

UNIVERSITÄT HOHENHEIM

Scaling-up nutrient balances from plot to village level under small-holder settlement schemes in sub-humid Zimbabwe

Juan Guillermo Cobo^{1,2}, Gerd Dercon³, Robert Delve² and Georg Cadisch¹

1.Introduction

- Nutrient balances are useful tools as indicator of ecosystem quality and for optimizing nutrient use.
- Does the scale of assessment affect the conclusions obtained?

2. Objective

- To compare partial (and full) nutrient balances of three representative Zimbabwean villages from contrasting settlement periods (50s, 80s and early 2000) at different spatial scales.

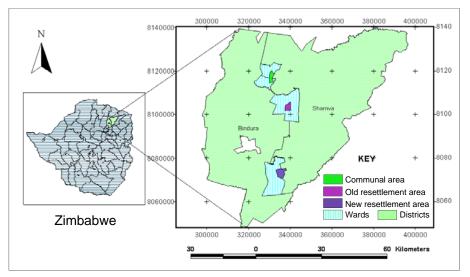


Figure 1. Location of study sites in Zimbabwe

3. Methodology

- During the 2006-7 cropping season, 27 stratified farmers on the 3 villages were randomly selected

Table 1. Main characteristics of the study sites

	Village				
Characteristic	Kanyera	Chomutomora	Hereford Farm		
Settlement type	Communal area	Old resettlement	New resettlement		
Settlement time	1948	1987	2002		
Main soil type	Loamy sand	Sandy Loam	Clay		
Main crops	Maize, groundnuts	Maize, cotton	Maize, cotton		
No. of households	90	38	72		
Village area (ha)	730	780	1350		

- Nutrient resource flow maps were carried out with each farmer, linking all land cover types

4. Results

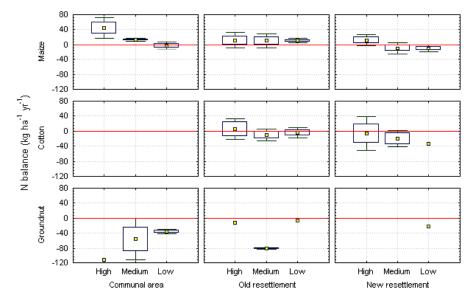


Figure 2. Partial N balances for different crops by farmers wealth class show differences due to resource endowment and crop type. Negative partial N balances in groundnut are artificial, as it is a N-fixing plant.

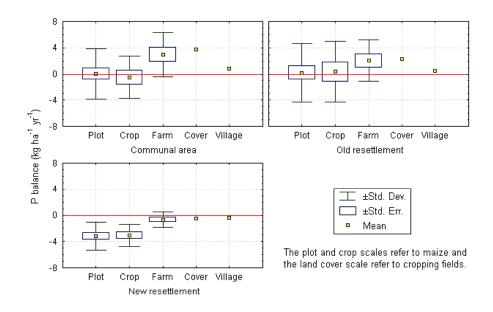


Figure 3. Partial P balances at different scales show differences according to the scale and the village under study.

Table 3. Partial N and P balances (kg ha⁻¹ yr⁻¹) for different land cover types suggest cropping fields being favored at expense of other lands.

	Cropping Fields		Woodlands		Pastures	
Village	Ν	Р	Ν	Р	Ν	Р
Communal area	36	4	-9	-1	-10	-2
Old resettlement	12	2	-3	-1	-13	-3
New resettlement	5	-1	-6	-1	-27	-5

- Organic inputs and crops were sampled and analyzed
- A survey about NRM was applied to selected farmers and to 40% of inhabitants per village
- N and P balances were calculated at different scales and expressed in kg ha⁻¹ yr⁻¹.

Table 2. Different spatial scales at which nutrient balances were calculated

Scale	Description	Method of aggregation
Plot	Different plots of same crop	None
Crop	Different crops of same farmer	Sum of all plots per crop per farm
Farm	Different farms in a village	Sum of all crops per farm + household
Land cover*	Different land covers in a village	Extrapolation of stratified farms & survey&
Village	The three villages as a unit	Recalculation of flows from farm level&
*		

*Three land cover types were defined: Cropping fields, Woodlands and Pastures &Excluding internal flows at these levels

5. Conclusions

- Results from nutrient balances are scale-dependent
- The way of aggregation of nutrient flows, during the scaling-up process, have a strong effect on the results

6. Practical implications of findings

- Results suggest that farmers in the new resettlement area are more reliant on soil nutrient stocks
- Fertilizer distribution systems must be improved to stop the continuing degradation of resettled areas.

¹Hohenheim University, Institute of Plant Production and Agroecology in the Tropics and Subtropics, Germany ²Tropical Soil Biology and Fertility Institute of the International Centre for Tropical Agriculture, Zimbabwe ³International Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture IAE, Austria Contact: jgcobo@uni-hohenheim.de

Special acknowledgments: Unibund Hohenheim