar the Topmodel values).  Least significant variables were 

aspect related derivatives (northness and eastness) and slope profile curvature. 

There are many data points with low degrees of compositional similarity, but also low 

differences in their topographic conditions, indicating that the variable is not entirely 

responsible for compositional similarity, but that other factors are at play.  However, 

there are no data points compositionally very similar and environmentally highly 

different. 

 

Interpreting the results in more depth, it is difficult to ascertain the degree to which 

distance is important over the other factors, as distance itself correlates relatively 

closely with elevational difference (R2 = 0.31, p < 0.0001, n = 45).  For this reason a 

partial Mantel test is performed, using species composition, elevational difference and 

geographic distance as the third variable.  This test concludes that the direct 

relationship between distance and species composition is in fact spurious (Pearson = -

0.1, p = 0.345, n = 45), and only significant due to the co-linearity with elevational 

difference.    

 

Similarly, partial Mantel tests performed on each of the correlating variables (slope, 

slope position, toposcale and topmodel) using elevation as the third distance variable 

show that none correlate significantly independent of the co-linearity with elevation 

(Table 14).  TopModel is the closest to correlating, with a Mantel statistic of 0.32 

(narrowly outside the 95% confidence limit, p = 0.052, n = 45), but still negatively 

(i.e. greater compositional similarity between plots with greater Topmodel difference).  
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No plausible explanation can be provided as to the processes behind such a 

relationship.  

 

Variable A Variable B
Partial 

Variable C

Correlation 

(A,B)

Correlation 

(B,C)

Correlation 

(A,C)

Correlation 

(A,B) | C
p-value

Compositional similarity Elevation Distance -0.60 0.56 -0.39 -0.60 0.00

Compositional similarity Slope Elevation -0.32 0.56 -0.60 0.03 0.47

Compositional similarity Slope Position Elevation -0.39 0.63 -0.60 -0.04 0.45

Compositional similarity Toposcale Elevation -0.38 0.65 -0.60 0.01 0.47

Compositional similarity TopModel Elevation 0.37 -0.21 -0.60 0.32 0.05  

Table 14 Revised Mantel statistics for correlating variables with compositional similarity in 

Tambito, applying partial Mantel tests to detect spurious correlations derived from co-

linearity between variables. 

 

Evidence of habitat associations with elevation is not a new result for tropical 

ecology, with numerous examples of species distribution restrictions to elevational 

zones (Vasquez and Givnish, 1998).  However, this analysis has shown a lack of 

habitat association in composition in many of the other variables.  The analysis 

presented here indicates that habitat association in tropical tree species composition in 

Tambito is restricted to broad scale factors (temperature gradients for example), rather 

than local conditions (local slope, curvature, solar radiation receipt etc.), which may 

still exist but not in a way that is evidenced in our data. 

 

4.2.1.2.3 Multi-variate analysis of quantitative environmental variables 
 

Having identified that elevation alone accounts for a large amount of compositional 

difference, but that other variables present at least some influence on composition, a 

multi-variate analysis is performed as a final step in this analysis.  Agglomerative 

Hierarchical Clustering (AHC) is performed using Ward’s Method (using XLStat Pro) 
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to produce a dendrogram of plot environmental conditions dissimilarity (Figure 49) 

and an associated dissimilarity matrix.  The dissimilarity matrix is then compared 

with the compositional similarity matrix (Jaccard Index) using the Mantel statistic.  

When all 9 environmental variables are used (geographic distance was excluded), the 

correlation is insignificant at the 95% significance level, though a weak correlation is 

evident (Mantel R = -0.257, p = 0.07).  When the multi-variate analysis is restricted to 

only those factors already found to be significant (elevation, slope, slope position, 

toposcale and topmodel), the correlation improves and becomes highly significant to 

the 99% confidence limit (Mantel R = -0.393, p = 0.006).  This is still not as high as 

the correlation found in the partial Mantel test of elevation (Mantel R = -0.60, p = 

<0.000), indicating that in reality elevation (and/or distance) are the best predictors of 

composition (in this case explaining some 36% of compositional variability).  

Likewise, when multiple stepwise linear regression is applied to the same data, only 

elevational difference is selected as an explanatory factor, with no other variable 

explaining more variability in composition with the p-value limit set to 0.10.  If 

elevation alone explains 36% of the variability, clearly other factors are important 

which are not measured in this study. 
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Figure 49 Multi-variate clustering of plots based on all 9 environmental and topographic 

variables 

 

4.2.1.2.4 Analysis of categorical environmental variables 
 

Mantel tests were only possible for continuous variables, hence the landscape 

classifications (feature, network feature and topoclass) were not used in these 

analyses.  The degree to which composition is controlled by these landscape 

classifications is explored using simple tables showing the number of species 

restricted to specific classes for each of the three variables (Table 15, Table 16, and 

Table 17).  The number of species found to be restricted to a single class is shown.  

However, many of these species may have been found only in one plot, making it 

inconclusive whether they are restricted by landscape classification, or are simply rare 

and have only been captured by one single plot in this study.  For this reason, the 

analysis is also performed only for the 83 species found in more than a single plot.  
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Feature No. Plots

No. Species 

Restricted to 

feature

No. species restricted to 

feature only for species 

distributed in more than 

1 plot
Planar 2 163 24

Ridge 7 26 1

Channel 1 24 0

Total 213 25  

Table 15 Number of species associated to specific classes in the “Feature” classification for 

Tambito. 

 

Network Feature No. Plots

No. Species 

Restricted to 

feature

No. Species Restricted 

to feature for species 

distributed in more than 

1 plot
Planar 6 141 21

Ridge 4 72 4

Channel 0 0 0

Total 213 25  

Table 16 Number of species associated to specific classes in the “Network Feature” 

classification for Tambito. 

 

Topoclass No. Plots

No. Species 

Restricted to 

feature

No. Species Restricted 

to feature for species 

distributed in more than 

1 plot
Slope 5 97 11

Toe Slope 2 35 1

Ridge 3 74 6

Total 206 18  

Table 17 Number of species associated to specific classes in the “topoclass” classification for 

Tambito. 

 

For all three variables a large proportion of species were restricted to one single 

landscape class (>76%), but this is more an indication of the fact that 69% of species 

were only encountered in a single plot.  It is impossible to separate out landscape class 
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restriction from low density in these cases.  More indicative of habitat association is 

the proportion of the 83 species found in more than one plot that are restricted to a 

single landscape class.  For this the “feature” classification and the “network feature” 

classification show the highest levels of habitat association (30% of the 83 species), 

with the “topoclass” classification showing 22% habitat association.  In none of the 

landscape classes is there a family, which exhibits abnormally higher levels of habitat 

association.   

 

However these results must be taken with caution, as the few number of data points 

poorly cover all landscape classes (for example only 1 plot in a channel in the feature 

classification, no channels in the network feature classification, and no peaks at all in 

any classification system).  Perhaps a clearer way of looking at these results is to note 

that 70% of the broadly distributed species (i.e. those found in more than 1 plot) were 

found in different landscape classes, indicating that these terrain derivatives have little 

explanatory power in terms of composition in Tambito.  In any case, this analysis is 

significantly weakened by the lack of data points, and more plots would greatly 

enhance the validity of this conclusion. 

 

4.2.2 Diversity 

 

4.2.2.1.1 General discussion 
 

The plot diversity data shows significant between-site variation in diversity in 

Tambito (Table 18) with species richness varying between 30 and 52 species.  On 

average there were 22 families per plot (ranging from 18 to 27), and 35 genera 

(ranging from 25 to 46).  Prior to discussing in detail the diversity between plots using 
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different indices, the Renyi diversity plots (Figure 72) help in the interpretation of 

diversity variation between plots. 

 

Plot
No. 

Individuals
No. Families No. Genera No. Species

No. 

Endemic 

Species

Simpson's Shannon's Margalef Menhinick
Berger-

Parker

1 97 21 34 44 17 0.96 3.45 9.40 4.47 0.12

2 107 24 33 42 16 0.97 3.44 8.77 4.06 0.11

3 118 23 31 35 11 0.93 3.05 7.13 3.22 0.20

4 137 22 34 43 21 0.95 3.31 8.54 3.67 0.16

5 112 19 35 37 23 0.93 3.04 7.63 3.50 0.19

6 87 18 37 40 8 0.97 3.44 8.73 4.29 0.09

7 176 20 40 45 29 0.94 3.24 8.51 3.39 0.16

8 106 28 46 52 26 0.98 3.68 10.94 5.05 0.10

9 75 19 25 30 13 0.96 3.16 6.72 3.46 0.12

10 93 27 34 49 24 0.98 3.64 10.59 5.08 0.08  

Table 18 Richness and diversity of plots in Tambito 
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Figure 50 The Renyi scaleable diversity index for Tambito, indicating to what extent plot 
diversities can be universally compared. 

 

Plots 8 and 10 are the most diverse, with greater richness and evenness in plot 8, but 

also a higher level of dominance of a single species (Berger-Parker).  Although plot 9 

has the lowest species richness, plot 5 has the lower “diversity” (Shannon’s and 

Simpson’s), and also high levels of dominance of a single species (along with plot 3).  

This simple comparison merely shows that diversity is not homogenously distributed 
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around the catchment, and that a great deal of variation occurs in species richness, 

diversity and dominance.  The many shapes of the Renyi plots in Figure 72 also show 

that the structure of diversity is also very different between plots (i.e. non-comparable 

levels of evenness vs richness).  These differences are later found to be important. 

 

4.2.2.1.2 Single-variate analysis of quantitative environmental variables 
 

Taking this analysis forward by comparing the diversity with the environmental 

variables, Table 19 presents the conditions at each plot, and Table 20 shows the 

correlation coefficients (and respective p-values) between plot diversity and the 

environmental variables.  In this case only continuous variables are used in the 

correlation.  Later in the chapter the categorical landscape features are compared with 

diversity. 

 

Plot Eastness Northness Feature
Network 

Feature

Mean 

Curvature

Slope 

(degrees)

Slope 

Position

Solar 

Radiation
Toposcale Topoclass Topmodel

1 -0.43 0.90 Planar Planar -0.13 32.38 54 8434 -12.46 Slope 7.59

2 -0.43 0.90 Ridge Planar 0.80 46.38 48 7398 51.31 Slope 8.00

3 -0.64 -0.77 Ridge Ridge -1.33 50.07 13 8054 -133.38 Toe Slope 7.36

4 -0.56 0.83 Ridge Ridge 0.37 13.46 78 9419 42.00 Slope 8.97

5 0.76 0.65 Ridge Ridge -0.78 43.84 27 8621 -129.46 Toe Slope 8.27

6 0.41 -0.91 Planar Planar -0.07 36.43 45 8354 3.23 Slope 9.38

7 -0.40 0.92 Ridge Planar 0.67 14.10 98 9357 104.00 Ridge 7.82

8 -0.09 1.00 Ridge Planar 1.33 20.43 98 8998 153.23 Ridge 8.12

9 -0.54 0.84 Ridge Ridge 0.82 17.46 96 9289 119.77 Ridge 8.29

10 -0.11 -0.99 Channel Planar 0.38 40.67 33 7706 22.54 Slope 8.79  

Table 19 Environmental conditions at each plot in Tambito, derived from the terrain 

derivatives. 

Pearson's Correlation 

Coefficient
Elevation Eastness Northness Curvature Slope

Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Family Richness -0.08 -0.24 -0.07 0.36 0.11 0.00 -0.34 -0.14 0.27

Genera Richness 0.22 0.33 0.15 0.33 -0.22 0.28 0.16 0.06 0.30

Species Richness 0.22 0.05 0.06 0.47 -0.18 0.22 -0.09 0.11 0.39

Endemic Species 0.31 0.08 0.43 0.41 -0.41 0.40 0.33 -0.11 0.34

Simpson's 0.28 -0.04 -0.07 0.70 -0.19 0.31 -0.20 0.45 0.65

Shannon's 0.19 0.01 -0.07 0.62 -0.12 0.23 -0.25 0.32 0.55

Margalef 0.09 0.12 -0.04 0.49 -0.08 0.15 -0.21 0.20 0.39

Menhinick -0.07 0.20 -0.17 0.45 0.05 0.04 -0.33 0.29 0.35

Berger-Parker -0.18 -0.10 0.17 -0.62 0.07 -0.21 0.29 -0.49 -0.56  
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p-value Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Family Richness 0.82 0.50 0.85 0.31 0.76 0.99 0.33 0.70 0.45

Genera Richness 0.54 0.35 0.69 0.36 0.54 0.43 0.66 0.88 0.41

Species Richness 0.55 0.88 0.86 0.17 0.62 0.55 0.81 0.77 0.26

Endemic Species 0.39 0.82 0.22 0.24 0.24 0.25 0.35 0.75 0.34

Simpson's 0.44 0.91 0.86 0.03 0.60 0.38 0.58 0.20 0.04

Shannon's 0.60 0.97 0.85 0.05 0.74 0.53 0.49 0.37 0.10

Margalef 0.80 0.73 0.91 0.15 0.83 0.69 0.56 0.58 0.26

Menhinick 0.84 0.59 0.64 0.20 0.89 0.91 0.35 0.41 0.32

Berger-Parker 0.63 0.79 0.63 0.05 0.84 0.57 0.42 0.15 0.09  

Table 20 Pearson’s correlation coefficient and the two-tailed p-value between richness and 

diversity in each plot and the environmental variables for Tambito. 

 

On the whole the plots cover a broad range of environmental conditions, except for 

the northness variable where the plots are located only strongly north- or strongly 

south- facing slopes. 

 

Taking elevation as the primary variable (due to its strong co-linearity with many 

climatic factors), there is no apparent linear relationship with any measure of richness 

or diversity.  However, examining the scatterplot of the data points there is some 

evidence of a non-linear relationship, with the greatest diversity and lowest levels of 

Berger-Parker dominance being found in mid-elevations (Figure 51).  Applying a 

polynomial trendline to the data points, we find that Simpson’s diversity index 

correlates significantly (Simpson’s = -0.0000002 Elevation2 + 0.0006 Elevation + 

0.44, R2 = 0.70, p = 0.02), with a peak in diversity at 1850m.  Similarly, Shannon’s 

diversity peaks at 1800m (R
2
 = 0.46) and Berger-Parker dominance is also lowest at 

1800m (R2 = 0.54).  When richness is examined (family, genus, species and 

endemics) neither linear nor polynomial relationships are evident, and the R
2
 are less 

than 0.1 in all cases (Figure 52). 
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Diversity - Elevation relations for Tambito using 

different diversity measures
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Figure 51 Relationship between plot diversity and elevation in Tambito. 
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Figure 52 Relationship between plot richness and elevation in Tambito 

 

The mid-elevation diversity peak is further evident in the data when the plots are 

separated into lower-, mid- and upper- elevation bands, and the average diversity and 
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richness calculated for the plots within each elevational band (Table 21).  Though the 

validity of this analysis is somewhat limited by the few plots found in low and upper 

elevations and the uneven distribution of plots in each elevational band, there are 

some clear patterns.  

 

No. Individuals No. Families No. Genera No. Species
No. Endemic 

Species
Simpson's Shannon's Margalef Menhinick Berger-Parker

Lower Elevation Average (1000 - 

1500) (2 plots)
115 (3.7) 21 (13.5) 33 (8.6) 36 (3.9) 17 (49.9) 0.93 (0.0) 3.04 (0.1) 7.38 (4.8) 3.36 (5.8) 0.20 (5.7)

Mid Elevation Average (1500 - 

1900) (5 plots)
98 (11.2) 23 (16.1) 36.8 (13.3) 45 (13.6) 18.2 (37.5) 0.97 (2.2) 3.53 (7.3) 9.69 (14.6) 4.59 (15.5) 0.10 (47.9)

Upper Elevation Average (1900 - 

2300) (3 plots)
129 (39.4) 20 (7.5) 33 (22.9) 39 (20.7) 21 (38.1) 0.95 (0.8) 3.24 (2.3) 7.92 (13.2) 3.51 (4.2) 0.15 (16.7)  

Table 21 Average richness and diversity of plots when separated into three elevational bands.  
In brackets the respective coefficient of variation. 

 

Richness and diversity in all but one case (number of endemics) is greater in the mid-

elevations, but there is also evidence that there is greater variability in diversity and 

richness in the mid- elevations, especially across different richness measures.  If this 

pattern is not simply a result of sampling bias, a number of interpretations could be 

offered, the theoretical background of which are discussed in Section 2.3.1 of the 

literature review.  Partial Mantel tests have already indicated that the compositional 

similarity of the plots is strongly controlled by difference in elevation, indicating that 

species have some habitat associations related to elevation.  Elevation per se is 

meaningless in understanding the precise adaptations that species may have to create 

that association, but it is likely that temperature is an important factor. 

 

One potential interpretation is that mid-elevations have the greatest heterogeneity in 

elevation (see Chapter 6, also discussed to be of theoretical importance in Lundholm 

and Larson (2003)), especially in slope, northness and toposcale, and so there is likely 

to be a greater diversity in topographically induced micro-climates.  If indeed 
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temperature is an important factor in controlling species composition, a diversity of 

micro-climates may duly increase species diversity. 

 

Alternatively, the elevational habitat association in composition identified could mean 

that the mid-elevations contain the most overlaps of elevationally controlled niches 

(the mid-domain effect), and thus potentially have the greatest species richness 

(Colwell and Lees, 2000).  More specifically, the mid-elevations are a dynamic zone 

where species with adaptations to lower temperatures (higher elevations) occur in low 

abundances, along with species with adaptations to higher temperatures (low 

elevations).  This overlap of species adaptations may create high diversity and low 

dominance in the mid-elevations. 

 

To illustrate this idea based on Tambito data, a simple exercise is used.  Using Excel, 

species abundances across the elevational gradient are modeled based on normal 

distributions, calculated based on the mean elevation where the species are found and 

the degree of adaptability the species has (amplitude).  The amplitude is expressed as 

a standard deviation, with species adapted to very specific elevations having a low 

standard deviation, and species with wide ranging elevational distribution having high 

standard deviations.  The model then positions 30 hypothetical species along the 

elevational gradient with mean adaptations at random points in the gradient, with 

random standard deviations, and calculates for each elevational band the Simpson’s 

diversity index based on abundances for each species, and the Berger-Parker 

dominance index for the most dominant species.  Rapoport’s rule (Stevens, 1992) is 

not applied to this analysis. 
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An example result from this model is shown in Figure 53, where 30 very differently 

adapted species occur across the elevational gradient.  Despite some points of very 

low diversity across the gradient which coincide with high dominance of a single 

species, the general trend is one of less diversity in the extremes, and high diversity at 

mid-elevations.  When 50 random runs are made, and the average diversity per 50m 

elevational interval is calculated this pattern becomes very clear (Figure 54).  As can 

be seen, a clear peak in diversity occurs in mid-elevations (peaking at 1750m), with 

the corresponding drop in Berger-Parker dominance.  The model used here is highly 

simplified and fails to take into account many important factors (competition and 

resources for example).  However, it is aimed at providing an example of one possible 

mechanism that may create a mid-elevation diversity peak, whereby the upper- and 

lower- extremes of a gradient potentially have less available species to generate high 

diversity.  This is in simple terms an edge effect, and only works under the 

assumption that there are no other forest species above or below the elevational limits 

of the analysis. 

 

Modelled Abundance and diversity of 30 hypothetical 

species along an elevational gradient
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Figure 53 Example of niche model, with 30 hypothetical species with randomly positioned 

ranges along the elevational gradient.  The thick grey line represents the respective Simpson’s 

Diversity Index and the black line the Berger-Parker dominance. 
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Figure 54 Average pattern of diversity-elevation relations in the simple niche model for 

Tambito. 

 

Application of this concept to Tambito is complicated somewhat by the fact that the 

reserve is only a sub-set of the full elevational gradient that stretches from the Pacific 

(0m) to the high Andes (2,800m within the Tambito region).  However, there is little 

forest cover directly below the reserve, and little area above 2800m.  There is 

contiguous forest down to the Pacific, but this is some 30km to the north of Tambito, 

and if we assume low distances of seed dispersal it is fair to say that Tambito is cut-

off from the lowlands to the Pacific.  Therefore, strictly speaking this analysis is 

covering the entire forested elevational gradient.  In other words, it is feasible that 
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low-elevation edge effects on the niche model discussed above are valid, and may 

explain the low diversity found in the lower plots. 

 

An important factor which the above model fails to account for is space itself, also a 

variable identified as significant in generating mid-elevation peaks in species richness 

(Whittaker and Niering, 1975; Rahbek, 1997; Sanders, 2002).  Having seen the steep 

accumulation of species with increasing area (Figure 47), area could be seen as a 

resource itself (Schoener, 1976), and one which generates higher richness through 

greater probability of speciation and a larger potential seed pool.  Given that elevation 

is a limiting factor in terms of species range, and assuming that area is a resource, it is 

important to take into account the surface area of land in elevational bands.  In 

Tambito, mid-elevations (in this case 1600m – 2300m) have the greatest surface area 

(Figure 55).   
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Figure 55 Total area of land across the elevational gradient for the twin-catchments of 

Tambito, expressed as the frequency of 25m (625m2) cells per 100m elevational band. 
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If we assume that elevational bands with greater surface area are also likely to harbor 

more species, then this further exaggerates the mid-elevational diversity peak in the 

niche model presented earlier.  Furthermore, this area concept also plays an important 

role in explaining documented patterns of monotonic diversity loss with elevation in 

long gradients from lowlands to highlands (Terborgh, 1977; Vasquez and Givnish, 

1998; Givnish, 1999; Kessler et al., 2001; Grytnes, 2003).  Taking a cross-section 

across Colombia between 2oN and 3oN, 72% of the land surface is below 600m 

elevation (Figure 56).  If the niche model is then adapted to weigh the positioning of 

the 30 species according to land-surface area (i.e. more species located in low 

elevations), the edge effect shown in Figure 53 whereby low-elevations have less 

diversity (and greater dominance) is cancelled out by area, and the trend becomes one 

of monotonic loss of diversity with elevation (Figure 57).  Whilst this is an obvious 

observation to make (if you place more species in an elevational band then richness is 

expected to be higher), it illustrates very clearly the balance between the edge effect 

and land-surface area, and provides one mechanism for explaining the contrasting 

results of diversity variation across elevational gradients (discussed at length in 

Rahbek, 1997).  In simple terms, assuming that greater area increases the potential 

species pool, studies with plots located in continuous forest cover from lowlands to 

highlands will find a gradual loss in diversity with elevation, whilst isolated studies in 

mid-elevation catchments (like Tambito) are likely to find mid-elevation peaks in 

diversity (as a result of both edge effects and greater mid-elevation land-surface area 

in these kinds of catchments). 
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Figure 56 Land-surface area across the elevational gradient for a swath across Colombia 

between 2oN and 3oN. 
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Figure 57 Niche model adjusted for the area concept, with more species located in elevations 
with greater land surface area, and the elevational gradient extended to range form 0m to 

3000m. 

 

Having examined the possible reasons for the mid-elevation peak in diversity, it is 

also important to look into the high variability in diversity and richness that was found 

in mid-elevations (high coefficients of variability in Table 21).  As shown later in this 



 184 

thesis (Chapter 6), environmental heterogeneity also peaks at mid- elevations, with 

the greatest heterogeneity coinciding exactly at the same point where the greatest 

diversity is found (1850m).  This may explain the greater variability in diversity and 

richness in mid-elevations.  Rather than discuss and speculate further as to the driving 

factors behind this mid-elevation peak in diversity (and its variation), this is left to the 

conclusions where further evidence from TBS is also available for discussion. 

 

Looking at the other environmental variables, few correlations are found, with no 

visible evidence of non-linear relationships either.  Only mean curvature and 

toposcale (both essentially measuring curvature) showed significant relationships with 

Simpson’s index (p<0.05), where the greatest diversity was found in positively 

curving convex slopes (Figure 58).  However, the regression is not entirely 

convincing, essentially showing that the two least diverse plots happen to be in 

concave slopes, whilst the other plots have convex slopes and seemingly show little 

pattern of increased diversity with higher curvature. 
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Figure 58 Significant relationships between Simpson’s diversity and mean curvature (left) 

and toposcale (right) for Tambito. 

Upon close examination of the data, plot 9 regularly appears as a strong outlier in 

many relationships, and omission of this plot actually renders a number of highly 
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significant correlations (Table 12).  Toposcale, mean curvature and slope position all 

produce significant correlations with species and genus richness amongst other 

diversity measures.  Strongest is the relationship between species richness and 

curvature and toposcale (Figure 59). 

 

Pearson's Correlation 

Coefficient
Elevation Eastness Northness Curvature Slope

Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Family Richness 0.00 -0.36 0.00 0.49 0.00 0.16 -0.26 -0.14 0.43

Genera Richness 0.52 0.23 0.37 0.66 -0.61 0.77 0.54 0.09 0.72

Species Richness 0.51 -0.14 0.26 0.86 -0.55 0.67 0.19 0.15 0.85

Endemic Species 0.42 0.01 0.52 0.53 -0.57 0.60 0.49 -0.11 0.50

Simpson's 0.27 -0.02 -0.08 0.71 -0.18 0.32 -0.24 0.45 0.67

Shannon's 0.29 -0.06 -0.01 0.76 -0.24 0.40 -0.16 0.34 0.73

Margalef 0.27 -0.01 0.08 0.75 -0.32 0.45 -0.03 0.24 0.72

Menhinick 0.00 0.13 -0.12 0.57 -0.06 0.18 -0.26 0.31 0.50

Berger-Parker -0.15 -0.13 0.20 -0.62 0.03 -0.17 0.36 -0.49 -0.56  

Table 22 Pearson correlation coefficients between plot diversity and richness and 

environmental variables when plot 9 is omitted from the analysis.  Significant correlations 

(p<0.05) are highlighted in grey. 
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Figure 59 Relationship between species richness and mean curvature (left) and toposcale 

(right) when plot 9 is omitted from the analysis.  The linear relationship and R2 displayed 

corresponds to the result without plot 9, though the point is shown in the graph for 

information. 

 

Omitting plot 9 from the analysis as an outlier is justified based on the conditions 

experienced in the field.  Plot 9 is positioned almost directly on a major ridge (and at 
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the catchment boundary), it was almost flat (slope approximated in the field at 9 

degrees) and certainly not convex in terms of curvature (at small spatial scales, though 

the larger-scale curvature is definitely convex).  The widening of the ridge and the 

small flat and sheltered region in which the plot is located is not identified by the 

DEM, and therefore the curvature and toposcale values derived from the DEM are not 

actually representative of the reality found in the field.  It is not however justifiable 

omitting plot 9 from the slope position regression because the slope position is 

accurately identified as 96, i.e. very close to the ridge. 

 

Having justified the omission of plot 9 from the curvature and toposcale calculations, 

there is a very strong relationship which has some interesting implications.  

Furthermore, these patterns are independent of the elevational relationships already 

discussed.  When correlation coefficients are applied to the data for mean curvature at 

each individual scale (windows of 3, 5, 7, 9, 11, 13 and 15 cells), in all cases, 

including or omitting plot 9, the highest degree of correlation occurs at mean 

curvature with a window size of 7 or 9 cells, i.e. a mid-scale measure of mean 

curvature.  The lower correlation at small window sizes may be due to deficiencies in 

DEM quality at the micro-scale rather than have biological significance, but the effect 

of curvature on diversity and richness is clearly lower for broader scale measures of 

curvature (i.e. high window sizes). 
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Pearson 

Richness

Pearson 

Diversity

Pearson 

Richness

Pearson 

Diversity

3 0.41 0.45 0.64 0.44

5 0.55 0.63 0.80 0.62

7 0.58 0.69 0.87 0.69

9 0.57 0.72 0.89 0.73

11 0.51 0.72 0.88 0.73

13 0.44 0.70 0.87 0.72

15 0.37 0.67 0.84 0.70

All Plots Omitting Plot 9Mean 

Curvature 

Scale

 

Table 23 Pearson correlation coefficients for Simpson’s diversity and species richness 

correlations with mean curvature at different scales. 

 

The fact that there is greater diversity on convex slopes could be explained by two 

possible reasons.  One is the topographic exposure, particularly important in cloud 

forests due to potentially higher levels of cloud presence in exposed regions.  

Presence of cloud at the canopy provides an extra input of water to the system through 

cloud interception, which is not necessarily an insignificant amount compared to 

water input from rainfall (Jarvis, 2000; Mulligan and Jarvis, submitted), but becomes 

significant in dry months, when cloud interception prevails despite low rainfall.  The 

water contained in clouds has also been found to be richer in nutrients, and so exposed 

sites may also be richer in nutrients though no studies have made direct measurements 

of this.  However, there is also an argument against this explanation.  Increased cloud 

interception due to exposure also reduces incoming light and temperature, 

encouraging waterlogging, and increases leaf wetting, thus constricting 

photosynthesis and respiration.  These conditions may favour only a handful of 

species better adapted to these conditions.  The likely effect might be one of high 

dominance and low richness. 
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The second possible reason regards access to light, whereby convex slopes potentially 

have greater light receipt surface area at the canopy level, but also greater probability 

of direct radiation reaching the ground surface through lateral penetration of the 

canopy.  The variety of angles from which light may be received by the canopy and 

the sub-canopies and understorey beneath provides a greater number of potential 

niches for different light-related adaptations.  This combination of greater surface area 

for light receipt per unit area of land, and the resultant diversity in light niches may 

generate species richness. 

 

There is insufficient data to ascertain which of the two reasons generates the higher 

diversity observed on convex slopes, though it may indeed be a combination of both 

factors. 

 

Having isolated this important correlation between richness and curvature, and 

equally the lack of clear correlation between diversity measures and curvature, this 

may shed further light on the mid-elevation diversity peaks that have been discussed 

earlier.  Statistically significant mid-elevation diversity peaks were found using 

diversity measures, but richness measures failed to show the same relationship.  Given 

the strong correlation with curvature, this co-variable may be creating a more 

complex and variable pattern in richness with elevation, and this effect can be isolated 

by fitting a polynomial mid-elevation peak trendline to the richness data, and 

comparing the residual in richness with the curvature for each plot (Figure 60). 
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Residual in richness (assuming polynomial mid-

elevation diversity peak) against the mean 

curvature
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Figure 60 Residual in richness (with respect to a polynomial mid-elevational peak trendline) 

compared with mean curvature, with the purpose of explaining the variation in richness across 

the elevational gradient.  The residual is calculated based on the actual richness (plot 

measured) minus the modeled richness (polynomial trendline).  Plot 9 is excluded from the 

analysis for reasons explained earlier. 

 

The relationship between richness residual and curvature is not statistically significant 

(Pearson = 0.49, p-value 0.18).  A weak trend is evident, whereby plots with a 

positive residual (i.e. greater diversity than expected with the polynomial function) 

also have convex curvature, and those with a negative residual have concave 

curvature.  However, this is not significant and it cannot be concluded that richness is 

generated through a simple combination of linearly increasing richness on convex 

slopes, and a polynomial peak in richness at mid-elevations.  Other processes appear 

to be at play, that are not evident in the data studied here. 

 

4.2.2.1.3 Multi-variate analysis of quantitative environmental variables 
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It is clear that elevation is important in explaining diversity, but equally curvature and 

some other factors appear to be important.  Analyses are therefore applied that take 

into account all variables at once to examine to what extent each variable contribute to 

explaining the variability in diversity.  For this, multiple stepwise regression is 

applied for Simpson’s Diversity and richness as the dependent variables, and all nine 

terrain derivatives as the independent variables.  For Simpson’s index, just two 

variables explain 71% of the variability in diversity (D = 0.0215 Mean Curvature – 

0.0114 Northness + 0.95, p = 0.01, n = 10).  Mean curvature explains 48% of the 

variability and northness explains a further 22% of the variability.  Applying this 

model to the topographic data produces a clear relationship between modeled and 

measured diversity (Figure 61), and interestingly the modeled diversity captures the 

mid-elevation peak already observed (Figure 51).  Curvature has already been shown 

to be important in defining diversity, and some possible reasons for this have also 

been presented.  However, northness alone shows little correlation with diversity 

when treated alone (Pearson = -0.07), but in combination with curvature does explain 

some of the variability.  This further suggests that solar radiation is indeed important, 

northness being important in defining the time of year of maximum radiation receipt 

and the degree of annual fluctuation in radiation receipt.  The correlation and the 

elevational gradient in modeled diversity shown in Figure 61 is expected as the same 

data went into the model as it is compared against, and this result would be greatly 

enhanced by a split-sample regression and validation, but with just 10 plots to work 

with this was impossible. 
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Figure 61 Modelled diversity (calculated using the multiple stepwise regression) correlated 

against measured diversity (left), and the variation in modeled diversity across the elevational 

gradient. 

 

When species richness is examined in the multiple stepwise regression, no significant 

multiple regressions are found on top of the relationships already discussed (Figure 

59, for example), both including and excluding plot 9.  This in itself is interesting, as 

strong correlations are found with diversity but few patterns in richness.  The Renyi 

diversity plots have already shown that richness is non-comparable with diversity in 

most cases, but are to some degree correlated (Pearson = 0.54, p = 0.10, n = 10).  

These results do show that different interactions occur between environment and 

richness and environment and diversity, with the topography and environment 

variables measured in this study affecting evenness/dominance more than they affect 

absolute species richness. 

 

4.2.2.1.4 Analysis of categorical environmental variables 
 

It would be beneficial to also use the categorical variables to examine possible 

relationships between the diversity measured in the field and the categorical landscape 

feature variables.  However, there is not a technique available that provides a 
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statistically sound results given the type of data and number of data points.  

Spearman’s rank test is not valid as the landscape features are nominal and not ordinal 

categories (whilst you can order some variables like valley -> slope, it is questionable 

as to where a pass might fit in the order).  Alternatively, chi-square contingency tests 

could be applied, but the number of data points (10) means that some boxes in the 

contingency table will have missing values, invalidating the result.  For these reasons 

the categorical data are not statistically analysed in terms of relationships with 

diversity.   

 

The multi-scale fuzzy feature classification does however provide a quantitative 

variable of ridge, channel and planar membership for each plot.  Correlations between 

richness and diversity measures and membership to channel, planar and ridge provide 

no clear pattern.  The fact that greater ridge membership does not necessarily mean 

greater diversity provides evidence that the categorical variables provide little 

explanation of diversity patterns.  

 

Greater depth and detail as to the possible explanation of these patterns are left to the 

conclusions, benefiting from results and discussion from the TBS data. 

 

4.3 Tiputini Biodiversity Station 
 

Having completed the analysis of diversity and compositional patterns in Tambito, the 

data from TBS is now examined in much the same way. 

 

4.3.1 Composition 
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4.3.1.1 General Site Species Composition 

 

The ten 25m x 25m plots established in TBS contained 937 individuals, of which 455 

different species were identified, distributed in 53 families and 181 genera.  Appendix 

5 contains a full list of species found in TBS.  Taxonomic identification was made to 

family level for 98.7% of species, to genus level for 76.6% of species, and to species 

level for 23.1% of species.  This significantly lower success rate in terms of species 

identification is due to the TBS plots having been established after Tambito, leaving 

less time for post field-work taxonomic identification in the herbarium.  As stated 

before, it is likely that some species as yet unidentified to genus level will be new 

genera for the plots, and thus the number of different genera is likely an 

underestimate.  Table 24 provides a summary of family composition in Tambito, with 

Figure 62 and Figure 63 showing the distribution of species and individuals within 

families. 
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Family No. Genera No. Individuals No. Species No. Plots

Anacardiaceae 4 6 6 5

Annonaceae 7 19 16 9

Apocynaceae 4 4 4 3

Aquifoliaceae 1 2 2 1

Araliaceae 1 4 2 3

Arecaceae 7 50 9 9

Bignoniaceae 3 7 4 4

Bixaceae 1 1 1 1

Bombacaceae 4 33 10 10

Boraginaceae 1 2 2 2

Burseraceae 3 22 16 9

Capparaceae 1 1 1 1

Caricaceae 1 2 1 2

Cecropiaceae 3 28 15 9

Celastraceae 1 2 2 2

Chrysobalanaceae 3 26 11 9

Clusiaceae 3 6 5 4

Dichapetalaceae 1 2 2 2

Ebenaceae 1 1 1 1

Elaeocarpaceae 1 10 6 6

Euphorbiaceae 14 24 17 9

Fabaceae 15 173 79 10

Flacourteaceae 9 13 12 8

Humiriaceae 1 2 2 2

Icacinaceae 1 2 2 2

Lauraceae 7 46 33 10

Lecythidaceae 4 22 9 8

Malpighiaceae 1 1 1 1

Melastomataceae 3 16 11 5

Meliaceae 4 42 16 7

Menispermaceae 1 3 2 2

Moraceae 12 111 30 10

Myristicaceae 4 22 14 10

Myrsinaceae 3 6 3 4

Myrtaceae 3 25 24 9

Nyctaginaceae 1 10 3 4

Ochnaceae 1 2 1 2

Olacaceae 1 4 3 3

Piperaceae 1 3 1 1

Polygonaceae 2 8 3 5

Proteaceae 1 1 1 1

Rubiaceae 13 38 24 9

Sapindaceae 2 4 4 3

Sapotaceae 5 30 19 9

Simaroubaceae 1 1 1 1

Staphyliaceae 1 1 1 1

Sterculiaceae 3 7 4 2

Styracaceae 1 1 1 1

Theoprastinaceae 1 1 1 1

Tiliaceae 3 3 3 1

Ulmaceae 2 4 3 3

Violaceae 3 20 4 8

Vochysiaceae 2 3 2 2

Other 4 60 5 3

Total 181 937 455 AVG (4.6)  

Table 24 Summary of species composition in TBS 
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Figure 62 Distribution of species in families in TBS 

 

 

Figure 63 Distribution of individuals in families in TBS 

 

The most abundant families in terms of individuals are Fabaceae (173), Moraceae 

(111), Arecaceae (50), and Lauraceae (46), with Fabaceae also being the most species 

rich family (79 species), followed by Lauraceae (33), Moraceae (30) and Myrtaceae 

(24).  Fifty percent of all species are found in seven families, whilst 12 families 
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encountered had just one species present in the plots.  The most abundant species 

were Sorocea sp. (Moraceae) with 56 individuals found in just 3 plots, Browneopsis 

ucayalina Huber (Fabaceae) with 37 individuals in 6 plots, Rinorea viridifolia Rusby 

(Violaceae) with 32 individuals found in seven different plots, and Iriarthea deltoidea 

Ruiz & Pavon (Arecaceae) with 25 individuals distributed in seven different plots.  

Valencia et al. (2004) reports similar family level composition and dominance in 

these species in a nearby 25-Ha plot in Yasuni (approximately 30km from TBS).  The 

average abundance per species was just 2.1 individuals, and some 309 of the 455 

species (68%) having only one individual in the plots. 

 

The taxonomic identification for the TBS collections is less advanced than that of 

Tambito, and for this reason less species have been classified to date.  It is also 

possible that some collections currently identified as different species will be 

consolidated into the same species upon further study, so the total number of species 

may fall.  Nevertheless, the plots in TBS contain remarkable levels of diversity. 

 

4.3.1.2 Between-Plot Compositional Variability 

 

4.3.1.2.1 General discussion 
 

Five families were broadly distributed across all plots (Bombacaceae, Fabaceae, 

Lauraceae, Moraceae, and Myristicaceae), while 12 of the 53 families (22.6%) were 

found in only one plot.  On average a particular family is found in 4.1 plots.  At the 

species level, the most broadly distributed species were Brownea grandiceps 

(Fabaceae), Rinorea viridifolia, and Iriarthea deltoidea Ruiz & Pavon (Arecaceae) 
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which were found in seven plots, and Browneopsis ucayalina (Fabaceae) and Perebea 

sp. (Moraceae) which were found in six different plots.  Some 363 of the 455 species 

(79.8%) were found in only one plot, likely indicating that the 25m x 25m plots only 

capture a tiny sub-sample of the total diversity to be found in the region. 

 

This is strongly reflected in the species-area curves (Figure 64), where the trend of 

species accumulation with increasing area is practically linear in all plots.  This 

indicates that the plots are not saturating at a representative value of alpha diversity, 

and thus the plot richness and diversity is just a sub-sample of the likely alpha 

diversity in the region. 
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Figure 64 Species-area curves for TBS. 

 

4.3.1.2.2 Single-variate analysis of quantitative environmental variables 
 

As performed in Tambito, plot compositional similarity is compared with 

environmental difference using scattergrams and Mantel statistics.  This is done using 
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each DEM, so two sets of results are shown (for the TOPODEM Figure 65 and Table 

25, and for the SRTM DEM Figure 66 and Table 26).  The average elevation value for 

each plot was collected using GPS, rather than extracted from the DEM.  For this 

reason the same result is achieved regardless of the DEM used.  In addition to the 

terrain derivatives, distance from river was also used as an indicator of potential flood 

frequency, and also to a certain extent the age of forest.  Satellite images over the 

region show some evidence of past river courses, and indicate that river channels may 

migrate rapidly in the region.  An approximation of the speed of lateral river 

migration was made based on comparison of historic air photography and recent 

satellite imagery and approximated at 1-4m per year in flat areas (Mark Mulligan, 

personal communication).  Under this logic, it is more probable that regions far from 

the main Tiputini River contain older forest and soils. 
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Figure 65 Scatterplots for plot-pairs of compositional similarity (measured with the Jaccard 

coefficient) and environmental distance (in this case the difference, i.e. dissimilarity) derived 

from the TOPO DEM. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance -0.27 0.079 Not-significant

Distance from River -0.40 0.041 Significant

Altitude -0.05 0.408 Not-significant

Eastness 0.07 0.370 Not-significant

Northness -0.13 0.210 Not-significant

Curvature 0.09 0.376 Not-significant

Slope 0.09 0.374 Not-significant

Slope Position -0.31 0.017 Significant

Solar Radiation -0.11 0.248 Not-significant

Toposcale -0.04 0.400 Not-significant

TopModel 0.07 0.407 Not-significant  

Table 25 Summary results of compositional similarity analysis with distance and 

environmental variables derived from the TOPO DEM, using Mantel tests and a one-tailed 
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Pearson.  Note that compositional similarity was compared with environmental dissimilarity 

(difference), hence negative values indicate a positive causal relationship. 
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Figure 66 Scatterplots for plot-pairs of compositional similarity (measured with the Jaccard 

coefficient) and environmental distance (in this case the difference, i.e. dissimilarity) derived 

from the SRTM DEM. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance -0.27 0.092 Not-Significant

Distance from River -0.40 0.039 Significant

Altitude -0.05 0.379 Not-Significant

Eastness -0.16 0.219 Not-Significant

Northness -0.52 0.007 Significant

Curvature 0.08 0.312 Not-Significant

Slope 0.17 0.130 Not-Significant

Slope Position -0.24 0.067 Not-Significant

Solar Radiation 0.06 0.417 Not-Significant

Toposcale -0.50 0.010 Significant

TopModel -0.22 0.160 Not-Significant  

Table 26 Summary results of compositional similarity analysis with distance and 

environmental variables derived from the SRTM DEM, using Mantel tests and a one-tailed 
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Pearson.  Note that compositional similarity was compared with environmental dissimilarity 

(difference), hence negative values indicate a positive causal relationship. 

 

The Mantel tests for TBS show significant correlations (p<0.05) between environment 

and composition for distance to river, slope position for the TOPO DEM, and 

northness and toposcale for the SRTM DEM.  Given that no single variable correlates 

for more than one DEM makes the interpretation of these results problematic and very 

much dependent upon the data source (see for example the differences in DEM values 

in Section 3.7 in Chapter 3).  Out of 19 correlations between terrain derivatives and 

composition, four correlate to the 95% confidence limit.  At least one of these is 

expected in a random set of data. 

 

Applying partial Mantel tests on these correlating variables, using distance from river 

as the third variable indicates that the correlation with slope difference (TOPO DEM) 

is spurious, but the other two correlations hold (Table 27). 

 

Variable A Variable B
Partial 

Variable C

Correlation 

(A,B)

Correlation 

(B,C)

Correlation 

(A,C)

Correlation 

(A,B) | C
p-value

Compositional similarity Slope difference (TOPO) Distance -0.31 0.49 -0.40 -0.16 0.14

Compositional similarity Northness (Northness) Distance -0.48 0.29 -0.40 -0.44 0.02

Compositional similarity Toposcale (ASTER) Distance -0.47 0.17 -0.40 -0.45 0.01  

Table 27 Revised Mantel statistics for correlating variables with compositional similarity in 

TBS, applying partial Mantel tests to detect spurious correlations derived from co-linearity 

between variables and the distance from river. 

 

It is interesting to note that Euclidean distance between the plots does not correlate 

significantly (although a weak trend is evident), but that the difference in the distance 

to river does correlate.  This indicates that broadly-speaking the composition follows 
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a steady gradient from the river-bank to the more “inland” regions.  Interpreting this 

relation is complicated by a number of factors.  As already discussed, distance from 

river is in one sense an indicator of flooding frequency, along with elevation.  Regions 

close to the river are more likely to flood than regions of the same elevation further 

from the main river channel, although this generalization is complicated by the effect 

of the network of smaller channels (which during times of high flow become flooded 

themselves).  Though subjective and likely incomplete, an IKONOS image was used 

to identify the sub-channels within the TBS region (Mark Mulligan, personal 

communication).  The distance of each plot from any type of channel (including the 

River Tiputini itself) was calculated, and a Mantel test performed on the 

compositional similarity and the difference in distance from any of these channels 

(Figure 67). 
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Figure 67 Scatterplot of compositional similarity against the difference in distance from any 

river channel, using channels identified in an IKONOS image of TBS. 

 

No significant correlation was found between the distance from any river channel 

(large or small) and compositional similarity (Mantel statistic = -0.154, p = 0.25).  
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Furthermore, elevation does not correlate significantly with compositional similarity, 

leading to the conclusion that flooding frequency is not a plausible explanation for the 

significant correlation between distance from the main river and composition. 

 

In this case, the alternative explanation involves forest age, under the idea that the 

conditions and forest in those regions further away from the river are in fact “older”.  

This is plausible, as satellite imagery from the region shows past river courses in the 

form of oxbow lakes (Figure 68), as well as broader scale re-routing of rivers.  If the 

rivers migrate significantly (supported by Rasanen et al., 1986; Salo et al., 1986), it is 

probable that the regions closer to the river were more recently river channel than 

more distant regions. 

 

 

Figure 68 Example of the river migration present in the region, with many oxbow lakes 

forming where old meanders were cut off.  This image is of an area to the south of TBS, taken 

using LANDSAT TM imagery. 
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If this is the case, it is unlikely that the compositional pattern is brought about by 

successional processes, as the time frame involved in river migration is likely to have 

operated on a longer time-scale, though this cannot be completely excluded from the 

explanation.  However, other indirect and slower effects are likely to be more 

important.  Soils, for instance, are likely to be strongly affected by the time since the 

site was occupied by a river channel (Huston, 1994).  The river is likely to wash away 

many soil horizons, and subsequently deposit sediments.  Once the river moves away 

from the site, pedogenic processes will commence and the soil will slowly develop.  

This process of soil evolution will result in differing edaphic conditions (biological, 

chemical and physical) depending on the time elapsed since the original horizons 

were washed away by river flow.  Given that several studies have shown lowland 

tropical tree species to have edaphic preferences (for example Clark et al., 1998; 

Palmiotto et al., 2000; Phillips et al., 2003), the compositional similarity between sites 

with similar distances from the river may provide indirect evidence that edaphic 

conditions are important in defining species composition in TBS.  Unfortunately no 

soil data is available for testing this hypothesis, as this thesis is attempting to find 

readily measurable variables (or surrogates) for explaining the spatial variability in 

diversity. 

 

Distance to river was not the only variable that correlated with composition.  Table 27 

confirms that northness (SRTM) and toposcale (SRTM) correlate independently of 

distance from river. 

  

The significant correlation between the difference in northness (SRTM) and toposcale 

(SRTM) are only significant for the SRTM DEM, where the cell size limits the 



 207 

accuracy of the terrain characteristic, especially for toposcale.   The micro-scale 

topographic variation is not picked up by SRTM, meaning that the toposcale pixel 

value over the plot is unlikely to reflect the actual plot conditions.  The significance of 

northness in TBS is somewhat weak, with the low slopes unlikely to produce much 

variation in solar radiation around the study site, and the dominant wind direction 

form the south-east and east means that northness is not the strongest indicator of 

exposure to wind.  Furthermore, the correlation with northness shows no correlation at 

all for other DEMs, providing little confidence in the significance of this result. 

 

4.3.1.2.3 Multi-variate analysis of quantitative environmental variables 
 

Taking a multi-variate approach once more, all nine quantitative terrain and 

environment variables are subjected to an agglomerative hierarchical clustering 

analysis for each of the three DEMs, producing a dendrogram of plot similarity 

(Figure 69, and Figure 70), and an associated multi-variate dissimilarity matrix.  The 

difference in the dendrograms for each DEM is alarming, and is yet another indication 

that the DEMs themselves are very different and that the analyses for TBS are 

significantly more subjective due to problems with DEM quality.  When the 

dissimilarity matrix is compared with compositional similarity using the Mantel 

statistic, no significant correlations are found for either of the DEMs (MantelTOPO = 

0.18, and MantelSRTM = 0.22, p>0.05 in both cases). 
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Figure 69 Multi-variate clustering of plots based on all 9 environmental and topographic 

variables for TBS using the TOPO DEM. 
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Figure 70 Multi-variate clustering of plots based on all 9 environmental and topographic 

variables for TBS using the SRTM DEM. 

 

Multiple stepwise linear regressions do however produce some interesting results.  

When applied to the compositional similarity and environmental difference data for 
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each plot pair, no additional variables outside of distance from river explain the 

compositional variability when the TOPO DEM is used.  However, for the SRTM 

DEM four variables together explain 52% of the variability in composition, starting 

with northness (23%), toposcale (a further 13%), distance from river (a further 7%) 

and elevation (a further 9%) (Jaccard Similarity = 0.076 –0.0189Northness 

DifferenceSRTM –0.00026Toposcale DifferenceSRTM –0.00002Difference in Distance 

from River + 0.0006Altitudinal difference, R2 = 0.52, n = 45).  When the modeled 

similarity is plotted against the measured similarity (Figure 71), the greatest errors in 

predicted compositional similarity occur in modelled high levels of similarity, where 

there are cases of vast over- and under- estimate of the measured similarity.   
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Figure 71 Modelled similarity against the measured similarity applying the results of the 

multiple stepwise linear regression for the variables of the SRTM DEM. 

 

Extreme caution is urged in trusting the causal significance of the multiple linear 

regressions, and no concrete conclusions can be derived of these without validation 

plots. 

 

4.3.1.2.4 Analysis of categorical environmental variables 
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Finally for the analysis of composition, the restriction of species to landscape classes 

is analysed using the same methodology presented for Tambito using species 

distribution restrictions to individual landscape classes (Table 28,Table 29 and Table 

30). 

 

Feature No. Plots

No. Species 

Restricted to 

feature

No. species restricted 

to feature only for 

species distributed in 

more than 1 plot

Planar (TOPO) 6 243 30

Planar (SRTM) 5 192 11

Ridge (TOPO) 3 125 3

Ridge (SRTM) 3 133 9

Channel (TOPO) 1 27 0

Channel (SRTM) 2 60 1  

Table 28 Number of species associated to specific classes in the “Feature” classification for 

TBS. 

 

 

Network Feature No. Plots

No. Species 

Restricted to 

feature

No. Species Restricted 

to feature for species 

distributed in more 

than 1 plot

Planar (TOPO) 3 119 7

Pass (SRTM) 1 44 0

Peak (SRTM) 2 58 1

Ridge (TOPO) 3 125 3

Ridge (SRTM) 4 184 19

Channel (TOPO) 4 133 3

Channel (SRTM) 2 53 0

Pit (SRTM) 1 45 0  

Table 29 Number of species associated to specific classes in the “Network Feature” 

classification for TBS. 
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Topoclass No. Plots

No. Species 

Restricted to 

feature

No. Species Restricted 

to feature for species 

distributed in more 

than 1 plot

Valley Bottom (TOPO) 1 45 0

Valley Bottom (SRTM) 2 50 5

Toe Slope (TOPO) 4 136 12

Toe Slope (SRTM) 5 217 16

Slope (TOPO) 4 155 7

Slope (SRTM) 3 125 7

Ridge (TOPO) 1 47 0  

Table 30 Number of species associated to specific classes in the “topoclass” classification for 

TBS. 

 

Some 363 of the 455 species were found only in one plot, leaving just 92 species for 

examination of restriction to a single landscape class.  As already discovered for 

Tambito, very few of these species are shown to be restricted to particular landscape 

classes.  The greatest restriction occurs using the TOPO DEM and the feature 

classification, with 36% of the 92 species restricted to landscape classes, and the 

majority are restricted to planar landscapes.  The network feature classification shows 

the least landscape feature association, with the topoclass variable (a derivative of 

toposcale which has been shown to be significant in defining compositional similarity 

between plots) showing moderate habitat association in species composition using the 

SRTM DEM, with 28 of the 92 species showing restrictions in their distributions 

(30%).  In none of these cases was there a single family showing more habitat 

association than any other. 

 

Though some habitat association is evident, this cannot be considered significant and 

may simply be a product of the low densities in the species distributions and the 

related problems associated with the small size of plots used in this study. 
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4.3.2 Diversity 

 

4.3.2.1.1 General discussion 
 

Once again, significant variation in diversity is found between-plots, with species 

richness ranging from 31 (plot 5) to an astonishing 82 (plots 2 and 10) (Table 31).  On 

average there were 24 families per plot (ranging from 14 to 28), and 35 genera 

(ranging from 12 to 49).  Similarly for Tambito, Renyi diversity plots are used to aid 

the discussion on diversity patterns between plots in TBS (Figure 72). 

 

Plot
No. of 

Individuals

No. 

Families

No. 

Genera

No. 

Species

No. 

Endemic 

Species

Simpson's Shannon's Margalef Menhinick
Berger-

Parker

1 80 26 36 62 44 0.99 4.01 13.96 6.98 0.06

2 132 24 36 82 44 0.98 4.09 16.75 7.31 0.14

3 95 24 35 77 40 0.99 4.24 16.69 7.90 0.05

4 101 25 29 59 29 0.95 3.60 12.59 5.90 0.21

5 88 14 12 31 15 0.84 2.58 6.70 3.30 0.38

6 90 25 35 61 25 0.98 3.87 13.33 6.43 0.12

7 66 21 33 43 28 0.98 3.56 10.06 5.33 0.09

8 103 28 49 79 49 0.99 4.25 16.86 7.82 0.06

9 95 27 49 75 40 0.99 4.11 16.25 7.69 0.09

10 97 26 34 82 49 0.99 4.31 17.75 8.37 0.06  

Table 31 Richness and diversity of plots in TBS 
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Figure 72 The Renyi scaleable diversity index for TBS, indicating to what extent plot 

diversities can be universally compared 

 

Plot 5 is the least diverse plot in all aspects by a considerable margin, having high 

levels of dominance (33 individuals of Sorocea sp. (Moraceae)), and very low species 

richness (31 species).  This plot was located immediately next to the main river 

channel, with strong evidence of regular flooding.  Plot 4 is also low in diversity (and 

is also close to the river where flooding is likely to occur frequently), though it is 

comparatively more species rich (59 species) than plot 7 (just 43 species).  Plot 8 is 

both the most species rich and the most diverse plot (and is also positioned at the 

highest elevation), whilst plot 2 has high species richness but relatively low diversity 

due to high levels of dominance of Browneopsis ucayalina (18 individuals).  Also 

worthy of note is plot 9, with high species richness (75 species) but comparably low 

diversity due to some dominance of Licania glablanca (Chrysobolanaceae) (9 

individuals).  The many shapes of the curves in the Renyi diversity plot shows that not 

only are there very different levels of diversity around the TBS region, but that also 
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the structure of diversity is also variable (i.e. species richness vs. evenness/dominance 

is variable). 

 

4.3.2.1.2 Single-variate analysis of quantitative environmental variables 
 

Exploring the potential drivers of this variation in richness and diversity, Table 32 

presents the environmental conditions at each plot using each of the DEMs.  On the 

whole the plots cover a complete range of environmental conditions, with a good 

distribution of points in all the variables, as a result of the more formal sampling 

strategy that was adopted compared to Tambito (see Chapter 3, Section 3.5.1).  There 

is a great deal of variation between the topographic conditions for each plot 

depending on the DEM used, so interpretation of the patterns is somewhat confused 

by DEM quality, and any results must be analysed with caution. 

 

Plot
Altitude 

(m)
Eastness Northness

Mean 

Curvature
Slope

Slope 

Position

Solar 

Radiation
TopMod Toposcale

1 203 -0.95 -0.31 -0.18 6.66 18 9592 11.76 -142.92

2 219 -1.00 -0.03 -0.06 3.62 35 9629 11.40 -50.00

3 210 0.08 1.00 -0.10 4.50 39 9648 11.28 -81.46

4 201 0.99 0.11 0.09 2.49 16 9652 9.57 10.62

5 198 -0.41 -0.91 -0.09 3.49 0 9621 16.26 -75.85

6 220 -0.99 -0.12 0.05 1.06 96 9651 12.37 20.85

7 219 0.96 0.28 -0.11 12.90 58 9639 10.40 -23.85

8 262 0.99 0.13 0.42 11.92 100 9638 9.07 257.46

9 238 -0.27 0.96 0.02 2.38 85 9659 12.47 6.23

10 224 -0.48 -0.87 0.10 1.15 100 9646 11.45 54.92  
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Plot
Altitude 

(m)
Eastness Northness

Mean 

Curvature
Slope

Slope 

Position

Solar 

Radiation
TopMod Toposcale

1 203 -0.99 -0.13 -0.12 1.25 22 9652 12.75 -120

2 219 -1.00 0.05 0.05 4.10 63 9624 9.07 19

3 210 -1.00 0.00 -0.09 0.46 46 9654 14.55 -185

4 201 -0.51 -0.86 -0.08 3.60 19 9620 9.20 -60

5 198 0.23 -0.97 -0.15 2.06 15 9641 17.47 -149

6 220 -0.95 -0.30 0.09 4.69 69 9608 8.94 158

7 219 0.96 0.26 0.04 2.64 38 9656 9.51 79

8 262 -0.39 -0.92 0.10 1.77 81 9642 9.92 119

9 238 -0.65 0.76 0.05 4.05 75 9639 9.08 59

10 224 -0.94 0.34 0.06 1.81 26 9650 9.89 39  

Table 32 Environmental and topographic conditions at each plot in TBS using each DEM 

(TOPO DEM top, SRTM DEM, below). 

 

Similarly for Tambito, the various richness and diversity measures are correlated with 

each environmental and topographic variable in the search for patterns in the data.  

Each analysis is separated for each DEM (Table 33, and Table 34). 

 

Pearson's 

Correlation 

Coefficient

Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Family Richness 0.57 0.05 0.40 0.47 0.00 0.60 0.26 -0.73 0.44

Genera Richness 0.80 0.13 0.59 0.47 0.25 0.68 0.29 -0.63 0.51

Species Richness 0.54 -0.15 0.33 0.40 -0.18 0.53 0.28 -0.52 0.36

Endemic Species 0.55 -0.05 0.19 0.33 0.14 0.44 -0.05 -0.57 0.33

Simpson's 0.49 0.04 0.48 0.21 0.18 0.60 0.22 -0.74 0.25

Shannon's 0.55 -0.07 0.42 0.32 0.01 0.61 0.24 -0.65 0.32

Margalef 0.55 -0.13 0.36 0.38 -0.15 0.56 0.28 -0.54 0.35

Menhinick 0.55 -0.10 0.38 0.34 -0.08 0.60 0.26 -0.57 0.33

Berger-Parker -0.51 -0.05 -0.46 -0.18 -0.28 -0.61 -0.13 0.68 -0.25  

 

p-value Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Family Richness 0.08 0.89 0.25 0.17 0.99 0.07 0.47 0.02 0.20

Genera Richness 0.01 0.72 0.07 0.18 0.49 0.03 0.41 0.05 0.13

Species Richness 0.11 0.68 0.34 0.26 0.61 0.12 0.43 0.13 0.30

Endemic Species 0.10 0.88 0.59 0.35 0.71 0.21 0.89 0.09 0.35

Simpson's 0.15 0.92 0.16 0.57 0.63 0.07 0.55 0.01 0.48

Shannon's 0.10 0.85 0.22 0.37 0.98 0.06 0.51 0.04 0.36

Margalef 0.10 0.72 0.31 0.28 0.69 0.09 0.44 0.11 0.31

Menhinick 0.10 0.78 0.27 0.34 0.82 0.07 0.47 0.09 0.35

Berger-Parker 0.13 0.88 0.18 0.62 0.43 0.06 0.72 0.03 0.49  
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Table 33 Pearson’s correlation coefficient and the two-tailed p-value between 

richness and diversity in each plot and the environmental variables for TBS using the 

TOPO DEM. 

 

Pearson's 

Correlation 

Coefficient

Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Family Richness 0.57 -0.60 0.32 0.54 0.10 0.52 -0.10 -0.69 0.43

Genera Richness 0.80 -0.34 0.44 0.66 0.12 0.77 0.04 -0.65 0.54

Species Richness 0.54 -0.74 0.39 0.50 -0.02 0.54 -0.03 -0.47 0.24

Endemic Species 0.55 -0.55 0.38 0.39 -0.29 0.35 0.31 -0.37 0.16

Simpson's 0.49 -0.44 0.55 0.56 -0.03 0.48 0.12 -0.65 0.41

Shannon's 0.55 -0.64 0.50 0.54 -0.08 0.53 0.10 -0.56 0.32

Margalef 0.55 -0.72 0.43 0.51 -0.06 0.53 0.03 -0.48 0.25

Menhinick 0.55 -0.68 0.50 0.50 -0.13 0.50 0.12 -0.48 0.26

Berger-Parker -0.51 0.37 -0.56 -0.50 0.21 -0.44 -0.32 0.50 -0.34  

 

p-value Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Family Richness 0.08 0.07 0.36 0.11 0.78 0.12 0.77 0.03 0.21

Genera Richness 0.01 0.33 0.20 0.04 0.74 0.01 0.91 0.04 0.10

Species Richness 0.11 0.01 0.27 0.14 0.96 0.11 0.92 0.17 0.50

Endemic Species 0.10 0.10 0.27 0.26 0.42 0.32 0.38 0.29 0.66

Simpson's 0.15 0.20 0.10 0.09 0.94 0.16 0.73 0.04 0.24

Shannon's 0.10 0.05 0.14 0.10 0.82 0.12 0.79 0.09 0.36

Margalef 0.10 0.02 0.21 0.13 0.87 0.12 0.94 0.16 0.49

Menhinick 0.10 0.03 0.14 0.14 0.73 0.15 0.73 0.16 0.47

Berger-Parker 0.13 0.30 0.09 0.14 0.55 0.20 0.37 0.14 0.33  

Table 34 Pearson’s correlation coefficient and the two-tailed p-value between richness and 

diversity in each plot and the environmental variables for TBS using the SRTM DEM. 

 

A number of interesting correlations are found between richness and diversity and the 

topographic variables.  Elevation itself correlates with a high significance level (99%) 

for genera richness, and also non-significant but general trends of an increase in 

diversity with greater elevation for all other richness and diversity measures (p values 

in all cases < 0.15) (Figure 73).     
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Figure 73 Elevational patterns in richness and diversity in TBS. 

 

In many cases, the pattern of diversity and richness variation with elevation is non-

linear, with the two lowest elevation plots (plot 5 and plot 4) having significantly 

lower diversity (Simpson’s of 0.84 and 0.95 respectively) and high levels of 

dominance (Berger-Parker of 0.38 and 0.21 respectively).  Plots above the 210 m 

elevation mark (the remaining plots except plot 1) on the whole have greater diversity 

(Simpson’s diversity average of 0.99), though it is highly variable and not correlated 

with elevation (Simpson’s diversity correlation R
2
 = 0.02).  The elevational gradient 

in TBS is so small (60 vertical metres) that climatic differences will be insignificant in 

this case.  It is more likely that this pattern occurs as a result of flooding frequency or 

forest and soil age.  Plots below 210m are frequently flooded, interrupting the 

successional process and favouring a few species well adapted to regular flooding.  

The high levels of dominance found in plots 4 and 5 provide further evidence that this 

is the case, with prevalence of Sorocea sp. in both plots (21 and 33 individuals 

respectively).  This species was only found in one other plot (plot 6, 220m), with just 

2 individuals. 
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If flooding is an important factor in defining the diversity, it is also important for 

examining the relationship between diversity and richness and the distance from the 

River Tiputini (Figure 74), which is another important factor when examining 

flooding frequency.  Plots with low diversity are also close to the river, with the 

exception of plot 1 with mid-levels of diversity and which is just 46m from the river.  

However, this plot is some 10m above the normal river level, and so floods less 

frequently.  Eliminating the plots closest to the river (plots 1, 4, and 5), there is no 

relationship between distance from river and diversity (Simpson’s Index correlation 

R
2
 = 0.15).  These patterns in richness and diversity with respect to elevation and 

distance from river indicate that low diversity (specifically high dominance) is 

expected in regions frequently flooded.  However, there is no clear pattern (linear or 

non-linear) between diversity and richness with elevation and distance from river for 

plots that are not frequently flooded.  This indicates that other factors are likely 

responsible for shaping the variation in diversity observed in the plot data. 
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Figure 74 Relationship between diversity and distance from the River Tiputini in TBS 
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In general terms, the SRTM DEM provides the greatest number of correlations, 

despite having a much larger cell size which is unlikely to capture meso-scale 

variability. 

 

In terms of variables, TopModel correlates best with diversity and richness (less 

wetness, greater diversity), though in all cases this relationship is highly dependent on 

the high wetness and low diversity found in plot 5.  Exclusion of plot 5 from the 

correlation renders the correlation insignificant for all richness and diversity measures 

in both DEMs.  After TopModel, the slope position variable correlates positively with 

genera diversity (i.e. higher up the slope higher the richness), though this is likely due 

to co-linearity with elevation (Pearson = 0.81, p = 0.004, n = 10), and likewise 

probably an effect of flooding frequency in low slope positions.  Indeed, with the 

exclusion of plot 5 once more (identified as having low diversity due to frequent 

flooding), the correlation falls apart for the TOPO DEM, but is maintained for the 

SRTM DEM (Pearson and corresponding p-value unchanged) (Figure 75).  Though 

the relationship appears solid, there is actually very little variation in genera richness 

in mid-slopes (slope position 20 – 70) where all plots have 34 – 37 genera present.  

The only other correlating variable is mean curvature using the SRTM DEM, which 

correlates positively with genera diversity (i.e. convex slopes have higher richness).  

Once again, mean curvature correlates highly significantly with elevation (Pearson = 

0.79, p = 0.006, n = 10), and so this is not a new relationship but one brought about by 

the same pattern identified between elevation and slope position.   
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Figure 75 Relationship between slope position and mean curvature and genera richness in 

TBS using the SRTM DEM 

 

All the correlations identified between genera richness and elevation, mean curvature 

and slope position appear to originate from the same pattern, but it is unclear where 

the causal relationship lies.  In any case, these correlations only exist for genera 

richness, where in the mid-elevations, mid slope positions and mid-curvature levels 

no clear pattern is evident (only in the extremes for plots 4 and 5 and plots 8 and 9).   

 

4.3.2.1.3 Multi-variate analysis of quantitative environmental variables 
 

Multiple stepwise regression is once again applied to the data in order to identify 

multiple environmental interactions, and quantify the variability in diversity that is 

explainable through the topographic and environmental variables used in this study.  

For the TOPO DEM, topmodel and eastness combine to predict 78% of the variability 

in Simpson’s diversity (D = -0.025 TopModTOPO –0.033 EastnessTOPO +1.26, R
2
 = 

0.78, n = 10), but this relationship is highly dependent on the high wetness found in 

plot 5, and indeed the relationship collapses if plot 5 is excluded from the regression 

(R2 = 0.001, n = 9).  When plot 5 is excluded from the regression, no significant 
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multiple regressions are found.  It is a similar story when the variables from the 

SRTM DEM are analysed, with TopModel, slope and eastness explaining some 85% 

of the variability (D = 1.20 -1.679TopModelSRTM –0.023SlopeSRTM –

0.022EastnessSRTM, R
2
 = 0.85, n =10), but this relationship once again collapses with 

the exclusion of plot 5 (R2 = 0.17, n = 9), and when the analysis is preformed once 

more excluding plot 5, no significant multiple stepwise regressions are found. 

 

When species richness is examined using multiple stepwise regression, no patterns are 

found using the TOPO DEM, but the SRTM DEM does predict species richness, 

accounting for 82% of the variability using eastness (55%) and elevation (a further 

27%) (Species Richness = -48.35 - 19.32EastnessSRTM + 0.47ElevationSRTM, R
2
 = 

0.82, n = 10).  This relationship is not particularly dependent on any single plot 

richness, and is shown in Figure 76. 
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Figure 76 Modelled species richness (based on multiple stepwise regression) plotted against 

measured diversity in TBS using the SRTM DEM. 
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Under this model, highest species richness is found in west facing higher elevation 

slopes.  Higher elevation slopes may be important in generating diversity due to lower 

frequency of flooding.  Plots 4 and 5 (the two regularly flooded plots) showed high 

levels of dominance and resultant low diversity, and this is attributed to flooding 

earlier in this chapter.  Furthermore some evidence exists that the distance from the 

river (co-linear with elevation) is important in defining composition, and it is 

hypothesized that this may in reality represent an edaphic gradient (section 4.3.1.2).  

These two factors may be at play in generating the trend of higher diversity in high 

elevation slopes.   

 

The significance of eastness in generating diversity in TBS is attributable to a number 

of factors.  Firstly, the wind direction is predominantly easterly in TBS, leading to 

believe that wind may be an important factor to consider, although the mechanism for 

such a relationship is unclear.  Exposure to wind generates a higher probability of tree 

falls, though slope is also important in generating higher levels of tree falls and no 

relationship is found at all between diversity and slope.  Wind is also important in 

terms of evaporation, and slopes exposed to the wind are likely to experience harsher 

evaporation regimes than more sheltered slopes, and this has important implications 

for water retention strategies, especially for high canopy trees.  Finally, eastness is 

indicative of the time of day of the most direct sunlight, with east facing slopes 

receiving the strongest sun in the morning hours, and west facing slopes (in this case 

where greater diversity is found) receiving the strongest sun in the afternoon hours.  

Meterological station data from TBS indicates that solar radiation is in fact higher in 

the afternoons due to less atmospheric attenuation, although the difference is fairly 

minimal.  It is unlikely that the solar radiation significance of eastness is controlling 
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this relationship, as the low slopes render aspect relatively insignificant in varying 

solar radiation across the region.  It is impossible to know which of these plausible 

explanations is the direct cause of the higher diversity on west facing slopes, if any, 

and this should be the subject of further investigation. 

 

In conclusion, no clear correlation between environment and diversity is found using 

Simpson’s Index (the most robust diversity measure) nor single variable correlations 

with species richness outside of the observed low richness and low diversity in the 

two regularly flooded plots (plots 4 and 5).  However, multiple stepwise regression 

does provide a strong explanation of variability in species richness based on eastness 

and elevation using the SRTM DEM, with west facing high elevation sites having the 

highest richness.  Ideally this model should be validated using a split sample but this 

was impossible with just 10 plots. 

 

4.3.2.1.4 Analysis of categorical environmental variables 
 

Having examined in detail the quantitative variables and identified few correlations, it 

is unlikely that the landscape classifications provide many significant correlations, as 

they are derivatives of the characteristics already examined.  Nevertheless, statistical 

analyses are made (Pearson correlation coefficients) to examine if the diversity and 

richness is indeed distinct in different landscape classes based on the fuzzy 

membership to the feature and network feature classifications.  The landscape class of 

each plot, and the respective fuzzy feature membership to the feature classification are 

first presented (Table 35 and Table 36). 
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Plot Topoclass Feature
Network 

Feature

Pit 

Membership

Channel 

Membership

Pass 

Membership

Ridge 

Membership

Peak 

Membership

Planar 

Membership

1 Valley Bottom Ridge Ridge 0.00 0.00 0.00 0.14 0.00 0.86

2 Toe Slope Planar Planar 0.00 0.00 0.00 0.00 0.00 1.00

3 Toe Slope Planar Channel 0.00 0.57 0.00 0.00 0.00 0.57

4 Slope Ridge Ridge 0.00 0.00 0.00 0.14 0.00 0.86

5 Toe Slope Planar Channel 0.00 0.00 0.00 0.00 0.00 1.00

6 Slope Planar Planar 0.00 0.00 0.00 0.00 0.00 1.00

7 Toe Slope Channel Channel 0.00 0.71 0.00 0.00 0.00 0.57

8 Ridge Ridge Ridge 0.00 0.00 0.00 1.00 0.00 0.00

9 Slope Planar Planar 0.00 0.00 0.00 0.00 0.00 1.00

10 Slope Planar Channel 0.00 0.00 0.00 0.14 0.14 0.71  

Table 35 Landscape unit classifications for the plots in TBS using the TOPO DEM. 

 

Plot Topoclass Feature
Network 

Feature

Pit 

Membership

Channel 

Membership

Pass 

Membership

Ridge 

Membership

Peak 

Membership

Planar 

Membership

1 Toe Slope Planar Pit 0.00 0.86 0.00 0.00 0.00 0.14

2 Slope Channel Pass 0.00 0.14 0.00 0.00 0.00 0.86

3 Toe Slope Planar Channel 0.29 0.14 0.14 0.14 0.00 0.29

4 Valley Bottom Planar Peak 0.00 0.71 0.00 0.00 0.00 0.29

5 Valley Bottom Channel Channel 0.00 0.86 0.00 0.00 0.00 0.14

6 Slope Ridge Peak 0.00 0.00 0.00 0.14 0.00 0.86

7 Toe Slope Planar Ridge 0.00 0.00 0.00 0.14 0.00 0.86

8 Slope Ridge Ridge 0.00 0.00 0.00 1.00 0.00 0.00

9 Toe Slope Planar Ridge 0.00 0.00 0.00 0.14 0.00 0.86

10 Toe Slope Ridge Ridge 0.00 0.00 0.00 0.57 0.00 0.43  

Table 36 Landscape unit classifications for the plots in TBS using the SRTM DEM. 

 

When multi-scale fuzzy feature classifications (explained in Chapter 3) are used 

(Table 37 and Table 38), there is no relationship between diversity and membership to 

any landscape class.   

Pearson's 

Correlation 

Coefficient

Pit 

Membership

Channel 

Membership

Pass 

Membership

Ridge 

Membership

Peak 

Membership

Planar 

Membership

Family Richness N/A -0.22 N/A 0.42 0.18 -0.33

Genera Richness N/A -0.05 N/A 0.47 -0.03 -0.43

Species Richness N/A -0.21 N/A 0.31 0.34 -0.26

Endemic Species N/A -0.14 N/A 0.46 0.39 -0.44

Simpson's N/A 0.19 N/A 0.22 0.20 -0.36

Shannon's N/A 0.00 N/A 0.30 0.30 -0.36

Margalef N/A -0.16 N/A 0.31 0.36 -0.29

Menhinick N/A -0.08 N/A 0.30 0.38 -0.33

Berger-Parker N/A -0.28 N/A -0.27 -0.23 0.47  
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Table 37 Correlation coefficients between feature membership and richness and diversity for 

TBS using the TOPO DEM. 

 

Pearson's 

Correlation 

Coefficient

Pit 

Membership

Channel 

Membership

Pass 

Membership

Ridge 

Membership

Peak 

Membership

Planar 

Membership

Family Richness 0.00 -0.45 0.00 0.45 N/A 0.07

Genera Richness 0.01 -0.64 0.01 0.51 N/A 0.21

Species Richness 0.24 -0.54 0.24 0.45 N/A 0.07

Endemic Species 0.11 -0.39 0.11 0.55 N/A -0.13

Simpson's 0.19 -0.62 0.19 0.36 N/A 0.26

Shannon's 0.25 -0.61 0.25 0.46 N/A 0.13

Margalef 0.26 -0.56 0.26 0.47 N/A 0.07

Menhinick 0.28 -0.58 0.28 0.48 N/A 0.07

Berger-Parker -0.26 0.61 -0.26 -0.44 N/A -0.15  

Table 38 Correlation coefficients between feature membership and richness and diversity for 

TBS using the SRTM DEM. 

 

4.4 Conclusions 
 

In terms of species composition and diversity, TBS was found to have greater richness 

at the species level (average of 57 species per plot against 42 in Tambito), but similar 

richness in families.  In TBS the study found 53 families compared with 52 in 

Tambito.  Some 28 of these families were common to both sites.  Notable differences 

in composition were in the low abundance of Melastomataceae and Rubiaceae in TBS 

in comparison to high abundances in Tambito.  TBS was found to have much higher 

abundances in Moraceae and Mimosaceae.  Fabaceae was the most abundant family 

found in TBS, whilst just four individuals were recorded in Tambito. 

 

The terrain characteristics found to correlate with the species composition in the two 

sites were few, but clearly reflect the effect of very different processes in each site.  In 

Tambito, only elevation was found to control composition, but this in itself explains 
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only 36% of the variability according to the Jaccard coefficient.  Furthermore, 

elevation fails to accurately reflect compositional similarity between sites of similar 

elevations, though in all cases sites elevationally distant exhibited clear compositional 

differences, so only significant differences in elevation (and the factors that it controls) affect 

species composition.  Clearly other processes that are not captured with the terrain 

characteristics presented here are important in controlling composition at the micro-

scale in Tambito.   

 

In TBS, composition was found to be controlled in part by distance to the main river 

channel (just 16% of variability), and a hypothesis is presented that isolates this 

correlation to being caused by forest age, with distance to river acting as a surrogate 

of time since a region was occupied by river channel.  It is hypothesized that this 

represents a gradient of soil development and forest succession (to a lesser extent), 

though no soil data is available to validate this supposition.  Similarly to the case with 

elevation in Tambito, sites equally distant from the river tended to have high 

compositional differences (indicating that other factors are also important), but sites 

with large differences in their distance from river do have significantly different 

composition in all cases.  Distance to river was not the only factor exhibiting 

significant correlation with composition in TBS, toposcale and northness for the 

SRTM DEM both show significant correlations independently of distance to river 

(that is, they are not co-linear with distance to river), though the validity of these 

correlations is questioned and no biological interpretation can be offered at this time. 

 

In conclusion, at neither site is composition convincingly correlated with the terrain 

characteristics, and the majority of variability remains to be unexplained.  This may 
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be due to the DEMs poor representation of the small-scale topography, and this error in the 

terrain characteristics calculated from them.  In Tambito the DEM is likely a good 

reflection of the real topography, but the 25m resolution may fail to capture terrain 

variability at a relevant scale for composition, though this is unlikely.  In TBS neither 

of the DEMs sufficiently capture the topographic variability observed in the field, and 

they are likely both inaccurate to some degree and, more importantly, are not at the 

best scale for identifying compositional differences.  Also of importance to note is the 

plot size used in this study.  25m x 25m plots may be highly sensitive to successional 

dynamics compared with larger plots, and though some terrain characteristics may 

indicate the frequency of processes that interrupt succession (slope indicating likely 

frequency of tree fall, for example), they are stochastic processes (in both space and 

time (Salvador-Van Eysenrode et al., 2000)) that cannot be properly identified in 

relation to terrain characteristics with so few plots.  In order to get to grips with this 

interplay of deterministic and stochastic processes, more plots would be required, 

lowering the dependence of the result on each single data point. 

 

In terms of patterns in diversity, clear correlations between terrain characteristics and 

diversity are found in Tambito, but in TBS patterns appeared to be less clearly 

defined.  A clear peak in diversity is found for Tambito in mid-elevations, though this 

only applied to diversity measures, and not richness measures.  Two potential 

explanations of this are presented, including a mid-domain effect and an area-based 

hypothesis.  Whatever the cause, 70% of variation in diversity is explained by 

elevation through a polynomial regression, with a diversity peak at 1800m.  This 

macro-scale observation is complemented by a strong micro-scale relationship 

between curvature and richness and diversity, with convex slopes having higher 
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species diversity.  This may be due to a greater diversity in light environments 

through lateral penetration of the canopy, but may also be due to greater exposure to 

cloud inputs (water and nutrients), and indirectly to soil quality with greater leaching 

leading to lower soil nutrient levels.  The latter explanation has been observed by 

other authors, showing monotonic decrease in diversity with soil quality (Hall and 

Swaine, 1976; Huston, 1982; Oliveira and Mori, 1999).  Without further investigation 

it is impossible to ascertain exactly which of these is the dominant process in 

explaining diversity, but a considerable amount of variability can be explained 

through terrain characteristics. 

 

In TBS fewer and weaker patterns are found, though analysis is complicated by the 

strong co-linearity between many characteristics, and the poor quality of the DEM.  

Low richness and diversity is found in the two sites most regularly flooded (both low 

in elevation and close to the river channel), but no other patterns in diversity variation 

are found.  The low diversity in the regularly flooded sites is principally due to high 

dominance of a single species (Sorocea sp.) found in these two plots, but which is rare 

in other plots.  Though multi-variate analyses using multiple stepwise linear-

regressions manage to account for 82% of variability in species richness, no 

biological interpretation can be provided, and further data collection and analysis is 

required to confirm the validity of this.  The lack of clear result in TBS may be due to 

deficiencies in the quality of the terrain information, brought about by coarse 

resolution DEMs, which fail to capture the all important micro-scale topographic 

variability central to this thesis.  Section 3.7 in Chapter 3 shows that the DEMs reflect 

little of the on-the-plot conditions, and so there is little wonder that patterns have not 

been found.  Alternatively, there simply may not be clear terrain controls on richness 
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and diversity in a tropical lowland rain forest such as TBS (thus supporting non-

equilibrium theories of species diversity maintenance), though further investigation 

with better quality DEMs is required. 

 

Despite using 12 different terrain characteristics in this analysis, just two variables 

provide robust explanations of composition and diversity; elevation and mean 

curvature.  Further investigation should focus on these relationships in order to 

broaden the understanding of the specific biological and ecological processes that 

these variables are capturing. 

 



 230 

Chapter 5 

 

5 Micro-scale spatial variation in forest structure 
 

5.1 Introduction 

 

In this chapter the spatial variation in forest structure is briefly explored, once again 

using the environmental and topographic variables to identify correlations and discuss 

the possible mechanisms behind such relationships.  It is well documented that forest 

height tends to diminish, the density of individuals increases and DBH reduces with 

increasing elevation (Huston, 1994; Pendry and Proctor, 1996; Pendry and Proctor, 

1997; Kappelle, 2004).  The reasons behind tree stunting, for example, with greater 

elevation are the subject of many studies, and many different hypotheses have been 

suggested to explain this phenomenon.  Overall, stuntedness is thought to be an 

indicator of low primary productivity.  This in turn may be the result of one or many 

factors which include high humidity (Odum, 1970), nutrient limitation (Vitousek, 

1984; Vitousek and Sanford, 1986), low temperature (Kitayama and Aiba, 2002), soil 

acidity (Hafkenscheid, 2000), leaf wetness (Letts, 2003) and cloud cover (Grubb, 

1977; Letts, 2003) 

 

There is still significant debate as to the factor, or indeed the combination of factors 

behind such a relationship.  This chapter examines micro-scale variation in structure, 

examining both elevational gradients (specifically for Tambito) and the role of 

topography (at both sites) in generating structural variation.  It is hoped that in 

Tambito examination of the fine-scale variation may shed some light on the 

mechanisms behind tree stunting along elevational gradients, whilst in lowland rain 
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forests the effects of micro-topography and flooding frequency on structure are 

examined in the hope that this will also shed some light on the plant-significant 

environmental gradients that exist in this environment. 

 

In addition to using the environmental and topographic variables in the analysis, 

diversity itself is also incorporated and the role of diversity on forest structure (and 

vice-versa) is examined.  The relationship between diversity and structure is likely to 

be complex and bi-directional.  Diversity of tree forms is one factor behind the 

complex structures of trees in a forest, with different species having different 

branching patterns, sizes, and shapes.  Meanwhile, the structure of the forest also 

filters energy inputs (light, water, temperature) changing the physical conditions from 

the upper canopy to the forest floor, which in turn favours certain species adapted to a 

specific conditions and creates a diverse sub-canopy light environment.  Chapter 4 

identified some topographic factors that, through control on energy inputs, explain 

some of the variability in diversity and composition.  Therefore this complex two-way 

relationship between diversity and structure may be significant, and is included in the 

analysis. 

 

This chapter is structured similarly to Chapter 4, with the two study sites being treated 

separately at first, and site comparisons made at the end of the chapter.  Two aspects 

of structure are examined at each study site, each of which is analysed in a similar 

way to that of composition and diversity in Chapter 4.  Analogous with the 

composition analysis, the similarity in the frequency distribution of tree forms at a 

plot (height, DBH, DBH/Height) is plotted against environmental difference between 

plots, and Mantel tests used to test for correlation.  Analogous to the diversity 
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analysis, the average values of structural parameters are compared with the 

environmental and topographic variables at each plot.  For easier interpretation, the 

sections are presented starting with between-plot variability in average structural 

values, and moving onto a more detailed examination of the distribution of structural 

parameters in each plot.  In both cases, correlations are made on a variable-by-

variable basis at first, and then multi-variate analyses are applied to search for how 

combinations of factors may explain the forest structure. 

 

5.2 Reserva Tambito 

 

In Tambito the plots cover a large elevational gradient of nearly 1000m, and based on 

other studies in similar environments, should show clear patterns of structural change 

along this gradient.  Furthermore the rugged topography and almost constant wetness 

of soil and trunks make treefall a common occurrence, with a high density of fallen 

trunks visible throughout the twin catchments.  This temporally stochastic process 

drives much of the variability in forest structure (Kappelle, 2004), but the spatial 

distribution of treefall occurrence may be tightly controlled by physical factors such 

as slope and soil stability.  But it is important to reiterate that the plot scale 

measurements represent only a snapshot of the highly dynamic system that results.   

 

5.2.1 Average structure 

 

5.2.1.1 Forest Structure in general 
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In general, Tambito has high stem densities (average 1773 stems Ha-1 for the 10 

plots), with relatively low diameters at breast height (DBH) (average 11.3cm, 

maximum 79.6cm) and few tall trees (average tree height 7.84m, maximum 30m).  

The frequency distributions for the three major structural characteristics (height, DBH 

and DBH/Height) are shown in Figure 77.  Some 98.4% of individuals were less than 

20m tall, with 62.6% of trees measuring 4-8m tall (itself possibly an artifact of only 

measuring tree with DBH>5cm).  The greatest frequency for DBH occurred between 

7-9cm, with 96.2% of individuals having a DBH less than 30cm.  It is interesting that 

there are more stems at 7-9cm than at 5-7cm, possibly indicating that there are a 

number of species which reach maturity at 7-9cm DBH and cease to continue to grow.  

The DBH/Height ratio is a measure of the stem girth per unit height, and is shown to 

be important when comparing plots and sites later in the chapter.  However, it is 

important to note that the majority (57.0%) have ratio values between 1-1.6, with just 

9.1% of individuals having ratio values below 1 (indicating relatively low DBH 

compared with height) and a longer tail towards higher ratio values with the 

remaining 33.9% of individuals having ratio values greater than 1.6 (reaching a 

maximum of 7.6).  High ratio values represent individuals with a relatively high DBH 

compared to height.  This may indicate an investment in stem strength (to combat tree 

fall) over height (to search for light).  This kind of investment may be particularly 

necessary in situations where steep slopes and exposure to wind and fog potentially 

destabilize a tree leading to the potential for fall. 
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Tree height distribution for all individuals in 

Tambito
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DBH:Height Ratio distribution for all 

individuals in Tambito
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Figure 77 Frequency histograms for the three major structural characteristics for all 

individuals in Tambito 

 

In terms of variability, the greatest variability between individuals occurred in DBH 

(coefficient of variability 69.6%), followed by tree height (53.9%) and finally for the 

DBH/Height variable (48.7%).  At this stage no more discussion is provided on the 

general patterns of structure.  These figures are discussed further in Section 5.4 at the 

end of the chapter in direct comparison with TBS. 

 

5.2.1.2 Between-Plot Structural Variability 

5.2.1.2.1 General discussion 
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Having identified significant range and variability in structural forms in Tambito, this 

section addresses the between-plot variability of the average structural parameters, 

using the environmental and topographic variables to explain this variation.  The 

structural conditions at each plot are shown in Table 39. 

 

Plot
Elevation 

(m)

Stem 

Density 

(stems/ha)

DBH (cm)
DBaseH 

(cm)

DBH/DBase

H
DBH/Height

Basal 

Area (m 2)
Height (m)

Height of 

1st Branch 

(m)

1 1651 1552 13.36 15.55 0.83 1.54 3.21 8.90 6.12

2 1684 1712 11.85 13.92 0.85 1.24 2.44 10.19 7.47

3 1449 1888 10.87 12.24 0.89 1.35 1.70 9.02 6.86

4 1966 2192 10.89 12.69 0.87 1.76 2.62 6.39 4.22

5 1299 1792 9.92 11.55 0.87 1.58 1.49 6.67 4.10

6 1749 1392 11.57 13.73 0.83 1.81 1.70 6.97 4.20

7 2253 2816 9.61 11.27 0.87 1.42 2.15 7.06 4.63

8 1856 1696 10.71 13.60 0.82 1.46 2.15 7.62 3.98

9 1950 1200 13.92 16.91 0.82 1.48 2.72 8.99 5.84

10 1600 1488 12.70 15.22 0.83 1.65 2.33 7.79 4.84  

Table 39 Structural characteristics of the plots in Tambito 

 

Plots 7 and 4 have the highest stem densities (2816 and 2192 stems Ha
-1
 respectively) 

and also happen to be the two highest elevation plots.  However, the lowest stem 

density is found in plot 9 (less than half the density with 1200 stems Ha
-1
), which is 

the third highest elevation plot (though this site has already been identified in Chapter 

4 as an outlier in diversity patterns).  Plot 9 also has the highest DBH (average 

13.9cm), with Plot 7 having the lowest (average 9.6cm).  Plot 2 has the greatest 

average tree height (10.2m), with Plot 4 having the lowest (6.4m).  The highest trees 

were found in Plot 1 (Elaeagia sp. - 30m, and Protium sp. – 28m) and Plot 2 

(Clusiaceae spp. – 30m).   Plot 2 had the lowest value for DBH/Height (1.24) and plot 

6 has the highest (1.81). 

 

5.2.1.2.2 Single-variate analysis of quantitative environmental variables 
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Prior to examining in detail the correlations between structural parameters and all 

environmental and topographic variables, the elevational gradient in structure is 

examined first (Figure 78). 

 

 

Structure - Elevation relations for Tambito
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Figure 78 Elevational gradient in structural parameters for Tambito 

 

Despite numerous accounts in the literature of a clear change in structure across the 

elevational gradient, this is clearly not the case in the data collected in Tambito.  No 

relationship is evident in any of the major structural parameters shown in Figure 78, 

nor in any of the other variables measured.  Though Plot 7 (the highest elevation plot, 

2253m) has relatively low stature (7.1m) and the lowest DBH (9.6cm), Plot 5 at the 

other end of the elevational gradient (1299m) has an even lower average stature 

(6.7m) and comparably low DBH (9.9cm).  If anything, there is evidence of the mid-

elevations having the highest stature and greatest average DBH. 
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This goes against the findings of many studies in similar environments, but analysis of 

the environmental and topographic variables may explain some of this variability that 

is clearly not explained by elevation alone.  Pearson correlation coefficients and their 

respective p-values are calculated between all structural parameters and the 9 

quantitative environmental and topographic variables (Table 40). 

 

Pearson's Correlation 

Coefficient
Elevation Eastness Northness Curvature Slope

Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Stem Density 0.46 -0.21 0.30 0.00 -0.35 0.25 0.38 -0.26 0.05

DBH -0.05 -0.32 -0.08 0.19 0.03 0.02 -0.23 0.06 0.20

DBaseH 0.04 -0.26 -0.02 0.36 -0.08 0.17 -0.15 0.12 0.37

DBH/DBaseH -0.16 -0.12 -0.10 -0.62 0.24 -0.39 -0.01 -0.29 -0.60

DBH/Height 0.02 0.44 -0.35 -0.10 -0.24 -0.03 0.28 0.82 -0.08

Basal Area 0.38 -0.62 0.47 0.46 -0.43 0.44 0.14 -0.15 0.47

Height -0.19 -0.52 0.07 0.05 0.41 -0.17 -0.56 -0.56 0.03

Height of 1st Branch -0.22 -0.59 0.01 -0.18 0.47 -0.31 -0.56 -0.60 -0.18  

 

p-value Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Stem Density 0.18 0.56 0.41 0.99 0.33 0.48 0.28 0.46 0.89

DBH 0.90 0.37 0.82 0.61 0.93 0.96 0.53 0.86 0.58

DBaseH 0.92 0.46 0.95 0.31 0.83 0.65 0.69 0.73 0.30

DBH/DBaseH 0.67 0.75 0.77 0.05 0.50 0.26 0.99 0.42 0.07

DBH/Height 0.95 0.21 0.32 0.79 0.51 0.93 0.44 0.00 0.83

Basal Area 0.27 0.06 0.17 0.18 0.22 0.21 0.69 0.68 0.17

Height 0.61 0.12 0.85 0.89 0.24 0.65 0.09 0.09 0.94

Height of 1st Branch 0.54 0.07 0.98 0.62 0.17 0.38 0.09 0.07 0.61  

Table 40 Pearson correlation coefficients and the respective p-values between structural 

characteristics of the forest and the environmental and topographic variables in Tambito. 

 

As can be seen, only one significant correlation exists.  This is found between the 

DBH/Height variable and topmodel (Figure 79), with a very high level of significance 

(Pearson = 0.83, p = 0.004).  The nature of this relationship is such that the greater the 

surface soil moisture (as defined by TopModel) the higher the DBH relative to height 

(in other words the greater the investment in trunk girth per unit height).   
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Figure 79 Significant correlation between DBH/Height and topmodel for Tambito 

 

Topmodel (an indicator of soil moisture convergence) could be seen as a resource 

permitting trees to uptake water and augment trunk diameter, but this explanation fails 

to account for the relative large trunk diameter compared to height that the 

relationship is showing and in any case, water is unlikely to be limiting in these 

environments.  Alternatively, surface soil moisture could be seen as an indicator of 

soil stability, with wetter soils having less stability.  Given lower levels of stability, it 

is preferable for trees not to risk mortality from tree fall through excessive top heavy 

branch and leaf growth in the search of light, but instead to invest in solid lower trunk 

and root growth.  However, soil moisture is just one mechanism that lowers stability 

for trees, with slope also being important, along with wind speed (more specifically 

gust velocity), wind direction and associated topographic exposure.  Neither slope nor 

exposure or aspect related variables such as mean curvature, toposcale, northness or 

eastness show any relationship, somewhat weakening the argument that stability is an 

important variable in determining the DBH/height value.  Furthermore, topmodel is 

calculated based on both upslope area and slope, and tends to be highest on low slopes 

with large contributing upslope area and so is not a good indicator of stability.  
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Treefall is more probable on steeper slopes (Gale, 2000), and also more likely on 

unstable soils, so to test if there is a relation between DBH/Height and stability an 

index is produced based on upslope area multiplied by slope, with the least stability 

found on steep slopes with a large contributing area (i.e. greater soil moisture).  No 

significant relation is found, linear (DBH/Height = 7 e-7 Stability Index + 1.45, 

Pearson = 0.41, p = 0.24) nor non-linear.  The lack of correlations with any other 

topographic variables makes the interpretation of this relationship between topmodel 

and DBH/Height difficult, and no explanation can be provided. 

 

The lack of correlations between topography and tree structure is of interest in itself, 

with the basic structural variables (DBH and tree height) not only failing to show any 

elevational pattern, but also showing no relationship with the other 9 quantitative 

terrain derivatives.  This is surprising, and leads to the conclusion that structure is 

principally controlled by stochastic processes, and little relationship exists between 

environment and structure in Tambito, at least at the micro-scale as measured in the 

plots.  If stochastic processes are prominent at this scale in defining tree structure, the 

distinct structures observed in the plots in Tambito may be reflecting different age 

profiles since a disturbance drastically altered the structure. 

 

The results presented here are in contrast to many prior studies showing clear 

elevational gradients, but may simply be an artifact of the small plot sizes used here 

capturing successional stage after specific recent tree falls rather than the average 

regional structure.  Before this is discussed in depth, multi-variate analyses are 

applied to look for combinations of factors that may explain structure. 
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5.2.1.2.3 Multi-variate analysis of quantitative environmental variables 

 

Multiple linear regressions are applied for the 5 major structural variables (stem 

density, DBH, height, DBH/height and basal area), using all 9 quantitative 

environmental and topographic variables.  No significant multiple linear regressions 

were found for DBH, the DBH/Height value (on top of the already discussed single-

variate relationship with topmodel) nor basal area. 

 

For stem density, combinations of two variables jointly explain 53% of variability 

(Figure 80).  These are elevation (explaining 21%) and toposcale (explaining a further 

31%) (Stem Density = -1816 + 2.12Elevation - 4.72Toposcale, R2 = 0.53, p = 0.02).  

Based on this equation the highest stem density is found in high elevations with 

exposed convex slopes, though there is a significant amount of variation (47%) not 

explained by these factors.  Indeed, examination of the scatterplot of modelled against 

measured stem density shows that the model poorly explains low stem densities 

(Figure 80).  However, this result agrees with patterns reported by Webb et al. (1999), 

where exposed ridges in American Samoa were found to have low stature and low 

DBH but high stem densities compared to slopes and valleys, with the authors 

attributing this pattern to wind-cropping and higher levels of disturbance. 

 

For tree height a combination of two variables jointly explain 58% of the variability 

(Figure 80).  These are topmodel (explaining 32%) and solar radiation (explaining the 

remaining 26%) (Height =  24.17 - 1.02Topmod – 0.0009Solar, R2 = 0.58, p = 0.01).  

This relationship is interesting in that it once again highlights surface soil moisture 

(topmodel) as potentially important.  Based on this relationship, the highest trees are 
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found in areas with dry surface soils and low solar radiation receipt.  These are areas 

where there is lower danger of tree fall due to soil instability, but where lower solar 

radiation resources makes the investment of energy into reaching higher into the 

canopy important.  This way the trees in the community tend to grow higher as they 

compete for greater light resource at the upper canopy.  Equally this relationship 

could be argued as questionable and possibly spurious, based on the argument that 

forest stature may be expected to be lower in areas with lower resources (less soil 

moisture and less light receipt).  Once again, there is no way of showing (without the 

collection of substantially more field data) whether this is a truly causal relationship 

due to the process of stability and competition for light, or whether this is a spurious 

result with no causal relation. 
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Figure 80 Modelled stem density against measured stem density in Tambito, based on the 

multiple stepwise linear regression model using elevation and toposcale (right) and modelled 

tree height against measured tree height in Tambito, based on the multiple stepwise linear 

regression model using topmodel and solar radiation receipt (left). 

 

5.2.1.2.4 Average structure – diversity relationships 
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The final analysis using the average of structural variables for the plots looks at the 

relationship between diversity and structure.  All structural variables are correlated 

with all diversity and richness measures, calculating the Pearson correlation 

coefficient and the respective p-value (Table 41). 

 

Pearson's Correlation 

Coefficient

Stem 

Density
DBH DBaseH DBH/DBaseH DBH/Height Basal Area Height

Height of 

1st Branch

Family Richness -0.04 0.01 0.10 -0.23 -0.27 0.12 0.22 0.07

Genera Richness 0.40 -0.61 -0.47 -0.11 0.08 -0.26 -0.46 -0.57

Species Richness 0.26 -0.22 -0.12 -0.27 0.11 0.15 -0.25 -0.37

Endemic Species 0.59 -0.46 -0.36 0.04 -0.08 0.05 -0.42 -0.48

Simpson's -0.48 0.54 0.65 -0.84 0.23 0.46 0.15 -0.09

Shannon's -0.25 0.27 0.39 -0.69 0.18 0.34 0.03 -0.19

Margalef -0.04 0.01 0.13 -0.50 0.17 0.20 -0.14 -0.33

Menhinick -0.41 0.31 0.42 -0.72 0.24 0.24 0.01 -0.23

Berger-Parker 0.56 -0.57 -0.68 0.86 -0.25 -0.35 -0.16 0.09  

 

p-value
Stem 

Density
DBH DBaseH DBH/DBaseH DBH/Height Basal Area Height

Height of 

1st Branch

Family Richness 0.91 0.98 0.78 0.52 0.44 0.97 0.55 0.85

Genera Richness 0.25 0.06 0.17 0.77 0.83 0.22 0.18 0.09

Species Richness 0.46 0.53 0.74 0.45 0.77 0.95 0.49 0.29

Endemic Species 0.07 0.18 0.31 0.91 0.84 0.80 0.22 0.17

Simpson's 0.16 0.11 0.04 0.00 0.52 0.38 0.67 0.80

Shannon's 0.48 0.46 0.27 0.03 0.62 0.60 0.93 0.59

Margalef 0.92 0.98 0.73 0.14 0.63 0.86 0.70 0.35

Menhinick 0.23 0.39 0.22 0.02 0.51 0.75 0.98 0.52

Berger-Parker 0.09 0.08 0.03 0.00 0.49 0.51 0.66 0.80  

Table 41 Correlation coefficients and respective p-values for all correlations between 

diversity and richness measures and structural variables in Tambito. 

 

Some correlations are found between diversity indices and the diameter at the base of 

trees (DbaseH), and also the DBH/DbaseH variable.  With DbaseH, Simpson’s and 

Berger-Parker correlate to the 95% significance level, where highest diversity is found 

in plots with a high average DbaseH.  In the case of DBH/DbaseH, Simpson’s, 

Shannon’s, Menhinick and Berger Parker all correlate such that highest diversity 
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(ergo low dominance) are found in low index values, where the DBH is significantly 

smaller than the DbaseH.  It is possible that the relationships with DBH/DbaseH are a 

result of some co-linearity with curvature, which has already been presented in 

Chapter 4 as a key driver of diversity in Tambito.  Curvature narrowly fails to 

correlate significantly to the 95% confidence level with DBH/DbaseH (Table 40), but 

this relationship may be behind the significant correlation presented here.  In the case 

of Simpson and Berger-Parker correlating with the average DbaseH, this appears to 

have no co-linearity with any of the environmental variables (Table 40).  Though not 

significant at the 95% significance level, there is also a weak positive correlation 

between DBH and Simpson’s (Pearson = 0.54, p = 0.11, n = 10) and negative 

correlation with Berger-Parker (Pearson = -0.57, p = 0.08, n = 10).  It seems that in 

general, plots with greater tree girths tend to have lower dominance and higher 

diversity, contrary to a pattern reported by Givnish (1999).  However, the mechanism 

behind such a relationship is not clear, but analysis of the frequency distribution of 

tree girths might shed further light.  This is analysed in section 5.2.2.1.3. 

 

5.2.2 Structural distribution 

 

5.2.2.1.1 General discussion 

 

Having examined the environmental and topographic relationships with average 

structural parameters for each plot, the frequency distribution of structural parameters 

within each plot are examined here.  Two plots may have the same average tree 

height, for example, but the distribution of tree heights for all the individuals may 

indeed be very different.  This section examines the stratification of structure through 
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analysis of frequency histograms for the three principal structural variables (DBH, 

height and DBH/height), and through correlating the similarity in the distribution of 

structural forms between plot pairs with the environmental and topographic similarity 

between the plot pairs themselves. 

 

5.2.2.1.2 Single-variate analysis of quantitative environmental variables 

 

The Kolmogorov-Smirnov (K-S) test is used on the structural data for DBH, tree 

height and DBH/height for each plot pair to examine the difference in their 

distributions.  The K-S test uses the mean and standard deviation of the distribution to 

indicate similarity between samples.  The higher the K-S statistic, the more different 

the distributions, so the matrix between plot pairs is in fact a dissimilarity matrix of 

the structural variable (the method is discussed in greater detail in Section 3.6.4).  

Mantel tests are then used on the dissimilarity matrix of structural distribution and the 

dissimilarity matrix of environmental difference, in the same way as in Chapter 4.   In 

each case, the scatterplots are shown (Figure 81, Figure 82 and Figure 83), along with 

a summary table indicating whether significant correlation was found (Table 42, 

Table 43 and Table 44). 
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DBH Similarity and Toposcale
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Figure 81 Scatterplots of similarity in distribution of DBH between plot-pairs (calculated 

using the K-S test of the distributions) against environmental difference between plot-pairs in 

Tambito. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance 0.15 0.250 Not-significant

Altitude 0.23 0.104 Not-significant

Eastness -0.05 0.421 Not-significant

Northness 0.15 0.202 Not-significant

Curvature 0.03 0.448 Not-significant

Slope 0.10 0.185 Not-significant

Slope Position 0.13 0.171 Not-significant

Solar Radiation 0.06 0.344 Not-significant

Toposcale 0.06 0.354 Not-significant

TopModel -0.13 0.240 Not-significant  

Table 42 Summary results of structural DBH similarity analysis with distance and 

environmental variables, using Mantel tests and a one-tailed Pearson.  Note that structural 

dissimilarity was compared with environmental dissimilarity (difference).  The northness 

variable produces very different results due to the heavily skewed distribution of plots in 

strongly northward and strongly southward facing slopes. 
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Figure 82 Scatterplots of similarity in distribution of tree height between plot-pairs  

(calculated using the K-S test of the distributions) against environmental difference between 

plot-pairs in Tambito. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance -0.22 0.162 Not-significant

Altitude -0.17 0.200 Not-significant

Eastness 0.07 0.285 Not-significant

Northness -0.12 0.228 Not-significant

Curvature -0.08 0.382 Not-significant

Slope 0.07 0.253 Not-significant

Slope Position -0.18 0.089 Not-significant

Solar Radiation 0.21 0.103 Not-significant

Toposcale -0.22 0.100 Not-significant

TopModel 0.29 0.071 Not-significant  

Table 43 Summary results of tree height similarity analysis with distance and environmental 

variables, using Mantel tests and a one-tailed Pearson.  Note that structural dissimilarity was 

compared with environmental dissimilarity (difference).  The northness variable produces 

very different results due to the heavily skewed distribution of plots in strongly northward and 

strongly southward facing slopes. 
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DBH:Height Ratio Similarity and Toposcale
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Figure 83 Scatterplots of similarity in distribution of the DBH/Height variable between plot-

pairs  (calculated using the K-S test of the distributions) against environmental difference 

between plot-pairs in Tambito. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance -0.31 0.046 Significant

Altitude 0.22 0.224 Not-significant

Eastness -0.03 0.502 Not-significant

Northness 0.11 0.162 Not-significant

Curvature 0.01 0.435 Not-significant

Slope 0.16 0.140 Not-significant

Slope Position -0.01 0.536 Not-significant

Solar Radiation 0.27 0.060 Not-significant

Toposcale -0.09 0.347 Not-significant

TopModel 0.53 0.005 Significant  

Table 44 Summary results of structural DBH/Height variable similarity analysis with distance 

and environmental variables, using Mantel tests and a one-tailed Pearson.  Note that structural 

dissimilarity was compared with environmental dissimilarity (difference).  The northness 

variable produces very different results due to the heavily skewed distribution of plots in 

strongly northward and strongly southward facing slopes. 

 

No significant relationships were found between similarity in the distribution of DBH 

or tree height and difference in any of the 9 environmental and topographic variables 

between plot-pairs.  This further confirms the findings in section 5.2.1.2.2, indicating 

that no relationship exists between environment and average DBH or height nor in the 
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distribution of these structural forms.  However, the significant correlation between 

structural dissimilarity and environmental difference in TopModel for the 

DBH/Height variable provides even greater evidence that the correlation already 

found in section 5.2.1.2.2 (Figure 79) is worthy of further discussion.  This indicates 

that not only does the average value for DBH/Height correlate with topmodel 

wetness, but also the distribution of DBH/Height for individuals within each plot 

does.  There are no plot-pairs that are similar in DBH/Height distribution with very 

different topmodel wetness indices, though there is greater variation in topmodel 

wetness index difference between plot-pairs with highly dissimilar DBH/Height 

distributions.  This scale dependence in the relationship significantly lowers the level 

of correlation, though it is still significant to the 99% confidence level. 

 

5.2.2.1.3 Structural distribution – species composition relationships 

 

Finally for Tambito, the relationship between structural dissimilarity and 

compositional similarity is examined for the three major structural variables (DBH, 

Height and DBH/Height), also through K-S analyses and Mantel tests (Figure 84). 
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Scattergram of structural similarity (DBH/Height) 

against compositional similarity
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Figure 84 Scatterplots for plot-pairs of compositional similarity against structural 

dissimilarity for the major structural variables in Tambito. 

 

There is a significant relationship between the similarity in DBH distribution and 

composition at the 95% significance level (Mantel = -0.32, p = 0.05), whereby 

compositionally similar plots are also similar in the distribution of DBH values, 

though as can be seen in the scatterplot just 10% of the variability is explained by this 

relationship.  It is expected that individual species have specific structural forms, and 

that compositionally similar plots would therefore have similar distributions in 

structural forms, though clearly a great deal of variability is not explained in these 

relationships.  This is likely due to the successional stage in each plot, whereby 

compositionally similar plots are likely to have significant variation in structural 

characteristics depending on the successional stage, but also due to environmental 

interactions causing further variability in the structural form of each species. 

 

5.3 Tiputini Biodiversity Station 
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Surprisingly few patterns have been found between topographic characteristics and 

structure in Tambito, and for TBS (LRF) it would be expected that structural 

variability be much less pronounced.  Furthermore, quality issues with the DEMs for 

TBS add a further problem in attributing confidence to the results of these analyses. 

 

5.3.1 Average structure 

 

5.3.1.1 Forest Structure in general 

 

TBS has lower stem densities (average 1515 stems Ha
-1
 for the 10 plots), with average 

DBH of 12.8cm (maximum 92.3cm) and taller trees (average 10.4m, maximum 38m).  

The frequency distributions for the three major structural characteristics (height, DBH 

and DBH/Height) are shown in Figure 85.  92.8% of individuals are less than 20m 

tall, with 49.5% of individuals 4-8m tall.  The greatest frequency of DBH occurs 

between 7-9cm (24.7% of all individuals, similar to Tambito in that there are more 

stems in this class than the 5-7cm class), and 93.2% of individuals have a DBH less 

than 30cm.  16.8% of individuals have a DBH/Height value below 1 (a greater 

percentage than in Tambito), and 67.4% of individuals with DBH/Height between 1-

1.6.  The highest DBH/Height value is 9.4, though this is a clear outlier with just 6 

individuals with DBH/Height greater than 5.  This distribution of DBH/Height values 

for TBS is significantly skewed towards lower values than found in Tambito (despite 

a higher maximum in TBS), indicating greater investment of resources in height 

relative to trunk diameter. 
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Tree height distribution for all individuals in TBS
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DBH/height distribution for all individuals in TBS
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Figure 85 Frequency histograms for the three major structural characteristics for all 

individuals in TBS 

 

In terms of variability, the greatest variability between individuals occurred in DBH 

(coefficient of variability 82.1%), followed by DBH/Height (57.2%) and finally tree 

height (56.8%).  Further discussion of these patterns in direct comparison with 

Tambito is presented in Section 5.4. 

 

5.3.1.2 Between-Plot Structural Variability 

5.3.1.2.1 General discussion 
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This section addresses the between-plot variability of the average structural 

parameters, using the topographic characteristics to explain this variation.  The 

structural conditions at each plot are shown in Table 45. 

 

Plot
Elevation 

(m)

Stem 

Density 

(stems/ha)

DBH (cm)
DBaseH 

(cm)

DBH/DBase

H
DBH/Height

Basal Area 

(m
2
)

Height (m)

Height of 

1st Branch 

(m)

1 199 1280 15.66 17.09 0.90 1.38 3.26 10.86 7.48

2 219 2112 11.39 13.14 0.91 1.54 2.25 7.59 5.26

3 210 1520 11.31 13.30 0.87 1.28 1.82 9.59 6.70

4 201 1616 10.46 12.12 0.86 1.22 1.74 8.28 5.48

5 211 1408 13.28 14.89 0.87 1.35 3.10 9.27 5.88

6 220 1440 14.57 16.06 0.90 1.49 2.57 10.03 7.30

7 219 1056 11.93 13.67 0.86 1.29 1.35 9.53 6.27

8 262 1648 12.36 14.66 0.83 0.95 2.62 12.95 8.98

9 238 1520 13.21 15.62 0.84 1.00 3.12 12.51 8.19

10 224 1552 14.44 16.51 0.86 1.05 3.22 13.22 8.68  

Table 45 Structural characteristics of the plots in TBS 

 

Plot 2 has a significantly higher stem density (2112 stems Ha
-1
) than the rest of the 

plots (average 1449 stems Ha-1), with Plots 1 and 7 have the lowest stem density.   

Plots 8, 9 and 10 have the greatest stature with over 12m average tree height in all 

three plots, but these plots do not have the highest average tree girths, with Plot 1 

having the highest average DBH (15.7cm) and highest basal area (3.26m2).  As well 

as the high stem density, Plot 2 is also distinct from the other plots in terms of average 

tree height with an average of just 7.6m.  There is significant variability in the average 

DBH/Height between plots, with Plot 2 having an average value of 1.54, whilst Plot 8 

has an average DBH/Height value of just 0.95.  The tallest trees were found in Plot 9 

(38m, Micropholis sp. (Sapotaceae)), Plot 8 (37.3m, Jacaranda copaia Aublet.) and 

Plot 10 (34m, Ardisia sp. (Myrsinaceae)). 

 

5.3.1.2.2 Single-variate analysis of quantitative environmental variables 
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As in Section 5.2.1.2.2 for Tambito, variation in average structural characteristics are 

compared with the topographic characteristics through Pearson correlation 

coefficients, in the case of TBS applied for the TOPO DEM (Table 46) and the SRTM 

DEM (Table 47). 

 

Pearson's Correlation 

Coefficient
Elevation Eastness Northness Curvature Slope

Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Stem Density 0.21 -0.24 0.03 0.31 -0.37 0.02 0.16 -0.15 0.22

DBH -0.01 -0.63 -0.48 -0.15 -0.18 0.26 -0.44 0.40 -0.15

DBaseH 0.15 -0.58 -0.39 -0.04 -0.16 0.38 -0.34 0.35 -0.03

DBH/DBaseH -0.53 -0.72 -0.28 -0.58 -0.28 -0.34 -0.46 0.26 -0.61

DBH/Height -0.64 -0.54 -0.20 -0.64 -0.21 -0.51 -0.40 0.34 -0.66

Basal Area 0.13 -0.60 -0.47 0.08 -0.38 0.17 -0.34 0.51 0.01

Height 0.66 0.05 -0.03 0.51 0.11 0.72 0.14 -0.12 0.55

Height of 1st Branch 0.71 0.01 0.02 0.55 0.12 0.78 0.13 -0.20 0.58  

 

p-value Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Stem Density 0.57 0.51 0.94 0.38 0.29 0.95 0.66 0.69 0.54

DBH 0.99 0.05 0.16 0.68 0.61 0.47 0.20 0.25 0.69

DBaseH 0.67 0.08 0.26 0.92 0.65 0.27 0.33 0.32 0.94

DBH/DBaseH 0.12 0.02 0.43 0.08 0.44 0.34 0.18 0.47 0.06

DBH/Height 0.05 0.10 0.58 0.05 0.57 0.13 0.26 0.34 0.04

Basal Area 0.73 0.07 0.17 0.83 0.28 0.64 0.33 0.13 0.97

Height 0.04 0.89 0.93 0.13 0.77 0.02 0.71 0.73 0.10

Height of 1st Branch 0.02 0.99 0.96 0.10 0.74 0.01 0.72 0.58 0.08  

Table 46 Pearson correlation coefficients and the respective p-values between average 

structural characteristics for each plot and the topographic characteristics derived from the 

TOPO DEM in TBS 

 

Pearson's Correlation 

Coefficient
Elevation Eastness Northness Curvature Slope

Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Stem Density 0.21 -0.56 -0.09 0.25 0.31 0.37 -0.47 -0.25 0.06

DBH -0.01 -0.25 0.20 0.03 -0.10 -0.09 0.12 0.12 0.13

DBaseH 0.15 -0.27 0.27 0.13 -0.12 0.02 0.18 0.07 0.19

DBH/DBaseH -0.53 -0.32 0.05 -0.14 0.22 -0.14 -0.35 0.06 -0.13

DBH/Height -0.64 -0.09 -0.10 -0.28 0.26 -0.20 -0.38 0.18 -0.22

Basal Area 0.13 -0.39 0.07 -0.04 -0.08 -0.01 0.06 0.23 -0.02

Height 0.66 -0.14 0.27 0.41 -0.27 0.29 0.38 -0.16 0.36

Height of 1st Branch 0.71 -0.25 0.24 0.47 -0.25 0.40 0.30 -0.21 0.42  
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p-value Elevation Eastness Northness Curvature Slope
Slope 

Position

Solar 

Radiation
Topmodel Toposcale

Stem Density 0.57 0.09 0.81 0.49 0.39 0.30 0.17 0.49 0.86

DBH 0.99 0.48 0.59 0.93 0.78 0.81 0.74 0.74 0.73

DBaseH 0.67 0.45 0.45 0.72 0.74 0.95 0.62 0.85 0.60

DBH/DBaseH 0.12 0.36 0.90 0.69 0.55 0.71 0.33 0.86 0.73

DBH/Height 0.05 0.80 0.78 0.43 0.48 0.58 0.27 0.61 0.55

Basal Area 0.73 0.27 0.85 0.92 0.82 0.97 0.87 0.53 0.95

Height 0.04 0.70 0.45 0.24 0.45 0.42 0.27 0.67 0.31

Height of 1st Branch 0.02 0.49 0.51 0.17 0.48 0.26 0.40 0.57 0.23  

Table 47 Pearson correlation coefficients and the respective p-values between average 

structural characteristics for each plot and the topographic characteristics derived from the 

TOPO DEM in TBS. 

 

The greatest number of correlations occur with elevation, with DBH/Height, tree 

height and height of first branch all correlating significantly.  It is important to note 

that elevation in the plots is measured by GPS and not derived from the DEMs, so 

issues with DEM quality are not relevant in these correlations with elevation.  The 

correlations are such that greater tree height and height of first branch are found at 

higher elevations, with the DBH/Height lower in higher elevations (i.e. greater height 

relative to DBH) (Figure 86).   
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Figure 86 Significant correlations for plot average DBH/Height and tree height with elevation 

in TBS 
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Both the correlations shown in Figure 86 appear to consist of high tree height and low 

DBH/Height in the three high-elevation plots (8, 9 and 10), and respectively low tree 

height and high DBH/Height values for the remaining seven lower elevation plots.  

The significant correlations are due to this general pattern, and indeed no significant 

correlation is found between elevation and tree height or DBH/Height when only the 

seven lower elevation plots are included (for example for tree height, Pearson = -0.11, 

p = 0.81).  As discussed in depth in Chapter 4, there is a great deal of co-linearity 

between elevation, distance from river and slope position (also correlates significantly 

for the TOPO DEM with tree height and height of first branch), and it appears that all 

these correlations are in fact related.  The correlation between tree height and distance 

from river is also highly significant (Figure 87), though once again there is a clear 

difference between the seven low elevation plots and the three high elevation plots.   
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Relationship between tree height and 

distance from river in TBS
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Figure 87 Relationship between plot average DBH/Height and tree height and distance from 

river in TBS 

 

These relationships with tree height and DBH/height, whereby the three higher 

elevation plots have higher average tree heights and a respective lower DBH/height 

value could be for a number of reasons, many of which are similar to those discussed 
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in Chapter 4, Section 4.3.2.1.2.  These include flooding frequency (higher frequency 

at lower elevations), forest age (possibly greater forest age with greater distance from 

river) and an edaphic gradient with greater distance from the river (associated with 

forest age).  The fact that there is greater average tree height in Plots 8, 9 and 10, and 

that the tallest trees recorded in the plots are also found in these plots is an indication 

that either there is less disturbance in these plots, permitting the survival of large 

individuals, or that the forest is older (in the sense of river migration), that has 

permitted that some trees reach very large sizes.  However, the abrupt change in tree 

height evident in the scatterplots above 220m elevation also indicates that flooding 

may be a factor which limits tree height, with all plots that are at least occasionally 

flooded containing lower forest stature.  This is further supported by the low stature 

found in the two regularly flooded plots (4 and 5).  Indeed this may be evidence of the 

distinct structural forms found between varzea forest (Plots 1-7) and terra firma forest 

(Plots 8-10). 

 

In addition to the elevational pattern (and the correlation with slope position/distance 

from river which is closely related), there is a significant correlation between mean 

curvature and toposcale and DBH/Height when the TOPO DEM is used, and eastness 

and DBH/DbaseH also for the TOPO DEM, though neither of these correlations hold 

for the SRTM DEM.  However, the relationship between curvature and toposcale and 

DBH/Height is heavily dependent on the high curvature/exposure (i.e. convex slope) 

and the low DBH/Height found in Plot 8 (Figure 88), and so these cannot be 

considered a robust relationship. 
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Relationship between mean curvature and 

DBH/Height in TBS using TOPO DEM

y = -0.76x + 1.27

R
2
 = 0.41

0.00

0.50

1.00

1.50

2.00

-0.4 -0.2 0 0.2 0.4 0.6

Mean Curvature

D
B
H
/H
e
ig
h
t

 

Relationship between eastness and 

DBH/DbaseH in TBS using TOPO DEM

y = -0.02x + 0.87

R2 = 0.51

0.82
0.83
0.84
0.85
0.86

0.87
0.88
0.89
0.90
0.91
0.92

-1.5 -1 -0.5 0 0.5 1 1.5

Eastness

D
B
H
/D
b
a
s
e
H

 

Figure 88 Significant relationships between mean curvature and DBH/Height (left) and 

eastness and DBH/DbaseH (right) in TBS using the TOPO DEM. 

 

The relationship between eastness and DBH/DbaseH is however more robust based 

on eastness measured by the TOPO DEM (Figure 88), though the relationship does not 

hold for eastness derived from the high-resolution plot DEMs (DBH/DbaseH = -0.02 

Eastness + 0.87, Pearson = -0.33, p = 0.36).  The significance of eastness in TBS is 

related to exposure to wind from the south-east and east, meaning that strongly east 

facing slopes (i.e. high eastness) are more exposed to winds.  It may be that eastness 

as measured at the ground level is not significant in indicating exposure to wind at the 

canopy level, whilst the TOPO DEM captures canopy level exposure better.  Under 

these circumstances it may be that trees exposed to wind at the canopy level invest 

greater in basal area (including buttresses) in order to have greater stability, a pattern 

supported by the low DBH/DbaseH found in strongly east facing slopes. 

 

5.3.1.2.3 Multi-variate analysis of quantitative environmental variables 
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Multiple stepwise linear regressions are applied to explain the variation in the major 

structural characteristics (DBH, tree height, DBH/Height).  No significant multi-

variate correlations are found to explain the variability in any of these structural 

variables for either of the DEMs on top of the already discussed single-variate 

relationships. 

 

5.3.1.2.4 Average structure – diversity relationships 

 

Finally, average structural characteristics are compared with diversity measures for 

each plot, in order to search for structural-diversity relations (Table 48). 

 

Pearson's Correlation 

Coefficient

Stem 

Density
DBH DBaseH DBH/DBaseH DBH/Height Basal Area Height

Height of 1st 

Branch

Family Richness 0.27 0.09 0.19 -0.19 -0.42 0.08 0.49 0.59

Genera Richness 0.20 0.03 0.16 -0.33 -0.49 0.05 0.55 0.63

Species Richness 0.63 -0.06 0.06 -0.08 -0.33 0.14 0.38 0.46

Endemic Species 0.40 0.10 0.21 -0.15 -0.43 0.23 0.53 0.57

Simpson's 0.09 0.07 0.14 -0.02 -0.24 -0.15 0.38 0.49

Shannon's 0.33 0.06 0.16 -0.07 -0.32 0.03 0.46 0.55

Margalef 0.54 0.00 0.11 -0.10 -0.36 0.14 0.44 0.52

Menhinick 0.39 0.08 0.20 -0.14 -0.40 0.14 0.52 0.60

Berger-Parker 0.05 -0.16 -0.24 0.09 0.31 0.08 -0.49 -0.59  

 

p-value
Stem 

Density
DBH DBaseH DBH/DBaseH DBH/Height Basal Area Height

Height of 1st 

Branch

Family Richness 0.46 0.79 0.60 0.60 0.23 0.82 0.15 0.07

Genera Richness 0.58 0.94 0.65 0.36 0.15 0.89 0.10 0.05

Species Richness 0.05 0.88 0.87 0.82 0.35 0.71 0.27 0.18

Endemic Species 0.25 0.79 0.56 0.67 0.21 0.53 0.12 0.08

Simpson's 0.81 0.85 0.70 0.95 0.50 0.69 0.28 0.16

Shannon's 0.35 0.87 0.65 0.85 0.36 0.93 0.19 0.10

Margalef 0.11 0.99 0.75 0.77 0.31 0.70 0.20 0.12

Menhinick 0.27 0.84 0.59 0.71 0.25 0.70 0.12 0.07

Berger-Parker 0.90 0.67 0.50 0.81 0.39 0.82 0.15 0.07  

Table 48 Correlation coefficients and respective p-values for all correlations between 

diversity and richness measures and structural variables in TBS. 
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As can be seen, no significant relationships exist, with structure completely 

independent of diversity for all variables, unlike the situation in Tambito, though there 

are few theoretical reasons as to why such a relationship should occur.  It is far more 

likely that correlations exist between structural distribution and composition, as is 

examined later in Section 5.3.2.1.3. 

 

5.3.2 Distribution in structure 

 

5.3.2.1.1 General discussion 

 

Having examined the patterns of variability in average structural characteristics for 

each plot, this section examines the distribution in structural forms for each major 

structural variable (DBH, Height, and DBH/Height), comparing it with topographic 

characteristics.  The same method adopted for Tambito is used here for TBS. 

 

5.3.2.1.2 Single-variate analysis of quantitative environmental variables 

 

The single-variate analysis of structural distribution in the plots involves the 

application of Mantel tests between similarity matrices for each structural parameter 

(calculated using Kolmogorov-Smirnov tests between plot pairs for each structural 

variable, as explained in Section 3.6.4) along with the difference in topographic 

conditions for plot-pairs.   This is performed for the TOPO DEM (Figure 89, Figure 90 

and Figure 91), with associated tables summarizing the results (Table 49, Table 50 and 
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Table 51), and for the SRTM DEM (Figure 92, Figure 93 and Figure 94), also with 

summary tables of the results (Table 52, Table 53 and Table 54). 

 

Structural Similarity and Distance

y = -318.08x + 1424.2

R2 = 0.0011

0

500

1000

1500

2000

2500

3000

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

H
o
ri
z
o
n
ta
l 
D
is
ta
n
c
e
 

B
e
tw
e
e
n
 P
lo
ts
 (
m
)

Structural Similarity and Elevation

y = -58.778x + 30.55

R2 = 0.048

0

10

20

30

40

50

60

70

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

E
le
v
a
ti
o
n
a
l 
D
if
fe
re
n
c
e
 (
m
)

Structural Similarity and Distance from River

y = 169.7x + 764.65

R2 = 0.0003

0

500

1000

1500

2000

2500

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

D
if
fe
re
n
c
e
 i
n
 d
is
ta
n
c
e
 

fr
o
m
 r
iv
e
r(
m
)

Structural Similarity and Eastness

y = 0.4456x + 0.8566

R2 = 0.0019

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

E
a
s
tn
e
s
s
 D
if
fe
re
n
c
e

Structural Similarity and Northness

y = 0.7089x + 0.6883

R2 = 0.0061

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

N
o
rt
h
n
e
s
s
 D
if
fe
re
n
c
e

Structural Similarity and Curvature

y = -1.8849x + 0.6662

R2 = 0.1118

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

C
u
rv
a
tu
re
 D
if
fe
re
n
c
e

 

Structural Similarity and Slope
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Figure 89 Scatterplots of similarity in distribution of DBH between plot-pairs (calculated 

using the Kolmogorov-Smirnov test of the distributions) against environmental difference 

between plot-pairs in TBS for derivatives of the Topo DEM. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance -0.03 0.490 Not-significant

Distance from River 0.02 0.383 Not-significant

Altitude -0.22 0.185 Not-significant

Eastness 0.04 0.338 Not-significant

Northness 0.08 0.347 Not-significant

Curvature -0.33 0.030 Significant

Slope -0.22 0.156 Not-significant

Slope Position 0.33 0.012 Significant

Solar Radiation 0.06 0.357 Not-significant

Toposcale -0.33 0.040 Significant

TopModel -0.04 0.454 Not-significant  

Table 49 Summary results of structural DBH similarity analysis with distance and 

environmental variables derived from the Topo DEM, using Mantel tests and a one-tailed 
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Pearson.  Note that structural dissimilarity was compared with environmental dissimilarity 

(difference). 
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Figure 90 Scatterplots of similarity in distribution of height between plot-pairs (calculated 

using the Kolmogorov-Smirnov test of the distributions) against environmental difference 

between plot-pairs in TBS for derivatives of the Topo DEM. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance 0.27 0.063 Not-Significant

Distance from River 0.58 0.002 Significant

Altitude 0.28 0.034 Significant

Eastness -0.17 0.085 Not-Significant

Northness 0.11 0.203 Not-Significant

Curvature -0.12 0.224 Not-Significant

Slope -0.17 0.192 Not-Significant

Slope Position 0.49 0.012 Significant

Solar Radiation -0.04 0.423 Not-Significant

Toposcale 0.10 0.281 Not-Significant

TopModel -0.21 0.077 Not-Significant  

Table 50 Summary results of structural height similarity analysis with distance and 

environmental variables derived from the Topo DEM, using Mantel tests and a one-tailed 
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Pearson.  Note that structural dissimilarity was compared with environmental dissimilarity 

(difference). 
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Figure 91 Scatterplots of similarity in distribution of the DBH/Height between plot-pairs 

(calculated using the Kolmogorov-Smirnov test of the distributions) against environmental 

difference between plot-pairs in TBS for derivatives of the Topo DEM. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance 0.18 0.161 Not-Significant

Distance from River 0.39 0.029 Significant

Altitude 0.49 0.010 Significant

Eastness 0.06 0.280 Not-Significant

Northness 0.01 0.426 Not-Significant

Curvature 0.05 0.373 Not-Significant

Slope -0.09 0.439 Not-Significant

Slope Position 0.18 0.102 Not-Significant

Solar Radiation -0.19 0.134 Not-Significant

Toposcale 0.42 0.014 Significant

TopModel 0.09 0.300 Not-Significant  

Table 51 Summary results of structural DBH/Height similarity analysis with distance and 

environmental variables derived from the Topo DEM, using Mantel tests and a one-tailed 
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Pearson.  Note that structural dissimilarity was compared with environmental dissimilarity 

(difference). 

 

 

Structural Similarity and Distance

y = -318.08x + 1424.2

R2 = 0.0011

0

500

1000

1500

2000

2500

3000

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

H
o
ri
z
o
n
ta
l 
D
is
ta
n
c
e
 

B
e
tw
e
e
n
 P
lo
ts
 (
m
)

Structural Similarity and Elevation

y = -58.778x + 30.55

R2 = 0.048

0

10

20

30

40

50

60

70

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

E
le
v
a
ti
o
n
a
l 
D
if
fe
re
n
c
e
 (
m
)

Structural Similarity and Distance from River

y = 169.7x + 764.65

R2 = 0.0003

0

500

1000

1500

2000

2500

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

D
if
fe
re
n
c
e
 i
n
 d
is
ta
n
c
e
 

fr
o
m
 r
iv
e
r(
m
)

Structural Similarity and Eastness

y = 0.3184x + 0.6032

R2 = 0.0009

0.0

0.5

1.0

1.5

2.0

2.5

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

E
a
s
tn
e
s
s
 D
if
fe
re
n
c
e

Structural Similarity and Northness

y = 2.4612x + 0.2524

R2 = 0.1256

0.0

0.5

1.0

1.5

2.0

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

N
o
rt
h
n
e
s
s
 D
if
fe
re
n
c
e

Structural Similarity and Curvature

y = -0.0959x + 0.4168

R2 = 0.0005

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.00 0.10 0.20 0.30 0.40

Kolmogorov-Smirnov DBH Similarity

C
u
rv
a
tu
re
 D
if
fe
re
n
c
e

 



 270 

Structural Similarity and Slope
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Figure 92 Scatterplots of similarity in distribution of DBH between plot-pairs (calculated 

using the Kolmogorov-Smirnov test of the distributions) against environmental difference 

between plot-pairs in TBS for derivatives of the SRTM DEM. 
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Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance -0.03 0.455 Not-Significant

Distance from River 0.02 0.400 Not-Significant

Altitude -0.22 0.175 Not-Significant

Eastness 0.03 0.397 Not-Significant

Northness 0.35 0.038 Significant

Curvature -0.02 0.481 Not-Significant

Slope -0.09 0.307 Not-Significant

Slope Position 0.11 0.212 Not-Significant

Solar Radiation 0.20 0.184 Not-Significant

Toposcale 0.28 0.068 Not-Significant

TopModel 0.25 0.158 Not-Significant  

Table 52 Summary results of structural DBH similarity analysis with distance and 

environmental variables derived from the SRTM DEM, using Mantel tests and a one-tailed 

Pearson.  Note that structural dissimilarity was compared with environmental dissimilarity 

(difference). 
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Figure 93 Scatterplots of similarity in distribution of height between plot-pairs (calculated 

using the Kolmogorov-Smirnov test of the distributions) against environmental difference 

between plot-pairs in TBS for derivatives of the SRTM DEM. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance 0.27 0.053 Not-Significant

Distance from River 0.58 0.004 Significant

Altitude 0.28 0.037 Significant

Eastness 0.04 0.428 Not-Significant

Northness 0.29 0.040 Significant

Curvature -0.14 0.156 Not-Significant

Slope -0.22 0.025 Significant

Slope Position 0.10 0.178 Not-Significant

Solar Radiation -0.11 0.258 Not-Significant

Toposcale 0.07 0.266 Not-Significant

TopModel -0.01 0.498 Not-Significant  

Table 53 Summary results of structural height similarity analysis with distance and 

environmental variables derived from the SRTM DEM, using Mantel tests and a one-tailed 
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Pearson.  Note that structural dissimilarity was compared with environmental dissimilarity 

(difference). 
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Figure 94 Scatterplots of similarity in distribution of DBH/Height between plot-pairs 

(calculated using the Kolmogorov-Smirnov test of the distributions) against environmental 

difference between plot-pairs in TBS for derivatives of the SRTM DEM. 

 

Variable Mantel Test One-tailed p-value Correlation (alpha = 0.05)

Distance 0.18 0.164 Not-Significant

Distance from River 0.39 0.031 Significant

Altitude 0.49 0.008 Significant

Eastness -0.21 0.149 Not-Significant

Northness -0.03 0.440 Not-Significant

Curvature 0.02 0.397 Not-Significant

Slope 0.10 0.231 Not-Significant

Slope Position 0.25 0.066 Not-Significant

Solar Radiation 0.14 0.191 Not-Significant

Toposcale 0.03 0.362 Not-Significant

TopModel -0.19 0.173 Not-Significant  

Table 54 Summary results of DBH/Height similarity analysis with distance and 

environmental variables derived from the SRTM DEM, using Mantel tests and a one-tailed 
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Pearson.  Note that structural dissimilarity was compared with environmental dissimilarity 

(difference). 

 

A number of correlations are found between structural frequency distribution 

similarity and topographic similarity between plot pairs.  Independent of the DEMs, 

the structural frequency distributions of tree height and DBH/Height correlate 

significantly with both distance from river and elevation (both variables are strongly 

co-linear, and likely correlating as a result of the same causal process, Pearson = 0.40, 

p = 0.01), whereby greater structural dissimilarity occurs in plots elevationally highly 

different or highly different in their distances from river (both of which amount to the 

same pattern due to co-correlation).   

 

In terms of topographic characteristics derived from each DEM, the TOPO DEM 

provides the greatest number of correlations with DBH and tree height similarity 

correlating positively with slope position similarity (co-linear with elevational 

similarity, Pearson = 0.35, p = 0.02), and DBH similarity inversely correlating with 

toposcale and mean curvature similarity (with these two variables co-linear, Pearson = 

0.38, p = 0.01).  The latter inverse correlation is likely spurious or due to inverse co-

linearity as there is no reasonable explanation for significantly differently “curved” 

sites having similar structural distributions.  DBH/Height similarity also positively 

correlates with toposcale similarity.   

 

There are three significant correlations for the SRTM DEM, including positive 

correlation between similarity in DBH and northness, and between tree height 

similarity and northness similarity (with northness difference for the SRTM DEM 
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being significantly co-linear with distance from river difference, Pearson = 0.29, p = 

0.05).  Finally an inverse correlation between tree height similarity and slope 

similarity is found (and slope difference is weakly inversely correlated with northness 

difference, Pearson = -0.27, p = 0.07).  No significant correlations are found for the 

DBH/Height variable using the SRTM DEM. 

 

After unraveling many of the co-linearities in the data, only one correlation is worth 

highlighting and merits further discussion.  This is the correlations between tree 

height and DBH/Height similarity and difference in distance from river / elevation 

(which are strongly co-linear).  This pattern provides stronger evidence of the 

variation in structural characteristics across the elevational gradient and with greater 

distance from the main river channel.  However, as shown in Section 5.2.1.2.2, this 

correlation is not consistent when only low elevation plots are included in the 

analysis.  When a Mantel test is performed for tree height similarity and difference in 

distance from river for Plots 1 – 7 only, the correlation is no longer significant 

(Mantel = 0.07, p = 0.30, n = 21), similarly for the DBH/Height variable (Mantel = 

0.16, p = 0.20, n = 21). 

 

Once again, the conclusion is that there are two distinct forests in TBS in terms of 

structural tree height and DBH/Height, with upland sites distant from the river (i.e. 

terra firme forest) having significantly greater tree height and lower DBH/Height 

values.  The exact reason for this pattern cannot be identified with the data available. 

 

5.3.2.1.3 Structural distribution – diversity relationships 
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For each of the three major structural variables (DBH, Height and DBH/Height), K-S 

analyses and Mantel tests are applied between structural similarity and compositional 

similarity in order to quantify the relationships between structure and species 

composition (Figure 95). 

 

Scattergram of structural similarity (DBH) 

against compositional similarity for the TOPO 

DEM

y = -0.6956x + 1.6703

R2 = 0.0016

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 0.1 0.2 0.3 0.4

DBH Structural dissimilarity

C
o
m
p
o
s
it
io
n
a
l 
S
im
il
a
ri
ty
 

(J
a
c
c
a
rd
)

Scattergram of structural similarity (tree 

height) against compositional similarity for the 

TOPO DEM

y = -0.2002x + 0.1219

R2 = 0.1289

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5

Tree height structural dissimilarity

C
o
m
p
o
s
it
io
n
a
l 
S
im
il
a
ri
ty
 

(J
a
c
c
a
rd
)

 

Scattergram of structural similarity 

(DBH/Height) against compositional similarity 

for the TOPO DEM

y = -0.0136x + 0.0751

R2 = 0.0009

0

0.05

0.1

0.15

0.2

0.25

0.3

0 0.1 0.2 0.3 0.4 0.5 0.6

DBH/height structural dissimilarity

C
o
m
p
o
s
it
io
n
a
l 
S
im
il
a
ri
ty
 

(J
a
c
c
a
rd
)

 

Figure 95 Scatterplots for plot-pairs of compositional similarity against structural 

dissimilarity for the major structural variables in TBS. 

 

As can be seen, significant correlation is found between tree height similarity and 

species composition (Mantel = -0.359, p = 0.02, n = 45), whereby structurally similar 
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plots also tend to be compositionally similar, though just 13% of variability is 

explained through this relationship.  The lack of correlation in DBH and DBH/Height 

and the 87% of unexplained variability in the tree height similarity may be due to a 

combination of two factors.  First, compositionally identical plots with individuals of 

different ages would be expected to have different structural characteristics.  

Secondly, it is also likely that the poor correlations are the result of varying 

environment, whereby tree structure for any species is strongly dependent on the 

environment where it is found.  In this sense compositionally identical plots may have 

very different structural characteristics if found in different environments. 

 

5.4 Conclusions 

 

This chapter has described the structure in a tropical montane (cloud) forest (Tambito) 

and in a lowland Amazonian forest (TBS), with marked differences between the sites.  

Stem density in Tambito is higher (average 13.5% higher), with an associated lower 

average diameter at breast height (13.3% higher in TBS).  Basal area is also 

significantly greater in TBS (49% greater in TBS than in Tambito), possibly as a 

result of greater density of individuals with buttress roots (reported by Richards, 

1996).  However, conversely the DBH/Height in TBS is higher, indicating that 

relative to height trees in Tambito invest greater in trunk growth, possibly as a 

response to lower stability due to high slopes and unstable soils, and high wetness 

increasing the chances of trunk rot.  Average tree height is the most contrasting 

between the sites, with TBS having an average tree height which is 36.5% greater 

than in Tambito, with 7.2% of individuals being over 20m tall in TBS compared to 

just 1.6% in Tambito.  This difference in tree height between sites is well documented 

in the literature (Whitmore, 1998), and can also be attributed to the lower stability of 
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trees in montane sites due to the steep slopes and high wetness, which make the 

establishment of large individuals unlikely due to frequent tree fall. 

 

When micro-scale variability is examined within each site, surprisingly few patterns 

emerge in the structural data.  In Tambito no elevational patterns are evident, despite 

numerous reports in the literature of increasing stem densities and decreasing tree 

stature with increasing elevation (Huston, 1994; Pendry and Proctor, 1996; Pendry 

and Proctor, 1997; Kappelle, 2004).  However, a strong significant correlation is 

found between DBH/Height (average and the distribution of values) and topmodel (an 

indicator of surface soil moisture, also an indicator of fluvial incision into the 

landscape), whereby individuals make greater investment in trunk diameter relative to 

their height on modelled more moist (incised) slopes.  Whilst sites with potentially 

high soil moisture may have low levels of soil stability indicating a higher risk of tree 

fall, soil moisture is also highest on flatter slopes where water tends to accumulate, 

rather than on steeper slopes.  This renders topmodel a poor indicator of risk of tree 

fall, and indeed when a model of tree fall risk is produced based on cumulative 

upslope area and local slope, no correlations are found.  The significant correlation 

between DBH/Height and topmodel may be either spurious/non-causal, or indicate a 

physiological response of trees to invest in trunk diameter in sites with higher soil 

moisture.  No reports of this are available in the literature to provide further 

discussion on the topic. 

 

When multi-variate statistics are applied to explain the micro-scale variability in 

structure in Tambito, interesting patterns are found with stem density and tree height.  

Micro-scale variability in stem density is explained through a combination of 
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elevation and curvature/exposure (measured with the toposcale variable), whereby 

stem density increase with elevation, and is higher on more exposed sites.  This may 

be explained by the potential stunting of trees on exposed ridges due to wind-cropping 

and prolonged leaf wetness (supported by Letts, 2003) meaning that the site may 

support a greater number of smaller tree individuals.  This is a finding supported in 

the literature by a similar study by Webb et al. (1999).  Tree height is also found to be 

highest in sites with low topmodel values (i.e. dry soils) and in areas of low solar 

radiation, though the validity of this relationship is more questionable as few 

ecologically interpretations are available and solar radiation alone does not capture 

many important aspects of solar radiation receipt in Tambito (discussed in depth in 

Section 3.4.1.3.1).  More plot points would be required to conclude that this be a 

causal relationship. 

 

In TBS, a number of significant correlations are found between topographic 

characteristics and structure (in terms of both average and distribution), though strong 

co-linearity between variables means that it is likely that only one clear pattern 

emerges in the data.  Significant difference is found in tree height between the three 

highest elevation plots and the lower-elevation plots, possibly different in terms of 

flooding regime with plots below 220m elevation being subjected to occasional 

flooding and having significantly lower average tree stature than the three higher 

elevation plots (high elevation plots have 28% greater average tree height).  However, 

significant correlation is also found between distance from river and tree height, 

meaning that the observed difference in tree heights between Plot 8-10 and Plots 1-7 

may also be as a result of a long-term gradient in edaphic and successional conditions 

brought about by river migration (a theory also presented and discussed in Section 
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4.3.2.1.2 with respect to an observed diversity gradient).  It is important to note that a 

gradient in tree height is not observed with greater distance from river or elevation 

(i.e. the correlation does not stand for Plots 1-7 only), but that rather two unique 

classes are observed between terra firme and varzea forest.  No other correlations are 

found to explain the remaining variability, though DEM quality issues in TBS also 

limit the degree to which it can be concluded that environment has no role in 

explaining variability in structure. 

 

Finally, this chapter has briefly examined relationships between diversity and 

structure, and composition and structure.  In Tambito a significant correlation is found 

between plot average DBaseH and DBH/DbaseH and diversity, with plots with higher 

average DbaseH and lower DBH/DbaseH ratio values having the higher diversity.  

The latter correlation is likely due to co-linearity with curvature and therefore 

spurious (found in Chapter 4, Section 4.2.2.1.2 to be significant in explaining 

diversity), and few ecological interpretations are available for the former correlation.  

Compositional similarity is also shown to explain some variability in DBH structural 

similarity between plots, though a remaining 90% of variability (the vast majority) is 

unexplained.  No such pattern was found for tree height or the DBH/Height variable.  

In TBS even fewer relationships between structure and diversity were found, except 

for composition explaining 13% of variability in tree height.  In both sites, a large 

degree of structural variability is not explained by composition, indicating that tree 

age and stochastic processes such as tree fall and the subsequent successional 

processes prevent many species from reaching full maturity.  However, the 

DBH/Height variable is less sensitive to tree age (though DBH/Height is likely to 

increase slightly over time as the tree reaches the canopy, but nevertheless the value is 
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far more stable with age than basic DBH or tree height), and the abject lack of 

correlations between compositional similarity and DBH/Height similarity between-

plots also leads to believe that environment significantly affects the structural forms 

of individuals of the same species.  More in depth studies could be made to quantify 

this ‘plasticity’ in structural form of species across environmental gradients. 

 

In conclusion, a great deal of variability in structure is not accounted for using the 

topographic variables adopted in this study.  This signifies that either the variables 

themselves are not capturing environmental conditions that are significant in driving 

structural variability, or a large degree of micro-scale variability in structure is 

actually controlled by processes such as tree fall, predominantly stochastic in both 

space and time.  These stochastic processes result in different age distributions of 

individuals, and resultant differences in structural characteristics especially when 

examined at the 25 m plot-scale.  Furthermore, forest structure itself is a significant 

factor in further partitioning landscape-controlled resources, resulting in a feedback 

mechanism which changes alongside the dynamic in tree age distribution.  Instead of 

considering how landscape controls the partitioning of resources and thus the 

structure of the forest (as studied here), it may be more important to consider how a 

combination of landscape and chance disturbances control forest age distributions, 

which alongside landscape controlled resources affect forest structure through a 

feedback mechanism.  Temporal studies of forest structural change across a landscape 

are required to understand these complex interactions. 
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Chapter 6 

 

6 Effect of spatial heterogeneity of environmental variables on the diversity 
 

6.1 Research Strategy 

 

Previous chapters have examined the conditions found at each plot, and examined the 

relationship between topography and the structure and diversity of the forest.  Some 

significant relationships have been found, and some variability can be explained 

through within-plot conditions.  This chapter endeavours to explain more of the 

variability in composition and diversity through examining how the topographic 

conditions surrounding each plot may shape the within-plot diversity and composition 

that has been measured within-plot.  The rationale for this analysis is that many 

within-plot processes are affected by local effects through inherently spatial 

(neighbourhood) ecological processes such as seed dispersal and competition, which 

permit the movement and interaction of species across a landscape, maintaining 

diversity and driving evolution.  Ecological research has often cited “environmental 

heterogeneity” as an important driver of diversity (starting with Ricklefs, 1977), under 

the hypothesis that regions with abrupt environmental gradients contain a high 

number of different species because of  their greater availability of different niches, 

which creates a rich local seed pool.  Central to this theory is the notion that species 

distributions are associated with their environment, so that a diverse surrounding 

environment does indeed signify a diverse local pool of species.  Recent studies have 

questioned the degree to which habitat associations occur in tropical lowland forests 

(discussed in Section 2.3.2) with 20% - 80% of species found to have habitat 

association depending on the study and the site (Webb and Peart, 2000; Harms et al., 
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2001; Phillips et al., 2003; St-Louis et al., 2004).  In montane forests there are many 

studies that show strong associations between elevation (representing an 

environmental gradient in many climatic factors) and species composition (discussed 

in Section 2.3.1), though none of these focus on micro-scale environmental 

variability.  The analysis presented in this thesis has shown strong evidence of habitat 

association in species composition in Tambito (association between composition and 

elevation), along with some degree of habitat association in TBS (association between 

composition and northness, toposcale and elevation, though the validity of this has 

been questioned).  Given this evidence, it is reasonable to expect that spatial 

heterogeneity is an important factor in shaping the diversity in a montane forest, and 

to a lesser extent in a lowland forest. 

 

As already introduced in Chapter 2, the concept of environmental heterogeneity in 

tropical forests may provide a degree of unification between non-equilibrium and 

equilibrium based theories of species diversity maintenance.  If in tropical forests the 

random occurrence in both space and time of tree and branch fall means that 

recruitment in gaps is dominated by chance occupants (Brokaw and Busing, 2000), 

but that there is also some degree of niche-specialization in some tree species (for 

example Phillips et al., 2003, also discussed in depth in Section 2.3.2), spatially 

heterogeneous environments would potentially provide a diverse local seed pool for 

gap recruitment because habitat preferences would mean that the pool of potential 

immigrants were diverse, increasing the chances that a specialist to the conditions in 

the gap may arrive through short-distance seed dispersal.  This argument is centered 

on the process of seed dispersal, though spatial heterogeneity is also of importance for 

biotic interactions, specifically herbivory and competition Spatially heterogeneous 
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landscapes are considered to be favourable for diversity through the prevention of 

competitive exclusion (discussed in detail by Huston (1994)) assuming species to 

have some niche specialisation.  The resultant increase in diversity of host species is 

also argued to intensify herbivory, further preventing competitive exclusion and thus 

promoting higher species diversity through what has been termed a positive feedback 

(DeAngelis et al., 1986). 

 

The significance of spatial heterogeneity on tropical tree diversity in the context of 

this thesis is outlined in Figure 96, showing how the environmental conditions in 

neighbourhood regions may be relevant to the species composition and diversity 

within the plots.  The central assumption of the model is that habitat association 

occurs at least to some extent in tropical forests.  In this example, Plot A is located 

where the neighbouring regions are environmentally heterogeneous, therefore through 

a degree of habitat association there is also a diverse surrounding local seed pool.  

This increases the chances of immigration of many different species into the plot 

through seed dispersal.  For these reasons, Plot A is expected to be more diverse than 

Plot B on the basis of heterogeneity alone.  In the real system there will also be 

interactions of the effect of the heterogeneity on other important properties such as 

total resources (light would be less in plot A than plot B here). 
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Figure 96 Model role of environmental heterogeneity on within-plot diversity in tropical 

forests through seed dispersal.  Plot A, located in a heterogeneous environment is likely to 

receive seeds from more local habitats than Plot B. 

 

There are numerous examples of studies which examine the role of spatial 

heterogeneity on ecological processes (Harner and Harper, 1976; Bell et al., 2000; 

Barberis et al., 2002; Lundholm and Larson, 2003; Pausas et al., 2003).  Few of these 

actually quantify heterogeneity numerically (though there are notable exception, for 

example Burnett et al., 1998), and none examine the role of spatial heterogeneity in 

shaping diversity in tropical forests.  This chapter aims to quantify the spatial 

heterogeneity for the terrain characteristics used in previous chapters, and examine 

how heterogeneity relates to the tree diversity measured in the plots in Tambito and in 

TBS.  The approach here is to take each variable, quantify heterogeneity at multiple 

scales and compare for each scale the relationship between topographic heterogeneity 
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and tree diversity.  Multiple-scales are used because there is insufficient literature 

quantifying the probability of seed dispersal against distance for the “average” 

tropical species, and indeed, since much seed dispersal is through animal movements, 

the patterns of dispersal are likely to be complex.  There are numerous examples that 

quantify the distance-function of seed dispersal for specific species (for example 

Peres and Baider, 1997; Wenny, 1999), but insufficient information is available to 

restrict this analysis to one single scale representing the average distance function for 

the community as a whole.   

 

As described in Chapter 3, 16 scales are used on 12 terrain derivatives.  This means 

that a total of 192 correlations are performed per site, and there are two sites with two 

different DEMs used for one of them (TOPO and SRTM DEMs in TBS).  This results 

in a total of 576 correlations presented in this chapter, and for this reason not all 

scattergrams are presented.  Instead, graphs of the correlation coefficients across all 

scales for each variable are presented, and summary tables provide a summary of the 

most significant results for each variable.  Graphs are plotted for each variable across 

all scales, with a line (black) plotting the Pearson correlation, and a second line (blue) 

which plots the respective p-value.  For ease of interpretation, a solid blue line is also 

shown representing the threshold at which point a correlation becomes significant (p-

value < 0.05).  This 95% confidence limit means that one in twenty correlations 

would be significant in a randomly generated set of numbers, so if we are to conclude 

any significance in the relationship between heterogeneity and diversity in this case 

the number of significant correlations per DEM should far exceed 9.6 (5% of the 192 

correlations).  As spatial heterogeneity for any one variable between different scales is 

likely co-linear, significant correlations should also occur across multiple scales for 
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any concrete conclusion to be reached.  A random control is used in the analysis to 

further examine this problem of non-causal random relationships being found. 

 

As in the previous chapters each site is treated separately, and in this case the results 

are presented separately for each DEM in the case of TBS.  The chapter concludes by 

discussing in detail the results from both sites, attempting to extract generalities in the 

findings and to link these to the biological processes that may be creating the patterns. 

 

6.2 Reserva Tambito 

 

The Tambito site is a tropical montane forest with dramatic environmental gradients.  

The environmental heterogeneity is apparent in any photograph of the landscape, with 

strong changes in elevation across short distances which closely control a number of 

associated environmental variables).  In the field, this is noticeable simply by walking 

along the network of paths, with rapid changes in micro-climates depending on 

exposure, aspect, and slope amongst other factors.  Slopes reach 60 degrees in the 

steepest parts of the catchments, meaning that in just 100m of horizontal distance the 

elevation may change by 173m, signifying a change in temperature of 1.0
o
C.  Slope is 

a key variable, where steep slopes are likely to imply rapid change in many other 

variables, including elevation, wetness (TopModel), and slope position.  However, 

steep slopes also imply higher levels of disturbance through tree fall (Gale, 2000), and 

favour the establishment and dominance of species adapted to gaps with rapid growth 

under high light levels.  In this respect high heterogeneity in some variables could 

also have a detrimental affect on diversity. 

 



 290 

6.2.1.1 Spatial heterogeneity results 

6.2.1.2 Cross-correlation matrix 

Having run the heterogeneity model, the resultant grids of heterogeneity for each 

variable are cross-correlated to examine their degree of co-linearity (Figure 97).  As 

all terrain derivatives originate from the same DEM, it is expected that heterogeneity 

in many of these derivatives will be somewhat cross-correlated. 

 

Elevation Eastness Northness Curvature Slope
Slope 

Position
Solar Toposcale Topmodel Topoclass Feature

Feature 

(network)

Elevation - -0.11 -0.21 0.57 0.04 0.28 0.55 0.52 -0.01 0.44 0.19 -0.36

Eastness - -0.40 0.07 0.13 -0.16 0.67 0.07 -0.01 0.21 -0.06 0.18

Northness - 0.06 0.17 -0.10 -0.38 0.01 0.17 0.06 -0.07 0.29

Curvature - 0.53 -0.09 0.52 0.51 0.23 0.68 0.33 0.30

Slope - -0.16 0.22 0.36 0.17 0.44 0.26 0.31

Slope 

Position
- 0.04 0.24 -0.37 -0.15 0.09 -0.45

Solar - 0.34 -0.06 0.49 0.14 -0.05

Toposcale - 0.18 0.65 0.23 0.03

Topmodel - 0.19 0.06 0.29

Topoclass - 0.06 0.26

Feature - -0.11

Feature 

(network)
-

 

Figure 97 Cross-correlation matrix between all spatial heterogeneity variables with the 

median distance set at 1 cell in Tambito (n =  69,678 in all cases). 

 

Greatest cross correlation exists between topoclass and curvature (Pearson = 0.68), 

eastness and solar radiation (Pearson = 0.67), and toposcale and topoclass (for 

obvious reasons as topoclass is simply a reclassification of toposcale, Pearson = 0.65).  

The heterogeneity in the feature classification is only slightly negatively correlated 

with heterogeneity in the network feature classification (Pearson = -0.11).  Also worth 

mentioning is that heterogeneity in northness inversely correlates with heterogeneity 
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in eastness (Pearson = -0.40), not surprising as they are both directly derived from 

aspect.  This results from the complex relationship between eastness and northness 

(when northness is plotted against eastness a perfect circle of radius 1 index unit is 

formed).  The inverse correlation originates with this relationship, where moderate-

low heterogeneity is actually impossible in both variables simultaneously.  

Heterogeneity in mean curvature is on average the most cross-correlated variable, and 

the heterogeneity of the feature classification and topmodel are the most independent. 

 

On the whole, cross-correlations of heterogeneity in the terrain derivatives correlate 

slightly more than the cross-correlation of the derivatives themselves (average 

Pearson = 0.24 for heterogeneity cross-correlations compared with average Pearson = 

0.23 for the cross-correlations of the derivatives themselves).  This is important, and 

signifies that a specific site cannot be described as universally heterogeneous.  

Heterogeneity in one variable does not necessarily signify heterogeneity in other 

variables, and indeed in some cases may signify homogeneity. 

 

6.2.1.3 Comparison with plot data 

 

6.2.1.3.1 Control Experiment 

 
 

Prior to performing detailed analyses of relationships between environmental and 

topographic heterogeneity and plot diversity, it is necessary to make a control 

experiment using pseudo-random ‘environmental’ data to understand to what extent 

correlations may arise through chance rather than causal relationship.  Twelve random 

grids were produced using Arc/Info (RAND command), with values ranging from 0 - 
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1, and the heterogeneity model applied to these grids using all 16 scales.  The Pearson 

correlation coefficients between the plot diversity data and the resultant random grid 

heterogeneity results for each scale are then calculated (Table 55), and an example 

multi-scale correlation graph is shown for one of the random grids (Figure 98), in the 

same way as the results of the terrain derivatives are to be presented. 

 

Random Run
Maximum 

Pearson

Minimum 

Pearson

No. Scales with 

significant correlation

Random grid 1 0.29 0.10 0

Random grid 2 0.26 0.08 0

Random grid 3 0.25 -0.24 0

Random grid 4 0.25 0.12 0

Random grid 5 0.25 0.02 0

Random grid 6 0.30 0.24 0

Random grid 7 0.44 0.25 0

Random grid 8 0.25 0.07 0

Random grid 9 0.25 0.06 0

Random grid 10 0.29 0.00 0

Random grid 11 0.25 0.11 0

Random grid 12 0.54 0.25 0  
Table 55 Results of the heterogeneity analysis for the 12 random grids in Tambito. 
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Figure 98 Control experiment of cross-scale heterogeneity for Random Grid 1, a grid with 

random values.  Black line represents the Pearson correlation coefficient, whilst the blue line 
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represents the respective p-value.  The solid blue line is placed at the 95% confidence level, 

meaning that a correlation is considered statistically significant when the plot of p-values goes 

under the thick blue line. 

 

No significant correlations are found between heterogeneity in any of the random 

grids and the diversity found in the plots, though steady movement of the points in the 

analysis for each scale produce smooth cross-scale correlation curves (as evident in 

Figure 98).  This gradual movement of points between scales arises from the effect of 

heterogeneity at one scale being somewhat correlated with heterogeneity at a similar 

scale.   This produces smooth peaks in the correlation at specific scales, but it is 

questionable the depth to which these curves can be used to ascertain if there is a 

scale-dependent relationship; with only 10 points in the statistical analysis, there is 

likely heavy reliance of each correlation on the position of one single point. 

 

The co-correlation between heterogeneity at similar scales for each grid (average 

Pearson correlation coefficient between adjoining scales is 0.99, n = 180) signifies 

that the 192 correlations being calculated for the twelve variables are not independent 

of each other, and thus less than the 5% of correlations would be expected to correlate 

significantly as a result of chance.  This is reflected in these results, with no spurious 

correlations being found. 

 

Whilst it would be preferable to repeat this analysis 100 times to gain a better insight 

into the average number of expected spurious correlations in this analysis, 

computational (amongst other) limitations make this impossible. 
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6.2.1.3.2 Single-variate comparison 

 

Firstly, the relationship between each environmental and topographic variable is 

examined separately, with multi-variate analyses being produced later in the chapter.  

For each plot in Tambito, the heterogeneity for each variable is extracted, and 

Simpson’s diversity index is then correlated with heterogeneity at each individual 

scale.  Graphs of correlation coefficient and p-value are plotted against the scale 

(Figure 99), and a summary table provided indicating whether significant correlations 

were found for each variable, and the scale (median distance) at which the most 

significant correlation was found (Table 56). 
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Cross-Scale Heterogeneity - Northness

-0.70

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0 2 4 6 8 10

Median Distance (cells) in Cauchy Kernel

P
e
a
rs
o
n
 c
o
rr
e
la
ti
o
n
 

c
o
e
ff
ic
ie
n
t

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

T
w
o
-T
a
il
e
d
 p
-v
a
lu
e

alpha = 0.05

 



 296 

Cross-Scale Heterogeneity - Curvature

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0 2 4 6 8 10

Median Distance (cells) in Cauchy Kernel

P
e
a
rs
o
n
 c
o
rr
e
la
ti
o
n
 

c
o
e
ff
ic
ie
n
t

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

T
w
o
-T
a
il
e
d
 p
-v
a
lu
e

alpha = 0.05

Cross-Scale Heterogeneity - Slope
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Cross-Scale Heterogeneity - Solar
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Cross-Scale Heterogeneity - TopModel
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Cross-Scale Heterogeneity - Toposcale
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Cross-Scale Heterogeneity - Topoclass
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Cross-Scale Heterogeneity - Feature
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Cross-Scale Heterogeneity - Feature Network
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Figure 99 Cross-scale correlations between species diversity (Simpson’s) and spatial 

heterogeneity for each environmental variable in Tambito.  The black line represents the 

Pearson correlation coefficient, whilst the blue line indicates the respective p-value.  For ease 
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of interpretation, the thick blue line shows the threshold for significant correlations at the 

alpha = 0.05 level. 

 

Variable

Minimum Pearson 

Correlation 

Coeffcient

Maximum 

Pearson 

Correlation 

Coeffcient

Minimum p-

value

Significance 

(alpha=0.05)

Scale of lowest p-

value (median 

distance in cells)

Elevation 0.20 0.74 0.02 Significant 9

Eastness -0.44 0.16 0.21 Not-significant 1

Northess -0.67 -0.18 0.04 Significant (inverse) 0.01

Curvature -0.52 -0.04 0.12 Not-significant 0.01

Slope -0.44 -0.02 0.20 Not-significant 0.8

Slope Position -0.16 0.75 0.01 Significant 2

Solar Radiation -0.08 0.25 0.49 Not-significant 0.8

Topmodel -0.38 -0.02 0.29 Not-significant 1

Toposcale -0.14 0.22 0.55 Not-significant 9

Topoclass -0.72 -0.03 0.02 Significant (inverse) 0.01

Feature 0.21 0.64 0.05 Significant 3

Network Feature -0.68 -0.34 0.03 Significant (inverse) 0.01  

Table 56 Summary table of results of multi-scale environmental heterogeneity modeling, 

examining maximum correlations between species richness and heterogeneity for the ten plots 

in Tambito. 

 

Six variables correlate (at least at one scale) between heterogeneity and Simpson’s 

diversity, three of which do so inversely (i.e. in these cases greater homogeneity = 

greater diversity).  Some 27 significant correlations are found when counting all 

scales, the most of which are for heterogeneity in elevation (correlates at six of the 16 

scales), slope position (correlates at six of the 16 scales), northness and network 

feature (inversely correlate at five of the 16 scales).  No variable correlated with 

diversity independently of scale.  These figures are above the expected number of 

correlations at the 95% confidence limit (if 5% of the 192 correlations performed are 

randomly expected, we would expect 9.6 correlations, furthermore in the random 

control no spurious correlations were found, see Section 6.2.1.3.1). 
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Given that we find more than the expected number of random correlations, it suggests 

that heterogeneity for some variables is indeed important in shaping diversity (or 

some covariate of it, e.g. heterogeneity in altitude signifying high slopes, or that the 

same processes which generate spatial heterogeneity also generate high species 

diversity).  However, it is important that we consider co-linearity in the discussion of 

these correlations, as some of the correlations may indeed be spurious and correlate 

only due to co-linearity with other causal variables.  Whilst Table 56 shows cross-

correlations between variables for the whole of Tambito, it is important to re-analyse 

the cross-correlations only for the variables found to correlate, using just the ten 

points where the plots are located (Table 57). 

 

 

Elevation 

(median 

distance 9)

Northness 

(median 

distance 0.01)

Slope 

Position 

(median 

distance 2)

Topoclass 

(median 

distance 0.01)

Feature 

(median 

distance 3)

Network 

Feature 

(median 

distance 0.01)

Elevation 

(median 

distance 9)

- -0.60 0.71 -0.40 0.67 -0.47

Northness 

(median 

distance 0.01)

-0.60 - -0.39 0.44 -0.75 0.48

Slope Position 

(median 

distance 2)

0.71 -0.39 - -0.84 0.51 -0.48

Topoclass 

(median 

distance 0.01)

-0.40 0.44 -0.84 - -0.46 0.57

Feature 

(median 

distance 3)

0.67 -0.75 0.51 -0.46 - -0.29

Network 

Feature 

(median 

distance 0.01)

-0.47 0.48 -0.48 0.57 -0.29 -

 

Table 57 Cross-correlation of heterogeneity values for the six correlating variables in 

Tambito, using only the heterogeneity values for the ten plots (n = 10).  Cells are shaded dark 

grey when the correlation coefficient is above 0.80 and light grey when the correlation 

coefficient is between 0.60 – 0.80 in order to highlight the most significant correlations. 
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As suspected, strong and significant correlations are evident between the variables, 

with all presenting some degree of positive or negative co-linearity.  Deciphering the 

direct cause and effect from this mix of non-independent variables is difficult, 

especially considering that some are positively correlated with heterogeneity and 

others negatively.  For example, if we assume that heterogeneity in elevation is indeed 

the true direct driver of diversity, this renders the slope position correlation as in-

direct, along with a large proportion of the inverse correlation with northness and 

feature classification.  Only topoclass and the network feature classifications are left 

accounting for some of the remaining unexplained variability in diversity.  This is just 

one scenario, and a number of different scenarios exist.  In reality, heterogeneity in 

slope position actually correlates best (Pearson = 0.75, p = 0.01), leading one to 

believe that this is the direct driver and that many of the others are in fact spurious.  

However, the correlation with heterogeneity in slope position is only marginally better 

than elevational heterogeneity (Pearson = 0.74, p = 0.01), and indeed topoclass 

(Pearson = -0.72, p = 0.02).  Heterogeneity in northness and the feature classification 

provide significant correlations at the 95% confidence level, but have the weakest 

correlations of the six variables (Pearson = -0.67 and 0.64 respectively). 

 

Though it is impossible to statistically separate out the direct and indirect linkages 

behind the correlations without establishing more plots, some informal speculation in 

the context of ecological theory can provide some insight as to the likely causal 

factors.  Having already established that composition is strongly influenced by 

elevation (and no other factors measured in this study), it is expected that spatial 

heterogeneity in elevation would likewise be important in generating diversity 

through overlapping distributions and seed sources.  Furthermore the ecological 
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literature has long attributed high spatial heterogeneity to generating high diversity, 

therefore we would expect elevationally heterogeneous regions to have the highest 

diversity.  This is essentially found here (Figure 100), though plots 3 and 5 have lower 

than expected diversity. 

 

Also significant in this argument is the scale dependence of this relationship, with a 

correlation only occurring with median distances above 3 cells (75 metres, which can 

represent a change of as much as 100m of altitude or 0.6oC temperature in Tambito).  

In other words, heterogeneity only becomes significant in shaping diversity when 

broader scale patterns are examined, rather than the small-scale heterogeneity 

represented in small-median distances. 
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Figure 100 Elevational heterogeneity (median distance 9 cells) against species diversity for 

Tambito. 

 

This correlation between elevational heterogeneity and diversity once again provides 

another possible explanation of the mid-elevation diversity peak found in Chapter 4, 
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as elevational heterogeneity also peaks in mid-elevations, in this case at 2100m 

(Figure 101). 
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Figure 101 Elevational gradient of heterogeneity in elevation in Tambito. 

 

It is important to also consider that elevation is not the only likely causal relationship, 

with 5 other variables providing significant relationships.  Heterogeneity in slope 

position itself is likely to be very similar to that of elevation, and is unlikely to be the 

causal relationship (slope position alone has already shown little explanatory power in 

terms of composition and diversity in Tambito).  Likewise, heterogeneity of the 

feature classification is unlikely to be providing the causal relationship due to its clear 

derivation from other factors and its abstraction of gradients into specific classes, 

though this is an interesting and potentially useful surrogate.  The inverse correlation 

between diversity and heterogeneity in northness, topoclass and network feature 

classification is a little more interesting though, and one which deserves some further 

attention. 
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The correlation with heterogeneity in topoclass may simply be an artifact, as 

toposcale itself provides no significant correlation, and topoclass is merely a 

reclassification of toposcale.  Furthermore, significant edge effects occur around 

topoclass boundaries (clearly more heterogeneity around the boundaries than in the 

centre of a particular class), and so the result is highly dependent on the subjectivity 

of the reclassified boundaries.  The heterogeneity in the network feature classification 

also has the problem of strong boundary effects, though these boundaries are less 

generalized and less subjective in their definition. It is indeed surprising that the 

heterogeneity in the network feature classification inversely correlates with the 

network feature classification, but no plausible explanation for this can be provided. 

 

However, the inverse correlation with heterogeneity of northness (though weak) must 

be taken seriously, as the multiple stepwise linear-regressions performed on diversity 

in Chapter 4 highlighted northness as accounting for some 22% of the variability in 

diversity, with south facing slopes containing greater diversity (though northness was 

not found to be significant in terms of composition).  The correlation is borderline 

significant (p = 0.04), and dependent on the low heterogeneity but high diversity 

found in plots 6 and 10 (both strongly south facing slopes).  This may be attributable 

to the mid-elevation diversity peak already found and discussed in Chapter 4, as 

heterogeneity in northness is actually lowest in mid-elevations due to the more planar 

nature of these slopes (the five mid-elevation plots, 1600m – 1900m, have the five 

lowest values of heterogeneity in northness).  Given that no correlation is found 

between composition and northness, it is likely that the correlation between diversity 

and heterogeneity in northness is principally driven by the mid-elevation diversity 

peak rather than the heterogeneity in northness. 
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Figure 102 Scatterplot of northness heterogeneity against species diversity for Tambito using 

a median distance of 0.01. 

 

With no solid data or statistics telling us which variable is the true causal relationship, 

if there is indeed only one, this section is heavily inconclusive.  The significant 

elevational heterogeneity correlation is however both statistically strong and 

ecologically understandable given the previously outlined compositional relationship 

with elevation.  To truly understand the causal linkages in the six significant 

correlations that have been found, more plots are required in strategically located 

sites, where there are lower levels of co-linearity between the individual heterogeneity 

variables. 

 

6.2.1.3.3 Multi-variate data analysis 
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Whilst some heterogeneity variables singularly correlate with diversity, it is likely that 

a number and combination of factors are indeed important in shaping diversity, both 

in terms of heterogeneity derivatives themselves and the original terrain derivatives 

that have already been examined in Chapter 4.  Furthermore, confusion over the 

separation of causal relationships in non-independent variables may also be examined 

using multi-variate methods.   

 

Prior to performing multi-variate analyses on all variables, attention is paid to the 

important distinction between slope position heterogeneity and elevational 

heterogeneity.  Multiple stepwise regression is applied to just two variables; slope 

position (median distance 2) and elevation (median distance 8), in order to examine 

the extra variability in diversity that is explained by elevation after slope position is 

taken into account.  Elevational heterogeneity is found to explain just 8% extra 

variability in diversity (despite explaining 53% in the single-variate correlation), 

indicating that these two variables are to a large extent measuring the same variability.  

It is important that this is quantified, indicating that slope position and elevation are 

not only largely co-linear, but co-linear in their explanatory power of diversity. 

 

Having clarified this important issue, three sets of multiple stepwise linear-regressions 

are performed to fully understand the interactions between heterogeneity in all 

variables and diversity: 

 

1. Analysis using all heterogeneity variables at all scales 

2. Analysis of all heterogeneity variables only at the scale where the greatest 

correlation with diversity was found 
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3. Analysis of all heterogeneity variables at the scale where maximum 

correlation was found alongside the original terrain derivatives already 

analysed in Chapter 4. 

 

In all three cases the heterogeneity values for the random grid are also included in the 

analysis in order to check for chance relationships.  Given the multi-variate nature of 

this statistical procedure, there is danger of non-causal relationships by chance 

providing some explanation of the diversity.  Inclusion of any of the random grids in 

the multiple linear regression models will clearly indicate that non-causal 

relationships are being selected. 

 

Taking the first set of variables (1), multiple stepwise linear regression is applied to 

all heterogeneity variables at all scales.  The resultant model extracts three significant 

variables that are significant in explaining diversity.  These are slope position (median 

distance 2 cells) (explaining some 56% of variability), then elevation (median 

distance 0.2 cells) (explaining a further 23% of variability, and cumulatively covering 

78% of all variation), and finally topmodel (median distance 1 cell) (explaining a 

further 13% of variability), with all three variables combined explaining some 92% of 

variability (D = 0.570 + 0.479Slope Position(HET - 2) + 0.141 Elevation(HET - 0.2) -

0.193Topmodel(HET - 1)). 

 

Prior to performing detailed discussion of these results, the other two multiple 

stepwise linear-regressions are analysed.  The second model using heterogeneity data 

only at the scale of maximum correlation for each variable pulls out two variables that 

significantly contribute to explaining 72% of the variability in diversity.  



 308 

Heterogeneity in slope position with median distance of 2 cells explains 56% of 

variability and heterogeneity in northness at a median distance of 0.01 cells (explains 

a further 17% of variability) (D = 0.669 + 0.332Slope Position(HET - 2) - 

0.038Northness(HET – 0.01)).   

 

Finally, the third model combines the environmental and topographic variables 

(studied in detail in Chapter 4) with their respective heterogeneities in a multiple-

stepwise linear regression (total of 21 variables + 1 random variable).  Four variables 

explain 99% of the variability in this analysis, with heterogeneity in slope position 

accounting for 56% of the variability in diversity, followed by solar radiation 

accounting for a further 28% (84% cumulative), heterogeneity in slope position 

accounting for a further 10% (94% cumulative) and heterogeneity in solar radiation 

with median distance 0.8 accounting for the final 5% (D = 0.596 + 0.522Slope 

Position(HET - 2) – 0.00002Solar + 0.00037Slope Position + 0.101Solar(HET - 0.8)). 

 

Depending on the variables used in the multiple stepwise linear-regression different 

results are achieved, making interpretation difficult.  Firstly it is important to note that 

despite their inclusion, none of the random heterogeneity variables provided any 

explanation of the diversity.  This is not to say that non-causal relationships have not 

been selected in the three models presented above, but provides a little more 

confidence in the results during their interpretation.   

 

Looking at the first multiple regression (Figure 103), with all heterogeneity variables 

at all scales included in the analysis, the additional variability that elevational 

heterogeneity at short median distances provides is interesting.  Despite elevational 
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heterogeneity at median distances of 0.2 cells explaining just 6% when correlated 

directly with diversity, it explains some 23% of variability in the residual after the 

multivariate regression with slope position heterogeneity.  This may be due to slope 

position being a more generalized variable, whilst elevation contains more detail.  In 

other words, diversity is generated through a multi-scale combination of small-scale 

and broader-scale heterogeneity in slope position/elevation, if we assume that their 

co-linearity is capturing the same variability in diversity.  However, multiple-

regression on all scales of elevational heterogeneity alone provides no evidence of 

this, with only heterogeneity at a median distance of 8 cells providing a significant 

correlation.  No other scales explain any of the remaining variability.  This draws us 

to the conclusion that slope position is explaining some important variability 

independently of elevation.  This may be an artifact of the few points used in this 

analysis (n = 10), and a greater number of plots may clarify these complex 

interactions between non-independent variables. 

 

Relation between modelled diversity and 

measured diversity in Tambito
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Figure 103 First multiple linear-regression of all heterogeneity variables at all scales.  Left 

figure compares the modeled diversity with the measured diversity in the plots, and the right 

figure applies the resultant regression model to the entirety of Tambito.  Areas in white and 
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blue are beyond the range of the input data to the regression, hence are based on extrapolation 

and should be considered potentially less trustworthy in their model fit. 

 

In the second regression (Figure 104), the role of small-scale homogeneity (median 

distance 0.01) of northness is once again observed, with it explaining some 17% extra 

variability after the already discussed importance of slope position heterogeneity.  

This indicates that the role of northness in these correlations is fairly independent of 

that of heterogeneity of slope position/elevation (17% explained in the residual 

compared to 22% explained singularly).  As discussed, this relationship is somewhat 

dependent on the high diversity, low heterogeneity found in the south-facing plots 6 

and 10, and may simply be a result of the mid-elevation diversity peak. 

 

Relation between modelled diversity and 

measured diversity in Tambito
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Figure 104 Second multiple linear-regression of heterogeneity variables at only at the scale of 

maximum correlation.  Left figure compares the modeled diversity with the measured 

diversity in the plots, and the right figure applies the resultant regression model to the entirety 

of Tambito.  Areas in white and blue are beyond the range of the input data to the regression, 

hence are based on extrapolation and should be considered potentially less trustworthy in their 

model fit. 
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Areas heterogeneous in northness are likely to be concentrated around areas with high 

curvature (already identified as an important driver of diversity in Chapter 4), though 

no relationship is present (Pearson = -0.09, p = 0.80, n = 10) meaning that the 

importance of northness is independent of curvature.  There is likely to be a clearer 

relationship with plan curvature, but as mean curvature mixes both plan and profile 

curvature the relationship is lost.  These types of curvature are not studied in this 

thesis, and therefore are not discussed further.   

 

If the correlation between small-scale northness heterogeneity (median distances < 0.5 

cells) is independent of other variables, and a truly causal relationship with diversity it 

means that a locally diverse set of conditions in northness generates to some extent 

low diversity.  In other words, relatively planar hillsides have greater diversity, 

though this is more likely due to the aforementioned relationship between 

heterogeneity in northness and the mid-elevation diversity peak. 

 

Finally, the third multiple-regression analysis combines absolute values of 

environmental and topographic variables and their respective spatial heterogeneities.  

Interestingly, it was a combination of the absolute value for slope position and solar 

radiation receipt and their respective heterogeneities that were pulled out in the 

regression to explain an impressive 99% of variability in diversity (Pearson = 0.999, p 

= 0.0001, n = 10) (Figure 105).  
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Relation between modelled diversity and 

measured diversity in Tambito
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Figure 105 Third multiple linear regression combining both absolute value and 

heterogeneities of each environmental and topographic variable.  Left figure compares the 

modeled diversity with the measured diversity in the plots, and the right figure applies the 

resultant regression model to the entirety of Tambito.  Areas in white and blue are beyond the 

range of the input data to the regression, hence are based on extrapolation and should be 

considered potentially less trustworthy in their model fit. 

 

Interestingly neither slope position nor solar radiation receipt demonstrate any 

explanatory power in Chapter 4, neither singularly nor in the multi-variate analyses.  

However, when combined in multiple linear-regressions with their respective 

heterogeneity values they are shown to be important.  Once again slope position is by 

far the most important variable, but some 28% of the residual is explained by 

homogeneity in solar radiation receipt.  Heterogeneity in solar radiation, despite being 

strongly controlled by aspect, shows no clear relationship across the elevational 

gradient (i.e. mid-elevations are not more homogenous in solar radiation, despite the 

already discussed homogeneity in northness found in the mid-elevation planar slopes).  

This goes against many ecological concepts about heterogeneity generating diversity, 

and once again no interpretation of this pattern can be provided. 
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These analyses provide a confusing set of results, and it is almost certain that many of 

these are not causal relationships but chance relationships achieved through multiple 

regression of many variables with so few field plots.  Four of the twelve variables 

exhibit some type of control on diversity (slope position, elevation, northness, solar 

radiation) on top of the three classification variables (Feature, Network Feature and 

Topoclass) that show some correlation with diversity when treated on their own.  

Interpretation is difficult and fairly arbitrary depending on the variables used in the 

regression analysis.  However, generalities are visually evident in the resultant maps 

of each model presented in Figure 103, Figure 104 and Figure 105.  The general 

pattern of each of the three models is somewhat similar, with low diversity in the 

valley bottoms, low-moderate diversity in peaks and high ridges, and high diversity in 

mid-elevations, especially in north, north-east and south-west facing slopes.  Under 

these circumstances, it is difficult to explicitly quantify the degree to which spatial 

heterogeneity is affecting the diversity in Tambito, with complex combinations of 

variables all producing a similar mid-elevation diversity peak which could be entirely 

attributed to a number of other more established ecological processes (the mid-

domain effect or the productivity-diversity gradient, for example). 

 

Perhaps as a conclusion to this section few concrete findings can be reported, except 

that heterogeneity in slope position and elevation are significantly explaining some 

50% of the variability in diversity, and that both these variables are co-linear and 

explaining the same variability.  Furthermore, highest heterogeneity in these variables 

is found in mid-elevations, which have already been found to harbor the highest 

diversity, potentially due to a number of different explanations outlined in Chapter 4.  

If elevation is assumed to represent a productivity gradient in Tambito (a notion 
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supported by Letts, 2003), this shows that environmental heterogeneity in Tambito is 

greatest in mid-productivity levels, a pattern also found in limestone pavements 

(Lundholm and Larson, 2003).  This coincidence of high spatial heterogeneity in mid-

elevations and mid-productivity regions adds another factor which may be significant 

in explaining mid-elevation diversity peaks. 

 

Although complex combinations of variables manage to explain as much as 99% of 

the variability in diversity, the confidence of these findings is questionable as there 

are few clear ecological interpretations of the patterns and too few data points.  It 

would be preferable to have a larger number of plots to permit split sample validation 

of these multiple stepwise linear regressions. 

 

6.3 Tiputini Biodiversity Station 

 

In TBS the extent to which spatial heterogeneity is significant in the maintenance of 

species diversity is unknown, but theoretically it may be important.  Firstly, the extent 

of habitat association in LRF tree species is questionable and still under debate, 

though the literature reports 20-80% of species have some kind of association (Webb 

and Peart, 2000; Harms et al., 2001; Phillips et al., 2003; St-Louis et al., 2004).  

Furthermore, gap dynamics play an important role in maintenance of forest diversity 

in LRF, and non-equilibrium theories predict that gaps are recruited principally by 

chance occupants through low densities in tropical tree species distributions and 

dispersal limitations (Hubbell et al., 1999).  This has important implications for 

spatial heterogeneity, as the probability of a specialist species recruiting in the 

successional process after gap formation is enhanced if a diverse local seed pool is 
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available.  Under these circumstances there is potentially a strong role for spatial 

heterogeneity shaping species diversity at least to some extent in LRF.  However, 

practical limitations limit the degree to which this can be tested in TBS due to quality 

issues in the DEMs.  Section 3.7 has already shown that the DEMs poorly represent 

the conditions on the ground, with neither DEM capturing the more complex 

topography around the small streams and 20-30m deep valleys.  Under these 

circumstances it is questionable the degree to which this analysis can conclude 

whether spatial heterogeneity is significant or not in shaping tree diversity, but 

nevertheless the analysis is presented in detail in a similar fashion to that of Tambito.  

Unlike in Chapters 4 and 5, the results here are presented for each DEM separately as 

the different spatial resolutions merit more specific discussion. 

 

6.3.1 TOPO DEM 

 

The spatial heterogeneity analysis for TBS is first performed on the TOPO DEM.  

The TOPO DEM is a smooth representation of the topography in TBS, in many cases 

failing to account for the micro-scale topographic variation observed in the field.  

Under these circumstances it is likely that the model will underestimate the true 

heterogeneity across the region, but also fail to accurately quantify the spatial 

distribution.  These concerns must be considered throughout the analysis. 

 

6.3.1.1 Spatial heterogeneity results 
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6.3.1.2 Cross-correlation matrix 

 

As was done for Tambito, a cross-correlation is performed on the resultant 

heterogeneity grids for median distances of 1 cell (Table 58).   

 

Elevation Eastness Northness Curvature Slope
Slope 

Position
Solar Toposcale Topmodel Topoclass Feature

Feature 

(network)

Elevation - 0.14 -0.05 0.66 0.84 0.65 0.69 0.75 -0.02 0.72 0.54 0.44

Eastness - 0.01 0.36 0.41 0.02 0.29 0.43 0.36 0.42 0.33 0.53

Northness - 0.21 0.14 0.00 0.08 0.23 0.36 0.21 0.24 0.33

Curvature - 0.87 0.30 0.90 0.90 0.37 0.83 0.92 0.82

Slope - 0.46 0.80 0.93 0.24 0.87 0.75 0.79

Slope 

Position
- 0.29 0.39 0.01 0.39 0.22 0.21

Solar - 0.82 0.23 0.77 0.83 0.62

Toposcale - 0.35 0.90 0.78 0.82

Topmodel - 0.26 0.32 0.48

Topoclass - 0.72 0.75

Feature - 0.75

Feature 

(network)
-

 

Table 58 Cross-correlation matrix between all spatial heterogeneity variables with the median 

distance set at 1 cell in TBS using the TOPO DEM (n = 142,450).  Cells are shaded when the 

correlation coefficient is above 0.80 in order to highlight the most significant correlations. 

 

In general the correlation coefficients between heterogeneity variables are higher than 

for Tambito.  Furthermore, all heterogeneity variables are positively co-correlated 

using the TOPO DEM in TBS, meaning that high heterogeneity in one variable to 

some extent is also indicative of high heterogeneity in another variable.  This may be 

due to TBS being an essentially flat landscape with valleys cut through it whereas the 

topography of Tambito varies at multiple scales because of changes in geology, 
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tectonic features and fluvial features of various river orders (a dendritic scheme, 

whereas TBS is more trellised in drainage pattern).  Northness, topmodel, slope 

position and eastness are the least cross-correlated heterogeneity variables (in that 

order), whilst toposcale, curvature and slope are the most cross-correlated variables 

(also in that order).  Specific discussion of these cross-correlations is not provided 

here, but referred to later in the text. 

 

6.3.1.3 Comparison with plot data 

6.3.1.3.1 Control Experiment 

 

As performed for Tambito, twelve random grids are created in Arc/Info (using the 

RAND command), and the spatial heterogeneity model applied to these grids for all 

16 scales.  The results of which are compared with the Simpson’s diversity measured 

in the plots (Table 59).   

 

Random Run
Maximum 

Pearson

Minimum 

Pearson

No. Scales with 

significant correlation

Random grid 1 0.70 -0.39 4

Random grid 2 0.09 -0.54 0

Random grid 3 0.10 -0.27 0

Random grid 4 0.84 0.09 8

Random grid 5 -0.26 -0.69 4

Random grid 6 0.51 -0.17 0

Random grid 7 0.15 -0.09 0

Random grid 8 0.43 -0.34 0

Random grid 9 -0.31 -0.69 1

Random grid 10 0.34 -0.13 0

Random grid 11 0.86 -0.11 8

Random grid 12 0.41 -0.19 0  
Table 59 Results of the heterogeneity analysis for the 12 random grids using the SRTM DEM 

in TBS. 
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Significant correlations are found between heterogeneity in the random grid and 

Simpson’s diversity for five of the 12 random grids for at least one scale per grid, 

with a total of 25 correlations occurring (on average five scales with significant 

correlation per correlating random grid).  This is an alarming number of correlations, 

all of which must be assumed to be spurious but nevertheless an artifact of either the 

heterogeneity model or the TBS diversity dataset. 

 

As discussed in Chapter 4, the diversity found in the plots in TBS is exceptionally 

high in eight plots, with almost indistinguishable differences between plots 

(Simpson’s Index between 0.976 and 0.996), and the remaining two plots having 

significantly lower levels of diversity (Plot 4 and 5 with Simpson’s diversity indices 

of 0.95 and 0.84 respectively).  This non-normal irregular distribution of diversity 

values for the ten plots produced a number of significant correlations with terrain 

characteristics that did not hold true when only the high diversity plots were included 

in the correlation.  In other words, the significant correlations were not robust, and 

heavily sensitive to the low diversity in two points.  This is also somewhat the case in 

the correlations shown in Table 59 with the random grid heterogeneity analyses, 

whereby the omission of plots 4 and 5 from the analysis significantly lowers the 

number of correlations to just one grid at three different scales (Table 60, Figure 106).  

At least in this case it can be concluded that the high number of potentially spurious 

correlations found with the random grids are caused by the poor distribution of points 

rather than problems with the heterogeneity model itself. 
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Random Run
Maximum 

Pearson

Minimum 

Pearson

No. Scales with 

significant correlation

Random grid 1 0.11 -0.09 0

Random grid 2 0.09 -0.57 0

Random grid 3 0.22 0.02 0

Random grid 4 0.48 -0.65 0

Random grid 5 0.02 -0.67 0

Random grid 6 0.78 0.03 3

Random grid 7 0.38 0.05 0

Random grid 8 0.22 -0.56 0

Random grid 9 0.68 -0.58 0

Random grid 10 0.12 -0.49 0

Random grid 11 -0.21 -0.59 0

Random grid 12 0.34 -0.27 0  

Table 60 Results of the heterogeneity analysis for the 12 random grids when Plots 4 and 5 are 

excluded from the analysis using the TOPO DEM in TBS. 

 

Cross-Scale Heterogeneity - Random Grid 1
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Figure 106 Control experiment of cross-scale heterogeneity for a random grid 6 using the 

TOPO DEM. 

 

However, one random grid still correlates, despite the exclusion of Plots 4 and 5, 

meaning that spurious correlations can occur at multiple spatial scales, and must be 

carefully considered in the analysis and discussion.  Though some non-equilibrium 

based theories of species diversity maintenance predict that stochastic processes 
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generate an auto-correlated but relatively random distribution in diversity, there is no 

causal reason that heterogeneity in a particular random grid should correlate with plot 

diversity (for info, the heterogeneity in random grid 6 with a median distance of 1 cell 

is displayed in Figure 107).   

 

 

Figure 107 Result of the heterogeneity model for Random Grid 6 for the TOPO DEM in 

TBS.  Represented here is the analysis with median distance of 1 cell (25m), where the 

correlation with plot diversity was found to be highest.  Red indicates low heterogeneity, and 

blue high heterogeneity, with the plots displayed as the black dots. 

 

As stated before, it would be beneficial to apply this control experiment multiple 

times for different sets of random grids, but computational limitations prevent this. 

 

6.3.1.3.2 Individual variables 
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Having highlighted the danger of non-causal relationships occurring in this analysis, 

the results of the heterogeneity model for each terrain characteristic using the TOPO 

DEM is presented variable by variable (Figure 107), and the results summarized in a 

single table (Table 61). 
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Cross-Scale Heterogeneity - Northness
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Cross-Scale Heterogeneity - Curvature
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Cross-Scale Heterogeneity - Slope
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Cross-Scale Heterogeneity - Solar
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Cross-Scale Heterogeneity - Toposcale
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Cross-Scale Heterogeneity - Topoclass
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Cross-Scale Heterogeneity - Feature
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Cross-Scale Heterogeneity - Feature Network

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0 2 4 6 8 10

Median Distance (cells) in Cauchy Kernel

P
e
a
rs
o
n
 c
o
rr
e
la
ti
o
n
 

c
o
e
ff
ic
ie
n
t

0.00

0.20

0.40

0.60

0.80

1.00

1.20

T
w
o
-T
a
il
e
d
 p
-v
a
lu
e

alpha = 0.05

 
Figure 108 Cross-scale correlations between species diversity (Simpson’s) and spatial 

heterogeneity for each environmental variable in TBS using the TOPO DEM.  The black line 

represents the Pearson correlation coefficient, whilst the blue line indicates the respective p-

value.  For ease of interpretation, the thick blue line shows the threshold for significant 

correlations at the alpha = 0.05 level. 
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Variable

Minimum 

Pearson 

Correlation 

Coeffcient

Maximum 

Pearson 

Correlation 

Coeffcient

Minimum 

p-value

Significance 

(alpha=0.05)

Scale of lowest p-

value (median 

distance in cells)

Elevation -0.36 0.06 0.31 Not-significant 4

Eastness -0.35 -0.25 0.32 Not-significant 9

Northness 0.28 0.71 0.02 Significant 9

Curvature -0.36 -0.12 0.31 Not-significant 0.01

Slope -0.44 -0.20 0.21 Not-significant 9

Slope Position -0.26 0.08 0.47 Not-significant 9

Solar Radiation -0.55 -0.39 0.10 Not-significant 0.01

Topmodel -0.46 -0.12 0.18 Not-significant 3

Toposcale -0.28 -0.14 0.43 Not-significant 9

Topoclass -0.28 -0.04 0.44 Not-significant 0.01

Feature -0.01 0.08 0.83 Not-significant 0.01

Network Feature -0.22 0.03 0.55 Not-significant 1  

Table 61 Summary table of results of multi-scale environmental heterogeneity modeling, 

examining maximum correlations between species richness and heterogeneity for the ten plots 

in TBS using the TOPO DEM. 

 

Few significant results are evident, with only heterogeneity in northness correlating 

for large median distances.  However, the results of all these correlations are heavily 

affected by the low Simpson’s diversity of plot 5 (0.84), which is considerably more 

dominant than the other plots (with Simpson’s diversity of 0.97-0.99).  The 

correlations are therefore highly sensitive to this point and when plot 5 is discounted 

from the analysis, all correlations (including northness) are insignificant.  This shows 

that the correlation with northness is not sufficiently robust, and should not be 

considered as a concrete result.   

 

Given the lack of correlations for single variables, multiple linear regressions are not 

performed for this data. 



 326 

 

The abject lack of correlations using the TOPO DEM is a result in itself, but the role 

of spatial environmental heterogeneity on tree species diversity in LRF cannot be 

rejected due to quality and scale issues in the DEM used to calculate the terrain 

characteristics and subsequent heterogeneity.  As stated many times before in this 

thesis, the TOPO DEM does not capture the intricate network of small streams found 

in steep sided but small valleys.  These characteristics, likely the principal cause of 

environmental heterogeneity in most variables in the site, are not captured as the 

aerial photographs used to produce the cartography only map the canopy level 

topography, which is significantly smoother than the underlying terrain.  Under these 

circumstances, many topographic features are not captured, and the measurement of 

heterogeneity in terrain characteristics using this DEM is not sufficiently reliable to 

make a concrete conclusion. 

 

 

6.3.2 SRTM DEM 

 

Having examined the results of the heterogeneity modelling using the TOPO DEM, 

finding no significant correlation but data quality issues hampering this analysis, this 

section performs the same analysis using the SRTM DEM.  Though the SRTM DEM 

likely contains greater precision than the cartographic DEM, the coarse cell size 

(92m) renders it even less representative of the micro-scale environmental 

heterogeneity found in TBS.  Nevertheless, the scale at which environmental 
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heterogeneity may be significant in shaping the tree species diversity is unknown and 

coarse-scale patterns may prove to be significant. 

 

6.3.2.1 Spatial heterogeneity results 

 

6.3.2.2 Cross-correlation matrix 

 

There is much more cross-correlation between heterogeneity variables in TBS using 

the SRTM DEM expressed using the Pearson correlation coefficient, though this is 

likely due to the few number of cells used in the analysis (Table 62).  It is also 

important to note that all variables are positively correlated, indicating once more that 

in TBS an area that is heterogeneous in one variable is also likely to be heterogeneous 

in others (this was not the case in Tambito), again likely a function of the small and 

uniform scale of topography variation in TBS compared with the more multi-scale 

topographic variation found in Tambito.  Heterogeneity in the feature classification, 

solar radiation and slope position variables were the least cross-correlated (in that 

order), and heterogeneity in curvature, toposcale and eastness were the most cross-

correlated variables. 
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Elevation Eastness Northness Curvature Slope
Slope 

Position
Solar Toposcale Topmodel Topoclass Feature

Feature 

(network)

Elevation - 0.81 0.72 0.96 0.98 0.77 0.89 0.85 0.75 0.85 0.49 0.77

Eastness - 0.83 0.89 0.82 0.78 0.63 0.93 0.91 0.86 0.71 0.93

Northness - 0.82 0.74 0.68 0.53 0.89 0.86 0.79 0.76 0.90

Curvature - 0.96 0.82 0.83 0.92 0.83 0.88 0.65 0.86

Slope - 0.78 0.90 0.86 0.78 0.88 0.51 0.79

Slope 

Position
- 0.64 0.80 0.71 0.76 0.55 0.75

Solar - 0.67 0.56 0.75 0.34 0.57

Toposcale - 0.91 0.93 0.70 0.94

Topmodel - 0.84 0.72 0.92

Topoclass - 0.59 0.86

Feature - 0.73

Feature 

(network)
-

 

Table 62 Cross-correlation matrix between all spatial heterogeneity variables with the median 

distance set at 1 cell in TBS using the SRTM DEM (n = 10,400).  Cells are shaded when the 

correlation coefficient is above 0.80 in order to highlight the most significant correlations. 

 

6.3.2.3 Comparison with plot data 

6.3.2.3.1 Control Experiment 

 

The application of the heterogeneity model to twelve random grids with the 

dimensions and resolution of the SRTM DEM also provides an alarming result, with 

50% of the random grids (six) producing a significant correlation (95% significance 

level) with Simpson’s diversity in the plots for at least one scale (Table 63).  For these 

six correlations, an average of 4.5 scales correlated for each grid (partly as a result of 

the co-correlation between heterogeneity grids of adjoining scale, Pearson = 0.97, n = 

180), involving a total of 27 significant correlations.  Once again this highlights the 

danger of non-causal relationships in the multi-scale correlation analyses. 
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Random Run
Maximum 

Pearson

Minimum 

Pearson

No. Scales with 

significant correlation

Random grid 1 0.13 -0.14 0

Random grid 2 0.29 0.07 0

Random grid 3 0.39 -0.21 0

Random grid 4 -0.15 -0.50 0

Random grid 5 0.88 -0.03 8

Random grid 6 0.72 0.00 3

Random grid 7 -0.08 -0.27 0

Random grid 8 0.40 -0.02 0

Random grid 9 0.69 0.18 4

Random grid 10 0.08 -0.74 2

Random grid 11 0.65 -0.54 1

Random grid 12 0.82 0.33 9  
Table 63 Results of the heterogeneity analysis for the 12 random grids using the SRTM DEM 

in TBS. 

 

When Plots 4 and 5 are excluded from the correlations for reasons outlined in Section 

6.3.1.3.1, four of the 12 random grids still provide a correlation (Table 64), with an 

average of six different scales correlating significantly per random grid. 

 

Random Run
Maximum 

Pearson

Minimum 

Pearson

No. Scales with 

significant correlation

Random grid 1 0.65 -0.30 1

Random grid 2 0.70 0.04 4

Random grid 3 0.04 -0.55 0

Random grid 4 -0.05 -0.46 0

Random grid 5 0.59 -0.14 0

Random grid 6 -0.02 -0.17 0

Random grid 7 0.32 -0.32 0

Random grid 8 0.43 0.14 0

Random grid 9 0.92 0.16 10

Random grid 10 0.52 -0.55 0

Random grid 11 0.87 -0.42 8

Random grid 12 0.58 0.17 0  

Table 64 Results of the heterogeneity analysis for the 12 random grids when Plots 4 and 5 are 

excluded from the analysis using the SRTM DEM in TBS. 
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This calls for extreme caution in interpreting the results of the heterogeneity 

modelling as numerous spurious correlations may be expected, though the reasons for 

so many significant correlations are unknown.  This is a strong limitation to the 

interpretation of these heterogeneity results in TBS, and is something that requires 

further study. 

 

6.3.2.3.2 Individual variables 

 

The heterogeneity model is applied for all terrain characteristics from the SRTM 

DEM, and the multi-scale correlation graphs shown in Figure 109, and a summary of 

the results is shown in Table 65. 
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Cross-Scale Heterogeneity - Elevation
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Cross-Scale Heterogeneity - Northness
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Cross-Scale Heterogeneity - Curvature
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Cross-Scale Heterogeneity - Slope
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Cross-Scale Heterogeneity  - Slope Position
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Cross-Scale Heterogeneity - Solar
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Cross-Scale Heterogeneity - TopModel
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Cross-Scale Heterogeneity - Toposcale
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Cross-Scale Heterogeneity - Topoclass
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Cross-Scale Heterogeneity - Feature
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Cross-Scale Heterogeneity - Feature Network
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Figure 109 Cross-scale correlations between species diversity (Simpson’s) and spatial 

heterogeneity for each environmental variable in TBS using the SRTM DEM.  The black line 

represents the Pearson correlation coefficient, whilst the blue line indicates the respective p-
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value.  For ease of interpretation, the thick blue line shows the threshold for significant 

correlations at the alpha = 0.05 level. 

 

Variable

Minimum 

Pearson 

Correlation 

Coeffcient

Maximum 

Pearson 

Correlation 

Coeffcient

Minimum 

p-value

Significance 

(alpha=0.05)

Scale of lowest p-

value (median 

distance in cells)

Elevation -0.08 0.40 0.25 Not-significant 9

Eastness -0.64 -0.38 0.04 Significant (inverse) 2

Northess 0.53 0.95 0.00 Significant 0.3

Curvature 0.07 0.40 0.25 Not-significant 3

Slope 0.04 0.07 0.85 Not-significant 0.8

Slope Position -0.13 0.05 0.71 Not-significant 9

Solar Radiation -0.36 0.18 0.30 Not-significant 0.01

Topmodel -0.70 -0.24 0.03 Significant (inverse) 1

Toposcale -0.43 0.12 0.21 Not-significant 3

Topoclass -0.62 -0.31 0.06 Not-significant 0.01

Feature -0.02 0.41 0.23 Not-significant 9

Network Feature -0.18 0.16 0.62 Not-significant 2  

Table 65 Summary table of results of multi-scale environmental heterogeneity modeling, 

examining maximum correlations between species richness and heterogeneity for the ten plots 

in TBS using the SRTM DEM. 

 

Significant correlations are found between plot species diversity and spatial 

environmental heterogeneity in three variables for the SRTM DEM, including 

eastness (inversely correlated at 1 scale), northness (positively correlated at 13 

scales), and topmodel (inversely correlated at 2 scales).  As discussed earlier, many of 

these correlations are heavily affected by the low Simpson’s diversity in Plot 5 and to 

a lesser extent in Plot 4.  When these plots are excluded from the correlation, eastness 

and topmodel no longer provide any significant correlation (p>0.05 in both cases), 

whilst northness still correlates but with a reduced Pearson coefficient of 0.77 (p = 

0.01) (Figure 110). 

 



 336 
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(median distance = 0.03) against plot 
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Figure 110 Scatterplot of heterogeneity in the northness variable against plot diversity, using 

the SRTM DEM for TBS when plot 5 is included (left) and excluded (right).   

 

Lowest species diversity is found in areas homogenous in northness, with low 

diversity Plots 4 and 5 both having markedly low levels of heterogeneity in northness 

at low median distances.  However, these two plots are in close proximity to the river, 

within the flat flood plain that neighbours the main River Tiputini channel with 

frequent flooding, and it is unlikely that the low diversity in these plots is brought 

about by homogeneity in northness.  Rather the low diversity in these plots has 

already been attributed to the frequent flooding outlined in Chapter 4. 

 

Beyond the correlation with northness, the significant correlations with topmodel and 

eastness are not sufficiently robust to merit specific discussion.  Given the lack of a 

clear result in the single variate analysis presented here, the multiple linear regression 

is not performed as the interpretation of results is difficult and would be highly 

inconclusive.  The lack of correlation between heterogeneity and diversity for the 

SRTM DEM may originate from the resolution of the original DEM, which captures 
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general topographic patterns but fails to identify much of the micro-scale 

heterogeneity present in TBS.   

 

6.4 Conclusions 

 

This chapter has examined the role of spatial environmental heterogeneity on tree 

species diversity in a montane environment (Tambito) with extensive environmental 

gradients over short distances and in a lowland environment (TBS) with less extensive 

gradients but nevertheless a degree of environmental heterogeneity at the micro-scale.   

 

In Tambito, heterogeneity in elevation is concluded to be of importance in shaping 

tree species diversity with greater diversity found in more spatially heterogeneous 

sites, though the precise cause of this is open to discussion.  This observation is 

supported in theory by the habitat association that has already been identified in tree 

species composition across the elevational gradient (Chapter 4).  If species are 

associated to specific altitudinally controlled habitats, regions with a great 

neighbouring diversity in these habitats are likely to contain more species, due to 

them representing a mixing-zone with a diverse pool of seeds arriving to the site 

through distance-dependent dispersal.  There are likely also important biotic 

interactions in heterogeneous sites, including the important effects of herbivory (and 

associated host-specificity) that have not been discussed explicitly here, but 

nevertheless important to acknowledge.   

 

However, issues of co-linearity between variables complicate greatly the analysis.  

These problems occur not only between heterogeneity variables (i.e. heterogeneity in 
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elevation is co-linear with heterogeneity in slope position) but also between 

heterogeneity and other basic factors such as elevation.  An important finding of this 

chapter has been the identification of a peak in elevational heterogeneity in mid-

elevations.  Given that Letts (2003) has found productivity to decrease with greater 

elevation this also represents a productivity gradient, indicating that highest 

heterogeneity is found in mid-productivity levels, a finding reported only once in the 

literature across the productivity gradient in limestone pavements (Lundholm and 

Larson, 2003).  In this case study it makes it impossible to isolate the causal factor for 

the mid-diversity peak observed in the plot data, with plausible explanations including 

the mid-domain effect, species-area relationships, productivity-diversity relationships 

and the role of spatial environmental heterogeneity.  Indeed, further testing of the 

heterogeneity model and associated analyses in other regions may indicate that this 

peak in heterogeneity in mid-elevations (or mid-catchment more precisely) is a 

property shared by many landscapes, brought about by geomorphological processes 

originating from the erosional processes of rivers especially in tectonic environments. 

 

Finally, it is also important to note that heterogeneity using the method applied here is 

not a universal concept for this kind of landscape, with numerous examples of 

heterogeneity in one variable signifying homogeneity in another.  This means that the 

selection of environmental variable for quantifying heterogeneity is of great 

importance, and must be carefully considered. 

 

In TBS the results of the heterogeneity modelling were not satisfactory, and no 

significant correlations can be concluded using either of the DEMs.  Quality issues 

with the topographic data means that spatial heterogeneity cannot be discounted as a 
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driver of tree species diversity maintenance, as the DEMs may not be capturing the 

topographic variation relevant to spatially distributing species composition and 

diversity.  Neither DEM accurately captures the intricate network of valleys and 

ridges, and it may be this environmental variation and the spatial heterogeneity of this 

variation that to some extent shapes tree species diversity.  However, perhaps it can be 

conclusively stated that broad scale heterogeneity  (which is suitably captured in both 

DEMs) does not appear to shape tree species diversity at the micro-scale. 

 

However, contrary to the findings in Tambito, regions heterogeneous in one 

topographic variable are also likely to be heterogeneous in another variable, with high 

levels of positive co-linearity in heterogeneity for most variables.  This indicates that 

heterogeneity in lowland rain forests at the scale used in this study is a more universal 

phenomenon in the landscape, and is less sensitive to the type of variable used. 

 

Though the results presented here show little evidence of significant patterns between 

spatial environmental heterogeneity and diversity in lowland rain forests, further 

studies should apply the models over high resolution and more precise DEMs in well-

studied diversity plots.  Furthermore the worrying number of correlations found 

between diversity and heterogeneity of random grids must be further examined, 

especially in the case of the SRTM DEM.  The uncertainty in the validity of the 

correlations with terrain characteristics that the control experiments highlighted 

significantly weakened the degree to which concrete conclusions could be achieved in 

TBS. 
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In general, the analyses shown here represents the first application of a model that 

quantifies spatial environmental heterogeneity in tropical forests, and compares it to 

tree species diversity.  The results are far from conclusive, yet some important 

patterns have been identified and further study is undeniably warranted.  Firstly, 

spatial environmental heterogeneity could be quantified in a broad range of ways, and 

different models should be developed and tested to examine the degree to which the 

results are dependent on the statistical method used to quantify heterogeneity, as well 

as the distance function applied to define the spatial weighting.  Secondly, more 

concrete conclusions could be achieved with a greater number of diversity plots, 

minimizing the potential effect of single data points which significantly affected the 

results in TBS, for example. 
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Chapter 7 

 

7 Final Conclusions 
 

 

This thesis has attempted to understand micro-scale spatial variation in tree diversity, 

composition and structure in two contrasting sites using terrain-based characteristics 

that through different mechanisms determine some of the essential resources for 

plants (light, water and temperature principally).  The approach adopted is centered on 

testing equilibrium-based theories for diversity maintenance in tropical forests. 

 

The results have been mixed.  Firstly, plot-based measurement of tree diversity, 

composition and structure showed significant between-plot variability in each of the 

two study sites.  In the steep topographic gradients of the tropical montane (cloud) 

forest at Tambito, plot richness varied from 30 to 52 species, with an average 

abundance of 4.1 individuals per species.  Similarly, for the topographically more 

subtle lowland rainforest TBS site, plot richness was found to vary between 31 and 82 

species, with an average abundance of just 2.1 individuals per species.  These results 

alone present sufficient evidence to state that tree diversity and composition is 

significantly variable over space in both of these environments (Objective 1), and also 

that both sites studied here have remarkable levels of diversity. 

 

When spatial patterns in composition are examined in detail, a very clear elevational 

gradient is evident in the TMCF site in Tambito, with 36% of variability in 

composition explained by elevation.  Although elevation itself is not a variable that is 

likely to affect composition, it represents a gradient in temperature, wetness, cloud 
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cover and likely other variables.  This compositional gradient is attributed to species 

adaptations to specific climatic bands.  Similarly in TBS, a compositional gradient is 

also identified along the short elevational gradient (explaining just 16%), though this 

pattern is also observed with greater distance from the main river channel (which 

correlates with altitude since the river occupies the lowest land), and with greater 

geographic (Cartesian) distance between plots (all three variables co-linear).  The 

elevational gradient itself is too small to represent a temperature gradient in TBS, but 

is indicative of flooding frequency, also partly captured with the distance from river 

variable.  However, these factors may also represent a gradient of forest and soil age, 

driven by long-term migration of the river channel across its floodplain.  Ultimately 

the compositional gradient observed may indeed be a combination of these factors. 

 

These results indicate that physical (as opposed to biotic) habitat association in 

composition does occur in both sites to different extents, but that the majority of 

compositional variability between plots remains unexplained by the terrain-based 

variables used here (Objective 2).  The remaining unexplained variability in 

composition may be driven by a combination of abiotic factors not measured here, 

biotic factors as well as non-equilibrium based processes of forest dynamics.  This is 

an interesting result, and indeed the first example of the identification of micro-scale 

habitat associations in composition using quantified terrain-based analysis in tropical 

forests.  The levels of habitat associations observed here may be sensitive to sampling 

strategy, and indeed the use of different sized plots (with associated different scale 

terrain-based characteristics) will likely cause variation in the habitat associations 

found here (35% in Tambito and 16% in TBS).  Further research with larger plots, 

and multi-scale terrain analyses would provide better results. 
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When patterns in diversity are examined (Objective 3), this study has found a mid-

elevation peak in diversity in Tambito at around 1850m, and also a strong pattern 

between richness and mean topographic curvature, with greatest richness being found 

on convex slopes.  The peak in diversity in mid-elevations is attributed to a 

combination of the mid-domain effect and an area-based hypothesis, and a simple 

model is produced to illustrate this (Section 4.2.2.1.2).  The identification of higher 

richness on convex slopes is principally attributed to a greater diversity of light 

environments, brought about by a combination of vertical and lateral light penetration 

of the canopy, though this pattern may also be explained by greater exposure to cloud-

based water and nutrient inputs on convex slopes, or the poor soils expected on 

leached convex slopes.  In the lowland forest site at TBS, few richness or diversity 

patterns were found except for significantly lower diversity in two sites alongside the 

river and which are thus regularly subjected to flooding (sometimes for prolonged 

periods of time).  The remaining variability in diversity in the TBS site is unexplained 

by the terrain characteristics used in this study, though issues with DEM quality mean 

that the existence of a link between tree diversity and terrain characteristics cannot be 

discounted. 

 

Tree structure has been shown to vary significantly between sites in Tambito, yet 

surprisingly little of this variability is explained by terrain characteristics (Objective 

5).  Particularly surprising is the lack of patterns across the elevational gradient, with 

no evidence of a progressive increase in stem density, decrease in DBH or decrease in 

tree height with greater elevation.  These results are contradictory to many empirical 

studies found in the literature (presented in Section 2.4).  Just one significant 
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correlation was found in Tambito, with 67% of variability in the DBH/Height ratio 

being explained by the topmodel wetness index variable, indicative of soil moisture.  

This pattern is attributed to an investment by trees in increased girth relative to height 

in order to achieve greater stability and lessen the likelihood of treefall through 

uprooting, which is more likely on wetter, therefore less stable soils.  In TBS, a 

significant difference is found in tree height between the three highest elevation plots 

and the lower-elevation plots, with these groups possibly differentiated in terms of 

flooding regime with plots below 220m elevation being subjected to occasional 

flooding and having significantly lower average tree stature than the three higher 

elevation plots.  This pattern may indeed be indicating two unique forest structures, 

no doubt reflecting the two types of Amazonian lowland forest discussed in the 

literature; terra firme and varzea forest. 

 

Finally, models of spatial environmental heterogeneity have been applied to examine 

the role of characteristics in surrounding areas on diversity and composition at each of 

the plots, as brought about by spatial interactions such as seed dispersal (Objective 4).  

In Tambito, spatial heterogeneity in elevation is shown to explain some variation in 

diversity (explaining 53% of variability).  This is an important finding, showing how 

both absolute elevation combined with spatial heterogeneity in elevation both 

contribute significantly to micro-scale diversity patterns in Tambito.  In TBS, many 

complications contributed to a confusing set of results, for which no concrete 

conclusion can be reached.  These problems included questionable quality in the 

original DEMs for the study site, many surprising and spurious correlations with 

control (random) analyses, and the poor distribution of diversity levels in the ten 

plots.  DEM quality could be addressed through identifying alternative topographic 
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data sources with higher resolution, which may capture topographic variation at a 

more relevant scale for the processes which drive spatial variability in tree diversity.  

The heterogeneity model seems to work where the terrain gradient (heterogeneity) is 

high, but fall subject to statistical constraints (inclusion of random effects) where the 

gradients are low (as in TBS).  In general, the spatial heterogeneity analyses have 

shown promise in explaining some variability in diversity, and indeed furthering our 

understanding of the processes behind diversity maintenance, but fall short of 

providing solid results and merit further study. 

 

Amongst these results are some important findings that further our understanding of 

micro-scale variation in diversity in tropical forests.  Whilst terrain-based 

characteristics that determine the spatial variation in essential resources in tropical 

forests have explained some variability in composition, diversity and structure, a great 

deal of variability remains unexplained.  This leads to the possibility that a 

combination of equilibrium and non-equilibrium (physical) processes (such as gap 

dynamics) is shaping the micro-scale variability in diversity alongside a suite of biotic 

(competition etc) interactions that also determine resource availability.  This thesis 

has also presented innovative methodologies for examining the relationship between 

environment and diversity at the micro-scale, and the application of these methods in 

other sites with greater volume of ground-based diversity data may yield further 

insights. 

 

There have been significant complications in reaching concrete conclusions in this 

research due to the low number of ground-based plots used to examine the 

relationships between topography and composition, diversity and structure.  The 
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original experimental design was to use high-resolution aerial imagery to monitor the 

spatial distribution of diversity, and use this larger dataset to compare canopy 

diversity with topography, at least for TBS where there was available imagery.  

Unfortunately the analysis of high-resolution imagery was complicated by many 

factors (shading, image coverage, suitable methods) and was not included in this PhD 

(though Appendix 1 provides an overview of what was achieved in this line of 

research).  Within the time available for this thesis just ten plots could be generated 

for each study site, and making concrete conclusions with this data has been difficult, 

especially in TBS where two extremely low diversity plots alongside the river had 

great influence on the statistical significance of the linear regressions. 

 

The analysis has also been complicated by strong co-linearity between some of the 

different terrain characteristics, making it difficult to separate true correlations from 

spurious relationships.  Whenever possible, ecological interpretation of the results has 

been used to explain the most likely process behind such relationships (e.g. 

understanding the relationship between composition and elevation / geographic 

distance / distance from river in TBS), but in some cases this has not been possible.  

More data points (plots) would help illustrate more clearly the true correlations, 

alongside some more advanced statistical methods, though this is left for further 

study. 

 

Whilst this research has provided some interesting results and conclusions, as in most 

research studies it has opened up many more questions.  Specifically, the following 

topics should be further investigated in future research studies: 
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1. Full testing of different spatial heterogeneity measures as potential 

explanations of spatial variation in tree species diversity, and analysis of the 

sensitivity of the results to the different methods 

2. Detailed analysis of the diversity gradient with greater distance from the main 

river channel, including soil surveying to confirm if this is in reality a pattern 

brought about by a disturbance from river flooding (short-term) or the result of 

longer term non-equilibrium adjustment along a primary successional gradient 

3. Repetition of the analyses in other sites, and with greater number of ground-

based diversity plots 

4. Repetition of the analyses in lowland forest using higher-quality DEMs, 

possibly derived from ground based surveying or LIDAR / RADAR. 

 

Perhaps the best strategy for following-on this research would be to apply the models 

to large, long-term plots such as the 50-Ha plot found in Yasuni National Park near 

the TBS site presented in this thesis, where abundant tree diversity data is available.   
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8 Appendix 1 
 

Acquisition and processing of digital high resolution aerial imagery over tropical 
forests 

 

This Appendix shows some of the preliminary results achieved from a pilot study at 

using high resolution images to “monitor” tree canopy diversity. 

 

The regular presence of cloud and steep topographic characteristics of the montane 

tropical forest found in Reserva Tambito make aerial photography an unrealistic 

means of assessing biodiversity.  Logistically it is very complicated to take the 

necessary data in Reserva Tambito, so aerial photography is only to be applied to 

Tiputini Biodiversity Station. 

 

Data Collection 

 

Images were acquired using two complementary approaches, at both high and low 

altitude, designed to provide images with different spatial coverages and resultant 

differences in resolution.  The first approach uses aircraft based aerial photography to 

acquire high altitude/low resolution images for the whole of the TBS field site.  

Within the Tiputini Biodiversity Station the second approach concentrated on the 

acquisition of high resolution (but low spatial coverage) images of the forest canopy, 

especially over ground-based diversity plots through the use of a tethered helium 

balloon. 

 

Instruments and technical specifications 
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The instruments used for the photo acquisition vary depending on the aerial or 

tethered techniques, but all take full colour photos (red, green, blue) from digital 

cameras.   

 

The aircraft based acquisition of aerial photos is not limited by weight, and so two 

cameras were used to ensure varying image resolutions and qualities.  These were a 

Canon Digital Video camera, and a Kodak DCS420 digital camera.  The Canon 

digital video takes 30 frames per second in DV format to a 1-hour DV tape.  

Individual frames of size 768 x 567 pixels were extracted from the resultant video.  

The recorded video was viewed externally by a small LCD TV monitor from within 

the aircraft to ensure that the imagery was properly acquired. 

The digital camera used in the aerial photography was a Kodak DCS420 

professionally calibrated digital aerial photography camera, which takes images of 

size 1524 x 1012 pixels. This camera was attached to a frame rate generator to 

automatically takes photos at a given time interval.  The imagery is written to a 

PCMCIA memory card, and requires a minimum of 4 seconds between photos to 

completely save the imagery to memory.  The camera will hold a maximum of 201 

images in memory, before it must be downloaded to computer.  These limitations 

were important when planning the flight path for image acquisition. Figure 1 shows 

the instrumental setup of the apparatus. 
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Figure 111 Instrumental setup for aerial photography acquisition 

  

Camera calibration 

 

Each camera was subjected to a calibration experiment to determine the relationships 

between the distance of the sensor from the target and the spatial resolution and 

spatial coverage.  With this information it was also possible to calculate the time 

required between frames (frame-rate) to ensure a 33% overlap in images, and also the 

elevation at which blurring was likely to occur.  This information is important for 

flight planning, in order to ensure that the imagery covers the entire TBS study region.  

The results of these calibrations are shown in Figures 112-115. 
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Figure 112 Ground spatial coverage of images from the three different cameras depending on 

elevation of the sensor above the ground surface. 
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Figure 113 Resolution of images from the three different cameras depending on elevation of 

the sensor above the ground surface. 
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Figure 114 Required time between frames to ensure 1/3 overlap in images depending on 

elevation of the sensor above the ground surface. 
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Figure 115 Elevation at which blurring is expected to occur for each of the three cameras.  

This was calculated based on the spatial resolution of the pixels, the exposure of the camera 
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and the speed of the aeroplane (fixed at 200km/h).  If during the exposure time the aeroplane 

movement exceeds the equivalent of 1 ground pixel, it was assumed that blurring would be 

present in the image. 

 

Aerial photo acquisition 

 

Based on these calibrations, a flight path was constructed which involved image 

acquisition at three elevations, producing images with spatial resolution of 

approximately 30cm (1200m elevation), 15cm (600m elevation) and 10cm (300m 

elevation) with the Kodak DCS420.  The 1200m and 600m swaths were designed to 

produce continuous stereo images with 33% overlap.  The flight path was loaded as a 

background file in the Trimble ProXL GPS, and used in flight to navigate.  The 

planned and the actual flight path are shown in Figure 116. 
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Figure 116 Planned and actual flight path for aerial image acquisition over TBS, March 2002. 

 

The images were taken during one single flight on the 11th March, 2003.  The sky was 

around 80% clear, with just a few isolated clouds at approximately 1100m elevation 

above the ground surface.  As can be seen in Figure 116, turbulence meant that the 

planned flight path could not be exactly maintained, and fuel limitations mean that 

only seven out of eleven of the 600m swaths were completed.  Due to the cloud 

height, the planned 1200m imagery was actually taken at approximately 1100m 

elevation above the ground surface.  All images were of reasonable quality, and a 

large percentage of the reserve was covered with at least one resolution of aerial 

imagery. 

 

Helium balloon photo acquisition 
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The helium balloon based photo acquisition is limited by weight.  The helium balloon 

carries some 7 cubic metres of helium, and is capable of a maximum payload of 

approximately 3kg.  This limitation means that only the one sensor can be safely 

attached, accompanied by servos and remote control receivers and transmitters.  In 

this case a high-resolution Nikon Coolpix 990 digital camera is used, with a 28mm 

lens and resolution of 3.3 mega-pixels with an image size of 2048 x 1536 pixels.  The 

camera is attached to the balloon, and the balloon held on a cable of up to 200m 

length.   

 

There is no form of propulsion so the path of the balloon is at the whim of the wind.  

The balloon requires a large clearing to avoid snagging on tree branches, so the 

balloon can only be flown from the river, or from some especially large gaps in the 

forest floor (Figure 117).  This restricted the potential coverage of the balloon 

imagery.  The photos were taken by means of a remote control servo attached to the 

camera platform.  Figure 118 and Figure 119 show the strategy used for the balloon 

within the forest, and an image of the camera apparatus. 
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Figure 117 Method for helium balloon image acquisition from forest gaps 

 

 

Figure 118 The helium balloon in flight 
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Figure 119 Instrumental setup of tethered balloon photo acquisition 

 

At full balloon height (200m) the camera provides images with a pixel size of 5.6cm 

and a spatial coverage of 115m x 86m.  Images were taken along the river covering 

almost continuously some 3 km of river, and extending as far as 100m into the 

surrounding forest.  The balloon was also flown from a canopy tower, capturing high 

resolution images of plot 6, and from a gap in the center of the 1Ha Pitman plot, 

capturing approximately 80% of the plot with high resolution imagery. 

 

Georeferencing of images 

 

The method for georeferencing the images vary between the balloon and the aircraft.  

The aerial photos were georeferenced using GPS data through an iterative approach, 

starting with the 1200 m imagery.  First of all in-flight GPS data and camera 

characteristics derived from the calibration were used to approximately georeference 

the images.  The orientation of the image is calculated based on the change in position 

from the GPS for the second prior to and after image acquisition.  The GPS height is 
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used to calculate the spatial coverage, and geographic positions of the corner points 

are calculated, and used as control points in the georeferencing.  Starting with the 

image closest to the accommodation cabins, identifiable features were selected in the 

crudely georeferenced image.  The easiest feature to identify were buildings, but these 

were only present in this one 1200m images.  Logs and outcroppings in the riverbank 

were also easily identifiable in the image and in the field.  Inland and away from 

buildings it was more difficult.  Some features that were used included large gaps, 

flowering trees, large leafless ceibas, and some especially prominent palms.  The 

approximate coordinates of each identified feature was entered into a Garmin12 GPS 

unit, and this location then visited in the field.  Once the precise point was found, the 

Trimble ProXL GPS unit was left taking a geographic position for at least 10 minutes.  

In each image at least 5 GPS points were taken, whenever possible covering the 

corners and a central point.  ERDAS Imagine was used to georeference the images, 

using bilinear interpolation.   

Once the first image was georeferenced accurately, adjoining images were 

georeferenced firstly based on a crude stitching to the 33% overlap with the first 

image.  This crudely georeferenced image was then used to locate features in the field, 

and the final georeferenciation of the image performed using bilinear interpolation of 

the GPS points.  This “dispersive” method was used to georeference all 1200m 

images.  The root mean square error was approximately 3-5 pixels (equivalent to 1-

2m). 

Once the 1200m images had been georeferenced, they were mosaiced together to 

form a single image of the study site.  This mosaic was then used as a base map with 

which to georeference the 600m and 300m imagery, also using bi-linear interpolation.  
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In this case common features were identified for control points, using at least 10 per 

image. 

 

The helium balloon images were more easily georeferenced due to the clarity in the 

photos.  Features were located on the ground, and ERDAS Imagine used to 

georeference each image.  Only high quality images were georeferenced.  The 

approximate accuracy of the georeferencing using this method is 1m. 

 

Table 66 summarises the number of images acquired, how many of which were 

georeferenced and their approximate ground coverage, and shows the georeferenced 

imagery available for the study site. 

 

Altitude of image 

acquisition (metres 

above ground level)

Total Number of 

Images Acquired

Total Number of images 

Georeferenced

Average Resolution 

of Images (cm)

Area coverd by 

images (Ha)

1200 60 33 33.6 1006

600 154 46 21.4 300

300 18 14 8.4 24

100-200 (balloon) 679 30 7.6 51

 

Table 66 Summary of image acquisition and georeferencing results. 
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Figure 120 Georeferenced imagery for TBS at all resolutions 

 

Image Analysis 

 

Firstly, object-oriented remote sensing techniques were used on the 1500m imagery to 

separate out individual tree forms, in order to provide a vector coverage of each 

canopy tree.  This analysis was performed using eCognition Version 2.  eCognition 

makes a segmentation of an image into shapes based on the colour and texture of the 

image.  These shapes attempt to maintain internal homogeneity, but represent the 

external heterogeneity of the image.  The scale of these objects can be adjusted using 

the arbitrary scale parameter, and the segmentation can be manipulated by weighting 

the importance of each spectral band, and the relative weight between colour and 

shape. 



 382 

 

The second phase of analysis in eCognition is a hierarchical classification.  A number 

of levels are produced using the multi-resolution segmentation, of increasing levels of 

detail using the scale parameter.  Within each level, rules are produced based on the 

spectral and textural properties of each shape, including neighbourhood functions, to 

create a classification of key objects.  At each level, the multiresolution segmentation 

is tailored to the specific classification needs.  In the case of this work, classification 

hierarchies were constructed to classify the image into shade / canopy hole, tree 

canopy, and river (the classification hierarchy is shown in Figure 121). 

 

 

Figure 121 Classification hierarchy constructed in eCognition. 

 

Once individual shapes classified as “tree crown” were identified, the image data for 

each shape was extracted, including mean, max, min, mode and standard deviation of 

pixels for each of the three bands, along with shape-based characteristics such as 

“roundness”, perimeter, and area.  The attribute values for each tree crown were then 

subjected to a clustering analysis (using Ward’s method), and 100 arbitrary “canopy 

forms” extracted from this analysis. 
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Finally, a grid-based analysis of canopy form richness was performed using DIVA-

GIS (http://diva-gis.org), to provide a map of possible canopy diversity. 

 

Results and Discussion 

 

The classification process was applied to a 1500m image, producing a realistic 

classification or image regions representing tree crowns (Figure 122).  When this 

classification was combined with the image segmentation, and multi-variate statistical 

analysis a map of diversity in tree crown canopy forms was produced (Figure 123). 

 

 

Figure 122 Results of the hierarchical classification of eCognition, identifying river (blue), 

gaps / shade (black) and tree crowns (green). 
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Figure 123 Modelled canopy diversity, derived from object-oriented analysis of canopy 

forms. 

 

The analysis has not been rigorously performed, rather has been performed as a pilot 

test to examine the potential of this kind of analysis in measuring tree canopy 

diversity over large areas.  The results are promising, but the methods require detailed 

study which is considered beyond the possibilities of this PhD thesis.  Several 

problems were identified: 

 

1. The scale-dependent image segmentation failed to account for different sized 

tree crowns, resulting in a segmentation that, depending on the scale parameter 

selected, clumped or separated individuals trees into single or multiple objects 

2. The statistical methods behind the classification of tree forms requires greater 

rigor, and detailed development 
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3. Validation of the image analysis is required, and the ten diversity plots 

established for this study were not suitable for validation of these images (see 

Figure 124).   

 

Fieldwork in 2003 attempted to gather ground-based measurements of canopy tree 

diversity using the matching of individual crowns visible in the imagery with crowns 

identified from the ground, but this proved highly difficult.   

 

 

Figure 124 Plot 1 (25m x 25m) from the air, in an image taken using the helium balloon.  As 

can be seen, few trees penetrate the canopy, with just 5-10 of the 80 trees identified on the 

ground actually visible in this high-resolution image. 
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For the reasons briefly outlined above, and others not-mentioned the image-based 

measurement of tree diversity was dropped from the research for this thesis, and is not 

included in main text.  However, it still merits further study. 
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9 Appendix 2 
 

Heterogeneity model for quantitative variables 
 
/*  Integrated model for studying the spatial heterogeneity of the environment from a 
biological standpoint 
/* 
/*  The model requires : 
/* a kernel file, in ASCII format (or several if you wish to perform a multi-scale 
analysis - file format = kernel_50x50_"scale".asc) 
/* input environmental variable (can be integer, floating) 
/*  
/*  The model makes the following steps: 
/* * Reclassifies the environmental variable to between 25 and 30 classes 
/* * For each reclassified map, creates seperate binary grids for each class  
/* * Calculates the probability of receiving seeds from each environmental class 
in the surrounding area (defined by the kernel) 
/* * Combines the probabilities of receiving each class through calculation of the 
Shannon Index to  
/*  produce a grid of environmental diversity 
/* * Normalises the final diversity map (mean_div_rel) and adjusts for edge 
effect (mean_div_adj) 
/* 
/*  The model also carries out validation on your data, writing a text file with the rsq 
correlation. 
/* 
/* 
/* 
/*  by Andy Jarvis 
/*   2003 
/*  a.jarvis@cgiar.org 
 
/*  Model variables 
 
&terminal 9999 
 
&s inputvariable = d:\datosproyecto\ecuador\dem_comparison\srtm\mean_curv_dd 
&s thresholdlow = 25 
&s thresholdhigh = 30 
&s kernel = kernel_50x50 
&s killer = no 
 
/*  Validation variables 
 
&s samplesites = d:\datosproyecto\ecuador\dem_comparison\srtm\plot_richness 
 
&s kernelfiles := [listfile kernel*.asc -file] 
 
&if [null %kernelfiles%] &then &type There are no kernel ASCII files 
    &else 
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    &do 
      &s num := [token %kernelfiles% -count] 
      &do k := 1 &to %num% 
        &sv name = [extract %k% %kernelfiles%]  
        &sv scale = [substr %name% 14 3] 
 
/*  This section reclassifies the maps into %thresholdhigh% classes, so that the 
focalsum calculation can work 
 
describe %inputvariable% 
&sv mapmin = %grd$zmin% 
&type %mapmin% 
&sv mapmax = %grd$zmax% 
  &do j := %thresholdlow% &to %thresholdhigh% 
     &type Classifying map into %j% classes 
  &do i := 1 &to %j% 
 &sv interval1 = [calc %mapmax% - %mapmin%] 
     &sv interval = [calc %interval1% / %j%]            
     &sv countless = [calc %i% - 1] 
 &if [EXISTS tempclass%i% -grid] &then kill tempclass%i% all 
     tempclass%i% = con (%inputvariable% <= [calc %i% * %interval% + 
%mapmin%], con (%inputvariable% > [calc %interval% * %countless% + 
%mapmin%], %i%, 0), 0) 
   &end 
 
   &do i := 1 &to %j% 
     &if %i% = 1 &then &sv list = tempclass%i% 
     &else &sv list = %list%, tempclass%i% 
   &end 
 &if [EXISTS intermed -grid] &then kill intermed all 
 intermed = sum (%list%) 
 &do i := 1 &to %j% 
 kill tempclass%i% ALL 
 &end  
 &if [EXISTS classes_%j% -grid] &then kill classes_%j% all 
 classes_%j% = con (isnull(intermed), 0, intermed)  
 
 &type Separating into component class maps 
 &do i := 1 &to %j% 
 &if [EXISTS class_%j%_%i% -grid] &then kill class_%j%_%i% all 
     class_%j%_%i% = con(classes_%j% == [calc %i%], 1, 0) 
 &end 
  kill classes_%j% all 
   
/* This section of the model makes the spatial heterogeneity calculation on each class 
 
&type Running focalsum model 
  &do i := 1 &to %j% 
    &if [EXISTS het_%j%_%i% -grid] &then kill het_%j%_%i% all 
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    het_%j%_%i% = focalsum (class_%j%_%i%, weight, %kernel%_%scale%.asc, 
DATA) 
  &end 
 
  &do i := 1 &to %j% 
    &if %i% = 1 &then &sv thelist = het_%j%_%i% 
    &else &sv thelist = %thelist%, het_%j%_%i% 
  &end 
   
  &type Combining class layers 
 
  &if [EXISTS het_sum_%j% -grid] &then kill het_sum_%j% all 
  het_sum_%j% = sum (%thelist%) 
 
/* This section calculates the Shannon Index for diversity, normalises and adjusts for 
density 
 
  &type Creating temporary frequencies 
  &do i := 1 &to %j% 
    &if [EXISTS tem%i% -grid] &then kill tem%i% all 
    tem%i% = (het_%j%_%i% / het_sum_%j%) * (het_%j%_%i% / het_sum_%j%) 
  &end 
 
  &do i := 1 &to %j% 
    &if %i% = 1 &then &sv thelist2 = tem%i% 
    &else &sv thelist2 = %thelist2%, tem%i% 
  &end 
 
  &type Creating sum-squared layer 
 
  &if [EXISTS het_sum2_%j% -grid] &then kill het_sum2_%j% all 
  het_sum2_%j% = sum (%thelist2%) 
 
  &do i := 1 &to %j% 
    kill tem%i% 
  &end 
 
  &type Calculating relative diversity layer 
  &if [EXISTS rel_div_%j% -grid] &then kill rel_div_%j% all 
  rel_div_%j% = (1 - het_sum2_%j%) 
 
  &type Calculating adjusted diversity layer 
  &if [EXISTS adj_div_%j% -grid] &then kill adj_div_%j% all 
  adj_div_%j% = (rel_div_%j% * het_sum_%j%) 
 
  &type normalizing final maps 
 
  describe adj_div_%j% 
  &sv divmin = %grd$zmin% 
  &sv divmax = %grd$zmax% 
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  &if [EXISTS adj_div_%j%_n -grid] &then kill adj_div_%j%_n all 
  adj_div_%j%_n = (adj_div_%j% - %divmin%) / (%divmax% - %divmin%) 
 
  describe rel_div_%j% 
  &sv divmin2 = %grd$zmin% 
  &sv divmax2 = %grd$zmax% 
  &if [EXISTS rel_div_%j%_n -grid] &then kill rel_div_%j%_n all 
  rel_div_%j%_n = (rel_div_%j% - %divmin2%) / (%divmax2% - %divmin2%) 
 
&do i = 1 &to %j% 
     kill het_%j%_%i% 
     kill class_%j%_%i% 
&end 
&end 
 
&do i := %thresholdlow% &to %thresholdhigh% 
    &if %i% = %thresholdlow% &then &sv thelist3 = rel_div_%i%_n 
    &else &sv thelist3 = %thelist3%, rel_div_%i%_n 
    &if %i% = %thresholdlow% &then &sv thelist4 = adj_div_%i%_n 
    &else &sv thelist4 = %thelist4%, adj_div_%i%_n 
&end 
 
&type Calculating means 
 
/*  THis section puts the different maps for each class number together 
 
&if [EXISTS div_rel -grid] &then kill div_rel all 
div_rel_%scale% = sum(%thelist3%) / (%thresholdhigh% - %thresholdlow% + 1) 
 
&if [EXISTS div_adj_%scale% -grid] &then kill div_adj_%scale% all 
div_adj_%scale% = sum(%thelist4%) / (%thresholdhigh% - %thresholdlow% + 1) 
 
/*  Cleans up your directory of temporary files 
 
&do i := %thresholdlow% &to %thresholdhigh% 
    kill het_sum_%i% all 
    kill het_sum2_%i% all 
    kill adj_div_%i% all 
    kill adj_div_%i%_n all 
    kill rel_div_%i% all 
    kill rel_div_%i%_n all 
    &if [EXISTS intermed -grid] &then kill intermed all 
&end 
 
/*  Performs the validation using your sample sites map 
 
model_comparison_%scale%.txt = sample (%samplesites%, div_adj_%scale%, 
div_rel_%scale%) 
correlation %samplesites% div_rel_%scale% 
        &sv rsqtable = [open rsq_results.txt openstat -append] 
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        &if %openstat% ne 0 &then 
        &do 
       &type could not open rsqtable (Close arc/info and start again) 
         &return 
        &end 
        &else 
      &type %openstat%   
      &do 
         &if %k% = 1 &then 
         &do 
         &sv writeres = [write %rsqtable% 'Scale Rsquared'] 
         &sv writeres = [write %rsqtable% %scale%' '%.correlation_out%] 
         &end 
         &else 
         &sv writeres = [write %rsqtable% %scale%' '%.correlation_out%] 
         &sv closestat = [close %rsqtable%] 
       &end 
 
&end 
&end 
&return 
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10 Appendix 3 
 

Heterogeneity model for categorical variables 
 
/*  Integrated model for studying the spatial heterogeneity of the environment from a 
biological standpoint 
/* 
/*  The model requires : 
/* a kernel file, in ASCII format (or several if you wish to perform a multi-scale 
analysis - file format = kernel_50x50_"scale".asc) 
/* input environmental variable (can be integer, floating) 
/*  
/*  The model makes the following steps: 
/* * Reclassifies the environmental variable to between 25 and 30 classes 
/* * For each reclassified map, creates seperate binary grids for each class  
/* * Calculates the probability of receiving seeds from each environmental class 
in the surrounding area (defined by the kernel) 
/* * Combines the probabilities of receiving each class through calculation of the 
Shannon Index to  
/*  produce a grid of environmental diversity 
/* * Normalises the final diversity map (mean_div_rel) and adjusts for edge 
effect (mean_div_adj) 
/* 
/*  The model also carries out validation on your data, writing a text file with the rsq 
correlation. 
/* 
/* 
/* 
/*  by Andy Jarvis 
/*   2003 
/*  a.jarvis@cgiar.org 
 
/*  Model variables 
 
&terminal 9999 
 
&s inputvariable = d:\datosproyecto\ecuador\dem_comparison\srtm\featu_dd 
 
/*  Validation variables 
 
&s samplesites = d:\datosproyecto\ecuador\dem_comparison\srtm\plot_richness 
 
&s kernelfiles := [listfile kernel*.asc -file] 
 
&if [null %kernelfiles%] &then &type There are no kernel ASCII files 
    &else 
    &do 
      &s num := [token %kernelfiles% -count] 
      &do k := 1 &to %num% 
        &sv name = [extract %k% %kernelfiles%]  



 393 

        &sv scale = [substr %name% 14 3] 
 
/*  This section reclassifies the maps into %thresholdhigh% classes, so that the 
focalsum calculation can work 
 
describe %inputvariable% 
&sv mapmin = %grd$zmin% 
&type %mapmin% 
&sv mapmax = %grd$zmax% 
 
 
 &type Separating into component class maps 
 &do i := 1 &to 6 
 &if [EXISTS class_%i% -grid] &then kill class_%i% all 
     class_%i% = con(%inputvariable% == [calc %i%], 1, 0) 
 &end 
   
/* This section of the model makes the spatial heterogeneity calculation on each class 
 
&type Running focalsum model 
  &do i := 1 &to 6 
    &if [EXISTS het_%i% -grid] &then kill het_%i% all 
    het_%i% = focalsum (class_%i%, weight, %name%, DATA) 
  &end 
 
  &do i := 1 &to 6 
    &if %i% = 1 &then &sv thelist = het_%i% 
    &else &sv thelist = %thelist%, het_%i% 
  &end 
   
  &type Combining class layers 
 
  &if [EXISTS het_sum -grid] &then kill het_sum all 
  het_sum = sum (%thelist%) 
 
/* This section calculates the Shannon Index for diversity, normalises and adjusts for 
density 
 
  &type Creating temporary frequencies 
  &do i := 1 &to 6 
    &if [EXISTS tem%i% -grid] &then kill tem%i% all 
    tem%i% = (het_%i% / het_sum) * (het_%i% / het_sum) 
  &end 
 
  &do i := 1 &to 6 
    &if %i% = 1 &then &sv thelist2 = tem%i% 
    &else &sv thelist2 = %thelist2%, tem%i% 
  &end 
 
  &type Creating sum-squared layer 
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  &if [EXISTS het_sum2 -grid] &then kill het_sum2 all 
  het_sum2 = sum (%thelist2%) 
 
  &do i := 1 &to 6 
    kill tem%i% 
  &end 
 
  &type Calculating relative diversity layer 
  &if [EXISTS rel_div -grid] &then kill rel_div all 
  rel_div = (1 - het_sum2) 
 
  &type Calculating adjusted diversity layer 
  &if [EXISTS adj_div -grid] &then kill adj_div all 
  adj_div = (rel_div * het_sum) 
 
  &type normalizing final maps 
 
  describe adj_div 
  &sv divmin = %grd$zmin% 
  &sv divmax = %grd$zmax% 
  &if [EXISTS adj_div_n -grid] &then kill adj_div_n all 
  adj_div_n = (adj_div - %divmin%) / (%divmax% - %divmin%) 
 
  describe rel_div 
  &sv divmin2 = %grd$zmin% 
  &sv divmax2 = %grd$zmax% 
  &if [EXISTS rel_div_n -grid] &then kill rel_div_n all 
  rel_div_n = (rel_div - %divmin2%) / (%divmax2% - %divmin2%) 
 
&do i = 1 &to 6 
     kill het_%i% 
     kill class_%i% 
&end 
 
 
&type Calculating means 
 
/*  THis section puts the different maps for each class number together 
 
&if [EXISTS div_rel_%scale% -grid] &then kill div_rel_%scale% all 
div_rel_%scale% = rel_div_n 
 
&if [EXISTS div_adj_%scale% -grid] &then kill div_adj_%scale% all 
div_adj_%scale% = adj_div_n 
 
/*  Cleans up your directory of temporary files 
 
&if [EXISTS adj_div -grid] &then kill adj_div all 
&if [EXISTS het_sum -grid] &then kill het_sum all 
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&if [EXISTS het_sum2 -grid] &then kill het_sum2 all 
&if [EXISTS rel_div -grid] &then kill rel_div all 
&if [EXISTS adj_div_n -grid] &then kill adj_div_n all 
&if [EXISTS rel_div_n -grid] &then kill rel_div_n all 
&if [EXISTS intermed -grid] &then kill intermed all 
 
/*  Performs the validation using your sample sites map 
 
model_comparison_%scale%.txt = sample (%samplesites%, div_adj_%scale%, 
div_rel_%scale%) 
correlation %samplesites% div_rel_%scale% 
        &sv rsqtable = [open rsq_results.txt openstat -append] 
        &if %openstat% ne 0 &then 
        &do 
       &type could not open rsqtable (Close arc/info and start again) 
         &return 
        &end 
        &else 
      &type %openstat%   
      &do 
         &if %k% = 1 &then 
         &do 
         &sv writeres = [write %rsqtable% 'Scale Rsquared'] 
         &sv writeres = [write %rsqtable% %scale%' '%.correlation_out%] 
         &end 
         &else 
         &sv writeres = [write %rsqtable% %scale%' '%.correlation_out%] 
         &sv closestat = [close %rsqtable%] 
       &end 
 
&end 
&return 
 

11 Appendix 4 
 

Submitted to Novedades Colombiana 

 
PLANTS OF  TAMBITO  I. DICOTILEDONOUS. A PRELIMINARY  LIST 

 
 

Carlos E. González and Andrew Jarvis 

 

Resumen 
 
Se presenta una lista preliminar de las plantas dicotiledóneas registradas desde 1998 hasta el 2002 en 
la reserva Tambito, Cauca, Colombia (2º 30’ N- 76º 59’ W). Se reportaron 585 especies distribuidas en 
86 familias. Se organizaron según su hábito de crecimiento: hierbas (52 especies), arbustos (132 
especies), árboles (301 especies), trepadoras (59 especies) y epífitas (5 especies). Las familias de 
mayor número de especies fueron Rubiaceae, Gesneriaceae, Melastomataceae y Piperaceae. Esta es 
una lista preliminar centrada en ofrecer una estimación inicial de las especies en Tambito. El patrón 
numérico demuestra que se deben hacer esfuerzos de colecta en lianas, epífitas y trepadoras además 
de nuevas identificaciones a los grupos menos conocidos taxonomicamente para completar el 
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inventario de dicotiledóneas. Iguales esfuerzos de deben hacerse en Helechos,  monocotiledones y 
grupos de plantas criptógamas.    
 
 

Palabras claves: Flora, Bosque de Niebla, Tambito, Cordillera Occidental, Cauca, 
Colombia  
 

Abstract 
 
This study presents a preliminary list of dicotiledonous plants that have been registered 1998 – 2002 in 
Reserva Tambito, Cauca, Colombia (2º 30’ N- 76º 59’ W).  Some 585 species are reported, in 86 
families.  The species included in this list were classified into herbs (52 species), shrubs (132 species), 
trees (301 species), climbers (59 species) and epiphytes (5 species).  The most speciose familes are 
Rubiaceae, Gesneriaceae, Melastomataceae and Piperaceae.  This is a preliminary list aimed to 
provide an initial estimate of the plant species in Tambito.  It is suggested that more collections are 
made in lianas, epiphytes and climbers to further complete the inventory of dicotiledonous plants, and 
that similar studies should be made for monocotiledonous and cryptogams (including mocees and ferns) 
species. 

 

Key words: Flora, Cloud Forest, Tambito, Western Andes, Cauca, Colombia 
 

Introduction 
 

This is the first compilation of Tambito´s plant species, which presents a preliminary list of 
dicotiledonous plants.  A series of future lists are in preparation under a Florula project (II: 
Monocotiledonous III: Ferns and similars IV: Mosses and affines).  Previous studies in 
Tambito suggest that there might be as many as 640 species collected (including 
monocotiledonous), in 269 genera and 110 families including monocotiledonous (González 
C.E, 2000).  This paper produces a rigorous review of collections in Tambito between 1998 
and 2002, providing a more conclusive figure for the number and taxonomy of the species 
now registered in Tambito.  Additionally we make suggestions for the focus of future 
botanical collection in Tambito. 
 

Materials and Methods 
 

Study Site 
 

Reserva Tambito, Cauca, Colombia (2º 30’ N- 76º 59’ W) lies on the western slopes of the 
western cordillera of the Andes.   The altitudinal range rises from 1053 to 2860 m.a.s.l.. The 
total area of the reserve is 2150 hectares, with areas of secondary and primary forest, and 
some pasture area around the Tambito cabin. Annual rainfall ranges from 3900mm around the 
cabin, to as much as 6560mm at 2000m.a.s.l. (Jarvis, 2000).  Relative humidity averages at 
over 90%, with daily variation between 60 and 100% (Jarvis, 2000). It is a private nature 
reserve which forms the Pacific Enviromental Studies Centre to the University of Cauca, 
Popayan. 
 

Field data collection 
 

Botanical collections were made from 1998 – 2002, many as part of the fieldwork for HERB 
Project and Project Negret (King’s College London). The areas covered were web distributed 
around the twin catchments, between 1300 and  2500 m.a.s.l..  Lack of access to the higher 
elevations prevented collections above 2500m.a.s.l.. 
Samples were collected and preserved temporarily in alcohol according to the traditional 
method of botanical sample preservation.  The samples were then dried for 48 hours at 90oF, 
and stored in the CAUP herbarium in the Natural History Museum of Popayan.  Identification 
of the samples were made to species level whenever possible, though many identifications 
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stop at genus.  Some samples remain unidentified to family, and so have been omitted from 
this list.   
 

Results and Discusion 
 
Table 1 shows the species which have been registered, and are seperated into families.  For 
each species additional information is provided with regard to the Holdridge life zone in 
which the species was found, in addition to the plant form and information on the collection 
number for the herbarium.   
 
In total, 585 species have been identified, in 86 families.  Some 301 of these are tree species, 
whilst 132 are shrubs, 59 are climbers, 52 are herbs and 5 are epiphytes. Only 60-65% 
(around 326 species) of identifications are confirmed; 4% (around 22 especies) remain 
unidentified and 21 especies are being investigated as new species for science (4 have already 
been described).  Some of the species which are unidentified might also be undescribed 
species.  Melastomataceae and Rubiaceae are generally poorly identified families.  Tree 
families like Lauraceae and Myrtaceae were found to be less taxonomically documented. 
Genera like Nectandra, Ocotea, Miconia, Piper, Besleria, Solanum, Ficus, Palicourea and 
Psychotria have the highest probabilities for finding new undescribed or non identified 
species.  
 
These figures show the weaknesses in collections, and highlight the need for further study in 
lianas, epiphytes and climbers.  For both these groups the species richness is likely to be 
significantly higher. Some data about rare or endemic species are marked, but must be 
considered more thoroughly in subsequent analyses. 
 
Figure 1 shows the species composition with respect to families.  The most speciose familes 
are Rubiaceae (67 species), Gesneriaceae (64 species), Melastomataceae (59 species) and 
Piperaceae (36 species).  A total of 38% of all registered species are in these four families. 
 

Conclusions 
 

This preliminary list provides a basic documentation of the dicotiledonous flora found in 
Tambito.  It demonstrates the exceptional level of plant diversity in Tambito, and throws 
down the challenge to further study and document the biological resources within the Reserve 
and the surrounding area.  This kind of information is crucial to comply with the Convention 
on Biological Diversity, where basic inventory of biological resources is essential to construct 
relevent and effective national conservation policies. 
 
It is hoped that this paper will contribute to the establishment of a Florula project for Tambito 
(González, 2002), which integrates the results of biological research in Tambito over the past 
years.  Amongst these findings are new species to science (Gonzalez, 2002), and significant 
advances in knowledge of the ferns (Casañas, 2002) and palms (Cortes, 1996).  This 
preliminary list could be lengthened and finalised under such a project, and extended into the 
surrounding Munchique National Park and Choco Biogeographic region.   
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Tables and Figures 
 
Figure 1  Number of species per family for Reserva Tambito. 
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Table 1 Taxonomic list 
 
Life Zone (Lf): Refers to the ecological forest type. bh-pm (1300-1600 m) = 
Premontane Wet Forest; bh-mb ( 1600-2000 m) = Lower Montane Wet Forest; bll-mb 
( 2000-2500 m) = Lower Montane Rain forest; bll-m (> 2500 m) = Upper Montane 
Rain forest. According to classification  (Holdridge, 1967) 
* = Refering to endemic or rare species   
Plant form: hb = Herb; tr = Tree; sh = Shrub; cl = Climber; ep= Epiphytic 
Elevation range: Refers to the records of altitudinal range  
Reference of collection (Only main collector): CG Carlos González, RS Ramón 
Serna, SD Sandra Díaz, RR Rosalba Ruiz, OC Olga Casañas, RSA Roberto 
Sánchez, LA Liza y Aleja, BR Bernardo Ramírez, FG Fernando González; MB 
Martha Burbano; HB HERB 

 

Taxon 

Acanthaceae 
Aphelandra acanthus Nees  

Aphelandra sp nov 
Justicia chlorostachya Leonard 
Justicia 
Lepidagathis lanceolata (Nees.) Wasshausen 

Odontonema cf 
Pseuderanthemum 
Trichantera gigantea (Bonpl.) Nees 

Actinidaceae 
Saurauia brachybotrys Turcz 
Saurauia  micayensis Killip & Soejarto 
Saurauia aff omnichlophila R.E. 
Schult. 

Amaranthaceae 
Alternanthera cf elongata (W. ex R.) Schinz 
Iresine diffusa Humb. & Bonpl ex Willd 

Life zone 
 

bh-mb 
bh-mb/pm 
bh-pm 
bh-mb 
bh-pm 
bh-pm 
bh-pm 
bh-pm 

 
bh-pm 
bh-mb 
bll-mb 

 
bh-pm 
bh-pm 

 
bh-pm 
bh-pm 

 

Lf 
 
sh 
hb 
hb 
hb 
hb 
sh 
hb 
tr 
 
tr 
tr 
sh 
 
hb 
hb 
 
tr 
tr 

Elevation 
 

1800 
1655-1850 

1600 
1800 

1350-1600 
1300 
1600 
1600 
 

1450-1600 
1600-2000 

2300 
 

1600 
1600 
 

1300 
1200 
 

Collectio
n 

 
CG 3359 
CG 3383 
OC 135 
CG 3359 
BR 7724 
CG 1482 
RS 844 
RS 1065 

 
LG 036 
CG 3187 
CG 1254 

 
RS 996 
RS 997 

 
CG 3154 

Herbariu
m 

 
CAUP 
CAUP 
CAUP 
CAUP 

CAUP PSO 
CAUP 
CAUP 
CAUP 

 
AFP CAUP 

CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP 



 400 

Anacardiaceae 
Toxicodendron striatum (Ruiz & Pavon) Kuntze 
Ochoterenaea  
Annonaceae 
Guatteria 
Guatteria 
Malmea 
Apiaceae 
Hydrocotyle  
Apocynaceae 
Mandevilla 
Aquifoliaceae 
Ilex 
Ilex  
Ilex cf pernervata Cuatrec 
Ilex  cf karstenii Loes 
Ilex cf laurina HBK 
Araliaceae 
Dendropanax cf caucanus (Harms.) Harms 
Dendropanax macrophyllum Cuatrec 
Oreopanax cf arboreus (L.) Dec ex Plank 
Oreopanax peltatus Linden 
Schefflera 
Schefflera 
Schefflera trifolium  
Asteraceae 
Ambrosia cumanensis HBK 
Austroeupatorium inulaefolium (Kunth.) K & H 
Critoniopsis cf occidentalis (Cuatrec.) H. Rob 
Lepidaploa lehmanii (Hieron.) H. Robinson 
Mikania banisteriae DC 
Munnozia hastifolia (Poepp.) H. R & Brettel 
Pollalesta aff macrophylla * (Sch. Bip) Aris 
Balanophoraceae 
Langsdorffia hypogea Matinus 
Balsaminaceae 
Impatiens cf balsamina L. 
Begoniaceae 
Begonia tiliifolia C. DC 
Begonia cf maynensis A. DC. 
Begonia geminiflora L. 
Begonia secunda L. 
Begonia killipiana * Smith & Schubert 
Begonia urticae L.  var. urticae 
Begonia rossmanniae A. DC. 
Begonia aff guaduensis Kunth 
Bignoniaceae 
Schlegelia cf roseiflora Ducke 
Bombacaceae 
Matisia bolivarii Cuatrec 
Matisia aff dolychopoda sp nov 
Matisia 
Matisia 
Matisia cf cordata Bonpl. 
Quararibea cf 
Spirotheca rhodostyla Cuatrec 
Boraginaceae 
Cordia cf cylindrostachia (Ruiz & Pavón) R & S 
Tournefortia gigantifolia Killip   
Brunelliaceae 
Brunellia cf glabra Cuatrec. 
Burseraceae 
Protium 
Protium 
Protium 
Protium 
Trattinikia 

bh-pm 
bh-mb 
bh-pm 

 
bh-pm 

 
- 
 

bh-pm/mb 
bh-mb 
bh/ll-mb 
bh-pm 
bh-pm 

 
bh-pm 
bh-mb 
bh-pm 
bh-mb 
bh-mb 
bh-mb 
bh-pm 

 
bh-pm 
bh-pm 
bh-mb 
bh-pm 
bh-mb 
bh-pm 
bh/ll-mb 

 
bll-mb 

 
bh/ll-mb 

 
bh-pm/mb 
bh-pm 
bll-mb 
bh-mb 
bll-mb 
bll-mb 
bh-pm 
bh-pm 

 
- 
 

bh-mb 
bh-mb 
bh-pm 
bll-mb 

bh-pm/mb 
bll-mb 
bh-mb 

 
bh-pm 
bh-mb 

 
bll-mb 

 
bh-pm 
bh-pm 

bh-pm/mb 
bh-pm 
bh-mb 
bh-pm 

 
bh-pm 

 

 
tr 
tr 
tr 
 
hb 
 
cl 
 
tr 
tr 
tr 
tr 
tr 
 
tr 
tr 
tr 
tr 
cl 
cl 
cl 
 
sh 
sh 
tr 
sh 
cl 
cl 
tr 
 
hb 
 
hb 
 
cl 
cl 
hb 
cl 
cl 
cl 
cl 
cl 
 
cl 
 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
 
sh 
sh 
 
tr 
 
tr 
tr 
tr 
tr 
tr 
tr 
 
tr 

1480 
1686-1966 

1500 
 

1450 
 
- 
 

1300-2000 
1500-1966 
1856-2200 

1650 
1450-1600 

 
1500 
1650 
1500 
1856 
1950 
1856 

1200-1300 
 

1450 
1450 
1600 
1580 

1600-2000 
1450 

1580-2400 
 

2200 
 

1400-2200 
 

1500-1700 
1300 
2300 
1800 

2300-2500 
2100 
1550 
1300 
 
- 
 

1950 
1600 
1300 
2300 

1350-1400 
2300 
1856 
 

1400 
1700 
 

2500 
 

1450-1600 
1300 

1650-1686 
1450 
1700 
1500 
 

1300 
 

RS 1182 
 

CG 1383 
CG 3132 
SD 367 

 
CG 0000 

 
- 
 

CG 3197 
CG 3143 
CG 3248 
CG 3008 
CG 1145 

 
CG 1908 
CG 1921 
CG 1886 
CG 3271 
CG 3280 
CG 3283 
CG 2933 

 
RS 1056 
RS 1078 
CG 1150 
RS 847 
RR 1371 
RS 1068 
CG 1400 

 
CG 1262 

 
- 
 

CG 1328 
CG 1358 
CG 1292 
CG 3107 
CG 1225 
CG 1423 
CG 1154 
CG 1513 

 
CG 3257 

 
CG 1104 
CG 1149 
CG 1750 
CG 1323 
CG 1344 
CG 1181 
CG 3268 

 
CG 2884 
CG 2863 

 
 
 

CG 3544 
CG 3155 
CG 3057 
CG 1902 
CG 1897 
CG 3094 

 

CAUP 
 

CAUP 
CAUP 
CAUP 

 
CAUP 

 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 

 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 

 
CAUP  

CAUP COL 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
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Indet 
Caesalpinaceae 
Brownea 
Campanulaceae 
Burmeistera cf oblongifolia E. Wimm. 
Burmeistera cf cylindrocarpa Zahlbr. 
Burmeistera cf ceratocarpa Zahlbr. 
Centropogon cf papillosus E. Wimm. 
Centropogon congestus Gleason 
Centropogon grandis  (l.f.) Presl 
Siphocampylus scandens (Kunth.) G. Don 
Capparaceae 
Cleome 
Podandrogyne cf. polychroma Woodson (Colc) 
Caprifoliaceae 
Viburnum lehmanii Killip & Smith 
Viburnum pichinchense  Benth. 
Caricaceae 
Carica microcarpa Jacq  
Jacaratia aff chocoensis   Gentry & Forero 
Cecropiaceae 
Cecropia garciae Standl. 
Cecropia cf telealba Cuatrec.  
Cecropia bullata C. Berg & P. Franco 
Cecropia 
Cecropia 
Celastraceae 
Celastrus colombianus Cuatrec  
Gymnosporia gentryi Lundell 
Perrottetia maxima Cuatrec 
Perrottetia * sp nov 
Chloranthaceae 
Hedyosmum bonplandianum Kunth 
Hedyosmum cuatrecazanum Occhioni 
Hedyosmum racemosum (Ruiz & Pavón) G Dn 
Chrysobalanaceae 
Hirtella cf americana Cuatrec 
Licania aff cuatrecasasii Prance 
Chletraceae 
Chletra fagifolia Kunth 
Clusiaceae 
Calophyllum brasiliense Camb. 
Clusia alata Pl. & Tr. 
Clusia bernardoi * Pipoly & Cogollo 
Clusia bracteosa Cuatrec. 
Clusia cf. crenata Cuatrec.   
Clusia discolor Cuatrec or T. Parviflora cf1279 
Cluisa aff dixonii Little 
Clusia cf ellipticifolia Cuatrec. 
Clusia aff inesiana or longistyla Cuatrec. 
Clusia loranthacea Planchon & Triana 
Clusia pentandra Cuatrec. 
Clusia hirsuta * Hammel sp nov 
Clusia  
Clusia 
Clusia 
Clusia 
Chrysoclamis cf bracteolata Cuatrec. 
Chrysoclamis colombiana  (Cuatrec.) Cuatrec 
Chrysoclamis cf tenuifolia   
Chrysoclamis  
Chrysoclamis 
Tovomita weddelliana Planchon ex Triana 
Vismia cavanillesiana Cuatrec. 
Vismia baccifera (L.) Tr. ex Pl. 
Vismia lauriformis (Lamb.) Choisy 
Vismia mandur Hieron. 

bh-mb 
bh-mb 
bh-pm 
bll-mb 
bll-mb 
bh/ll-mb 

- 
 

bh-pm 
bh-pm 

 
bh-mb 
bh/ll-mb 

 
bh-pm 
bh-pm 

 
bh-pm/mb 
bh-pm 
bll-mb 
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bh-mb 
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bh/ll-mb 
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bh-mb 
bh-pm 

 
bh/ll-mb 
bh-pm 

 
bll-mb 

 
bh-mb 
bh-pm 
bh/ll-mb 
bh-mb 
bh-mb 
bh-pm 
bh-mb 
bh-pm 
bh-mb 
bh-mb 
bll-mb 
bh-pm 
bh-mb 
bh-pm 

- 
- 

bll-mb 
bh/ll-pm/mb 

bh-mb 
bh-pm 
bh-pm 

bh-pm/mb 
bll-mb 
bh-pm 
bh-pm 
bll-mb 

 
bll-mb 

 
- 

 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
 
hb 
sh 
 
tr 
tr 
 
sh 
tr 
 
tr 
tr 
tr 
tr 
tr 
 
tr 
tr 
tr 
tr 
 
tr 
tr 
tr 
 
tr 
tr 
 
tr 
 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
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tr 
tr 
 
cl 
 

1900 
1710 
1450 
2400 
2000 

1600-2400 
- 
 

1400-1500 
1400-1600 

 
1600-1800 
1500-2200 

 
1300 
1400 

 
1300-1856 

1580 
1950 
2200 
1686 

 
2100 

1600-1800 
1950-2000 
2100-2300 

 
1580-1700 
1900-2000 

1400 
 

1500-1850 
1300-1600 

 
2250 
 

1600-1686 
1500-1600 
1600-2000 

1600 
1650 
1300 
1650 

1400-1600 
1750 
1856 
2300 
1200 

1600-1800 
1490 
- 
- 

2300 
1200-2200 
1600-1966 

1300 
1600 

1400-1800 
2100 
1600 
1450 

1900-2000 
 

2300 
 
- 

CG 3160 
 

CG 1425 
OC 324 
RS 1063 
CG 1301 
CG 1269 
CG 1424 

- 
 

CG 1363 
CG 1452 

 
CG 3265 
CG 1183 

 
CG 2887 
CG 3166 

 
CG 3249 
RS 1001 
CG 1277 
CG 3302 
CG 3387 

 
RSA 2437 
CG 3192 
CG 3145 
CG 1312 

 
CG 3067 
CG 3133 
CG 1394 

 
CG 3084 
CG 3171 

 
CG 3232 

 
CG 3389 
CG 3101 
RS 831 
RS 889 
CG 3030 
CG 3218 
CG 3037 
CG 1754 
CG 3200 
CG 2877 
CG 1255 
CG 1353 
CG 1911 
LA 017 
CG 1768 
CG 1508 
CG 1172 
CG 3016 
CG 3105 
CG 1496 
CG 1101 
CG 3100 
CG 1432 
CG 1129 
LA 031 
CG 3382 

 
CG 1227 

CAUP 
 

CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

- 
 

CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
AFP 
CAUP 
CAUP 

CAUP COL 
 

CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP COL 
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Cornaceae 
Cornus periviana J.F. Macbr. 
Cucurbitaceae 
Gurania macrophylla (Collect) 
Melothria pendula L. 
Cunnoniaceae 
Weinmannia  
Elaeocarpaceae 
Sloanea cf brevispina Smith 
Sloanea cf echinocarpa Uittien 
Ericaceae 
Antropterus cf verticillatus  
Bejaria mathewsii Fielding & Gardner 
Cavendishia bracteata (Ruiz & Pavon. ex JH)  
Cavendishia  
Gaultheria cf 
Psammisia cf 
Macleania cf recumbens A.C. Sm 
Macleania 
Satyria 
Psammisia 
Psammisia 
Psammisia sodiroi Hoerold 
Themistoclesia cf cuatrecasasii A. C. Smith 
Pernettya 
Sphyrospermum buxifolium Poepp & Endl. 
Themistoclesia 
Themistoclesia 
Erythroxilaceae 
Erythroxilum lucidum Kunth 
Erythroxilum cf macrophyllum Cav 
Euphorbiaceae 
Acalypha macrostachya Jacq. 
Acalypha platyphylla Müll. Arg. 
Alchornea coelophylla Pax & K. Hoffmann 
Alchornea aff glandulosa Endl. & Poepp. 
Alchornea triplinervia Müell 
Alchornea  sp nov 
Euphorbia goudotii Boiss 
Hyeronima oblonga (Tul.) Müll. Arg. 
Hyeronima  
Mabea cf. occidentalis Benth. 
Richeria grandis Vahl. 
Sapium cf marmieri Huber.  
Sapium  
Tetrorchidium macrophyllum Müll. Arg 
Fabaceae 
Andira 
Dussia cf lehmannii Harms. 
Dussia cf 
Desmodium  
Crotalaria  
Flacourtiaceae 
Banara guianensis Aublet. 
Casearia arborea (L.C. Rich.) Urban 
Casearia cajambensis Cuatrec. 
Casearia silvestris Sw. 
Casearia  
Pleuranthodendron lindenii (Turcz.) Sleumer 
Gentianaceae 
Irlbachia alata (Aublet.) P. Maas  
Gesneriaceae 
Alloplectus bolivianus (Britton.) Wiehler 
Alloplectus icthyoderma Hanst 
Alloplectus medusaeus L.E. Skog 
Alloplectus aff panamensis Morton 
Alloplectus schultzei Mansfeld 

bll-mb 
 
- 
 

bll-mb 
bh-pm/mb 

 
bll-mb 

bll-mb/m 
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bll/h-mb 
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bh-pm 
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- 
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bh/bll-mb 
bh/ll-mb 
bh-pm 
bh-pm 
bh-pm 
bh-mb 
bh-mb 

 
bh-mb 
bh-pm/m 
bh-mb 
bh-pm 

- 
 

bh-pm 
bh-mb 
bh/ll-mb 

 
bh/ll-mb 
bh-mb 

 
bh-pm 

 
bh-pm 
bh/ll-mb 
bll-mb 
bh-mb 
bll-mb 
bh/ll-mb 
bh/ll-mb 
bh/ll-mb 
bh-mb 

cl 
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tr 
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sh 
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sh 
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sh 
sh 
sh 
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cl 
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hb 
tr 
tr 
 
tr 
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tr 
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tr 
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tr 
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sh 
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sh 
sh 
sh 
sh 
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cl 
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2300 
 
- 
 

1966 
1650 
 

2000 
2580-2640 
1800-2000 

1400 
1900-2000 

1600 
1600 
1700 
2200 
1600 
1400 
2000 
2400 
2400 
‘2000 
2300 
2400 
 

1450-1500 
1580 
 

1300 
1600 
2200 
1600 
1750 
- 

2200-2500 
1600-2200 
1300-2200 

1300 
1600-1850 

1300 
1856 
1856 
 

1856 
1350-1966 

1856 
1400 
- 
 

1450 
1650-1856 

1950 
 

2200 
1650 
 

1200 
 

1350-1600 
1800-2300 

2300 
1580-1600 
2200-2500 
1200-2200 
1400-2000 
1650-2100 
1400-1600 

 
- 

CG 1287 
 
- 
 

CG 3120 
CG 3013 

 
CG 1505 
FG 3184 
CG 2937 
CG 2956 
CG 1119ª 
CG 1119 
RS 808 
CG 3202 
CG 1233ª 
RS 1146 
CG 1495 
CG 1420 
CG 1216 
CG 1202 
BR 7755 
CG 1240 
CG 1245 

 
CG 1387 
RS 846 

 
CG 3162 
RS 794 
CG 1221 
CG 1128 
CG 3214 
CG 3264 
RS s.n 
CG 3210 
CG 3180 
CG 3156 
CG 3535 
CG 3168 
CG 3313 
CG 3250 

 
CG 3262 
CG 3102 
CG 3072 
CG 3548 

- 
 

LA 034 
CG 3029 
CG 3278 

168 
CG 1940 
CG 3018 

 
- 
 

CG 1940 
CG 2834 
CG 1313 
RS 853 
CG 2832 
CG 1751 
CG 1369 

 
- 

CAUP 
 
- 
 

CAUP 
CAUP 

 
CAUP 

CAUP COL 
CAUP 
CAUP 
CAUP 
CAUP 
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CAUP 
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CAUP 
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CAUP 
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Alloplectus tetragonoides Mansfeld 
Alloplectus tetragonus (Oerst.) Hanst 
Alloplectus teuscheri (Raymond.) Wiehler 
Alloplectus weirii Wiehler 
Alloplectus sp nov 
Alloplectus  sp nov 
Alloplectus  sp nov 
Besleria quadrangulata L.E. Skog 
Besleria reticulata Fritsch  
Besleria  miniata C.V. Morton 
Besleria aff riparia C.V. Morton 
Besleria sp nov 
Besleria sp.nov 
Besleria  sp nov 
Besleria villosa Fritsch 
Besleria cf tambensis  C.V. Morton 
Besleria  
Besleria  
Capanea affinis Fritsch 
Capanea grandiflora (Kunth) Decne & Planch. 
Columnea angustata (Wiehler) Skog 
Columnea anisophylla DC. 
Columnea dimidiiata (Benth.) Kuntze 
Columnea fuscihirta Kvist & Skog 
Columnea gigantifolia Kvist & Skog 
Columnea lehmannii Mansfeld 
Columnea medicinalis (Wiehler.) Kvist & Skog 
Columnea minor (Hook.) Hanst var nov 1  
Columnea minor (Hook.) Hanst var  nov 2  
Columnea nicaraguensis Oerst var nov 1  
Columnea nicaraguensis Oerst var  nov 2  
Columnea cf picta H. Karst. 
Columnea strigosa Bentham 
Columnea aff villosissima Kvist & Skog 
Columnea sp nov 
Cremosperma hirsutissimum var hirsutissimum 
Cremosperma hirsitissimum var album K & S 
Cremosperma humidium Kvist & Skog 
Cremosperma cf nobile C.V. Morton 
Diastema affine Fritsch 
Drymonia cf aciculata Wiehler 
Drymonia serrulata (Jacq.) Mart 
Drymonia cf sulphurea Wiehler 
Drymonia turrialvae Hanst. 
Drymonia warscewicziana Hanst. 
Gasteranthus corrallinus (Fritsch) Wiehler 
Gasteranthus delphinioides (Scem.) Wiehler 
Gasteranthus leopardus M. Freiberg 
Hepiella ulmifolia (Kunth.) Hanst  
Kohleria inaequalis Benth var inaequalis 
Kohleria inaequalis Benth. Var ocellata 
Kohleria spicata Oerst 
Monopyle inaequalis C.V. Morton 
Monopyle  cf macrocarpa Benth 
Paradrymonia 
Paradrymonia 
Paradrymonia  sp nov 
Hippocastanaceae 
Billia columbiana Planch. & Linden ex Tr & Pl. 
Hippocrateaceae 
Salacia cf gigantea Loes. 
Hydrangeaceae 
Hydrangea  
Icacinaceae 
Calatola colombiana Slearm 
Citronella silvatica Cuatrec. 
Lamiaceae 

bh-mb 
bh-mb 
bll-mb 
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hb 
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1800 
1700 
2100 

1600-2300 
2150 
1900 

1800-2200 
2300 

2300-2500 
1450-1800 
1400-2100 

2100 
1500-1700 
1500-2100 

1600 
2200 

1200-1400 
1600-1800 
1800-2400 
1300-2100 

1600 
1400-1600 
1400-1900 
1400-1700 

1800 
1800-2250 

2180 
1600 

2300-2500 
1580-1800 

2000 
1700-1900 
1500-2100 
2000-2100 

1700 
1300-1450 

2300 
1300 
1200 

1300-1600 
1400-2000 
1300-2100 

1700 
1400 
2500 

1300-2000 
1300-1600 
1300-1600 

1600 
1400-1700 
1500-1800 
1600-1800 

1800 
 

1500-2350 
 

1600-2000 
 

2500 
 

1650-1800 
1750-1950 

 
1400 
1200 
 

1684 

CG 3356 
CG 2867 
CG 3276 
CG 2846 
CG 3240 
CG 2838 
CG 1257 
CG 1444 
CG 2843 
CG 1215 
CG 1207 
CG 3391 
CG 2966 
CG 2871 
CG 2848 
CG 2844 
CG 1461 
CG 1179 
CG 2870 
CG 1451 
CG 1336 
CG 3547 
CG 2836 
CG 1893 
CG 1765 
CG 2866 
CG 3000 
CG 2941 
CG 2942 
RS 1013 
CG 1166 
CG 2996 
CG 1412 
CG 2849 
CG 2847 
CG 2960 
CG 2990 
CG 157 
CG 1293 
CG 2934 
CG 2928 
CG 1354 
CG 2850 
CG 1447 
CG 1752 
CG 1762 

-  
CG 1361 

- 
CG 1289 
RS 1002 
CG 1753 
CG 1473 
CG 2998 
CG 2997 

 
CG 3226 

 
CG 3006 
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CG 3022 
CG 3191 

 
CG 3564 
CG 1522 

CAUP 
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CAUP  
CAUP 
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CAUP 
CAUP 

CAUP COL 
CAUP COL 
CAUP COL 
CAUP COL 
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CAUP COL 
CAUP COL 
CAUP COL 
CAUP COL 
CAUP COL 
CAUP COL 
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CAUP 
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CAUP 
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CAUP COL 
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CAUP COL 
CAUP COL 
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CAUP 
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CAUP 
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Hyptis  
Salvia 
Lauraceae 
Beilschmiedia? 
Endlicheria 
Nectandra aff longifolia (Ruiz & Pavon) Nees 
Nectandra aff membranacea (Sw.) Griseb. 
Nectandra aff mollis (Kunth.) Nees 
Nectandra reticulata (Ruiz & Pavón) Mez 
Nectandra aff purpurea (Ruis & Pavón) Mez 
Nectandra 
Nectandra 
Nectandra 
Nectandra 
Nectandra 
Nectandra 
Nectandra 
Nectandra? 
Nectandra? 
Ocotea aff babosa C.K. Allen 
Ocotea aff duqei  Korstom. 
Ocotea oblonga (Meissner) Mez 
Ocotea aff simulans C.K. Allen 
Ocotea 
Ocotea 
Ocotea 
Ocotea 
Persea aff caerulea (Ruis & Pavón) Mez 
Persea  aff hexanthera Kupp 
Persea americana Mill. 
Persea 
Pleurothyrium cf 
Rhodostemonadaphne cf 
Indet 
Indet 
Indet 
Indet 
Lecythidaceae 
Eschweilera 
Eschweilera 
Eschweilera aff coriaceae 
Eschweilera aff caudiculata Kunth 
Lentibulariaceae 
Utricularia jamesoniana Oliver 
Loranthaceae 
Gaiadendron punctatum (Ruiz & Pavón) Don 
Ixocanthus hutchinsonii Kunth 
Orycthanthus asplundii Kunth 
Phorandendron cf piperoides (Kunth) Trell. 
Struthanthus  
Lythraceae 
Cuphea racemosa (L.f.) Sprengel 
Malpighiaceae 
Bunchosia cf 
Stigmaphyllon bogotense Triana & Planchon 
Malvaceae 
Sida rhombifolia L. 
Wercklea feroz (Hook. F.) Fryxell 
Marcgraviaceae 
Marcgravia cf browneii (Tr. & Pl.) Krug & Urb 
Melastomataceae 
Aciotis  cf  
Axinaea cf lehhmanii Cogn ex Chair  
Axinaea cf. 
Arthrostema aff macrodesmum Gleason 
Arthrostema cf  
Blakea alternifolia (Gleason) Gleason 

bh-pm 
bh-mb 
bh-mb 
bh-mb 

bh-pm/mb 
bh-mb 

 
bh-pm/mb 
bh-mb 
bh-mb 
bh-mb 
bh-mb 
bh-pm 
bll-mb 
bh-pm 
bh-pm 
bh-mb 
bh-mb 
bh-mb 
bh-mb 

bh-pm/mb 
bh-mb 
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bll-mb 
bh-mb 
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bh-mb 
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bll-mb 
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bll-mb 

 
bh-pm 
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bh/ll-mb 
bll-mb 
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bh-pm 

 
bh-pm 
bh-pm 

 
bh-pm 
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bll-mb 
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tr 
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1600 
1600 
1600 

1300-1600 
1400-2000 

 
1400-1600 
1500-1966 

1684 
1600 
1600 
1500 
2200 
1750 

1400-1856 
1400-1600 

1650 
1600 
1966 

1350-1966 
1684 

1600-1966 
1600 
1966 
1500 
1650 
1600 
 

1300 
2200 
1856 
2200 
 

1500-1686 
1900-2000 
1856-2200 

2200 
 

1550 
 

2500 
1500 
- 

1600 
1450 
 

1450 
 

1600 
1500 
 

1600 
1400 
 

1400-1800 
 

1600 
1856-2200 

1800 
1600 
2300 
1650 

2200-2400 
1450-1680 

- 
1700 

 
CG 3064 
CG 3181 
CG 1098b 
CG 1391 
NG 018 
CG 3399 
CG 3123 

CG  
CG 1920 
CG 3098 
CG 3063a 
RS 1046 
CG 3542 
CG 3092 
CG 3301 
CG 3188 
CG 3255 
CG 3526 
CG 3186 
RS 874 
CG 3134 
CG 3395 
CG 3065 
CG 3274 
RS 872 
CG 3144 

- 
CG 3012 
CG 1095 
CG 1759 
CG 3165 
CG 3303 
CG 3272 
CG 3233 

 
CG 3074 
CG 3294 
CG 3270 
CG 3235 

 
OC 393 

 
CG 2861 
BR 7732 

BR 
CG 1104 
LA 27 

 
RS 1072 

 
CG 3525 

RS  
 

RS 1070 
CG 
 

CG 3076  
 

MB 039 
CG 3225 
CG 2946 
RS 792 
CG 1349 
CG 3028 
CG 3220 
CG 3040 
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CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
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Blakea punctulata (Triana) Wurdack 
Blakea cf squamiger L. Uribe 
Blakea 
Bellucia calliptrata Gleason 
Centronia phlomoides Tr. 
Centronia 
Clidemia 
Conostegia cf. cuatrecasasii Gleason 
Conostegia aff. icosandra (Sw.) Urban 
Graffenrieda colombiana 
Henrrietella L. 
Huilaea mutissina  
Killipia quadrangularis Gleason 
Killipia   
Leandra 
Leandra 
Miconia aff aegrotans Naud. 
Miconia agregata Gleason 
Miconia aeruginosa Naudin. 
Miconai aff. brachygyna  
Miconia aff caudata (Bonpl.) DC 
Miconia cf. dolichopoda Naud. 
Miconia floribunda (Bonpl.) C.CD. 
Miconai aff. haughtii  
Miconia aff. laetivirens L. Uribe 
Miconia cf lehmannii Cognniaux 
Miconia aff  longifolia 8ªubl.) C.DC. 
Miconia aff. triplinervis Ruiz & Pavon 
Miconia 
Miconia 
Miconia 
Miconia 
Miconia 
Miconia 
Miconia 
Miconia 
Miconia 
Miconia 
Miconia? 
Miconia 
Miconia 
Miconia 
Pterolepis trichomata (Rottb.) Cogn 
Tibouchina 
Tibouchina 
Topobea 
Topobea 
Indet 
Indet  
Indet 
Indet 
Indet 
Indet 
Meliaceae 
Carapa guianensis Aubl. 
Guarea cf glabra Vahl. 
Guarea cf guidonia L. (Sleum) 
Guarea cf  kunthiana A. Juss. 
Guarea 
Guarea 
Guarea 
Ruagea cf pubescens H. Karst. 
Trichilia 
Mimosaceae 
Inga chartaceae  
Inga densiflora Benth 
Inga exalata T.S. Elias 

bh-mb/pm 
bh-mb 
bh-mb 
bh-pm 
bh-pm 
bh-mb 
bh-pm 
bh-pm 
bll-mb 
bll-mb 
bh-mb 
bh-mb 
bh-pm 
bll-mb 
bh-pm 
bll-mb 
bh-pm 
bh-pm 

bh-pm/mb 
bh-pm 
bh-pm 
bll-MB 
bh-pm 
bh-pm 

- 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bll-mb 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bll-mb 

 
 

bh-pm 
bh-pm 
bh-pm 

- 
- 
- 
- 
- 
 

bh-pm 
bh-pm 
bh-pm 

bh/ll-pm/mb 
bh/ll-pm/mb 

bh-pm 
bll-mb 
bh/ll-pm 
bh-pm 

 
bh-pm 
bh-pm 
bh/ll-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 

tr 
tr 
tr 
sh 
tr 
tr 
tr 
tr 
tr 
tr 
sh 
hb 
hb 
tr 
tr 
tr 
tr 
sh 
sh 
tr 
tr 
tr 
tr 
tr 
tr 
- 
tr 
tr 
sh 
sh 
sh 
sh 
sh 
tr 
tr 
sh 
tr 
tr 
tr 
sh 
tr 
tr 
tr 
tr 
sh 
- 
- 
- 
- 
- 
 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
 
tr 
tr 
tr 
tr 
tr 
tr 

1400-2000 
1750-1966 
1400-1500 

1684 
1500 

1686-1966 
1600 
1600 
2150 
2200 
1100 
1200 

1650-1684 
2400 
1800 
2200 
1966 
1856 

1650-1966 
1750 
1950 

2450-2550 
1684-1950 
1686-1700 

- 
1856 
1500 
1800 
1800 
1800 
1800 
2300 
1450 
1800 
1250 
1600 
1500 
1600 
2100 
1700 
 

1856 
1856-1950 

1300 
- 
- 
- 
- 
- 
 

1686-1950 
1350-1686 
1600-1650 
1600-2200 
1600-2500 

1686 
2200 

1900-1950 
1600-1750 

 
1500 
1300 

1856-1966 
1300 
1600 

1450-1500 
1500 

CG 2876 
OC 675 
CG 3198 
CG 3116 
CG 1454 
CG 3082 
CG 3103 
CG 3266 
CG 3024 
CG 3531 
CG 1197 
CG 1167 
CG 1351 
CG 1356 
CG 3043 
CG 406 
CG 1878 
CG 3365 
CG 3111 
CG 3111ª 
CG 3119 
CG 3199 
CG 3291 
CG 1760 
CG 3073 
CG 3209 
CG 3109 
CG 3258 
CG 3104 
CG 1896 
CG 1434 
CG 1180 
CG 1281 
CG 1202 
LA 032 
CG 1777 
CG 1342 
CG 3362 
CG 1889 
CG 1884 
CG 3555 
CG 3122 
CG 1935 
CG 3260 
CG 3247 
CG 1915 
CG 3518 
CG 3311 
CG 3140 
CG 3073 
CG 1132 

 
CG 3070 
CG 3080 
CG 3011 
CG 3039 
CG 3516 
CG 3079 
CG 3364 
CG 3281 
CG 3189 

 
CG 3096 
CG 3400 
CG 3245 
CG 3158 
CG 2886 

CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

AFP,CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
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Inga 
Inga 
Inga 
Inga 
Monimiaceae 
Mollinediia tomentosa (Benth.) Tull 
Siparuna cf gesnerioIdes (Kunth) A..DC. 
Siparuna laurifolia (Kunth) A. DC. 
Siparuna cf lepidota A. DC. 
Siparuna  
Siparuna  
Moraceae 
Brosimum cf. 
Clarisia cf. 
Ficus cf gigantocyse Dugand 
Ficus cuatrecassana  
Ficus 
Ficus 
Ficus 
Ficus 
Ficus 
Ficus 
Ficus 
Ficus 
Ficus 
Ficus 
Helicostylis tovarensis (Klotzsch & Karst.) Berg 
Naucleopsis cf 
Perebea xantochyma Dugand 
Pseudolmedia laevigata Trecul. 
Sorocea pubivena (Akker & Berg) C.C. Berg 
Indet 
Myristicaceae 
Compsoneura aff. rigidifolia W. Rodriguez 
Otoba gordonifolia A.C (Gentry) 
Otoba lehmannii (A.C. Smith) Gentry 
Otoba novogranatensis Moldenke 
Myrsinaceae 
Ardisia  
Cybianthus aff montanus Lundell (Agost) 
Cybianthus occigranatensis (Cuatrec.) Agosti 
Cybianthus 
Geissanthus cf mezianus Agost 
Geissanthus cf 
Myrsine coriaceae (Sw) R. Br. Ex Roem. & Sh 
Myrsine  
Myrtaceae 
Myrcianthes rhopaloides (Kunth) Mc Vaugh 
Psidium guianensis Sw. 
Eugenia cf 
Eugenia cf 
Eugenia cf 
Eugenia cf 
Myrcianthes  
Myrcia  
Indet 
Indet 
Indet 
Indet 
Ochnaceae 
Ouratea 
Onagraceae 
Fuchsia  macrostigma Bentham  
Fuchsia cf sessilifolia  
Oxalidaceae 
Oxalis 
Papilionaceae 

 
bh-pm 
bh-pm 
bh/ll-pm 
bll-mb 
bh-pm 
bh-pm 

 
bh-pm 
bh-pm 
bh-pm 
bll-mb 
bh-pm 
bh/ll-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh/ll-pm 
bh-mb 
bh-pm 
bh-mb 
bh-pm 
bh-pm 

 
bh-pm 

bh/ll-pm/mb 
bh-pm 

bh-pm/mb 
 

bll-mb 
bh-mb 

bh-pm/mb 
bh-pm 
bh/ll-mb 
bh-pm/mb 
bh-pm 
bh-pm 

 
bh-mb 
bh-pm 
bh-pm 
bh-mb 

bh-pm/mb 
bh-pm 
bll-mb 
bh-pm 

bh-pm-mb 
bh-pm 

bh/bll-mb 
bh-pm 

 
bh-pm 

 
bh-mb 
bll-mb 

 
bh-pm 

 
bh-pm 
bh-pm 
bh-pm 

 

tr 
 
tr 
sh 
sh 
sh 
sh 
sh 
 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
 
tr 
tr 
tr 
tr 
 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
 
tr 
 
sh 
sh 
 
hb 
 
hb 
hb 
sh 

 
1300-1600 
1400-1800 
1800-1900 

2300 
1450-1856 
1400-1500 

 
1750 
1300 
1500 
2200 
1686 

1950-2000 
1300 
1400 

1500-1600 
1400-1500 

1600 
1600 
1300 

1400-1600 
1750-2000 

1950 
1300 
1950 
1300 

1500-1600 
 

1500 
1500-2000 

1700 
1600 
 

2200 
1600-1856 
1600-2000 

1600 
1684-2200 
1500-1686 

1500 
1300 
 

1856 
1400-1500 
1300-1600 

1950 
1650 
1450 
2300 
1300 

1300-1686 
1300-1350 
1950-2000 

1650 
 

1300 
 

1200-1800 
2300 
 

1300-1600 
 

1400 
1500 
1350 
 

CG 1392 
CG 3108 

 
CG 3158 
CG 3195 
CG 3115 
CG 1300 
CG 3259 
CG 1492 

 
CG 3215 
CG 1917 
CG 3087 
CG 3237 
CG 3058 
CG 3295 
CG 3176 
CG 1924 
HB 169 
LA 40 
RS 882 
CG 1517ª 
CG 1517 
CG 2987 
CG 3124 
CG 3293 
CG 3152 
CG 3292 
CG 3153 
HB 147 

 
CG 3090 
CG 3023 
CG 1435 
RS 773 

 
CG 3229 
CG 3044 
CG 3538 
NG 05 

CG 3056 
CG 3066 
CG 3099 
CG 3164 

 
CG 3242 

CG 
CG 3536 
CG 3282 
CG 3046 
CG 1907 
CG 3300 
CG 3169 
CG 3174 
CG 3163 
CG 3118 
CG 3045 

 
CG 3178 

 
CG 1428 
CG 1220 

 
BR 7727 

 
CG 3548 
FG 2944 

CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 

 
CAUP 
CAUP 

 
CAUP 

 
CAUP 
CAUP 
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Desmodium 
Zornia curvata Mohl 
Indet 
Passifloraceae 
Passiflora cumbalensis Karsten 
Passiflora antioquensis H. Karst. 
Passiflora  
Passiflora  
Piperaceae 
Peperomia alberthssmithii Trell & Yunker 
Peperomia alwynii Callejas & Betancur 
Peperomia angularis C. DC. 
Peperomia caliginigaudens Trell & Yunker 
Peperomia hernandifolia (Vahl) A. Dietr. 
Peperomia lancifolia Hooker 
Peperomia obtusifolia (L. ) A. Dietr. Cf 
Peperomia peltoidea Kunth 
Peperomia striata Ruiz & Pavón 
Pperomia swartziana Miquel 
Peperomia 
Peperomia 
Peperomia 
Peperomia 
Peperomia 
Peperomiia 
Peperomia 
Peperomia 
Peperomia 
Peperomia 
Piper carpunya Ruiz & Pavón 
Piper crassinervium H.B.K.  
Piper curvinervium  Callejas y Betancur 
Piper dryadum C.DC. 
Piper echinocaule Yunck 
Piper lanciifolium C.DC. 
Piper pilibracteum  Trell & Yunck 
Piper trianae C.DC. 
Piper turnidinodum  Yunck 
Piper 
Piper 
Piper 
Piper 
Piper 
Piper 
Polygalaceae 
Monnina pulcra Chodat 
Monnina  
Proteaceae 
Panopsis sp nov 
Panopsis sp nov 
Rosaceae 
Prunus integrifolia (Presl.) Walp. 
Rubus robustus C. Presl. 
Rubiaceae 
Amphidasya  
Borreria  
Cinchona cf pubescens Vahl. 
Coccocypselum  
Dioicodendron dioicum cf (Sch. & Kr.) Steye 
Elaeagia utilis (Goud) cf 
Elaeagia cf pastoensis  
Elaeagia  
Elaeagia 
Elaeagia 
Elaeagia 
Elaeagia 
Faramea calyptrata C.M. Taylor 

bll-mb 
bh-pm 
bh-mb 
bh-pm 

 
bh-mb 

bh-mb/pm 
bh-pm/mb 
bh-pm 
bll-mb 
bh/ll-mb 
bh-pm 

bh-pm/mb 
bll-mb 

bll/h-mb/pm 
bll-mb 
bh-mb 
bh-pm 
bh-mb 
bh-pm 
bh-pm 
bll-mb 
bh-pm 
bh-pm 
bh-mb 
bh-pm 
bh-pm 

bh/ll-pm/mb 
bh-mb 
bh/ll-mb 
bh-pm 
bh/ll-mb 
bh-pm 
bh-mb 
bh/ll-mb 
bh-pm 
bh-mb 
bh-mb 
bll-mb 
bh-pm 

 
bll-mb 
bh-mb 

 
bll-mb 
bh-mb 

 
bh-pm 
bll-mb 

 
bh-pm 
bh-pm 

bh/ll-pm/mb 
bh-mb 

bh-pm/mb 
bh/ll-pm/mb 

bh-pm 
bh-pm 

bh/ll-pm/mb 
bh-pm 
bll-mb 
bh-pm 
bll-mb 

bh/ll-pm/mb 
bh-pm 
bh-pm 
bh-pm 

 
cl 
cl 
cl 
cl 
 
cl 
hb 
cl 
sh 
sh 
hb 
sh 
sh 
sh 
cl 
hb 
hb 
hb 
cl 
hb 
hb 
cl 
cl 
hb 
cl 
sh 
hb 
sh 
sh 
cl 
cl 
hb 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
 
tr 
tr 
 
tr 
tr 
 
tr 
cl 
 
sh 
hb 
tr 
hb 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 
tr 

2500 
1450-1550 

1700 
1200-1300 

 
1800 

1600-2000 
1600 
1300 
2350 

1655-2100 
1100 
1800 
2100 

1600-2300 
1900 
1800 
1620 
1800 
1100 
1000 
2100 

1300-1600 
1300-1400 

1900 
1200 
1450 

1700-2100 
1900 

1800-2000 
1450 

1900-2200 
1700 
1900 

1800-2200 
1400 
1800 
1800 
2100 
1400 
 

2250 
2000 
 

2000-2100 
1500-1900 

 
1300 
2500 
 

1600 
1200-1300 
1400-2400 
1400-1600 
1300-1700 
1750-2000 

1550 
1400 
2200 
1684 
2200 
1600 

1900-2000 
1400-2500 
1450-1650 

1650 
1600 

CG 1485 
 

CG 1763 
CG 1458 
CG 1414 
CG 3546 

 
CG 1439 

CG  
CG 1163 
CG 2915 
ML 02 

CG 2952 
CG 2924 
CG 2868 
CG 2977 
CG 3150 
CG 2944 
CG 2991 
CG 2982 
CG 2978 
CG 2925 
CG 2927 
CG 1271 
CG 2270 
CG 1343 
CG 1433 
CG 1932 
LA 010 
CG 2862 
CG 3127 
CG 3557 
LA 09 

CG 2858ª 
CG 2852 
CG 3217 
CG 3552 
CG 3565 
CG 2972 
JG 017 
CG 2949 
CG 2674 

 
CG 1321 
CG 1430 

 
CG 1774 
CG 3097 

 
CG 3167 

CG  
 

MB 037 
CG 2931 
CG 1487 

CG  
CG 3173 
CG 3212 
RS 1148 
CG 1490 
CG 3222 
CG 3071 
CG 3299 
CG 1380 
CG 3121 
CG 3252 
CG 3041 

CAUP 
 

CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

AFP,CAUP 
CAUP 
CAUP 
CAUP 

AFP,CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP,COL 
CAUP,COL 

 
CAUP 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
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Faramea aff chlorophylla Muell-Arg 
Faramea oblongifolia Standl. 
Faramea 
Galium cf hypocarpium (L.) Endl. Ex Griseb. 
Gonzalagunia dependens Ruiz & Pavón 
Guettarda crispiflora Vahl. 
Guettarda turnefortiopsis Standl. 
Hamelia? 
Hoffmannia sprucei Standl. 
Hoffmannia 
Hoffmannia 
Hoffmannia 
Isertia pittieri (Standl.) Standl 
Ladenbergia macrocarpa (Vahl.) Klotzsch 
Ladenbergia magnifolia  (R. & P.) Kl. 
Ladenbergia 
Palicourea crocea  (sw.) R. &  S. 
Palicourea cutrecasasii Standl. & Steyerm 
Palicourea gibbosa  Dwter 
Palicourea lasiantha K. Krause.  
Palicourea killipii Standl.  
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Palicourea 
Posoqueria  
Psychotria allenii Standl. 
Psychotria aff beteriana  D.C. 
Psychotria gentryi  (Dwyer) C.M. Taylor  
Psychotria cf officinalis (Aubl.) Raeusch. 
Psychotria 
Psychotria 
Psychotria 
Psychotria 
Psychotria 
Psychotria 
Psychotria 
Rondeletia aff colombiana Rusby 
Rondeletia cf glabrata Klotzsch 
Rondeletia 
Spermacoce 
Indet 
Indet 
Indet 
Indet 
Indet 
Rutaceae 
Zanthoxylum  
Sabiaceae 
Meliosma 
Sapindaceae 
Allophylus mollis  (H.B.K) Radlk 
Allophylus   
Allophylus  
Cupania cinerea  Poepp 
Talaisia 
Serjania 
Tapirira cf guianensis  Aubl. 
Indet  

bh-pm 
bll-mb 
bll-mb 
bh-pm 
bh-mb 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bll-mb 

bh/ll-pm/mb 
bh/ll-mb 
bll-mb 
bh-pm 
bh-pm 
bll-mb 
bll-mb 
bh/ll-mb 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bll-mb 
bh-pm 
bll-mb 
bh-pm 
bh-pm 
bh-mb 
bh-pm 
bh-pm 
bll-mb 
bll-mb 
bll-mb 
bh-pm 
bh-pm 
bh-mb 
bh-mb 
bh-pm 

bh-pm/mb 
bh-pm 
bh-pm 

- 
bll-mb 
bh-pm 
bll-mb 

bh-pm/mb 
 

bll-mb 
 

bh-pm 
 

bh-pm/mb 
bh-pm 
bh-pm 
bh-pm 
bh-pm 

bh-pm/mb 
bh-pm 
bh-pm 

 
bh-pm 

bh/ll-pm/mb 
bll-mb 

hb 
sh 
tr 
tr 
tr 
sh 
sh 
sh 
sh 
tr 
tr 
tr 
tr 
sh 
tr 
sh 
tr 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
tr 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
sh 
tr 
tr 
tr 
hb 
tr 
tr 
tr 
tr 
tr 
 
tr 
 
tr 
 
tr 
tr 
tr 
tr 
tr 
cl 
tr 
tr 
 
tr 
tr 

1490 
2300 

2400-2500 
1350 
1800 
1550 
1600 

1490-1500 
1550-1700 
1400-2000 

1300 
1400 
1600 
2200 

1950-2000 
2000-2400 

2300 
1600 
1600 
2200 
2300 
2000 
1480 
1600 
1600 
1600 
2400 
1500 
2300 
1500 
1500 
1950 

1350-1650 
1500 
2400 
2350 
2100 
1600 
1300 
1950 
1900 
1300 

1300-1750 
1100 
1600 
- 

2200 
1600 
2200 

1600-1850 
 

2200-2500 
 

1600 
 

1600 
1300 
1600 
1600 

1500-1600 
1500-1650 
1500-1600 
1500-1600 

 
1300-1600 
1600-2200 

1950 

CG 3014 
MB 011 
LA 014 
CG 1278 
CG 1246 
CG 1341 
CG 3358 
CG 3203 
CG 1106 
LA 020 
CG 1413 
CG 3062 
CG 3170 
CG 1488 
CG 1148 
CG 3219 
CG 3112 
CG 2973 
CG 1171 
JG 034 
CG 1401 
CG 3310 
CG 1415 
CG 1427 
CG 1397 
RS 1111 
RS 1164 
RS 850 
CG 1306 
CG 1453 
CG 1416 
CG 1900 
CG 3086 
CG 3286 
 CG 3052 
CG 1151 
CG 1417 
CG 1189 
CG 1498 
CG 1107 
CG 3175 
CG 3296 
CG 1876 
CG 3151 
CG 3522 
CG 2936 
NG 012 
CG 3246 
CG 3308 
CG 3309 
CG 3231 
CG 3052 

 
CG 1168 

 
CG 3527 

 
CG 1130 
CG 3177 
RS 878 
RS 1059 
HB 361 
CG 1152 
CG 1143 
CG 1377 

 
CG 1119 

CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

AFP,CAUP 
CAUP 

CAUP,MO 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 

 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
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Sapotaceae 
Pouteria cf maguirei (Aubre) Penn. 
Pouteria parcki  (Ducke) 
Pouteria cf wurdackii  Aublet 
Simaroubaceae 
Picramnia cf magnifolia J.F. Macbr. 
Solanaceae 
Brugmansia cf alba L. 
Cestrum  
Cestrum 
Cestrum  
Cestrum 
Cuatresia  
Markea pilosa  S. Knapp. 
Physalis 
Physalis 
Solandra  
Solanum aturense Dunal 
Solanum nudum Dunal 
Solanum  
Solanum  
Solanum 
Solanum 
Solanum 
Solanum 
Solanum 
Solanum 
Trianae 
Staphyleaceae 
Huertea cf glandulosa R. & P. 
Turpinia occidentalis (Sw.) G. Don. 
Styracaceae 
Styrax tesmannii  Perkins 
Theaceae 
Freziera sessiliflora A. Gentry 
Tropaeolaceae 
Tropaeolum deckerianum Maritz & Karsten 
Ulmaceae 
Trema micrantha 8L.) Blume 
Urticaceae 
Pilea daguensis Killip 
Urera 
Urtica 
Verbenaceae 
Aegiphila novogranatense  Moldenke 
Citharexylum aff kunthianum Moldenke 
Stachitarpheta cayenensis Vahl. 
Verbena litoralis Kunth 
Violaceae 
Viola  
Viola 
Vochysiaceae 
Vochysia aff duquei Pilg 

 
bh-pm/mb 

 
bh-pm 
bh-mb 
bh-pm 
bh-pm 
bh-pm 
bh-pm 

bh-pm/mb 
bll-mb 
bh-pm 
bh-mb 
bh-pm 

bh-pm-mb 
bh-pm 
bh-pm 
bh-pm 
bh-pm 
bll-mb 
bll-mb 
bll-mb 
bll-mb 

bh-pm/mb 
 

bh-pm 
bh/ll-mb 

 
bh-mb 

 
bh-mb 

 
bh/ll-pm/mb 

 
bh-pm 

 
bh-pm 
bh-pm 
bh-pm 

 
 

bh-mb 
bh-pm 
bh-pm 

 
bh/ll-mb 
bll-mb 

 
bh-pm 

tr 
 
tr 
 
sh 
tr 
tr 
sh 
sh 
sh 
sh 
sh 
sh 
cl 
sh 
sh 
tr 
cl 
sh 
cl 
sh 
sh 
sh 
sh 
cl 
 
tr 
tr 
 
tr 
 
tr 
 
cl 
 
tr 
 
cl 
hb 
hb 
 
tr 
tr 
hb 
hb 
 
hb 
hb 
 
tr 

 
1500-1650 

 
1400 

1650-1966 
1600 
1400 
1650 

1450-1580 
1500-1600 

2300 
1600 
1900 

1450-1580 
1950-2000 

1400 
1450 
1600 

1400-1500 
2000 
2100 
2300 
2400 
1950 
 

1600 
1600-2300 

 
1600-1850 

 
1850 
 

1500-2300 
 
- 
 

1600 
1450 
1450 
 
 

1600-1966 
1600 
1450 
 

1900-2100 
2000 
 

1600 

CG 3519 
CG 3131 

 
CG 3035 

 
CG 3390 
CG 3138 
CG 3521 
CG 2940 
RS 1026 
LA 037 
CG 3545 
CG 1250 
CG 1123 
CG 1471 
RS 881 
CG 3113 
CG 1370 
LA 023 
RS 1000 
CG 3314 
CG 2860 
CG 1418 
CG 1259 
CG 1291 
CG 3205 

 
CG 3539 
CG 1489 

 
CG 3376 

 
CG 3251 

 
CG 1286 

 
- 
 

RS 999 
RS 156 
LA 022 

 
 

CG 3137 
RS 1080 
RS 1081 

 
CG 3559 
CG 1429 

 
RS 966 

 

CAUP 
CAUP 

 
CAUP 

 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

AFP,CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP 

 
CAUP 

 
CAUP 

 
- 
 

CAUP 
CAUP 

AFP,CAUP 
 
 

CAUP 
CAUP 
CAUP 

 
CAUP 
CAUP 

 
CAUP 
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12 Appendix 5 
 
 
PLANTS OF  TIPUTINI BIODIVERSIY STATION  I. DICOTILEDONOUS. A 

PRELIMINARY  LIST 
 

Carlos Gonzalez and Andy Jarvis 

 
This is a preliminary list of tree plot collections at Tiputini Biodiversity Station.  The 
collection was made in ten 25m x 25m distributed evenly around TBS, and one 1-Ha 
plot which was adapted to the HERB tree plot methodology after Pitman (2002) 
established the plot. 
The collections can be found in the University San Francisco of Quito herbarium, and 
copies in the National Herbarium, Quito and the herbarium of the Universidad 
Catolica.  Photos have been takn f most individuals, and are available from the 
authors upon request. 
The tree database includes 2375 individuals which have been marked, measured and 
identified.  Of these, some 603 species have been separated, and this list reports these 
findings.  The database is in a continual state of improvement, and it is stressed that 
the identifications made here are preliminary. 
 
 

Taxon No 
individuals 

Elevation 
(m) 

Collection Photo 
Gallery 

Anacardiaceae 
Astronium cf 
Spondias cf mombin L.  
Spondias cf venulosa (Endl.) Endl 
Spondias cf 
Tapiria cf guianensis  
Anacardium cf (sp novnigelperu) 
Indet 
Annonaceae 
Crematosperma cauliflorum aff 
Duguettia spixiana Mart. 
Duguettia 

Duguettia 

Guatteria cargadero cf 
Guatteria  

Guatteria cf 
Guatteria cf 
Guatteria 

Annona cf 

Rollinia 

Xylopia 

Indet 
Pseudomolmea 

Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet (Guatteria?) 
Indet 
Indet 
Apocynaceae 
Aspidosperma 

Aspidosperma 

 
1 
1 
1 
1 
1 
1 
1 

 
1 
6 
3 
 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
3 
1 
1 
1 
1 
 
1 
 

 
219 
261 

 
199-200 

261 
227 
227 

 
- 

227 
200-210 

 
220 
227 
219 
261 
238 
223 
227 
261 
196 
217 
200 
227 
227 
227 
227 
227 
227 
217 
227 

 
 

219 
 

 
CG 3672 
CG 4413 
CG 4550 
CG 3604 
CG 4423 
CG 4252 
CG 4112 

 
CG 4442 
CG 4204 
CG 4197 

 
CG 4225 
CG 4093 
CG 3679 
CG 4436 
CG 4493 
CG 4302 
CG 4172 
CG 4424 
CG 3753 
CG 3759 
CG 3805 
CG 4372 
CG 4070 
CG 4158 
CG 4142 
CG 4178 
CG 4323 
CG 3777 
CG 4220 
CG 3596 

 
CG 4362 
CG 3644 

 
- 

1516A/B 
- 

55A 
1502A/B 
1172A/B 
697A/B 

 
1648A/B 

916A/B 
938A/B 
1294A/B 
988A/B 
641A/B 

- 
- 

1652A/B 
1754A/B 

850AA/BB 
1503A/B 
240A/B 
268A/B 
342A 

- 
672A 

744A/B 
778A/B 
857A/B 
1319A/B 

235A 
970A/B 
22A/B 

 
1463A/B 
40A/B 
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Couma 

Couma 

Couma 

Himathantus 

Lachmellea 

Lachmellea 

Aquifoliaceae 
Ilex 

Ilex cf inundata 
Ilex 

Araliaceae 
Dendropanax arboreus (L.) Dec & Pl 
Dendropanax caucanus (Harm.) Har 
Dendropanax 

Arecaceae 
Astrocarium chambira Burret 
Astrocarium murumuru  Mart. 
Euterpe precatorae 

Geonoma maxima cf 
Iriarthea deltoidea Ruiz & Pavon 
Oenocarpus bataua Mart. 
Socratea exorrhiza (Mart.) H. Wendl. 
Wettinia maynensis Spruce 
Indet sp1 
Bignoniaceae 
Jacaranda copaia (Aublet) D. Don 
Memora cladothica Sandwith 
Tabebuia serratifolia (Vahl.) G. Nich 
Tabebuia cf 
Indet 
Bombacaceae 
Ceiba  

Matisia cordata Bonpl 
Matisia cf longiflora Gleason 
Matisia cf bracteolosa Ducke 
Matisia sp2  
Ochroma pyramidale (Cav. ex Lam.) U.  
Pachira acuatica Aubl. 
Quararibea 

Quararibea 

Quararibea 

Indet 
Boraginaceae 
Cordia  

Cordia 

Indet 
Burseraceae 
Crepidospermum rhoifolium Bent (T& Pl)  
Crepidospermum  

Protium ecuadorense Benoist 
Protium cf fimbriatum Swart 
Protium glabrescens Swart 
Protium polybotrium (Turcz.) Engl 
Protium cf robustum (Swart.) DM Porter 
Protium trifoliolatum Engl. 
Tetragastris panamensis (Engl.) Kuntz 
Trattinikia 

Protium   
Protium 

Protium 

Protium 

Protium 

Protium 

Protium 

Protium 

Indet 
Indet 

1 
1 
1 
1 
1 
1 
 
1 
1 
1 
 
4 
3 
1 
 
6 
1 
4 
17 
25 
1 
2 
1 
10 
 
4 
11 
 
- 
- 
 
1 
3 
13 
2 
19 
- 
1 
1 
1 
2 
1 
 
1 
1 
1 
 
1 
- 
2 
1 
1 
1 
1 
1 
1 
 
5 
2 
1 
1 
1 
- 
- 
- 
- 
- 

261 
227 
227 
199 
227 
227 

 
217 
220 
220 

 
227 

219-261 
220 

 
217-220 

200 
219-261 

227 
199-227 

 
200-227 

217 
199-21 

 
219-261 

227 
 

219 
261 

 
219 
220 

217-227 
227 

199-261 
100 
227 
261 
238 
223 

 
 

199 
227 
228 

 
199 
238 

199-200 
220 
220 
217 
227 
261 
238 
261 

219-227 
238-261 

223 
227 
227 
219 
227 
238 
227 
227 

CG 4419 
CG 4046 
CG 4177 
CG 3606 
CG 4199 
CG 4245 

 
CG 3795 
CG 3891 
CG 3926 

 
CG 4067 
CG 3676 
CG 3882 

 
CG 3796 
CG 3849 
CG 4348 
CG 4057 
CG 3625 
CG 4552 
CG 3847 
CG 3904 
CG 3699 

 
CG 4278 
CG 4208 
CG 4468 
CG 4337 
CG 4367 

 
CG 3651 
CG 3714 
CG 4087 
CG 4247 
CG 3608 

- 
CG 4161 
CG 4395 
CG 4454 
CG 4515 

CG 
 

CG 3621 
CG 4163 
CG 4482 

 
CG 4075 
CG 4457 
CG 3839 
CG 3916 
CG 3818 
CG 3731 
CG 4053 
CG 4418 
CG 4481 
CG 4368 
CG 4157 
CG 4386 
CG 4531 
CG 4040 
CG 4159 
CG 4356 
CG 4157 
CG 4439 
CG 4036 
CG 4184 

- 
605A/B 
864A 

- 
918A/B 
1037A/B 

 
- 

518A/B 
532A/B 

 
673A/B 
2098/99 
3409/11 

 
290A/B 
394A 

- 
- 

49A/B 
- 

360A/B 
256A/B 
151A/B 

 
1482A/B 
655A/B 
1593A/B 
1434A/B 
1524A/B 

 
187A/B 
102A/B 

- 
1198A/B 
644A/B 

- 
- 

1547A/B 
1646B 
1695B 

1690A/B 
 

42A 
898A/B 
1628A/B 

 
665A/B 
1636A/B 
370A/B 
570A/B 
399A/B 
212A/B 
595B 

1497A/B 
1583A/B 
1513A/B 

751B 
1533A/B 

- 
- 

743A/B 
1459A 
887A/B 
1665A/B 

619A 
835A/B 
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Protium 

Capparaceae 
Capparis  

Caricaceae 
Jacaratia cf digitata (Poepp & Endl.) Solm 
Cecropiaceae 
Cecropia tomentosa 

Cecropia sciadophylla Mart. 
Cecropia ficifolia 

Cecropia 

Cecropia 

Cecropia 

Cecropia 

Coussapoa cf villosa Poepp & Endl.  
Pourouma bicolor Mart. 
Pourouma ferruginea cf 
Pourouma guianensis Aubl. 
Pourouma napoensis C. Berg. 
Pourouma cf  ovata  
Pourouma cf  villosa 
Pourouma sp1 
Pourouma sp? 
Pourouma 

Pourouma 

Celastraceae 
Maytenus 

Maytenus 

Maytenus 

Chrysobalanaceae 
Couepia 

Couepia 

Couepia 

Couepia 

Licania cf elliptica Standl 
Licania cf caudate Prance 
Licania glablanca 

Licania 

Licania 

Licania 

Licania 

Licania 

Licania 

Licania 

Licania 

Licania 

Licania 

Parinari cf 
Indet 
Indet 
Clusiaceae 
Chrysoclamis cf membranacea Pl & Tr 
Chrysoclamis 

Tovomita cf amazonica 
Vismia cf sprucei Sprage 
Vismia 

Indet 

Combretaceae 
Buchenavia  

Dichapetalaceae 
Dichapetalum cf rugosum  
Tapura 

Elaeocarpaceae 
Sloanea 

Sloanea 

Sloanea 

Sloanea 

Sloanea 

 
 
1 
 
5 
 
4 
4 
3 
3 
1 
1 
- 
2 
2 
1 
? 
4 
1 
? 
2 
3 
3 
- 

 
1 
1 
1 
 
1 
2 
1 
1 
- 
- 
1 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 
1 
1 
2 
 
1 
1 
2 
 
2 
 
 
1 
 
- 
- 
 
1 
1 
4 
- 
- 

 
 

261 
 

219-227 
 

217-227 
219-261 
219-227 
220-227 

227 
 

227 
200 
199 
219 
? 

223-238 
223 
? 

199-227 
199-261 
219-227 

227 
 

210 
238 
227 

 
217 
261 
227 
227 
227 
219 

 
 

199 
217 
200 
210 
238 
227 
227 
227 
227 
227 
219 
227 

 
223 
199 
217 
217 

227-261 
219 

 
227 

 
217 
261 

 
199 
261 

217-219 
217 
200 

 
 

CG 4405 
 

CG 4553 
 

CG 3718 
CG 4345 
CG 3721 
CG 4276 
CG 4301 

CG 3885A 
CG 4121 
CG 3833 
CG 3600 
CG 3681 
CG 3710 
CG 3781 
CG 4526 
CG 4474 
CG 3609 
CG 3599 
CG 4377 
CG 4271 

 
CG 3867 
CG 4444 
CG 4265 

 
CG 3732 
CG 4378 
CG 4320 
CG 4305 
CG 4197 
CG 3695 
CG 4341 
CG 4524 
CG 3581 

CG 3769A 
CG 3801 
CG 3861 
CG 4451 
CG 4211 
CG 4244 
CG 4269 
CG 4081 
CG 4216 
CG 3887 
CG 4102 

 
CG 3589 
CG 4510 
CG 3750 
CG 3756? 
CG 4127 
CG 3712? 

 
CG 4090 

 
CG 3730 
CG 4387 

 
CG 3628 
CG 4404 
CG 3762 
CG 3780 
CG 3825 

1704A/B 
 

1558A/B 
 

625A/B 
 

293A/B 
1422A/B 
158A/B 

- 
- 
- 

690A/B 
369A/B 
50A/B 
200B 

- 
243A/B 

- 
- 

886A/B 
- 
- 

1291A/02 
 

447A/B 
1642A/B 
1122B 

 
258A/B 
1523A/B 
1320A/B 
1388A/B 
938AA/B 

166A 
1418A/B 
1727A/B 

- 
277A/B 
344A/B 
423A/B 

- 
1008A/B 
1036A/B 
1104A/B 

 
1000A/B 

- 
- 
 
- 

1683A/B 
- 

265A/B 
812A/B 
105A/B 

 
632A/B 

 
222A 
1537A 

 
72A/B 

1571A/B 
275A/B 
283A/B 
331A/B 
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Sloanea 

Sloanea 

Sloanea 

Sloanea 

Euphorbiaceae 
Pausandra trianae (Muell. Arg.) Baill. 
Acidoton nicaraguensis 

Hasseltia floribunda  
Alchornea triplinervia (Sprengel) Muell. Arg 
Conceveiba 
Alchornea latifolia Sw 
Hyeronima alchorneiodes Allemao 
Mabea “comun” 
Mabea superbrondu 
Mabea occidentalis Benth. 
Mabea 

Phyllanthus cf urinaria L. 
Richeria racemosa 

Alchornea triplinervia 

Acalypha cf 
Acalypha cf cuneata Poepp & Endl. 
Sapium cf ovobatum K ex Müll. Arg 
Croton 
Nealchornea cf  
Pera cf 
Pera duguet 

Hyeronima  

Hyeronima cf 
Acalypha cf 
Indet  
Richeria racemosa 

Indet 
Indet 
Indet 
Indet 
Indet 

Fabaceae 
Inga auristellae Harms 
Inga 

Inga 

Inga velutina Willd 

Inga rusbyi Pittier 
Inga brachyrachis/capitata 

Inga aff umbratica 

Inga 

Inga 

Inga cordatoalata Ducke 
Inga umbratica Poepp 
Inga 

Inga acreana Harms 
Inga 

Inga 

Inga multijuga o ruiziana 

Inga cf microcoma Harms 
Inga sarayacuensis T.D.Penn 
Inga 

Inga alata 

Inga 

Inga 

Inga tenuistepula Ducke 
Inga cf splendens Willd. 
Inga 

Inga 

Inga 

Inga umbellifera (Vahl) Steud ex DC. 
Inga cf stenoptera Benth. 
Inga spectabilis (vahl) Willd. 

1 
1 
1 
1 
 
7 
 
- 
1 
1 
3 
- 
2 
6 
- 
1 
1 
1 
1 
5 
1 
1 
1 
1 
1 
1 
1 
1 
5 
- 
1 
1 
1 
2 
- 
1 
 
- 
1 
1 
1 
- 
1 
 
1 
1 
1 
1 
1 
2 
1 
- 
7 
- 
2 
- 
- 
1 
1 
- 
- 
1 
- 
- 
2 
1 
2 

238 
217 
227 
199 

 
219-227 

 
227 
199 
227 
227 
227 

217-219 
220-223 

223 
227 
227 
227 
261 
227 
220 
261 
227 
220 
227 
227 
227 
227 
227 
- 

217 
217 
220 
238 
- 

227 
 

200 
199 
238 
199 
219 
219 

 
219 
219 
219 
219 
217 
217 
217 
217 

217-227 
200 
200 
210 
210 
210 
210 
220 
219 
219 
261 
261 
261 
261 

261-223 

CG 4499 
CG 4097 
CG 4203 
CG 4499 

 
CG 3698 
CG 3782 
CG 4171 
CG 3624 
CG 4288 
CG 4171 
CG 4084 
CG 3768 
CG 3807 
CG 4546 
CG 4232 
CG 4105` 
CG 4240 
CG 4433 
CG 4218 
CG 3906 
CG 4390 
CG 4230 
CG 3927 
CG 4318 
CG 4250 
CG 3601 
CG 4496 
CG 4218 
CG 4404 
CG 3774 
CG 3787 
CG 3923 
CG 4475 

758 
CG 4262 

 
CG 4035 
CG 3583 
CG 4484 
CG 3588 
CG 3662 
CG 3665 
CG 4455 
CG 3667 
CG 3682 
CG 3653 
CG 3655 
CG 3778 
CG 3741 
CG 3740 
CG 3913 
CG 3745 
CG 3798 
CG 3763 
CG 3873 
CG 3856 
CG 3855 
CG 3872 
CG 4141 
CG 4350 
CG 4338 
CG 4311 
CG 4523 
CG 4432 
CG 4434 
CG 4426 

- 
735A/B 

- 
1603A/B 

 
1003A/B 
232A/B 
1071A/B 
51A/B 

1223A/B 
877A/B 
648A/B 
280A/B 
339A/B 
1678A/B 
1081A/B 
710A/B 
1068A/B 
1509A/B 
993A/B 
585A/B 
1554A/B 
1094A/B 
547A/B 
1367A/B 
1185A/B 

- 
- 

993 
- 

274A/B 
- 
- 
- 
- 
- 
 
- 

10A/B 
1618AA/B 

16A/B 
- 
- 

1668A/B 
- 

186A/B 
193A/B 
196A/B 

- 
220A/B 

- 
- 

252A/B 
343A/B 
285A/B 
452A/B 
461A/B 

- 
- 
- 

1430A/B 
1437A/B 

- 
- 
- 

1501A/B 
1724A/B 
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Inga capitata Desvaux 
Inga 

Inga 

Inga cf umbelliferae (Vahl) Steud. ex DC. 
Inga velutina Willd. 
Inga 

Inga 

Inga 

Inga 

Inga cf suaveolens Ducke 
Inga spectabilis Vahl. Willd 
Inga aff setulifera T.D. Penn 
Inga 

Inga 

Inga punctata 

Inga tessmannii Harms 
Inga 

Inga 

Inga marginata 

Inga aff heterophylla Willd 
Inga 

Abarema jupunba 

Lecointea peruviana 

Bauhinia brachycalyx 

Dalbergia frutescens (Vell.) Britton 
Macrolobium angustifolium (Benth.) Cowman 
Macrolobium gracile Spruce & benth 
Macrolobium archeri R.S.Cown 
Macrolobium colombianum aff 
Zygia heteroneura Barneby & Crimes 
Hymenae oblongifolia 

Zygia aff latifolia (L.) Fawcett & Rendle 
Zygia schultzeana  

Zygia? 
Indet 
Brownea macrophylla Hort ex Mast 
Calliandra trinervia  

Marmaroxillon 
Indet 
Dalbergia 

Dussia 

Zygia 

Browneopsis ucayalina Huber 
Macrolobium 

Swartzia multujuga  

Brownwea grandiceps 

Flacourtiaceae 
Casearia arborea (Rich.)Urb. 

Casearia  

Casearia cf  javitensis Kunth 
Casearia nigricans Sleumer 
Casearia 

Carpotroche cf 
Lozania 

Ryania cf speciosa Vahl 
Tetratylacium macrophyllum  Poepp 
Casearia cf prunifolia Kunth( Ryania en list) 
Casearia  
Hasseltia floribunda Sw 
Casearia  

Neosprucea cf 

Lacistema cf 

Casearia 

Casearia 

Casearia 

Hippocrateaceae 
Salacia cf spectabilis Ac. Smith 

 
1 
2 
- 
2 
1 
1 
- 
1 
9 
1 
 
1 
1 
5 
1 
 
1 
 
1 
 
1 
1 
1 
 
 
 
 
 
6 
3 
1 
1 
1 
1 
3 
1 
 
1 
1 
1 
2 
78 
5 
 
 
 
1 
7 
 
 
 
1 
1 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
261 

227-261 
261 
261 
261 
238 
238 
223 

223-238 
227 

 
227 
227 
227 
227 

 
227 

 
227 

 
210 
217 

227-238 
 
 
 
 
 

227 
227 
227 
277 

 
219 
277 
277 

 
277 
277 
277 
261 

223-238 
217 

 
 
 

277 
277 
277 
277 

 
199 
227 
277 

217-277 
277 
277 
277 

 
277 
277 
261 
238 
277 

 
 

CG 4473 
CG 4394 
CG 4408 
CG 4556 
CG 4428 
CG 4403 
CG 4473 
CG 4513 
CG 4540 
CG 4513 
CG 4111 
CG 4523 
CG 4099 
CG 4215 
CG 4213 
CG 4289 
CG 3789 
CG 4285 
CG 4374 
CG 4272 
CG 3794 
CG 3871 
CG 3769 
CG 4452 
CG 3822 
CG 3636 
CG 3709 
CG 3744 
CG 3686 
CG 4086 
CG 4088 
CG 4476 
CG 3589 
CG 4505 
CG 4338 
CG 4189 
CG 4293 
CG 4410 
CG 4100 
CG 4188 
CG 4479 
CG 4374 
CG 4328 
CG 3728 

 
CG 3622 

 
CG 4296 
CG 4257 

CG  
CG 4257 
CG 4414 
CG 3642 
CG 4060 
CG 4166 
CG 3754 
CG 4096 
CG 4450 
CG 4115 
CG 4257 
CG 4535 
CG 4132 
CG 4431 
CG 4450 
CG 4221 

 
CG 4226 

1602A/B 
1539A/B 
1541A/B 
1760A/B 
1550A/B 
1556A/B 
1602A/B 

- 
- 

1691A/B 
703A/B 
1763A/B 
716A/B 
1001A/B 
1005A/B 
1221A/B 
250A/B 
1235A/B 
1481A/B 
1282A/B 
296A/B 
492A/B 
272A/B 
1669A/B 
381A/B 
78A/B 
128A/B 
251A/B 
132A/B 
645A/B 
643A/B 
1602A/B 
1555A 

1732A/B 
1437A/B 
937A/B 
1204A/B 
1532A/B 
734A/B 
831A/B 
1592A/B 
1481A/B 
1450A/B 
940A/B 

 
32A/B 

 
 
 

432A/B 
813A/B 
1511A/B 
69A/B 
593A/B 
866A/B 
301A/B 
738A/B 
843A/B 
701A/B 
1148A/B 
1714A/B 
803A/B 
1505A/B 
1660A/B 
980A/B 

 
921A/B 
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Salacia 

Humiriaceae 
Vantanea 

Ventanea 

Lauraceae 
Cinnamomun triplinervia  

Endlicheria  

Edlicheria  

Nectandra 

Nectandra 

Nectandra 

Nectandra 

Ocotea? 

Ocotea? 

Ocotea? 

Ocotea 

Ocotea 

Persea 

Mezilaurus  

Rhodostemonodaphne 

Indet 
Indet. 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet  
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Lecythidaceae 
Eschweilera andina  

Eschweilera cf rufifolia O tessma S.A. Mori 
Eschweilera 

Eschweilera 

Eschweilera 

Grias neuberthii J.F. Macbr 
Gustavia longifolia Poepp ex berg 
Lecythis  

 
 
 
 
 
 
 
3 
1 
1 
2 
1 
1 
2 
1 
1 
2 
1 
1 
3 
1 
1 
2 
3 
1 
3 
2 
1 
1 
2 
1 
1 
2 
3 
1 
1 
1 
1 
3 
1 
1 
1 
1 
1 
3 
1 
1 
1 
1 
 
2 
1 
1 
1 
1 
1 
 
 
 
8 
2 
1 
4 
1 
2 
8 
1 

 
 
 

219 
 

277 
277 
238 
199 
261 
261 

238-277 
199 
199 

199-217 
261 
219 
227 

222-219 
217 

 
199-227 

199 
222-227 
199-200 

222 
217-277 
217-238 

217 
217 
200 
200 
200 

200-261 
200-222 

220 
261 
223 
223 

223-277 
223 
277 
277 
277 
277 

200-277 
277 
277 
277 
277 

 
277 
277 
277 
277 
277 
277 

 
 

222-277 
223-261 

199 
261 
238 
222 

220-277 
200 

CG 4077 
 

CG 3770 
CG 4343 

 
CG 4174 
CG 4168 
CG 4463 

CG  
CG 4421 
CG 4398 
CG 4449 
CG 3585 
CG 3617 
CG 3602 
CG 4420 
CG 4101 
CG 4180 
CG 3712 
CG 3790 
CG 3817 
CG 3611 
CG 3634 
CG 3717 
CG 3671 
CG 3652 
CG 3775 
CG 3776 
CG 3760 
CG 3770 
CG 3799 
CG 3869 
CG 3875 
CG 3874 
CG 3859 
CG 3920 
CG 4393 
CG 4527 
CG 4514 
CG 4528 
CG 4561 
CG 4164 
CG 4198 
CG 4207 
CG 4236 
CG 4228 
CG 4227 
CG 4268 
CG 4260 
CG 4290 

cf 
CG 4273 
CG 4279 
CG 4085 
CG 4125 
CG 4185 
CG 4280 

 
 

CG 3702 
CG 4416 
CG 3590 
CG 4370 
CG 4469 
CG 3700 
CG 3632 
CG 3865 

661A/B 
 

277A/B 
1412A/B 

 
873A/B 
881A/B 
1587A/B 

8 
1530A/B 
1564A/B 
1657A/B 

6 
38 

57A/B 
1488A/B 
730A/B 
854A/B 
105A/B 
297A/B 
307A/B 
24A/B 
76A/B 
107A/B 
177A/B 
194A/B 
233A/B 
234A/B 
267A/B 
297A/B 
377A/B 
413A/B 
432A/B 
442A/B 
489A/B 
500A/B 
1542A/B 
1686A/B 
1715A/B 
1723A/B 
1738A/B 
888A/B 
949A/B 
1026A/B 
1067A/B 
1095A/B 
1098A/B 
1107A/B 
1142A/B 
1218A/B 

1266 
1276A/B 
1278A/B 
647A/B 
819A/B 
840A/B 
1240A/B 
1706A/B 

 
154A/B 
1577A/B 

7A/B 
1477A/B 
1594A/B 
115A/B 
68A/B 
478A/B 
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Lecythis 

Indet 
Malpighiaceae 
Byrsonima cf 

Melastomataceae 
Blakea  

Miconia 

Miconia 

Miconia 

Miconia 

Miconia  

Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Mouriri 

Mouriri 

Indet 
Meliaceae 
Cedrela cf 
Guarea cf goma Pulle 
Guarea pterorachis Harms 
Guarea purusana cf 
Trichillia septentrionalis 

Guarea 

Guarea 

Guarea “gomma” 

Guarea 

Cabralea cangeriana 

Guarea silvatica 

Guarea guentheriana 

Guarea 

Trichilia 

Guarea 

Guarea 

Guarea 

Trichilia 

Trichilia 
Indet 
Indet 
Menispermaceae 
Abuta cf  

Monimiaceae 
Mollinedia 

Siparuna 

Siparuna 

Moraceae 
Brosimum  

Brosimum 

Castilla cf 
Castilla 

Clarisia 

Clarisia 

Ficus 

Ficus 

Ficus 

Ficus 

Ficus 

Ficus 

Helicostylis 

Maquira 

Naucleopsis 

Naucleopsis cf 
Naucleopsis 

Perebea 

2 
2 
 
1 
 
2 
1 
1 
5 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
 
 
1 
1 
7 
5 
 
1 
1 
6 
5 
1 
2 
12 
3 
1 
7 
1 
1 
16 
7 
2 
1 
 
1 
 
1 
1 
1 
 
2 
1 
3 
4 
4 
2 
2 
1 
2 
1 
1 
2 
2 
1 
1 
2 
 
6 

223-238 
277 

 
238 

 
223-261 

217 
261 

223-261 
277 
277 
217 
200 
200 
200 
223 
277 
223 
277 

 
 

261 
219 

200-220 
277 

 
222 
217 

220-277 
220-238 

261 
261-277 
220-277 
238-220 

223 
277 
277 
277 

222-277 
238-261 

277 
277 

 
219 

 
277 
277 
277 

 
200 
277 

217-261 
238-277 
199-277 
261-277 

222 
238 
223 
277 
277 
199 
277 
261 
277 

222-217 
 

220-222 

CG 4462 
CG 4154 

 
CG 4472 

 
CG 4567 
CG 3784 
CG 4425 
CG 4506 
CG 4044 
CG 4150 
CG 3771 
CG 3803 
CG 3826 
CG 3868 
CG 4539 
CG 4104 
CG 4533 
CG 4267 

 
 

CG 4417 
CG 4357 
CG 3736 
CG 4063 
CG 3650 
CG 3715 
CG 3772 
CG 3928 
CG 3912 
CG 4435 
CG 4415 
CG 4466 
CG 4448 
CG 4545 
CG 4176 
CG 4217 
CG 4306 
CG 3684 
CG 4368 
CG 4210 
CG 4316 

 
CG 4363 

 
CG 4147 
CG 4258 
CG 4324 

 
CG 3832 
CG 4275 
CG 3751 
CG 4478 
CG 3603 
CG 4382 
CG 3720 
CG 4497 
CG 4518 
CG 4287 
CG 4283 
CG 3703 
CG 4095 
CG 4411 
CG 4195 
CG 3737 
CG 3841 
CG 3673 

1581A/B 
? 
 

4A/B 
 

1747A/B 
? 

1492A/B 
1701A/B 

610? 
765A/B 
279? 

318A/B 
403A/B 
494A/B 
1725? 

712A/B 
1716A/B 
1111? 

1707A/B 
 

1476A/B 
1448A/B 
242A/B 
589A/B 
195A/B 
122? 
236? 

527A/B 
542A/B 
1508A/B 
1517A/B 
1579A/B 
1650A/B 
1687A/B 
847A/B 
992A/B 
1392? 
150? 

1479A/B 
1009? 

1325A/B 
 

1464 
 

774A/B 
1147A/B 
1317A/B 

 
357A/B 
1269A/B 

246? 
1627? 
54A/B 

1572A/B 
97 

1624A/B 
1731A/B 
1229A/B 
1258? 
93? 

737A/B 
1535A/B 
924A/B 
214A/B 
383A/B 
180? 
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Poulcenia armata 

Pseudolmedia 

Sorocea 

Sorocea 

Batocarpus “ramaroja” 

Sorocea 

Sorocea 

Sorocea? 

Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 

Myristicaceae 
Otoba parvifolia cf 

Compsoneura 

Compsoneura 

Virola duckei A.C. Smith 
Virola mollis (AC. DC) Warb 
Virola multinervia  

Virola obovata 

Virola flexuosa 

Virola dixonii 

Virola 

Virola 

Virola 

Virola 

Virola 

Virola 

Virola pavoni 

Iryanthera ulei  

Iryanthera  

Otoba 

Iryanthera 

Otoba glycicarpa 

Otoba 

Myrsinaceae 
Ardisia 

Ardisia “semiovada” 

Cybianthus 

Stylogyne 

Myrtaceae 
Eugenia 

Eugenia 

Eugenia 

Eugenia 

Eugenia aff stipitata 

Eugenia 

Eugenia feijoi 

Calophyllum 

Plinia 

Plinia 

Indet 
Indet 
Indet 
Indet 
Indet 
Eugenia 

Indet 
Indet 
Indet 

1 
1 
2 
56 
1 
2 
1 
3 
2 
2 
1 
1 
2 
1 
1 
5 
9 
2 
1 

219 
238 
199 

200-222 
220 
219 
277 
217 

199-238 
222-217 

217 
222 
222 

217-22 
200 

200-277 
238 
277 
277 

 

CG 4344 
CG 4438 
CG 3689 
CG 3800 
CG 3884 
CG 4349 
CG 4291 
CG 3691 
CG 3626 
CG 3725 
CG 3669 
CG 3677 
CG 3739 
CG 3758 
CG 3863 
CG 3911 
CG 4487 
CG 4069 
CG 4325 

 
CG 4456 
CG 4128 
CG 4446 
CG 4340 
CG 3619 
CG 4234 
CG 3866 
CG 4536 
CG 3791 
CG 4461 
CG 4091 
CG 4264 
CG 4091 
CG 3845 
CG 3680 

CG  
CG  

CG 4308 
CG 4559 
CG 3917 
CG 3685 

 
 

CG 3795 
CG 4455 
CG 4130 
CG 4335 

 
CG 3645 
CG 3899 
CG 4052 
CG 4183 
CG 4292 
CG 4358 
CG 4360 
CG 4134 
CG 4229 
CG 3910 
CG 3706 
CG 3761 
CG 3804 
CG 3838 
CG 4360 
CG 4422 
CG 4483 
CG 4465 
CG 4555 

1424A/B 
1670A/B 
143A/B 
337A/B 
516A/B 
1432A/B 
1215A/B 

112? 
18? 

125A/B 
147A/B 
189? 

244A/B 
261A/B 
486A/B 
582? 
1597? 

675A/B 
1306A/B 

 
1647A/B 
816A/B 
1640A/B 
1411A/B 

44? 
1072A/B 

417? 
1712A/B 
205A/B 
1634? 

634A/B 
1128A/B 
634A/B 
367A/B 
174A/B 
1009A/B 

718? 
1384A/B 
1749? 

550A/B 
135A/B 
1702A/B 

 
303A/B 
1641A/B 
808A/B 
1436A/B 

 
43A/B 
502A/B 
598? 

836A/B 
1213A/B 
1475A/B 
1460A/B 
796A/B 
1024A/B 
538A/B 

98? 
288? 

341A/B 
396A/B 
1460A/B 
1504A/B 
1584A/B 
1588A 

1762A/B 
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Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Plinia 

Indet 
Indet 
Nyctaginaceae 
Neea “supercrasa” 

Neea 

Neea “altomina” 

Neea “popular” 

Ochnaceae 
Ouratea “flaquita” 

Olacaceae 
Heisteria 

Heisteria 

Heisteria 

Indet 
Indet 
Piperaceae 
Piper 

Polygonaceae 
Triplaris Americana 

Coccoloba fallax 

Coccoloba densifrons 

Indet 
Proteaceae 
Roupala montana 

Rhamnaceae 
Colubrina arborescens (Mill.) Sarq. 
Rubiaceae 
Borojoa 

Duroia hirsuta cf  
Faramea glandulosa Poepp 
Psychotria 

Pentagonia spathicalyx 

Pentagonia  

Posoqueria latifolia 

Posoqueria? 

Posoqueria? 

Cousarea brevicaulis Krause 
Cousarea cephaloides Taylor 
Randia 

Randia 

Simira cordifolia 

Simira wurdackii Steyerm. 
Wittmackanthus stanleyanus cf  
Psychotria stenostachya 

Randia armata (Sw.) DC. 
Indet 
Indet 
Cousarea 

Simira 

Alseis 

Cousarea cf 
Indet 
Ladenbergia 

Indet 
Indet 
Cousarea macrophylla aff 

CG 4549 
CG 4551 
CG 4037 
CG 4119 
CG 4152 

CG  
CG 4175 
CG 3901 
CG 4352 
CG 4392 
CG 4512 
CG 4542 
CG 4520 

 
CG 3877 
CG 4488 
CG 4502 
CG 4117 

 
CG 4467 

 
CG 4315 
CG 4266 
CG 3769 
CG 4076 
CG 4544 

 
CG  

 
CG 3815 
CG 4110 
CG 3919 
CG 4133 

 
CG  

 
 
 

CG 4193 
CG 4353 
CG 4565 
CG 4445 
CG 3713 
CG 4329 
CG 4108 
CG 4169 
CG 3816 
CG 3812 
CG 4277 
CG 3659 
CG 4253 
CG 4107 
CG 4492 
CG 4071 
CG 3616 
CG 4355 
CG 3584 
CG 3593 
CG 3711 
CG 3663 
CG 3729 
CG 3813 
CG 3876 
CG 3925 
CG 4492 
CG 4534 
CG 4530 

1767? 
1768? 

618A/B 
691A/B 
762A/B 
86A/B 
861A/B 
575A/B 
1454A/B 
1543A/B 
1680A/B 
1693A/B 
1722A/B 

 
485A/B 
1672A/B 
1728A/B 
695A/B 

 
1622A/B 

 
1333A/B 
1109A/B 
269A/B 
658? 
1692? 

 
1459A/B 

 
1429A/B 
704A/B 
543A 
800? 

 
59A/B 

 
1607 

 
925A/B 
1449A/B 
1748A/B 
1644A/B 
104A/B 
1439A/B 
688A/B 
880A/B 
321A/B 
335A/B 
1262A/B 
208A/B 
1178A/B 
700A/B 
1643A/B 
671A/B 
788A/B 
1458A/B 

12? 
19? 

94A/B 
209A/B 
228A/B 
317A/B 
483A/B 
526? 

1643A/B 
1711A/B 
1719A/B 
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Indet 
Indet 
Indet 
Alibertia 

Indet 
Indet 
Sabiaceae 
Discophora guianensis 

Sapindaceae 
Allophylus 

Allophylus 

Allophylus 

Talisia 
Indet 
Sapotaceae 
Chromolucuma cf  
Chrysophyllum 

Sarcaulus 
Micropholis venulosum 

Micropholis “molihoniana” 
Pouteria bilocularis 

Pouteria 

Pouteria 

Pouteria 

Pouteria 

Pouteria 

Pouteria 

Pouteria 

Chrysophyllum venezuelanense (Pierre)Penn 
Pouteria vernicosa T.D. Penn 
Pouteria quianensis Aubl. 
Pouteria 
Pouteria multiflora (A.DC) Eyme 

Pouteria platiphylla cf 

Pouteria 

Pouteria 

Pouteria 

Pouteria 

Micropholis 

Simaroubaceae 
Picramnia 

Simaba “smed” 

Simaruba 

Solanaceae 
Cestrum  

Solanum 

Staphyleaceae 
Turpinia occidentalis 

Tapura  

Sterculiaceae 
Herrania 

Theobroma subincanum cf  
Theobroma speciosum cf 
Styracaceae 
Styrax argenteus 

Theophrastaceae 
Clavija 

Tiliaceae 
Apeiba membranacea  
Apeiba aspera 

Apeiba 

Mollia gracilis 

Ulmaceae 
Celtis schippii Standl. 
Celtis 

Trema micrantha 
Urticaceae 

CG 4558 
CG 4522 
CG 4554 
CG 4223 
CG 4322 
CG 4298 

 
CG 4079 

 
CG 4347 
CG 4409 
CG 4146 
CG 4330 
CG 4326 

 
CG 3705 
CG 4508 
CG 4205 

CG 3828A 
CG 3757 
CG 4034 
CG 3765 
CG 3620 
CG 3704 
CG 3708 
CG 3724 
CG 3690 
CG 3701 
CG 3693 

CG  
CG 4224 
CG 3657 
CG 3746 

CG  
CG 3654 
CG 3860 
CG 4489 
CG 4504 

 
 

CG 4373 
CG 4156 
CG 4196 

 
CG 4300 
CG 4192 

 
CG 4051 
CG 4162 

 
CG 4179 
CG 3914 
CG 4443 

 
CG 3648 

 
CG 3905 

 
CG 4047 
CG 4041 
CG 3900 
CG 4209 

 
CG  

CG 4491 
CG  

 

1742? 
1750A/B 
1765? 

983A/B 
1321A/B 
1403A/B 

 
657A/B 

 
1425A/B 
1544A/B 
770A/B 
1446A/B 
1305? 

 
134A/B 
1684A/B 
915A/B 
374A/B 
1614A/B 
623A/B 
80A/B 
48A/B 
88A/B 
100A/B 
108A/B 
118A/B 
124A/B 
157A/B 
215A/B 
986A/B 
188A/B 
238A/B 
1068? 

183A/B 
443A/B 
1655? 

1733A/B 
1619A/B 

 
1522A/B 
752A/B 
939A/B 

 
1398A/B 
957A/B 

 
599A/B 
894A/B 

 
856A/B 
551A/B 
1651A/B 

 
60A/B 

 
565A/B 

 
606A/B 
612A/B 
524A/B 
1014A/B 

 
512A/B 
1617A/B 
121A/B 
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Urera 

Urera cf 

Violaceae 
Gloesospermum ecuadorensis 

Leonia crassa 

Leonia  

Rinorea apiculata Hekking 
Rinorea lindeniana (Tul.) Kuntze 
Rinorea viridifolia Rusby 
Vochysiaceae 
Qualea paraensis 

Vochysia 

Collected PLOT 1-9  and problems PITMAN 
Indet 
Indet 
Annonaceae-Guatteria 
Indet 
Indet 
Indet 
Fabaceae 
Fabaceae 
Indet 
Moraceae 
Indet 
Lauraceae 
Indet 
Meliaceae? 
Fabaceae? 
Fabaceae/Inga 
Indet 
Annonaceae 
Indet 
Sterculiaceae-Theobroma 
Indet 
Rubiaceae? 
Annonaceae cf 
Theaceae? 
Indet 
Indet 
Indet 
Indet 
Anacardiaceae/Burseraceae 
Euphorbiaceae- Mabea 

Fabaceae? 
Indet 
Indet 
INdet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 
Indet 

CG 4098 
CG 4256 

 
CG 3892 
CG 4136 

CG 
CG 4045 
CG 4282  

CG  
 

CG 3842 
CG 4511 

 
 
 
 

714? 
1156 

 
506A/B 
791A/B 
1438A/B 
607A/B 
1252A/B 
1435A/B 

 
348A/B 
1689A/B 

 
H1708 

1710A/B 
1713A/B 
1726A/B 
1735A/B 
1743A/B 
1752B 
26A/B 
161A/B 
00A/B 
218A/B 
231A/B 
255A/B 
262A/B 
531A/B 
325A/B 
332A/B 
372A/B 
000A/B 
429A/B 
531A/B 
541A/B 
564A/B 
1413A/B 
1423A/B 
1468A/B 
1607A/B 
1632A/B 
1667A/B 
273A/B 
1759A/B 
273A/B 
8A/B 

1769A/B 
1551A/B 
1755A/B 
298A/B 
438A/B 
1736A/B 
450A/B 
90A/B 
528A/B 
H86A/B 
PPP1083 
1273A/B 
1295A/B 
1301A/B 
1329A/B 
1336A/B 
1369A/B 
882A/B 

 

 


