5
494
Mejoramiento sostenible agrícola y de la calidad de vida
en la zona de laderas de América Central

B3

ATLAS DIGITAL DE NICARAGUA

Hector J. Barreto Programa de Laderas Centro Internacional de Agricultura Tropical

Reporte Interno

021731 9661 010 50

Noviembre 1995

Tegucigalpa, Honduras Centro América

"Mejoramiento sostenible agrícola y de la calidad de vida en la zona de laderas de América Central" es un proyecto ejecutado por CIAT, con apoyo financiero de la Cooperación Suiza al Desarrollo (COSUDE) y el Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). El Instituto Interamericano de Cooperación para la Agricultura (IICA) provee apoyo administrativo y técnico para las oficinas del proyecto en Honduras y Nicaragua.

Hector Barreto. Noviembre 1995. Atlas Digital de Nicaragua. Reporte Interno. Tegucigalpa, Honduras: CIAT (mimeo).

Trabajo presentado en el III seminario Nacional de Conservación de Suelos y Agua organizado por la Facultad de Recursos Naturales de la Universidad Nacional Agraria (Nicaragua) y PASOLAC. Managua, Nicaragua. 5-6 Octubre 1995.

Hector Barreto es investigador del Centro Internacional de Agricultura Tropical (CIAT) y del Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT).

Centro Internacional de Agricultura Tropical (CIAT) 2º piso, Edificio Palmira, Colonia Palmira, frente Hotel Honduras Maya

Apdo 1410, Tegucigalpa, Honduras MDC

Teléfono: 504-32-1862 504-39-1431/39-1432

Fax: 504-39-1443

E-mail: ciathill@expreso.com

Introducción

Para obtener una zonificación agroecológica para los sistemas de producción existentes en Centro América se requiere entender como la variabilidad espacial del clima y otros elementos del entorno ambiental (e.g. pendiente, suelos, geología, etc.) interactuan con las condiciones socioeconómicas de los agricultores para definir sistemas de producción. Este paso es esencial para lograr una caracterización y cuantificación adecuada de la calidad del recurso base (bosque, agua, suelo) y entender su evolución temporal bajo diferentes escenarios de manejo.

En 1976 el Instituto Panamericano de Geografía e Historia publicó el "Atlas Climatológico e Hidrológico del Istmo Centroamericano" que contiene información valiosa para la zonificación ambiental de Centro América. Leonard (1987) describió la dinámica del desarrollo económico y el manejo de los recursos naturales en Centro América, señalando la alarmante degradación de los recursos naturales en la región. Posner et al. (1983) propuso una clasificación para los sistemas de ladera y tierras altas tropicales de América basado en la zonificación climática de Holdridge, fisiografía del terreno (pendiente) y otras características del suelo.

Sin embargo, en la actualidad no se dispone de una base cartográfica digital de dominio público por parte de las instituciones nacionales de investigación agrícola de Centro América. Esta información podría ser muy útil para establecer vínculos geo-referenciados entre los datos recolectados a nivel de parcela en experimentos, ensayos de validación y sondeos con productores, y su relación con las diferentes condiciones sociales y ambientales existentes en la región. Es claro que existe una necesidad urgente de reconocer, recopilar y organizar la información disponible en bases de datos de acceso interinstitucional, a fin que pueda ser utilizada como apoyo en la toma de decisiones, planificación de actividades, y asignación de recursos dirigidos al sector agropecuario y forestal.

El objetivo de este documento es presentar una base de datos de variables ambientales para Nicaragua que forma parte de un set más amplio de información digital disponible a nivel regional para México y Centro América.

Metodología

Este trabajo presenta una colección de información ambiental para Nicaragua a nivel macro utilizando variables agroclimáticas a diferentes escalas (1:5'000000 - 1:1'000000). La base de datos de topografía y división política fue tomada de las coberturas resolución 1 minuto de arco desarrolladas por investigadores del CIAT (Carter 1991; Barona et al. 1992). La base de datos de clima fue tomada de CIMMYT (Corbett 1993; Chapman y Barreto 1994) y de otras fuentes (NOAA-EPA 1992). Corbett (1993) utilizó las bases de datos climáticas de Jones (1988) para desarrollar superficies de interpolación de clima

11/17/95 c:\docs.vem\hb95\atlasnic.doc

(precipitación y temperatura) a resolución de 5' de arco utilizando como base el modelo digital de elevación de ETOPO5 (NOAA-EPA 1992). La totalidad de las superficies de interpolación fueron generadas utilizando los métodos de Hutchinson (1991a). Hutchinson (1991b) ha desarrollado métodos estadísticos robustos para interpolar las normales climáticas mensuales a través del paisaje para áreas con datos escasos, de tal manera que estos datos se pueden incorporar a los modelos de simulación. Con esta y otra información Chapman y Barreto (1994) extendieron la interpolación para normales mensuales de evapotranspiración de referencia, humedad relativa y duración del ciclo de cultivo. La base de datos de suelo fue tomada del mapa digital de suelos de FAO disponible con el software Global Ecosystems Database producido por NOAA-EPA (1992).

La base de datos está compuesta de 85 coberturas raster y 16 vectores en formato IDRISI v 4.1. Todas las coberturas están en formato binario y ocupan alrededor de 30 megabytes de almacenamiento en disco. El apéndice 1 presenta los archivos de la base de datos digital para Nicaragua. Las coberturas una vez clasificadas fueron exportadas de formato IDRISI a archivos TIF. La impresión final del atlas se realizo en PowerPoint© de Microsoft.

Presentación del Atlas Digital

En el atlas impreso se incluyen tan solo una parte de la base de datos digital. En el caso de variables como temperatura media, precipitación, evapotranspiración, y humedad relativa se presentan los promedios o totales anuales reclasificados (ver leyenda en cada mapa). Otras variables (suelos, topografía, duración de la estación seca, etc.) se presentan clasificadas manteniendo el mínimo de clases posible. Otras coberturas adicionales incluyen mapas de división política (departamentos y regiones administrativas). Con el atlas se incluyen dos transparencias con calcos de la zona de laderas y de la zona plana que pueden ser utilizados para aislar visualmente estas áreas para cada variable de interés. Al final del atlas se presentan diagramas de correlación entre los valores de algunas normales climáticas (registros mensuales) y los valores estimados en las superficies de interpolación.

Se espera que esta base de datos pueda servir como material mínimo para la capacitación a nivel universitario en sistemas de información geográfica (SIG) y fortalecer los esfuerzos actuales de zonificación agroecológica a nivel regional, particularmente para las zonas de ladera.

Literatura Citada

ANU. 1992. ANUSPLIN software package (programs). Canberra, Australia: Center for Resource and Environmental Studies, Australian National University.

Barona, E., Carter, S., Castaño, S.E., y Rincón, M. 1993. Base de datos para uso de tierra en Centro América. Cali, Colombia: Programa Uso de Tierra, CIAT. (mimeo).

Carter Simon, 1991. Análisis geográfico del uso de la tierra en Centroamérica.. Páginas 19-75 en Agricultura sostenible en las laderas centroamericanas, oportunidades de colaboración interinstitucional. IICA, CIAT, CATIE, CIMMYT. Coronado, Costa Rica, 13-16 de agosto 1991.

Chapman, S.C. y Barreto, H.J. 1994. Using simulation models and spatial databases to improve the efficiency of plant breeding programs. Paper (Chapter 33) presented at International Workshop on "The Analysis and Exploitation of Plant Adaptation in Agricultural Crop Improvement Programs", ICRISAT, Hyderabad, India, 28 Nov - 2 Dec 1994.

Corbett, J.D. 1993. CIM-LAN v. 1.0. Latin America North, 5 minute gridded database., Mexico City, Mexico: CIMMYT.

Hutchinson, M.F. 1991a. The application of thin plate smoothing splines to continent-wide data assimilation. Pages 104-113 in Data assimilation systems (Jasper, J.D., ed.) Melbourne, Australia: Bureau of Meteorology.

Hutchinson, M.F. 1991b. Climatic analyses in data sparse regions. Pages 55-72 in Climatic Risk in Crop Production: Models and Management for the Semiarid Tropics and Subtropics. Proceedings of the International Symposium on Climatic Risk in Crop Production: Models and Management for the Tropics and Subtropics (Muchow, R.C., Gellamy, J.A., ed.) Brisbane, Australia: C.A.B. International, Wallingford, U.K.

Instituto Panamericano de Geografía e Historia. 1976. Atlas Climatológico e Hidrológico del Istmo Centroamericano. Guatemala, Centro América. Guatemala City, Guatemala: IPGH.

Jones, P. 1988. CLIMATE Version 3.5. World tropical climate database. Cali, Colombia: Agroecological Studies Unit, CIAT.

Leonard, H.J. 1987. Natural resources and economic development in Central America: A regional environmental profile. Policy Studies Economics. International Institute for Environment and Development. Oxford, UK: Transaction Books.

11/17/95 c:\docs.vem\hb95\atlasnic.doc

NOAA-EPA, 1992. Global Ecosystems Database Version 1.0. User's Guide, Documentation, Reprints, and Digital Data on CD-ROM. Boulder, Colorado: USDOC/NOAA National Geophysical Data Center.

Posner, J.L., Antonini, G.A., Montanez, G., Cecil, R., Grigsby, M. 1980. Land Systems of Hill and Highland Tropical America. Seminario Internacional sobre Producción Agropecuaria y Forestal en Zonas de Ladera de América Tropical, CATIE Turrialba, Costa Rica, 1 - 5 de Diciembre 1980.

Agradecimientos

El autor desea agradecer al CIMMYT y al CIAT por el acceso a la base de datos de clima y uso de tierra para Centro América. A Scott C. Chapman por el apoyo técnico en el uso de SIG y herramientas de simulación.

Proporción de clases en las coberturas reclasificadas

Variable	Archivo		
TOPOGRAFIA	NICTOPO1	CLASE	% celdas
Plano mal drenado		0	8.1
Plano bien drenado		1	43.0
Laderas		2	44.0

Montaña

44.0

ELEVACION	NICELR2	CLASE	% celdas
< 250 msnm		1	60.7
250-500 msnm		2	17.1
500-750 msnm		3	11.8
750-1000 msnm		4	5.9
1000-1250 msnm		5	2.9
1250-1500 msnm		6	1.4
1500-1750 msnm		7	0.2

PRECIPITACION	NICPR13R	CLASE	% celdas
800-1600 mm		2	9.8
1600-2000 mm		3	23.1
2000-2400 mm		4	15.1
2400-2800 mm		5	11.0
2800-3000 mm		6	6.2
>3000 mm		7	34.9

TEMPERATURA	NICMT13R	CLASE	% celdas
< 20 C		1	2.1
20-22.5 C		2	7.4
22.5-25.0 C		3	24.7
25-27.5 C		4	65.7

EVAPOTRANSPIRACION	NICPE13R	CLASE	% celdas
1000-1200 mm		1	0.1
1200-1400 mm		2	6.6
1400-1600 mm		3	43.5
1600-1800 mm		4	40.3
>1800 mm		5	9.5

HUMEDAD RELATIVA	NICRH13R	CLASE	% celdas
65-70%		1	2.6
70-75%		2	13.9
75-80%		3	18.6
80-85%		4	58.1
>85%		5	6.8

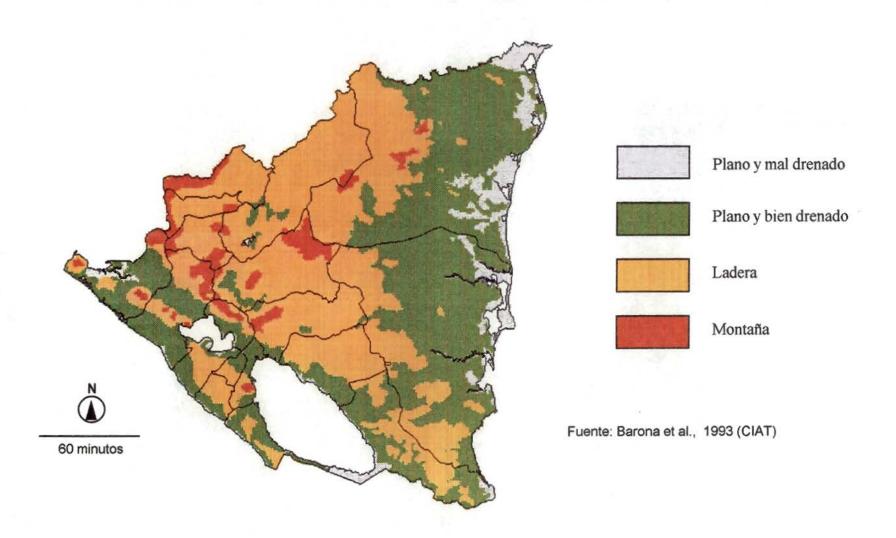
Proporción de clases en las coberturas reclasificadas

Variable Archivo MESES DE CICLO DE CULTIVO NICGM CLASE % celdas 3-5 m 3,4,5 5.7 6-7 m 6,7 35.5 8-9 m 42.9

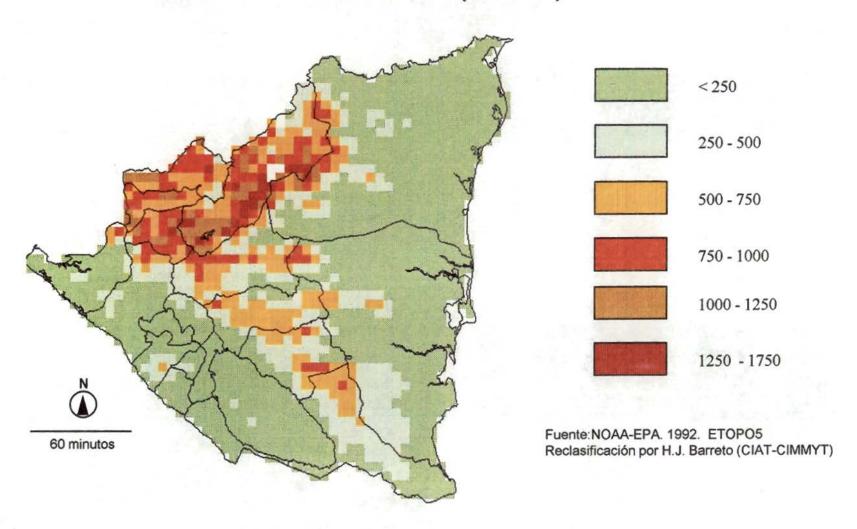
> 9 m

8,9

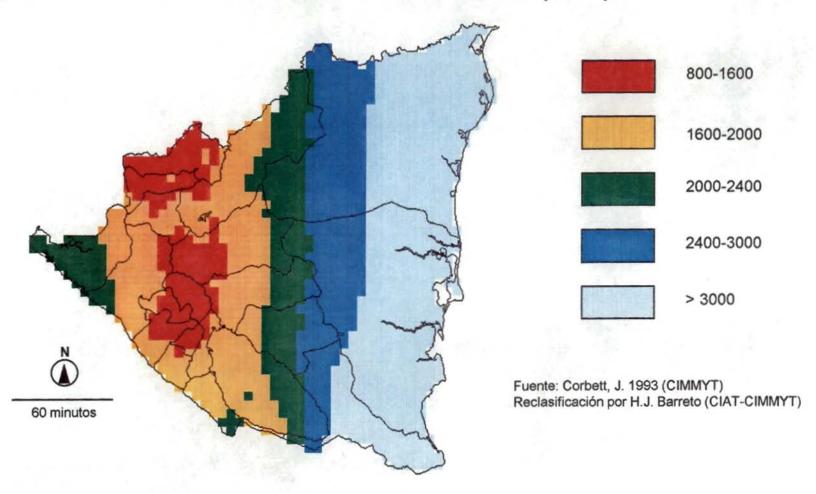
9,10,11,12

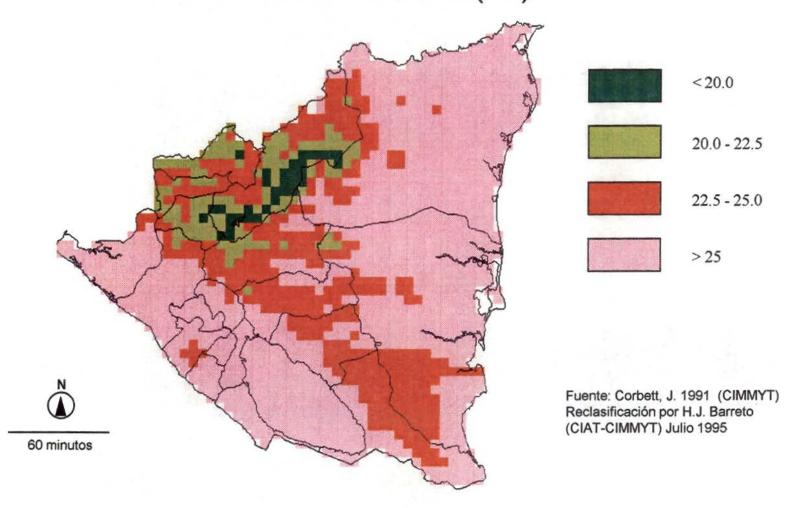

15.9

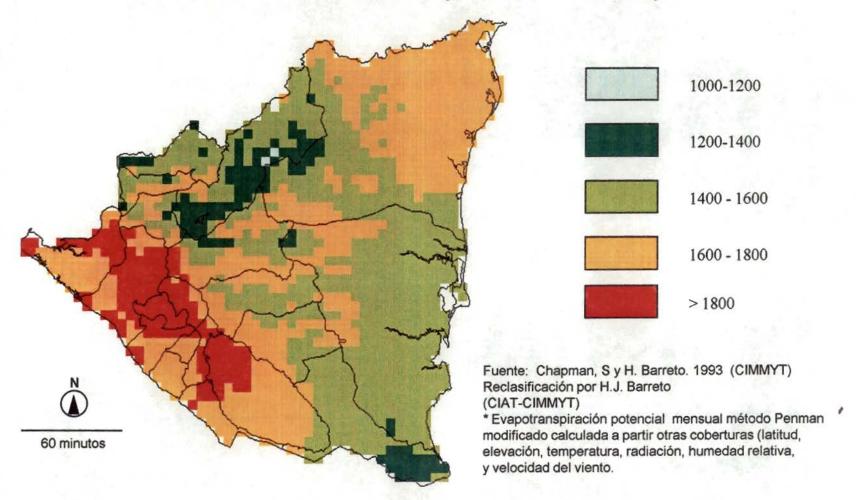
SUELOS	NICOSOIL	CLASE	% celdas
Acrisoles		1	41.3
Cambisoles		2	17.2
Regosoles		4	0.3
Redzinas		5	1.2
Gleysoles		7	11.7
Vertisoles		8	1.1
Fluvisoles		10	3.1
Planosoles		11	0.2
Luvisoles		12	4.7
Andosoles		13	6.6
Nitosoles		14	9.7
Histosoles		15	2.8

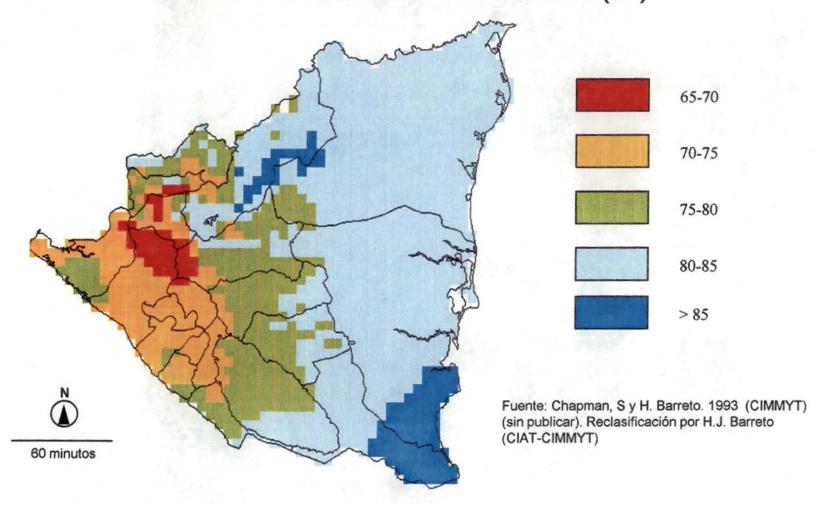

ATLAS DIGITAL DE NICARAGUA

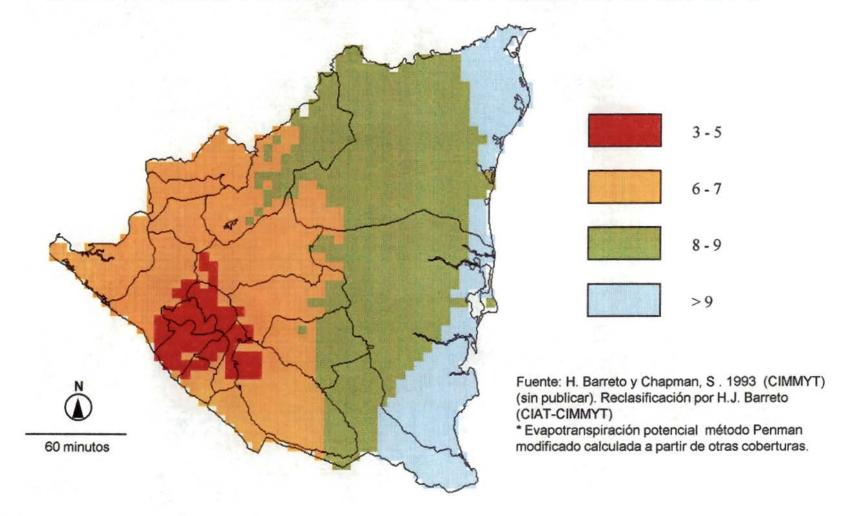
UNITAD DE 11-10 TEACION Y

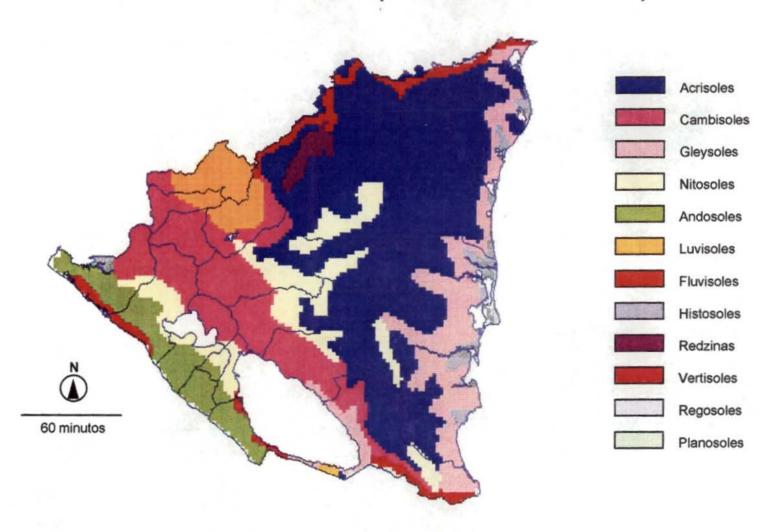

NICARAGUA, CLASES TOPOGRAFICAS

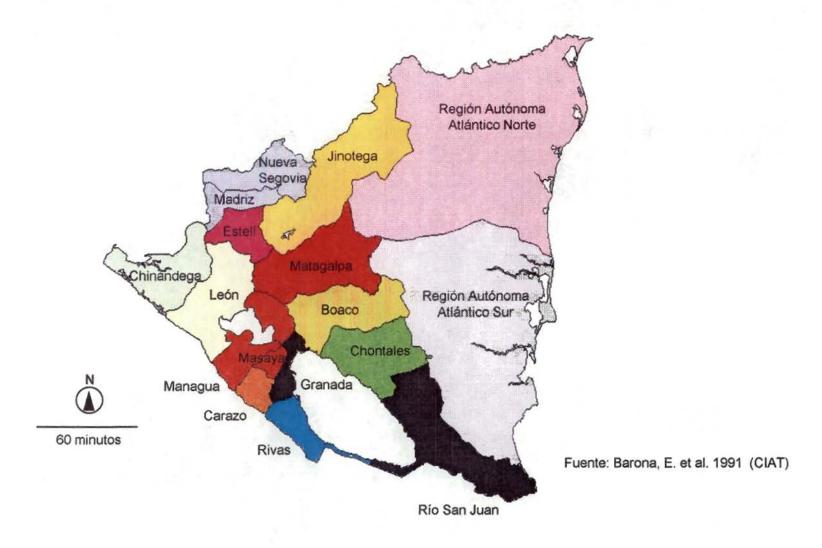

NICARAGUA, CLASES POR ELEVACION MODAL PROMEDIO (msnm)


NICARAGUA, CLASES POR PRECIPITACION ANUAL PROMEDIO (mm)

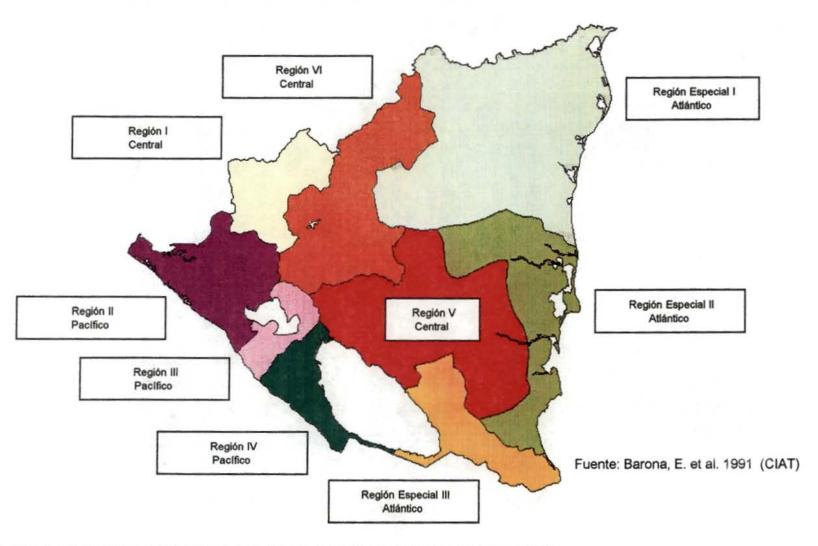

NICARAGUA, CLASES POR TEMPERATURA MEDIA ANUAL (°C)


NICARAGUA, CLASES POR EVAPOTRANSPIRACION ANUAL PROMEDIO (ETO* mm/año)


NICARAGUA, CLASES POR HUMEDAD RELATIVA PROMEDIO ANUAL (%)

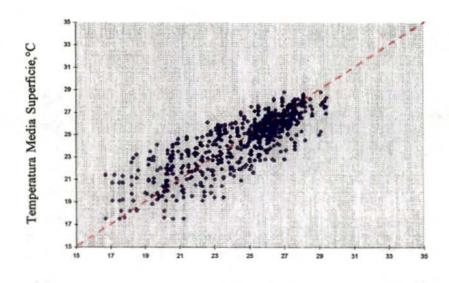

NICARAGUA, CLASES POR NUMERO DE MESES/AÑO CON PRECIPITACION MAYOR QUE 80% de EVT*

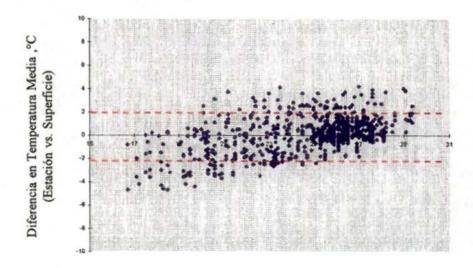
NICARAGUA, CLASES POR ORDEN DE SUELO (Clasificación FAO)



NICARAGUA, DIVISION DEPARTAMENTAL

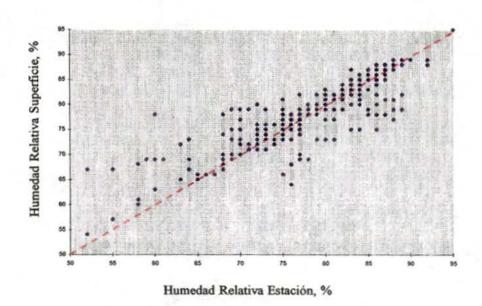
Base de datos del proyecto CIAT-laderas para Centro América, Tegucigalpa, Honduras 1995

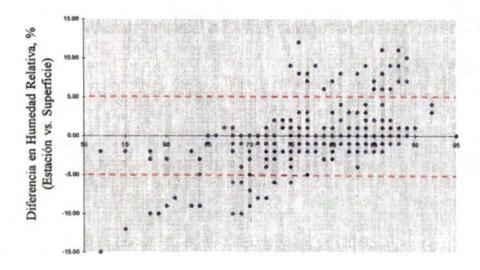

NICARAGUA, DIVISION POR REGIONES ADMINISTRATIVAS


Base de datos del proyecto CIAT-laderas para Centro América, Tegucigalpa, Honduras 1995

VALIDACIÓN DE SUPERFICIES DE INTERPOLACIÓN DE CLIMA

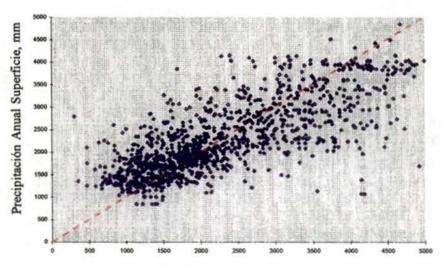
Validación de superficie de interpolación para Temperatura Media Mensual (°C) contra estaciones metereológicas en Nicaragua*

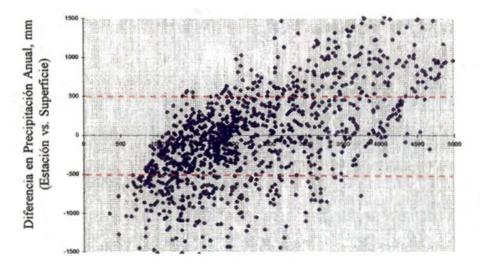

Temperatura Media Estación,°C



Temperatura Media Estación,°C

^{*} Fuente: Corbett, J. 1991. LAN 5 minute gridded database (CIMMYT)


Validación de superficie de interpolación para Humedad Relativa Mensual (%) contra estaciones metereológicas en Nicaragua*



Humedad Relativa Estación, %

Validación de superficie de interpolación para Precipitación Anual (mm) contra estaciones metereológicas en Latinoamérica*

Precipitación Anual Estación, mm

Precipitación Anual Estación, mm

CONTENIDO DE LA BASE DE DATOS DIGITAL

	IMAGES		
No.	FILENAME	DATE	DESCRIPTION OF COVERAGE
1	NICMT	08/31/95	TEMPERATURE CELSIUS MONTHLY ANNUAL AVERAGE SCREEN DUM
2	NICMT01	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE JANUARY
3	NICMT02	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE FEBRUARY
4	NICMT03	06/3/95	
5	NICMT04	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE APRIL
6	NICMT05	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE MAY
7	NICMT06		TEMPERATURE CELSIUS MONTHLY AVERAGE JUNE
8	NICMT07	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE JULY
9	NICMT08		TEMPERATURE CELSIUS MONTHLY AVERAGE AUGUST
10	NICMT09	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE SEPTEMBER
11	NICMT10	06/3/95	
12	NICMT11	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE NOVEMBER
13	NICMT12	06/3/95	TEMPERATURE CELSIUS MONTHLY AVERAGE DECEMBER
14	NICMT13	06/3/95	TEMPERATURE CELSIUS ANNUAL AVERAGE
15	NICMT13R	08/30/95	TEMPERATURE CELSIUS ANNUAL AVERAGE RECLASSED
16	NICPE	08/31/95	POTENTIAL EVAPOTRASPIRATION ANNUAL SUM SCREEN DUMP
17	NICPE01	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE JANUARY
18	NICPE02		POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE FEBRUARY
19	NICPE03	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE MARCH
20	NICPE04	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE APRIL
21	NICPE05	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE MAY
22	NICPE06	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE JUNE
23	NICPE07	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE JULY
24	NICPE08	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE AUGUST
25	NICPE09	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE SEPTEMBER
	NICPE10	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE OCTOBER
27	NICPE11	06/13/95	POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE NOVEMBER
28	NICPE12		POTENTIAL EVAPOTRASPIRATION MONTHLY AVERAGE DECEMBER
	NICPE13		POTENTIAL EVAPOTRASPIRATION ANNUAL SUM
30	NICPE13R		POTENTIAL EVAPOTRASPIRATION ANNUAL SUM RECLASSED
31	NICPE14M		MONTH WHERE MINIMUM VALUE OCCURS IN SERIES
32	NICPE15M		MONTH WHERE MAXIMUM VALUE OCCURS IN SERIES
33	NICPR		PRECIPITATION (MM) ANNUAL SUM SCREEN DUMP
34	NICPR01		PRECIPITATION (MM) MONTHLY AVERAGE JANUARY
35	NICPR02	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE FEBRUARY
36	NICPR03	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE MARCH
37	NICPR04	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE APRIL

38	NICPR05	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE MAY
	NICPR06	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE JUNE
	NICPR07	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE JULY
	NICPR08	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE AUGUST
	NICPR09	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE SEPTEMBER
	NICPR10	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE OCTOBER
44	NICPR11	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE NOVEMBER
	NICPR12	06/2/95	PRECIPITATION (MM) MONTHLY AVERAGE DECEMBER
	NICPR13	06/2/95	PRECIPITATION (MM) ANNUAL SUM
47	NICPR13R	08/30/95	PRECIPITATION (MM) ANNUAL SUM RECLASSED
48	NICPR14M		MONTH WHERE MINIMUM VALUE OCCURS IN SERIES
49	NICPR15M		MONTH WHERE MAXIMUM VALUE OCCURS IN SERIES
50	NICRH	08/31/95	RELATIVE HUMIDITY (%) ANNUAL AVERAGE SCREEN DUMP
51	NICRH01		RELATIVE HUMIDITY (%) MONTHLY AVERAGE JANUARY
	NICRH02	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE FEBRUARY
53	NICRH03		RELATIVE HUMIDITY (%) MONTHLY AVERAGE MARCH
54	NICRH04		RELATIVE HUMIDITY (%) MONTHLY AVERAGE APRIL
55	NICRH05	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE MAY
56	NICRH06	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE JUNE
57	NICRH07	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE JULY
58	NICRH08	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE AUGUST
59	NICRH09	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE SEPTEMBER
60	NICRH10	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE OCTOBER
61	NICRH11	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE NOVEMBER
62	NICRH12	06/1/95	RELATIVE HUMIDITY (%) MONTHLY AVERAGE DECEMBER
63	NICRH13	08/31/95	RELATIVE HUMIDITY (%) ANNUAL AVERAGE
64	NICRH13R	08/31/95	RELATIVE HUMIDITY (%) ANNUAL AVERAGE RECLASSED
65	NICELEV	08/31/95	RECLASS OF ELEVATION FOR NICARAGUA SCREEN DUMP
66	NICELEV5	05/19/95	ETOPO5 WINDOW FOR NICARAGUA
67	NICEL5R2	08/29/95	RECLASS OF ELEVATION EVERY 250 M
68	NICTOPO1	05/17/95	TOPOGRAPHIC CLASSES 1'
69	NICTOPO2	08/30/95	TOPOGRAPHIC CLASSES 1' ONE UNIT ADDED TO CLASSES
70	NICTOPO	08/31/95	TOPOGRAPHIC CLASSES SCREEN DUMP
71	NICWM	09/4/95	NUMBER OF WET MONTHS (EVT < PR)
72	NICHM	09/4/95	NUMBER OF HUMID MONTHS (EVT*0.8 < PR)
73	NICGM	09/4/95	NUMBER OF MONTHS WHERE PR > EVT*0.8
74	NICDM	09/4/95	NUMBER OF DRY MONTHS (EVT> PR)
75	NICGMX	09/4/95	NUMBER OF GROWING MONTHS SCREEN DUMP
76	NICFSOIL	06/5/95	FAO SOILS MAP FOR NICARAGUA
77	NICOSOIL	06/5/95	SOIL ORDERS FAO 2'
78	NICSOIL	09/1/95	FAO SOILS SCREEN DUMP
79	NICMASK1	05/16/95	NICARAGUA MASK 1'
80	NICPROV1	05/17/95	NICARAGUA DEPARTMENTS 1'

81	NICPROV	08/31/95	NICARAGUA DEPARTMENTS SCREEN DUMP
82	NICREGI1		NICARAGUA REGIONS 1'
83	NICREGI		NICARAGUA REGIONS SCREEN DUMP
84	NICBASE	06/13/95	NICARAGUA BASE MAP
85	NICFIX	06/13/95	FIXING ETOPO5 A LA TROPICALE

ECTOR	S		
	FILENAME	DATE	DESCRIPTION OF COVERAGE
1	NICAPROV	05/26/95	DEPARTMENT OUTLINES FOR NICARAGUA
2	NICPRDAT	05/17/95	STATIONS IN NICARAGUA WITH PRECIPITATION DATA
3	CAMCARR	05/8/91	ROADS IN CENTRAL AMERICA
4	NICAREGI	06/7/95	ADMINISTRATIVE REGIONS FOR NICARAGUA
5	NICMTDAT		STATIONS IN NICARAGUA WITH MEAN TEMPERATURE DATA
6	NREG_I	06/13/95	OUTLINE BY REGION
7	NREG_II	06/13/95	OUTLINE BY REGION
8	NREG_III	06/13/95	OUTLINE BY REGION
9	NREG_IV		OUTLINE BY REGION
10	NREG_V	06/13/95	OUTLINE BY REGION
11	NREG_9	06/13/95	OUTLINE BY REGION
12	NREG_7	06/13/95	OUTLINE BY REGION
13	NREG_8	06/13/95	OUTLINE BY REGION
14	NREG_VI	06/13/95	OUTLINE BY REGION
15	NLAGOS	06/13/95	OUTLINE OF LAKES
16	NICCOAST	06/5/95	OUTLINE OF NICARAGUA COAST LINE

Siglas

ANUSPLIN:

Software para interpolación de variables de clima (Hutchinson, M.F.)

CATIE:

Centro Agronómico Tropical de Investigación y Enseñanza

CIM-LAN:

Base de Datos Digital para el Norte de Latinoamérica, producido por el

CIMMYT

CIMMYT:

Centro Internacional de Mejoramiento de Maíz y Trigo

ETOPO5:

Modelo Digital de Evaluación de Resolución 5 minutos, producido por la

NOAA-EPA

FAO:

Organización de las Naciones Unidas para la Agricultura y la

Alimentación

ICRISAT:

International Crops Research Institute for the Semi-Arid Tropics

IDRISI:

Sistema de Información Geográfica, producido por J. Ronald Eastman,

Clark University

IICA:

Instituto Interamericano de Cooperación para la Agricultura

PASOLAC:

Programa de Agricultura Sostenible de Laderas en Centro América

SIG:

Sistema de Información Geográfica

TIF:

Archivos de Intercambio Gráfico

Documentos del proyecto

- CIAT, 1993. Improving agricultural sustainability and livelihoods in the Central American hillsides: A proposal for Swiss Development Cooperation (SDC). Cali, Colombia: CIAT. (mimeo.)
- Hector Barreto y Karen Dvorak. Mayo 1995. Plan Operativo. Reporte Interno. Tegucigalpa, Honduras: CIAT. (mimeo.)
- Hector Barreto y Karen Dvorak. Junio 1995. Los comités locales del Programa de Laderas-CIAT en Honduras y Nicaragua: Fase de Organización. Reporte Interno. Tegucigalpa, Honduras: CIAT. (mimeo.)
- Raúl Moreno. Agosto 1995. Resumen de la Primera Reunión del Grupo Consultivo del Proyecto de Laderas de América Central, La Lima, Cortes, Honduras, 18-20 de Mayo de 1994 y Objetivos y Conclusiones del Taller de Consulta en Managua, Nicaragua, 27-28 Agosto 1993. Reporte Interno. Tegucigalpa, Honduras: CIAT. (mimeo.)
- Hector Barreto. August 1995. Digital Database of the IV National Agricultural Census for Honduras at Municipio Level. Internal Report, not for distribution. Tegucigalpa, Honduras: CIAT. (mimeo.)
- Edy López y Pedro Jiménez. Agosto 1995. Ayuda Memoria de la Segunda Reunión del Comité Local de Operación-Yoro. Yorito, Yoro, Honduras: CIAT. (mimeo.)
- Edy López, Pedro Jiménez y Luis Brizuela. Agosto 1995. Segunda Reunión del Comité Local de Operación-Atlántida. Ayuda Memoria. Tegucigalpa, Honduras: CIAT. (mimeo.)
- Karen Ann Dvorak y Pedro Jiménez. Septiembre 1995. Guía para el sondeo sobre recursos agrícolas en América Central. Reporte Interno. Tegucigalpa, Honduras: Centro Internacional de Agricultura Tropical. (mimeo.)
- CIAT/UNAH. Marzo 1995. Base de datos de agricultura en laderas en Honduras. Tegucigalpa, Honduras. CIAT.