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It happens that the two infima are the same. Finding inf X~*subject to X < Y isequivalent
to finding the maximum of X(cos ¢; — 5)? subject to a?X(cos ¢, —s)* < b2X(sin$; —¢)?. Adding
the condition X (cos ¢, — §)2 + 2 (sin ¢; — t)? < n, we find that max X (cos ¢; — s)* = nb?[(a? + b?)
and the maximum is reached if and only if (2-8) is satisfied.
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A new class of resolvable incomplete block designs
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SUMMARY

This paper describes an algorithm for constructing resolvable incomplete block designs
for any number of varieties v and block size k such that » is a multiple of k. These designs
are called a-designs. They include as special cases some lattice and resolvable cyclic designs.
Additional designs with two block sizes differing by one plot are derived by omitting one or
more varieties of the o-designs. The designs are shown to be available with high efficiency
factors for a wide range of parameter values.

Some key words: Concurrence matrix; Cyclic design; Efficiency factor; Incomplete block design;
Rectangular lattice; Resolvability ; Square lattice; Variety trial.

1. INTRODUCTION

Every year, several hundred designs are required in the United Kingdom for statutory
field trials of agricultural crop varieties. Numbers of varieties in these trials are fixed, i.e.
not at the choice of the statistician, and large enough to require use of incomplete block
designs or some other method of controlling error. Numbers of replications are also fixed.
Designs must be resolvable, i.e. the blocks must be capable of arrangement in complete
replications.

Attempts to create a file of designs for this purpose have revealed a shortage of tabulated
resolvable incomplete block designs. At present the main sources of resolvable designs in
the literature are (@) the lattice designs introduced by Yates (1936) specifically for variety
trials, (b) the two-replicate designs described by Bose & Nair (1962) and (c) the resolvable
eyclic designs considered by David (1967).

Lattice designs are available only for limited numbers of varieties and block sizes. Thus,
simple and triple square lattices require v, the number of varieties, to be the square of s,
the number of blocks in each replication; the block size k is also s. Further conditions are
imposed on v in quadruple and higher order lattices.

Harshbarger (1949) extended the lattice principle to simple and triple rectangular latitices
with v of the form s(s— 1) and k = s — 1. Kempthorne (1952, Chapter 25) pointed out that
similar designs are available for other v of the form s(s — l) with k = s—land s > [ but gave
few details. For plans for square and rectangular lattice designs, see Cochran & Cox (1957,
Chapter 10).

Bose & Nair’s (1962) designs very usefully augment the simple square and rectangular
lattices but there appears to have been no parallel development for higher order lattices.
David’s (1967) construction for cyclic designs is capable of producing a large number of
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resolvable designs but again there are restrictions; this time & must equal either 7, the num-
ber of replications, or a multiple of 7.

Some other incomplete block designs are also resolvable. Clatworthy (1973) provided
information on the resolvability or otherwise of most of the partially balanced incomplete
block designs with two associate classes in his extensive tables. The resolvable designs are,
however, usually either square lattices or less efficient alternatives.

In the present paper we describe a method for constructing a class of resolvable equiblock-
sized designs, called o-designs, with no limitation on block size other than the unavoidable
constraint that & must be a factor of ». This method has been developed to provide a simple
computer algorithm for automatic production of plans for variety trials. We also consider
the provision of designs for numbers » without a factor in the range of acceptable block sizes.

2. CONDITIONS OF THE DESIGN PROBLEM

Under the conditions operating at present in the United Kingdom variety testing system
numbers of trials, replications, and control varieties are specified as part of the trial system.
The total number of varieties depends on the number of new varieties submitted for test,
and the availability of seed. This number may vary from centre to centre and is often not
known until shortly before sowing. All varieties are equally replicated.

Practical field conditions dictate that all designs used for these trials are resolvable.
Thus some important disease measurements are expensive and have to be restricted to one
or two replications. Again, large trials cannot always be completely drilled or harvested in
a single session. Use of resolvable designs allows these operations to be done in stages, with
one or more complete replications dealt with at each stage.

Yates (1939, 1940) has pointed to other advantages of resolvable designs. On page 325
of his 1940 paper he noted that

cases will arise in which the use of ordinary randomized blocks will be more efficient than the use of
incomplete blocks, whereas lattice designs can never be less efficient than ordinary randomized blocks.
This advantage of lattice designs is shared by all other resolvable incomplete block designs.
Yates (1940) further stated that

incomplete block designs which cannot be arranged in complete replications are likely to be of less
value in agriculture than ordinary lattice designs. Their greatest use is likely to be found in dealing
with experimental material in which the block size is definitely determined by the nature of the
material.

In variety trials, of course, a wide choice of block size is open to the experimenter.

We have attempted to deal with the problem of providing incomplete block designs for
statutory variety trials by creating a computer file of resolvable designs for values of v, »
such that » = 2, 3,4 and » < 100. Block sizes are chosen, in the range 4 to 16, to achieve a
compromise between the reduction in within-blocks variance associated with small blocks
and the loss of within-block contrasts. Equal-sized blocks of k plots with £ < v can be used
only when v is a multiple of k. Thus we have the further conditions that for s > 1, » = ks
and & = 4,...,16. When v is not a multiple of a suitable value of k& two block sizes are
allowed; we impose the condition that the difference in size must not be more than one plot.
For example, 46 varieties could be tested in a design with three blocks of 6 and four blocks
of 7 per replication.
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3. CONSTRUCTION OF RESOLVABLE DESIGNS WITH BLOCKS OF EQUAL SIZE

We now describe the construction of a-designs for v varieties with s blocks of & plots
in each of 7 replications, v = ks.

The construction starts with a & x r array o with elements a(p,q) in the set of residues
mods(p=1,...k;¢=1,...,7). Each column of «is used to generate s — 1 further columns
by cyclic substitution. The resulting k x 7s array will be denoted by a*. Next we add s to
all elements in row 2 of a*, 2s to all elements in row 3, and so on. The elements of the resulting

Table 1. Construction of design for 20 varieties in 3 replications
each with 4 blocks of 5 (v = 20,7 = 3,s =4,k = b)

Generating array, o Intermediate array, o*

0 0 3 0 2

0
2
3
1
2

Plan

Replication I Replication II Replication ITT

1 2 3 4 5 6 7 9 11 12

o 1 2 3 0o 1 2 0 2 3
4 5 6 7 5 6 7 6 7 4 5
8 9 10 11 10 11 8 i1 8 9 10
12 13 14 15 15 12 13 1 13 14 15 12
16 17 18 19 19 16 17 1 18 19 16 17

array are now the symbols 0, 1,...,v— 1 representing the v varieties. The columns are the
blocks of the required design. Each set of columns generated from the same column of o
constitutes a complete replication.

For example, Table 1 gives the construction of a design for three replications of 20
varieties, each replication consisting of four blocks of five.

The number of concurrences of any two varieties, i.e. the number of blocks containing
both varieties, can be determined by inspection of o without actually constructing the
complete design. This facility is of great value in choosing suitable generators. Thus, the
number of concurrences of varieties ¢ and j is the frequency of (j—¢) mod s in the set of r
differences {a(p,, q) —a(p;, @)y mod s (¢ = 1,...,7), where p, is one more than the integral
part of 4/s.

To illustrate, we consider the concurrence of varieties 7 and 8 in the example. The values
of p;, p; and (j—)mods are 2, 3 and 1. The difference 1 occurs twice in the set 0, 1, 1 of
differences obtained by subtracting the elements of the second row of & from the elements
of the third row. Hence varieties 7 and 8 concur twice. It follows immediately that the
pairs 4 and 9, 5 and 10, and 6 and 11 also concur twice.

A design with concurrences gy, s, ... Will be referred to as an a(gy, g, ...)-design; the
example is therefore an «(0, 1, 2)-design.

The generating array used in the example is of a particular kind, called a reduced array,
with all elements zero in the first row and first column. Other arrays can be used but each
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design so obtained is isomorphic to the design given by a reduced array. Thus, for example,
the array o, given by

oy =

DO = e e
W N = O W
S N O W =

with s = 4 generates a design that is isomorphic to the design of Table 1. This can be demon-
strated by converting «, to reduced form by the following operations:

(@) add 3 to all elements in column 1, 1 to all elements in column 2 and 3 to all elements
in column 3, in each case reducing mod 4;

(b) add 3 to the elements in row 5 and again reduce mod 4.

The reduced form is therefore the array in Table 1. Operation (a) results in a rearrange-
ment of blocks, and operation (b) in a relabelling of varieties.

Other operations generating isomorphic designs include permutation of rows, permuta-
tion of columns and multiplication of all elements by an integer that is coprime to s.

4. DERIVED DESIGNS WITH UNEQUAL BLOCK SIZES

Often none of the factors of » falls in the range of acceptable block sizes. We then use
designs with two different block sizes. These designs exist when v can be expressed in the
form v = s, k, + s, &y, where s;, 85, ky, k, are positive integers. Each replication consists of s,
blocks of &, and s, blocks of k,. To minimize the inequality in block size we impose the
condition k, = k, — 1. The designs are derived from a-designs as follows:

(1) construct an a-design for v+s, varieties with s = s; +s, blocks of k, plots in each
replication;

(2) delete a set of s, varieties, no two of which concur. The varieties labelled v, ..., » + 8y—1
provide such a set.

For example, deletion of the varieties labelled 17, 18, 19 from the design in Table 1 gives
a design for 17 varieties with one block of 5 and three blocks of 4 in each of three replications.

5. CHOICE OF DESIGNS

Efficient «(0, 1)-designs or «(0, 1, 2)-designs can be constructed for 376 of the 414 com-
binations of 7, » and k satisfying the conditions of §2. Many further useful designs with
two block sizes can be derived by deletion of one or more varieties of o-designs.

Tables of suitable generating arrays and full details of the theory, construction and
properties of these designs are in a recent Edinburgh Ph.D. thesis by E. R. Williams. Copies
of the tables are also available separately.

In the present paper we describe some of the considerations governing the choice of
generating arrays, establish a few existence results and briefly compare the designs with
some known resolvable designs.

In constructing the tables the aim has been to choose, for every admissible value of k, a
single a-design with efficiency factor & as large as possible. Any factor of v is an admissible
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value of k. The efficiency factor is defined as the ratio +'[r such that o?/r’ is the average
variance of normalized contrasts and o the error variance in the within-block analysis of
the incomplete block design. Designs with maximum % among all a-designs are called
“_optimal.

A combination of theory and computation has been used in constructing the tables.
When 7 = 2, a-optimal designs are generated by reduced « arrays with second column
given by the leading block of the most efficient symmetrical cyclic incomplete block
design for s varieties in blocks of & (Williams, 1976). John, Wolock & David (1972) give
many of the cyclic incomplete block designs required for this purpose. Arrays giving optimal
designs are also known for a few special combinations of v, & and r = 3 or 4. In most cases,
however, the tabulated designs have been obtained by an empirical two-stage process.
Stage 1 consists of the selection of a set of nonisomorphic designs judged likely to be of high
efficiency. In stage 2, I values are calculated and the final selection made.

Table 2. Efficiency check of a-designs and derived designs withr = 4,8 =5

v E B, E|E, v E B, E|E,
18 07399 07612 0-9720 30 08392  0-8447  0-9935
19 07551 07714  0-9789 40 08765  0-8797  0-9964
20 . 07686  0-7808  0-9844 50  0-9018 09018  1-0000
21 07804  0-7895  0-9885 60 09160 09171  0-9988
22 07911 07975  0-9920 70 09278  0-9283 09995
23 0-8010  0-8049  0-9952 80 09364  0-9368  0-9996
24 08099 08118  0-9977 90 09431  0-9435 09996
25 08182  0-8182  1-0000 100 09489  0-9489  1-0000

26 0-8232 0-8242 0-9988
27 0-8278 0-8298 0-9976
28 0-8319 0-8351 0:9962
29 0-8357 0-8400 0-9949

Among the criteria used in stage 1 are (¢) minimization of the range of off-diagonal
elements in the concurrence matrix, and (b) minimization of the number of off-diagonal
elements greater than one. These criteria are intuitively acceptable and (a), at least, has
been used by other workers, e.g. John (1966). Thus, given the choice, we prefer an «(0, 1)-
design to an «(0, 1, 2)-design. If we have to use an (0, 1, 2)-design we prefer one with as
few pairs of varieties as possible concurring twice.

We note that the construction of a-designs prevents the concurrence of any two varieties
i and j such that the integral parts of /s and j/s are equal. Hence neither balanced «-designs
nor «(1, 2)-designs exist. Balanced designs have, however, already been ruled out in the
present application by the specification in §2. The largest number of replications allowed
by the specification is k; for balance the number must be at least &+ 1.

The empirical two-stage procedure gives no assurance that a selected design is :-optimal.
We can, however, often show that there is little potential for future improvement by
comparing the final value of Z with an upper bound given by the efficiency factor A,
that would be obtained if all contrasts confounded in any one replication were completely
orthogonal to contrasts confounded in other replications. Under this usually unattainable
condition the variance of a normalized contrast in any of the » confounded sets of s—1
degrees of freedom would be (r —1)~1 02, where o2 is the within-block error variance; the
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variance of a contrast not confounded in any replication would be 7102, The average
variance would be

v—1| r—1 7

1 {7‘(8— 1) ol 1—r(s— 1)} o2,

_ (v—1)(r—1)
T =) (r—1)+r(s—1)

Table 2 gives values of I, B, and their ratios for tabulated a-designs and derived designs
with five blocks in each of four replications. Two checks show that there is little scope for
improvement.

(i) The ratios E/E, are close to unity.

(if) There is a smooth progression of values of B/E, with changing v.

The square lattice designs for » = 25 and the related designs for v = 50, 75, 100 are optimal,
i.e. with largest possible &. Almost maximum E values are achieved for all » larger than 25,

6. AVAILABILITY OF (0, 1)-DESIGNS

A necessary condition for the existence of an a(0, 1)-design with s blocks of size % in each
of r replications is that k < s.

Proof is in two stages. First we verify that no two blocks can have two or more varieties
in common. Otherwise those varieties would concur two or more times and the design would
not be (0, 1). Now consider one particular block B. This block must have a single variety
in common with exactly k(r— 1) of the s(» — 1) blocks that are not in the same replication
as B. Hence k(r—1) < s(r—1) and the condition % < s follows. The condition and proof
apply not only to (0, 1)-designs but to any binary resolvable designs with numbers of
concurrences 0 or 1.

The further necessary condition that r < s is automatically satisfied in the present
application since the largest # is not larger than the smallest k; this condition would, how-
ever, become operative if » were increased beyond 4.

Although necessary, the condition % < s is not sufficient to guarantee the existence of
an (0, 1)-design. However, (0, 1)-designs are available for 188 of the 198 combinations
of 7, v and £ satisfying the restrictions imposed in §2 and % < s. The exceptions are listed
in Table 4(ii). Known designs include the following general series:

L r=2Fk<s;
II. = 3,s0dd, k < s;
III. » = 3, seven, k < s—1;
IV. r = 4, sodd but not a multiple of 3, & < s.

No (0, 1)-designs are known with r = 3, s even and & = s. Series IV provides about half
of the required designs with four replications. No general solutions have been found with
§ even or a multiple of 3 but individual solutions are available for all combinations within
the required range except those listed in Table 4(ii).

Generating arrays for the four series are in Table 3. Arrays for smaller & can be obtained
by deleting appropriate numbers of rows. It is important to note, however, that the resulting
designs are not necessarily «-optimal.
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Table 3. Generators for (0, 1)-designs of series I-I'V

Series T Series 1T Series 11T Series IV
r=3,s0dd,k <s 7 =3,seven,k <s—1 r =4,s0dd,s £ Omod 3,k < s
0 0 0 0 0
0 1 s—1 1 s—1
0 s—2 2 s—2
. . . 3
4

¢=2,k<3

0
0
0

s—3
s—4

7. AVATILABILITY OF (0, 1, 2)-DESIGNS

Almost all the gaps left by (0, 1)-designs are filled by a-designs with some pairs of
varieties concurring twice. These designs, like all other a-designs, must include some zero
concurrences; usually, but not always, there are also single concurrences.

When 7 is 2 no pair of varieties can concur more than twice. When 7 is 3 or 4, «(0, 1, 2)-
designs exist if and only if & < s%. A further condition 7 < 2s is also necessary but does not
affect availability until » > 4.

The sufficiency of the condition & < s* can be demonstrated by constructing an s?x 4
array with zero elements in column 1 and elements in columns 2, 3 and 4 given by the rows,
columns and letters of any s x s Latin square. The array generates a four-replicate «(0, 1, 2)-
design with & = s2. Designs for smaller & are obtained by omitting one or more rows of iohe
array and designs for r = 3 by omitting the fourth column. Necessity is proved b:y s.howmg
that an array with more than s rows gives a design with at least one pair of varieties con-
curring three or more times. Columns 2 and 3 of this array must be such that a(p;, 2) = a(p;, 2)
and a(p;, 3) = a(p;, 3) for at least one pair of rows p;, p; (p; + p;). Then

a(p;, ) —a(p;,q) = Omod s

for ¢ = 1,2 and 3; that is, varieties (p; — 1) s and (p; — 1) s concur at least three times.

The condition & < s? rules out the possibility of three- and four-replicate (0, 1, 2)-designs
for (i) even v, 32 > v > 10, k = }v, and (ii) » = Omod 3, 48 > v > 30, k = }v. All other com-
binations of parameters in the range specified in §2 are covered by «(0, 1)-designs and
(0,1, 2)-designs.

8. COMPARISON WITH LATTICE DESIGNS
The four series of «(0, 1)-designs described in §6 include some but not all square and
rectangular lattices. The following lattice designs with parameters in the range specified
in §2 are not c-designs:
A. rectangular lattices for » = 3 or 4, s even;

B. square lattices for » = 3 or 4, s even;
C. square and rectangular lattices for » = 4, s = 9.

Additional design-generating algorithms would be required to include these lattice
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designs in the file. Efficient substitute designs are, however, available in the a-series.
Table 4 shows that we can use suitably chosen (0, 1)-designs instead of lattice designs A
with trivial loss of efficiency, and that ¢(0, 1, 2)-designs can be used as efficient substitutes
for lattice designs B and C; no «(0, 1)-designs are available for the latter.

Table 4 includes one set of parameters (r = 4,v = 30,k = 5) for which an «(0, 1)-design
exists but no rectangular lattice. The value £ = 0-8046 for the a-design compares well with
the upper limit 0-8131 given by H,.

Table 4. Efficiency factors for (0, 1) and (0, 1, 2)-designs used instead of
square and rectangular lattices

(i) (0, 1)-design (i) (0, 1, 2)-design

a(0, 1)- Lattice (0, 1, 2)- Lattice
7 v k design design 7 v k design design
3 30 5 0-7843 0-7856 3 16 4 0-7538 0:7692
56 7 0-8355 0-8358 36 6 0-8186 0-8235
90 9 0-8661 0-8663 64 8 0-8549 0-8571
100 10 0-8788 0-8800
4 30 5 0-8046 *

56 7 0-8515 0-8518 4 16 4 0-7770 0-7895

90 9 0-8794 0-8796 36 6 0-8360 *
64 8 0-8692 0-8710
72 8 0-8599 0-8672
81 9 0-8759 0-8824
100 10 0-8909 0-8919

* Design nonexistent.

Similarly an a(0, 1, 2)-design can be used effectively to fill the gap left by the nonexistence
of a square lattice design for four replications of 36 varieties. The efficiency factor of the
a-design is 0-8360; the upper bound is 0-84.

The array
00 0 O
0 1 2 J
0 2 5 4
0 3 1 2
0 4 3 1
[0 5 4 0

generates the (0, 1, 2)-design; the first five rows generate the «(0, 1)-design for 30 varieties.

.

9. RESOLVABLE CYCLIC DESIGNS

David (1967) has shown that a symmetrical cyclic incomplete block design with initial
block

(dok,dike+1,dyk+2,...,dp_1k+k—1)

is resolvable; the numbers d, d,, ..., d;_, are residues mod s. This design is also an «-design
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with generating array given by the matrix

dy dp_+1 ... dj+1

d, dy ver dyt1

d, d, v dg+11,
i1 di_s ... dy

with all elements reduced mod s.

For example, design C53 given by John et al. (1972) for v = 24, » = k = 4 has leading
block 0, 1, 10, 3 and is therefore an a-design with generating array in original and reduced
form

01 3 1 0 0 0 O
0 0 1 3 0 6 4 2
2 0 0 1) 0 3 1 4
0 2 0 0 01 3 5

In a more general series of resolvable cyclic designs for integral k/r the leading block
consists of the k possible sums of one element of the set §; and one element of the set S,,
where

8; =1{0,b,2b,...,(k—7)b[r},
Sy = {dor,dyr+1,dyr+2,...,d,_yr+r—1},

and b is the total number of blocks, that is 7s. These designs also are isomorphic to «-designs.

This series can be regarded as a subset of the class of «-designs with constraints on the
number and contents of the columns of the generating arrays. John et al. (1972) include a
wide range of designs of this type for » = 2 and a few for » = 3, 4.

10. AVAILABILITY OF DERIVED DESIGNS WITH UNEQUAL BLOCK SIZES

The availability of designs derived by the method described in §4 is determined by the
existence of solutions to the equation v = s, k; + s, k,. Solutions exist for many but not all
combinations of » and k,. They can be obtained systematically for a given combination by
determining the smallest positive integer d such that v —dk, = ck,, where cis also a positive
integer. Then the complete set of solutions is given by

8 =c—fky, sy=d+fky (f=0,1,...,m),

where m is the largest positive integer for which mk, is smaller than c.

For example, if v = 86, k; = 8 we find ¢ = 9, d = 2 and hence m = 1. There are therefore
two solutions as follows: (i) s; = 9,8, = 2; (ii) 8; = 2,8, = 10. Solution (i) is used if the
preferred block size is 8, solution (ii) if the preferred block size is 7.

By contrast, no solution exists for v = 41, k; = 8 as none of the integers 34, 27, 20, 13, 6
is divisible by 8. The complete set of values of v for which no solution is available when
k, = 8 consists of: (@) any v < 15; (b) 21, 28, 35, 42, 49, 56; (c) 16, 24, 32, 40, 48, 56; (d) the
10 numbers 17, 18, 19, 20, 25, 26, 27, 33, 34, 41.

Multiples of 7 or 8 are in any case best dealt with by a-designs proper. Designs in blocks
of 6 or mixtures of blocks of 6 and 7 are available for all » in list (d) except 17; designs in

e
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blocks of 9 or mixtures of blocks of 8 and 9 are available for all v in list (d) except 19 and
20. Hence a combination of o-designs with & = 6, 7 and 8 and derived designs with &, = 7,
8 and 9 can be used to cover the whole range of v such that v > 12.

More generally, a combination of a-designs with &k = &', ..., k" — ¢ and derived designs
with &, = &' +1, ..., k" cover the range of v such that v > 2&', where k' is a positive integer,
k" is the smallest integer such that k" > }(3%'— 1) and ¢ is 0 when £’ is odd and 1 when &’
1S even.

11. ANALYSIS

The a-designs described in the present paper have been developed specifically for a
computer-based application. For this reason computational simplicity has not been con-
sidered an important criterion in the choice of designs. We have, however, been concerned
to choose designs with narrow ranges of variances for pairs of varieties with equal con-
currences. This permits results to be presented with only two average variances for (0, 1)-
designs and three for a(0, 1,2)-designs. This type of simplification has been used for
rectangular lattices by Cochran & Cox (1957, p. 422).

E. R. Williams’s work was done while supported by a C.S.I.R.O. Postgraduate Student-
ship.
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A geometric characterization of connectedness
in a two-way design

By DAVID G. HERR
Department of Mathematics, University of North Carolina, Greensboro

SUMMARY

A geometric characterization of connectedness in a two-way design is given. This
characterization is used to study four different analyses of the usual hypotheses about row
effects, column effects and interactions in two-way designs with empty cells.

Some key words : Analysis of variance; Connectedness; Orthogonal sums of squares; Two-way design;
Vector space.

1. INTRODUCTION

The purpose of this work is to continue the examination of the geometry of unbalanced,
two-way designs begun by Burdick, Herr, O’Fallon & O’Neill (1974). In particular the
case of no observations for some of the treatment combinations is considered.

In performing an analysis of variance on a two-way design, the squared length of the
projection of the data vector on a subspace, &, of the estimation space, E,, corresponding
to violations of the null hypothesis is compared with a stochastically independent estimate
of the within-cell variability. Burdick et al. (1974) discussed several possible subspaces ¢
corresponding to violations of the usual null hypotheses when there is at least one obser-
vation per cell. Table 1 summarizes that work for hypotheses in a 3 x 4 design: H,: no
difference in main row effects, H,: no difference in column main effects, [;: no interaction.
The model used here is the cell mean model Y,,. = u,,+e,, (p =1,2,3;9=1,2,3,4;
r=1,..,m,)or Y =Tf+efor ¥ the vector of Y, § the vector of p,,, T' the design
matrix and e the error vector of e,,,. It is assumed that e is distributed as N (0, 02[). Also

Ny, = g Nipgs
g =$Zplpg Mg = Zp(MpglMg) Popgs  Fopse = Bq(Tpg|p.) g

The notation for the subspaces &,, G, and @, is approximately that of Burdick et al. (1974).
To summarize briefly, the spaces 4 and B which are defined in §2 are converted into G’s
by either first orthogonalizing for the mean and then taking best estimates, denoted for
example by 4 |*J, B|*J, or by first transforming the space using 7' and then adjusting,
for example A | B=1(4) | T'(B). Here a4 | B is defined to be the orthogonal complement
of Bin A+ B, that is A+ B = ﬁ| B @ B. Further, J is the space spanned by the kx 1
vector of all 1’s and k is determined from the context. The angle 6 between 4 | J and B |J
measures the nonorthogonality of the design and in this case is in fact a pair of angles,
(04, 0,). Examples of these angles appear in Tables 3, 4 and 6.

From Table 1 it is clear that in the unbalanced two-way model there are trade-offs
between orthogonality of @, and G, and convenience and/or suitability of parametric
hypotheses. In choosing an appropriate analysis, I consider that careful thought should

= = =1
Ng= Zp"pq’ ", = Eﬂzq'npq’ Py, = 42(1/‘73!1’




