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Abstract 

 

This paper examines the impacts of climate change on cassava production in Africa, and questions 

whether cassava can play an important role in climate change adaptation.  First, we examine the impacts 

that climate change will likely have on cassava itself, and on other important staple food crops for Africa 

including maize, millets, sorghum, banana, and beans based on projections to 2030.  Results indicate that 

cassava is actually positively impacted in many areas of Africa, with –3.7% to +17.5% changes in climate 

suitability across the continent. Conversely, for other major food staples, we found that they are all 

projected to experience negative impacts, with the greatest impacts for beans (-16% ± 8.8), potato (-14.7 

± 8.2), banana (-2.5% ± 4.9), and sorghum (-2.66% ± 6.45).  We then examined the likely challenges that 

cassava will face from pests and diseases through the use of ecological niche modeling for cassava mosaic 

disease, whitefly, brown streak disease and cassava mealybug.  The findings show that the geographic 

distribution of these pests and diseases are projected to change, with both new areas opening up and areas 

where the pests and diseases are likely to leave or reduce in pressure. We finish the paper by looking at 

the abiotic traits of priority for crop adaptation for a 2030 world, showing that greater drought tolerance 

could bring some benefits in all areas of Africa, and that cold tolerance in Southern Africa will continue 

to be a constraint for cassava despite a warmer 2030 world, hence breeding needs to keep a focus on this 

trait.  Importantly, heat tolerance was not found to be a major priority for crop improvement in cassava in 

the whole of Africa, but only in localized pockets of West Africa and the Sahel.  The paper concludes that 

cassava is potentially highly resilient to future climatic changes and could provide Africa with options for 

adaptation whilst other major food staples face challenges. 
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1. Introduction 

 

Kamukondiwa (1996) discussed the merits of cassava 

for adapting African agriculture to climate change, 

and fifteen years later the challenges of climate 

change and the needs for identifying solutions are 

even greater.  Studies have predicted significant 

impacts from climate change on African agriculture 

(Thornton et al., 2011), although estimates of impacts 

vary widely between authors (Challinor and Wheeler, 

2008a).  

 

Cassava (Manihot esculenta) is the crop with the 

highest total production in Africa, with 118 million 

MT of productions across the continent in 2010, 

contributing significant energy input to the population 

with an average 196 kcal/capita/day in 2008 (FAO, 

2010).  It is a major staple for more than 500 million 

people in Africa, and is renowned for its drought 

tolerance and hardiness in stressful environments (El-

Sharkawy, 2004).  Of the few studies which have 

quantified the impacts or responses of cassava to 

climate change, and all have found cassava to be the 

least affected crop when compared with other major 

staples such as maize, sorghum and millets.  Liu et al. 

(Liu et al., 2008) used the GIS-based Environmental 

Policy Integrated Climate (GEPIC) model to evaluate 

impacts on cassava production across Sub-Saharan 

Africa finding a change in production to 2030 of -2% 

to +1% depending on the SRES Scenario.  This 

matches with Lobell et al. (Lobell et al., 2008) who 

found cassava to moderately benefit from climate 

change by 2030 with an average increase of 1.1% in 

production from 2000 through the use of statistical 

models. Schenkler and Lobell (Schlenker and Lobell, 

2010) found a decrease in production of 8% for 

cassava by mid-century, compared with much more 

severe impacts for maize (-22%), sorghum (-17%) 

and millets (-17%). All studies report uncertainties in 

these estimates due to the underlining climate 

projections, or the model that captures crop-climate 

response.  Furthermore, these studies do not take into 

account CO2 fertilization where there is no consensus 

on the response of cassava to increased CO2 

concentrations. Gleadow et al. (2009) reported 

reduced growth in cassava under enhanced CO2 

concentrations as well as increased cyanide 

concentrations in leaves, but Ort et al. (this issue) 

shows contrasting results based on Free Air CO2 

Enrichment (FACE) experiments conducted in field 

trials in Illinois where root biomass was found to 

increase under elevated CO2.   

 

Insect pests and plant diseases of cassava are known 

to substantially affect storage root weight, increasing 

the yield gap in developing countries, where it is 

mostly grown (Olsen and Schaal, 1999). Cassava 

brown streak and mosaic viruses, incidence of 

whiteflies, mealybugs, and the widely-spread cassava 

green mite significantly reduce cassava yields and 

pose a constraint to poor farmers with little or no 

response capacity (Herrera Campo et al., 2011; 

Yaninek and Herren, 1988). Very little information is 

available on the distribution of cassava pests and 

diseases (Herrera Campo et al., 2011; Trujillo et al., 

2004; Yaninek and Herren, 1988), particularly within 

the context of climate change, although it is stated 

that climate change could result in increased 

incidence, further increasing economic losses and 

vulnerability (Ceballos et al., 2011).  

 

This paper aims to provide an update to 

Kamukondiwa (1996), taking a quantitative rather 

than qualitative approach, and building on other 

studies that have modeled climate change impacts on 

cassava.  This paper examines if cassava really is a 

crop of merit for adaptation to climate change in a 

2030 world. Specifically, the objectives are to: 

 

1. Identify the climatic changes projected for 

cassava growing regions in Africa for 2030 

and beyond 

2. Quantify the impacts of these changes on 

cassava climate suitability in Africa 

3. Quantify the impacts of these changes on 

other major staples in Africa 

4. Quantify the impacts of climate change on 

major cassava pests and diseases in Africa 

5. Identify some of the challenges that climate 

change might bring for crop improvement 

over the coming decades 
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We then bring the above analyses together to provide 

an outlook for cassava under the context of climate 

change. 

 

2. Materials and Methods 

 

This paper combines data and models to evaluate the 

impacts of climate change on cassava and other 

staples in Africa, and evaluate ex ante the potential 

benefits of crop improvement options for supporting 

adaptation in the cassava crop.  The approaches 

comprise of 1) definition of current and future climate 

projections for the analysis and analysis of climate 

changes in cassava growing regions, 2) prediction of 

current climate constraints and future impacts of 

climate change on cassava climate suitability, 3) 

prediction of impacts on other major staple crops in 

Africa and comparison with predicted impacts on 

cassava to explore contrasting and/or similar 

responses, 4) evaluation of impacts on major pests 

and diseases, and 5) ex ante evaluation of crop 

improvement scenarios. 

 

2.1. Study area 

This study focuses on the African continent only, 

comprising North Africa and Sub-Saharan Africa, 

although >99% of production occurs in East, West, 

Central and Southern Africa (FAO, 2010). We 

classified countries in the region according to well-

defined and documented areas (Lobell et al., 2008) 

(Figure S1). 

 

2.2. Input climate data 

2.2.1. Current climate data 

High quality distributed data on current climate has 

always been a constraint for agricultural impact 

assessment, especially in Africa where meteorological 

stations are scarce. Quality of weather and climate 

data (if available) is poor. The approach used in this 

research allows us to use large-scale monthly datasets 

(Sect 2.3), for which accuracy and availability is 

known to be much better, as compared to daily data 

(Hijmans et al., 2005; Peterson and Vose, 1997; 

Richardson, 1981). Here we used the WorldClim 

dataset (Hijmans et al., 2005), publicly and freely 

available at http://www.worldclim.org. WorldClim 

was developed using ~47,000 weather stations with 

monthly information on precipitation, ~23,000 

stations with mean temperature data and ~13,000 

locations with diurnal temperature range data, passed 

through a quality checking algorithm and then used to 

develop a continuous climate surface using a thin 

plate spline algorithm (Hutchinson, 1995; Hutchinson 

and de Hoog, 1985), with elevation, latitude and 

longitude as independent variables (Hijmans et al., 

2005). The data represent long term (1950-2000) 

monthly means of maximum, minimum, mean 

temperatures and total rainfall, at 30 arc-seconds (~1 

km at the equator) for every land area of the globe. 

 

WorldClim data was downloaded at the resolution of 

30 arc-seconds, restricted to Africa (Sect. 2.1) and 

aggregated to the resolution of 10 arc-minutes (~20 

km at the equator) in order to reduce computational 

time and storage needs. The aggregation of these data 

is not expected to bias the results because (1) the 

major topographic gradients are still present at 10 arc-

minutes, and (2) a regional and national-level 

modeling technique was used, which is unlikely to be 

affected. With the aggregated data two datasets were 

produced: 

(a) WCL-MM: comprising the original monthly 

means of maximum, minimum and mean 

temperature and the total monthly rainfall, 

and 

(b) WCL-BC: comprising a set of 19 bioclimatic 

indices, derived from WCL-MM following 

the procedure of Ramirez and Bueno-Cabrera 

(2009). These indices reflect mean and 

extreme annual averages and are thus 

associated with crop, pest and disease species 

development (Table 1) (Herrera Campo et al., 

2011; Schroth et al., 2009). 

 

WCL-MM were used for analyzing the changes in 

cassava growing regions (Sect. 2.3) and for crop 

modeling (Sect. 2.4, 2.5, and 2.7), whereas WCL-BC 

were used in the modeling of pests and diseases (Sect. 

2.6) (Herrera Campo et al., 2011).  

 

 

 

http://www.worldclim.org/
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Table 1 List of derived bioclimatic variables used in the analysis 

ID Variable name Units 

P1 Annual mean temperature ºC 

P2 Mean diurnal temperature range ºC 

P3 Isothermality N/A 

P4 Temperature seasonality (standard deviation) ºC 

P5 Maximum temperature of warmest month ºC 

P6 Minimum temperature of coldest month ºC 

P7 Temperature annual range ºC 

P8 Mean temperature of wettest quarter ºC 

P9 Mean temperature of driest quarter ºC 

P10 Mean temperature of warmest quarter ºC 

P11 Mean temperature of coldest quarter ºC 

P12 Annual precipitation mm 

P13 Precipitation of wettest month mm 

P14 Precipitation of driest month mm 

P15 Precipitation seasonality (coefficient of variation) % 

P16 Precipitation of wettest quarter mm 

P17 Precipitation of driest quarter mm 

P18 Precipitation of warmest quarter mm 

P19 Precipitation of coldest quarter mm 

 

2.2.2. Future climate data 

We downloaded 20
th
 century realizations (20C3M, 

hereafter) and projections of the SRES-A1B 

emissions scenario (IPCC, 2000) of 24 different 

Global Climate Models (GCMs, Table 2) from the 

IPCC Earth System Grid (ESG) model output 

repository (PCMDI, 2007). Downloaded data 

consisted in monthly time series of predicted 20
th
 

century climate (from 1900 through 2000, generally) 

and monthly time series of projected future conditions 

(2001-2100, generally) for the SRES-A1B emissions 

scenario in NetCDF format, for the same variables 

available in WorldClim (Sect. 2.2.1). These data were 

restricted to Africa (Sect. 2.1). The 20C3M 

predictions were assembled together and monthly 

climatology of the period 1961-1990 was calculated 

for the four variables for each month. The SRES-A1B 

projections were used in a similar way to generate 

monthly climatology for the 2030s period (2020-

2049), centered in 2035, as suggested by the IPCC 

(IPCC, 2007; PCMDI, 2007). The downscaling 

method of Ramirez and Jarvis (2010) was used to 

increase the resolution of GCM outputs to match that 

of WorldClim. Briefly, the procedure consists in 

computing the anomalies of temperature and 

precipitation for each GCM (difference between 

future and current), interpolating them using a two-

dimensional spline algorithm, and then adding these 

interpolated anomalies to the current distribution of 

climates in WorldClim. This method relies on the 

assumptions that (1) patterns of change do not have 

large spatial variations and (2) relationships between 

variables hold in time, quality of results is not 

expected to be affected (Mulligan et al., 2011; 

Ramirez-Villegas et al., 2011). Multiple GCMs were 

used in order to properly quantify uncertainty, at the 

expense of mechanistic detail in downscaling using 

one single (or a limited number of) regional climate 

model (RCM) (Baigorria et al., 2007; Challinor and 

Wheeler, 2008a). 

 

Using the monthly means of the individual GCMs, 

three calculations were performed for being used in 

the modeling: 

(a) GCM-MM: GCM-specific (Table 2) monthly 

means of maximum, minimum and mean 

temperature and monthly total rainfall were 

used individually as a direct input to the crop 

modeling of Sect. 2.4 and 2.5. 

(b) ENS-MM: GCM-specific monthly data were 

averaged per variable to generate a GCM 

ensemble of monthly data to be used in the 

abiotic breeding priorities modeling (Sect. 

2.7) 

(c) ENS-BC: ENS-MM data were used to 

generate the 19 bioclimatic indices (Table 1) 

as done for WCL-BC. These data were used 

in the pests and diseases modeling (Sect. 

2.6). 

 

2.3. Projected climatic changes for cassava growing 

regions 

The GCM-MM and WCL-MM data was used to 

calculate predicted GCM-specific changes in total 

annual precipitation (mm) and annual mean 

temperature (°C) for each country of our study area in 

the areas where the crop is reported to be grown in 

2000 based on SPAM (Spatial Allocation Model) 

crop distribution data (FAO, 2010; You et al., 2009). 
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Table 2 Global Circulation Models used in the analyses 

Model Country Atmosphere* Ocean* 

BCCR-BCM2.0 Norway T63, L31 1.5x0.5, L35 

CCCMA-CGCM3.1 (T47) Canada T47 (3.75x3.75), L31 1.85x1.85, L29 

CCCMA-CGCM3.1 (T63) Canada T63 (2.8x2.8), L31 1.4x0.94, L29 

CNRM-CM3 France T63 (2.8x2.8), L45 1.875x(0.5-2), L31 

CSIRO-Mk3.0 Australia T63, L18 1.875x0.84, L31 

CSIRO-Mk3.5 Australia T63, L18 1.875x0.84, L31 

GFDL-CM2.0 USA 2.5x2.0, L24 1.0x(1/3-1), L50 

GFDL-CM2.1 USA 2.5x2.0, L24 1.0x(1/3-1), L50 

GISS-AOM USA 4x3, L12 4x3, L16 

GISS-MODEL-EH USA 5x4, L20 5x4, L13 

GISS-MODEL-ER USA 5x4, L20 5x4, L13 

IAP-FGOALS1.0-G China 2.8x2.8, L26 1x1, L16 

INGV-ECHAM4 Italy T42, L19 2x(0.5-2), L31 

INM-CM3.0 Russia 5x4, L21 2.5x2, L33 

IPSL-CM4 France 2.5x3.75, L19 2x(1-2), L30 

MIROC3.2-HIRES Japan T106, L56 0.28x0.19, L47 

MIROC3.2-MEDRES Japan T42, L20 1.4x(0.5-1.4), L43 

MIUB-ECHO-G Germany/Korea T30, L19 T42, L20 

MPI-ECHAM5 Germany T63, L32 1x1, L41 

MRI-CGCM2.3.2A Japan T42, L30 2.5x(0.5-2.0) 

NCAR-CCSM3.0 USA T85L26, 1.4x1.4 1x(0.27-1), L40 

NCAR-PCM1 USA T42 (2.8x2.8), L18 1x(0.27-1), L40 

UKMO-HADCM3 UK 3.75x2.5, L19 1.25x1.25, L20 

UKMO-HADGEM1 UK 1.875x1.25, L38 1.25x1.25, L20 

*Horizontal (T) resolution indicates number of cells in which the globe was divided for each component of the coupled climate model (i.e. 

atmosphere, ocean). Vertical (L) resolution indicates the number of layers in which the atmosphere was divided. When a model is developed with 

different latitudinal and longitudinal resolutions, the respective cellsizes (LonxLat) in degrees are provided instead of a unique value 

 

Any climate change projection must be analyzed as 

being in a range of plausible responses to a given 

assumed or modeled future condition (Moss et al., 

2010). Impact assessment methods are sensitive to 

uncertainties in the underlying climate data, and 

hence these must be considered when assessing crop 

responses to combinations of increasing temperatures, 

varied precipitation patterns and increased CO2 

concentrations (Challinor et al., 2007; Fuhrer, 2003). 

Uncertainties in climate change impact assessment 

arise from the projected greenhouse gas 

concentrations (Moss et al., 2010), the response of the 

climate system to these conditions, the climate 

models used to predict such behavior (e.g. model 

formulation, parameterized physics) and the 

uncertainties related to the impact assessment model 

itself and its usage over future climate conditions 

(Challinor et al., 2009; Challinor and Wheeler, 

2008a). Assessing the climate-inherent uncertainty in 

climate change impact assessment projects explicitly 

entails the usage of different GCMs. In order to 

account for this, the individual GCM predicted 

changes were averaged and plotted in a scattergram 

with respective standard deviations indicative of 

uncertainties. 

 

2.4. Impacts on cassava climate suitability 

To assess the impacts of climate change the EcoCrop 

model was used.  Originally developed by Hijmans et 

al. (2001) and fully described by Ramirez-Villegas et 

al. (2011), EcoCrop is a simple mechanistic model 

designed to operate at a monthly time scale and 

capable of analyzing the geography of crop suitability 

with regards to climate conditions. The model uses 
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environmental ranges to determine the main niche of 

a particular crop and numerically assesses the 

environmental conditions to determine a potential 

climatic suitability rating (Hijmans et al., 2001; 

Ramirez-Villegas et al., 2011). This suitability rating 

is related with agricultural yields, although the 

relationship is difficult to capture (Ramirez-Villegas 

et al., 2011), partly because it is fairly dependent on 

the strength of the climate signal in agricultural yields 

(which is not always high). To achieve a particular 

prediction, a parameter set defining the optimal and 

marginal temperatures and rainfall at which the crop 

can grow is defined, ideally via statistical data 

analysis (Ramirez-Villegas et al., 2011), but also 

through literature and expert consultation (Beebe et 

al., 2011; FAO, 2000). 

 

Ramirez-Villegas et al. (2011) used the EcoCrop 

model to predict the impacts of climate change on 

sorghum and found that the model agrees with other 

approaches such as statistical regressions. Other 

authors have parameterized and used the model in the 

context of climate change impact assessment for a 

number of crops (Beebe et al., 2011; Ceballos et al., 

2011; Ramirez et al., 2011; Schafleitner et al., 2011), 

and have developed parameterizations for assessing 

regional climate constraints and adaptation options 

(i.e. breeding) (Beebe et al., 2011). Despite EcoCrop 

being a simple agroecological zonification model, it is 

useful for regional, continental and global scale 

analyses for food security assessments in which the 

required level of detail is not too high (Ramirez-

Villegas et al., 2011). We decided to use EcoCrop for 

the following reasons: 

 We predicted impacts of climate change over 

Africa with the maximum level of detail at 

the national or sub-national level, hence a 

more detailed approach seems unnecessary, 

 More complex mechanistic approaches for 

cassava are rather scarce or highly 

inaccurate, mainly due to the difficulty in 

modeling an intermediate C3/C4 physiology 

(El-Sharkawy, 2005, 1985), 

 EcoCrop has already been calibrated and 

expert-assessed for cassava by Ceballos et al. 

(2011), 

 The usage of EcoCrop allows us to analyze a 

broader number of crops, and hence different 

responses to stresses, 

 

As in any model, caveats exist and are summarized by 

previous studies (Beebe et al., 2011; Ramirez-

Villegas et al., 2011; Ramirez et al., 2011), indicating 

that the model should be used with caution. These 

caveats include the inability of the model to capture 

the effect of short-duration stress periods, the lack of 

a clear relationship between the suitability index and 

crop yields, the scale at which the model can suitably 

be applied, the lack of representation of soil-related 

processes and constraints, among others.  

 

In this research, the EcoCrop model was used as 

parameterized by Ceballos et al. (Ceballos et al., 

2011) (Table 3). We first performed a suitability 

prediction for present conditions (i.e. WCL-MM, 

Sect. 2.1.1) and then projected the model onto each of 

the 24 different GCMs (GCM-MM, Sect. 2.1.2). For 

each projection, the change in suitability was 

calculated on a pixel basis and the ensemble mean, 

25
th
 and 75

th
 percentiles were calculated as measures 

of suitability impact. The fraction of GCMs agreeing 

in direction of change and the standard deviation 

among GCMs were also calculated as measures of 

uncertainty (Ramirez-Villegas et al., 2011). These 

results were mapped using R version 2.13.2 (R 

Development Core Team, 2011). Five impact metrics 

were derived on a regional and national level for each 

GCM-MM individual prediction:  

(a) the overall suitability change (average % 

change of all pixels);  

(b) the average suitability change in positively 

impacted areas (i.e. areas increasing 

suitability); 

(c) the area positively impacted (km
2
); 

(d) the average suitability change in negatively 

impacted areas (i.e. areas decreasing 

suitability); 

(e) the area negatively impacted (km
2
); 
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Table 3 Parameter sets used for the crop suitability modeling, as reported in original studies or in the FAO-EcoCrop database 

Crop Species GS
2
  

TKILL 

(°C) 

TMIN 

(°C) 

TOPMIN 

(°C) 

TOPMAX 

(°C) 

TMAX 

(°C) 

RMIN 

(mm) 

ROPMIN 

(mm) 

ROPMAX 

(mm) 

RMAX 

(mm) 

Data 

Source
3
 

Cassava Manihot esculenta C. 8 0.0 15.0 22.0 32.0 45.0 300 800 2200 2800 CE2011 

Sorghum (N)
 1
 Sorghum bicolor M. 6 0.5 4.1 13.6 24.6 26.0 160 500 1800 2780 RV2011 

Sorghum (X)
 1
 Sorghum bicolor M. 6 14.5 17.8 26.7 37.4 39.1 160 500 1800 2780 RV2011 

Maize Zea mays L. subsp. mays 7 0.0 10.0 18.0 33.0 47.0 400 600 1200 1800 F2000 

Banana Musa acuminata C. 12 10.0 16.0 24.0 27.0 35.0 700 1000 1300 5000 R2011 

Potato Solanum tuberosum L. 4 -0.8 3.7 12.4 17.8 24.0 150 250 325 785 S2011 

Millet Panicum miliaceum L. 6 0.0 15.0 20.0 32.0 45.0 200 500 750 1000 F2000 

Beans Phaseolus vulgaris L. 3 0.0 13.6 17.5 23.1 25.6 200 363 450 710 B2011 
1 The original study or Ramirez-Villegas et al. (2011) reported two parameter sets given by two adaptive ranges of the crop. These were merged 

into one single suitability prediction using the methods reported in the same study 
2 Growing season duration in months 
3 Studies used for parameterizing EcoCrop. CE: Ceballos et al. (2011); RV: Ramirez-Villegas et al. (2011); F2000: FAO (2000); R2011: Ramirez 

et al. (2011); S2011: Schafleitner et al. (2011); B2011: Beebe et al. (2011). 

 

 

The results are displayed in tables.  Results from this 

modeling exercise are also compared with previous 

studies on cassava climate impacts from Lobell et al. 

(2008) and Schlenker and Lobell (2010). 

 

2.5. Impacts on other staple crops 

In looking at cassava as an adaptation option for 

Africa, it is important not to assess the crop in 

isolation, but rather examine the impacts of climate 

change on cassava and compare with other important 

African staples.  To do this, five other important food 

crops for Africa were analyzed: maize, sorghum, 

millets, potato, common bean, and banana.  Maize, 

sorghum and millets all provide >100 kcal/capita/day 

on average across Africa based on 2008 data (FAO, 

2010), and with the exception of wheat (principally 

imported) and sugar cane are the primary providers of 

dietary energy (FAO, 2010).  Potato, common bean 

and banana are of significant importance in specific 

regions, playing a role in nutritional security, and also 

benefit from having published parameters for the 

EcoCrop model employed in this research (Beebe et 

al., 2011; Ceballos et al., 2011; Ramirez et al., 2011; 

Schafleitner et al., 2011).  One advantage of using 

EcoCrop is the relative ease in parameterization for 

different crops (Sect. 2.4) and the good performance 

for predicting climatic suitability and crop 

distribution even when using the default parameters 

reported in the FAO-EcoCrop database (FAO, 2000; 

Ramirez-Villegas et al., 2011). The accuracy of the 

approach increases when calibrated parameter sets are 

used, as in this case (Table 3) (Ramirez-Villegas et 

al., 2011). The same impact metrics as for cassava 

(Sect. 2.4) were calculated for these crops. 

 

The average change of all these crops was calculated 

to map the impacts for comparison with cassava. The 

map was constructed to illustrate: (1) areas where 

cassava increases and the other crop(s) lose 

suitability, (2) areas where cassava decreases and the 

other crop(s) increase suitability, (3) areas where both 

decrease suitability, (4) areas where both increase 

suitability. 

 

2.6. Impacts on pests and diseases 

Here we build upon the species distributions models 

developed by Herrera Campo et al. (2011) and 

subsequently generated data on cassava mealybug 

(CMB, Phenacoccus manihoti M-F., Hemiptera: 

pseudococcidae), and project these onto future 

scenarios for the year 2030. Herrera Campo et al. 

(2011) assessed the predictive skill of different 

species distributions modeling techniques using 

presence-only cassava pest and disease records from 

the International Center for Tropical Agriculture 

(CIAT) virology and entomology units and from other 

secondary information sources. Models included 

Maxent (Phillips et al., 2006), GARP (Genetic 
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Algorithm for Rule-set Production) (Anderson et al., 

2003), support vector machines (Drake et al., 2006), 

among others. GARP and Environmental Distance, in 

conjunction with expert-selected environmental 

predictors from WCL-BC, were found to have the 

most consistent performance (Herrera Campo et al., 

2011), and so are used for the present investigation. 

 

As models were driven by WCL-BC in the original 

study of Herrera Campo et al. (2011), pest and disease 

predictions for current conditions were extracted for 

Africa from the original study (Sect. 2.1). The 

parameterized model was then used to project the 

species distributions of whitefly (Bemicia tabaci G., 

Hemiptera: Aleyrodidae), cassava mealybug (CMB, 

Phenacoccus manihoti M-F., Hemiptera: 

pseudococcidae) cassava mosaic disease (CMD, 

cassava mosaic geminiviruses: Geminiviridae), and 

cassava brown streak disease (CBSD, cassava brown 

streak virus: Potyviridae) onto the ENS-BC future 

projection (Sect. 2.2.2). With the projected pest and 

disease models we calculated the changes in 

suitability for each biotic constraint on a pixel basis 

and mapped them using R-2.13.2 (R Development 

Core Team, 2011). The following metrics were 

calculated for each biotic factor at regional and 

national levels: 

(a) overall change in suitability in percentage 

(OSC), 

(b) amount of area that becomes unsuitable (i.e. 

reduces below 70% suitability), 

(c) amount of area that expands (i.e. increases 

above 70% suitability). 

 

2.7. Abiotic breeding priorities 

EcoCrop uses adaptation ranges of crops to describe 

crop responses to environmental stresses, and 

therefore it is possible to parameterize the model to 

explore the sensitivities to variations in marginal and 

optimal adaptation thresholds. Shifting the adaptation 

ranges of the crop to simulate possible scenarios of 

crop improvement (e.g. a new cassava variety with 

greater tolerance to heat) results in different 

suitability predictions and permits the quantification 

of possible benefits of such a variety.  Unfortunately, 

the underlying genetic traits of the crops is difficult to 

relate with the results of the model (Ramirez-Villegas 

et al., 2011), an issue also present in other crop 

models (Boote et al., 1996, 2001).  

 

Ceballos et al. (2011), following the method of Beebe 

et al. (2011) used EcoCrop to explore the likely 

improvement in the response of cassava under future 

scenarios when broadening the optimal adaptation 

range of the crop. The method consists in altering the 

original optimal parameter set (TOPMIN, TOPMAX, 

ROPMIN, and ROPMAX) one parameter at a time within a 

range using equal steps (i.e. a Monte-Carlo approach). 

The new suitability of the crop under future 

conditions is then calculated to determine the degree 

at which these hypothetical improved crop parameters 

(reflecting an improved crop) can reduce negative 

impacts or even further improve the crop response in 

environments where it is not suited at all. We 

performed the analyses separately for precipitation 

and temperatures as described below: 

(a) temperature-resilience scenarios reflect the 

effect of heat and cold tolerance in the crop, 

and were assessed by modifying the 

minimum and maximum optimum crop 

suitability temperature thresholds (TOPMIN, 

TOPMAX) five times using an incremental step 

of 0.5°C.  

(b) rainfall-resilience scenarios reflect the effect 

of waterlogging and drought tolerance in the 

crop and were assessed by modifying the 

minimum and maximum optimum crop 

suitability thresholds (ROPMIN, ROPMAX) five 

times using an incremental step of 5%. 

 

Model runs using these altered parameter sets (Table 

4) were summarized onto a map indicating the 

parameter producing the largest reduction of negative 

impacts or the largest increase in positive impact and 

a graph showing the percentage increase in highly 

suitable (>80%) areas (including possible cropland 

expansion). 
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Table 4 Artificial modifications to the cassava model 

reflecting breeding scenarios 

Altered 

parameter 

Modification1 

Step 

1 2 3 4 5 

TOPMIN 22.0 21.5 21.0 20.5 20.0 0.5°C 

TOPMAX 32.5 33.0 33.5 34.0 34.5 0.5°C 

ROPMIN 760 722 686 652 619 5% 

ROPMAX 2310 2426 2547 2674 2808 5% 
1 Each parameter modification is done separately at a time keeping all 

other parameters in the model as reported in Table 2. 

 

3. Results and Discussion 

 

3.1. Projected climatic changes for cassava growing 

regions 

Changes in climate as projected by the 24 GCMs 

(Table 2, Sect. 2.2.2) under the SRES-A1B emissions 

scenario showed that by 2030, predicted increases in 

temperatures range between 1.2 and 2°C (Figure 1A), 

with North Africa (NAF) and the Sahel (SAH) 

showing the largest increases (80% countries with 

increases above 1.5°C), followed by Southern Africa 

(SAF), where seasonal temperatures (i.e. summer 

periods) are predicted to have the largest increases 

(data not shown). Western Africa (WAF), East Africa 

(EAF) and Central Africa (CAF), where most cassava 

production is located (>90%, data not shown) are 

predicted with the least regional increases (>70% 

countries with increases below 1.5°C) (Figure 1A). 

Moreover, the countries with greatest production 

show the least increases in temperatures (Table 6), an 

issue not found for other crops (Asseng et al., 2004; 

Challinor et al., 2007; Lobell et al., 2008; Schlenker 

and Lobell, 2010), although these increases were 

never less than 1.2°C (Table 6). Nevertheless, the 

implications of excessively higher temperatures 

(+1.5°C) in areas where cassava is grown could 

substantially impact production (El-Sharkawy, 2004) 

(see Sect. 3.2).  

 

 

 

 
Figure 1 Predicted changes in climates as averages of 24 GCMs 

(Table 2) and uncertainties expressed as standard deviations of the 

GCMs. (A) Annual mean temperature, (B) total annual rainfall. Zone 

typology as in Figure S1. 

 

Uncertainties in temperature predictions, as expressed 

by standard deviations among GCMs were never 

below 0.5°C, indicating relatively strong 

disagreement in GCM signals even for temperature, 

an issue already reported in the literature (Majda and 

Gershgorin, 2010; Matsueda and Palmer, 2011; 

Neelin et al., 2006; Pierce et al., 2009). Nevertheless, 

uncertainties in temperatures were observed 

comparatively low (<0.7°C) only in Gabon (0.66°C), 

Madagascar (0.67°C), Equatorial Guinea (0.53°C), 

Guinea-Bissau (0.61°C), Liberia (0.6°C), and Sierra 



Published in Tropical Plant Biology 

DOI: 10.1007/s12042-012-9096-7 

10 
 

Leone (0.62°C), whereas the largest variation among 

GCMs (>1.5°C) was observed in Mauritania 

(1.58°C), Western Sahara (1.57°C), Mali (1.51°C), 

and Niger (1.57°C), although in no cases the standard 

deviation exceeded the predicted change (Figure 1A).  

No GCM predicts that temperatures remain stable or 

reduce. 

 

Predicted changes in precipitation ranged between -39 

to +64 mm/year (Figure 1B), with most countries in 

East Africa (EAF) showing increases in rainfall in the 

range of 20-60 mm/year, whilst most countries in 

North Africa (NAF) and South Africa (SAF) showed 

decreases mostly not larger than 20 mm/year (i.e. 

greatest rainfall decrease was predicted for Zimbabwe 

[-40 mm/year]) (Figure 1B). The 24 GCMs used here 

also showed that on average varying rainfall 

responses are predicted in countries of West Africa 

(WAF), with some countries increasing yearly 

rainfall: Benin (9.4±54), Liberia (3.3±97.4), Nigeria 

(15.8±37.6), Sierra Leone (11.6±100.2), and Togo 

(1.3±50.4), and others decreasing: Ivory Coast (-

14.6±64.9), Gambia (-10.1±36.4), Ghana (-6±43.3), 

Guinea (-9.2±58.7), Guinea-Bissau (-4.9±47.6), and 

Senegal (-14.5±28.3), although uncertainty related to 

GCMs was high. An overall increase in yearly rainfall 

in the Sahel (SAH) between 6-18 mm/year is 

predicted (Figure 1B).  

 

3.2. Impacts on cassava climate suitability 

Based on these projected changes in climate, the 

resultant changes in cassava climatic suitability as 

predicted by the EcoCrop model indicates increases in 

the majority of areas (5.5 million km
2
 of positively 

impacted areas vs. 3.3 million km
2
 of negatively 

impacted areas), although this varies depending on the 

GCM used (Figure 2, Table 5). EAF and SAF showed 

the largest increases in climatic suitability overall (20-

60%), whereas the Sahel presented moderate 

increases (1-10%), and Central Africa (CAF) and 

WAF presented the decreases, although these were 

modest (-1 to -20%). Very importantly, increases in 

cassava suitability seem to occur in a greater 

proportion over currently cropped areas (You et al., 

2009) (Figure 2A). Variation amongst individual 

GCM predictions was significant and predicted 

impacts with very high certainty (>80% GCMs 

predicting changes in the same direction, Figure 2D) 

were only found in CAF, western WAF and the mid- 

and high-lands of EAF (Figure 2D, Figure 3). These 

differences can also be observed in the difference 

between “optimistic” (i.e. 25
th
 highest) GCMs and 

“pessimistic” (i.e. 25
th
 lowest) predictions (Figure 2B, 

2C). In the Sahel, for instance, where the optimistic 

prediction shows increases (5-30%), the pessimistic 

prediction shows decreases (0-5%) (Figure 2B, 2C). 

Figures of change in suitability at the country level 

ranged between -3.7 (±4.71) (Mauritania) and 17.5% 

(±11.1) (Rwanda); nevertheless, the majority of 

countries (58%) were predicted to have increases in 

suitability (Figure 2, Table 6). These increases were 

located in countries where the most significant 

production is reported (FAO, 2010), although some 

decreases were observed in southern WAF (Figure 2, 

3). The most severe impacts were observed in West 

Africa (WAF) and the Sahel (SAH), where predicted 

changes were negative in 82 and 80% of the 

countries, respectively (Table 6, Figure 3). In other 

sub-regions of Africa, the proportion of negatively 

impacted countries is far lower: EAF (0%), NAF 

(10%), and SAF (11.1%). 

 

Very few studies have focused on cassava when 

predicting impacts of climate change on crop 

production, partly because process-based crop models 

are not accurate or not available at all (Boote et al., 

2010, 1996; Challinor and Wheeler, 2008a), and 

partly because most research on climate change 

impact assessment has focused on the better 

documented staples maize, wheat and rice (Aggarwal 

and Mall, 2002; Bakker et al., 2005; Jamieson et al., 

2000; Jones and Thornton, 2003). Here we have 

found that by 2030 (1) major decreases in cassava 

climatic suitability are not expected for the majority 

of areas in Africa, and (2) increases in suitability 

could occur, although this depends on the GCM 

ensemble used. The implications of these conclusions 

agree with those of Kamukondiwa (Kamukondiwa, 

1996) and other authors that have reported the 

beneficial characteristics and resilience of cassava 

(El-Sharkawy and Cock, 1987; El-Sharkawy et al., 
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1992; Fermont et al., 2009) in the context of climate change. 

 

 
Figure 2 Predicted changes in cassava suitability and corresponding uncertainties. (A) Change in suitability as average of the 24 

GCMs overlaid with croplands (grey shade) as reported in You et al. (You et al., 2009), (B) average of the first quartile of GCMs, 

(C) average of the 3rd quartile of GCMs, and (D) fraction of GCMs agreeing in suitability change prediction. 
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Table 5 Regional changes in cassava suitability for individual GCMs 

GCM 
OSC1 

(%) 

SCPIA1 

(%) 

PIA1 

(km2 x 106) 

PPIA1 

(%) 

SCPNA1 

(%) 

PNA1 

(km2 x 106) 

PPNA1 

(%) 

BCCR-BCM2.0 1.99 9.10 5.71 35.39 -6.54 3.08 19.10 

CCCMA-CGCM3.1-T47 3.39 12.29 6.14 38.07 -7.98 2.65 16.44 

CCCMA-CGCM3.1-T63 4.73 14.81 6.36 39.47 -7.40 2.52 15.61 

CNRM-CM3.0 4.66 11.28 7.41 45.97 -6.78 1.30 8.06 

CSIRO-MK3.0 1.46 9.40 5.21 32.29 -7.36 3.44 21.36 

CSIRO-MK3.5 1.15 11.95 4.72 29.27 -8.57 4.41 27.33 

GFDL-CM2.0 0.62 11.49 4.06 25.19 -7.61 4.77 29.59 

GFDL-CM2.1 0.05 11.79 4.51 28.00 -11.16 4.69 29.11 

GISS-AOM 2.42 8.34 6.05 37.51 -4.97 2.28 14.11 

GISS-MODEL-EH 5.15 12.06 7.43 46.08 -5.55 1.29 8.00 

GISS-MODEL-ER 1.71 9.37 5.15 31.93 -5.87 3.59 22.27 

IAP-FGOALS1.0-G -1.10 8.52 3.33 20.64 -8.16 5.61 34.81 

INGV-ECHAM4 -0.72 7.37 3.47 21.50 -7.02 5.25 32.55 

INM-CM3.0 3.24 11.78 5.95 36.91 -6.56 2.68 16.65 

IPSL-CM4 3.65 9.94 6.55 40.63 -3.72 1.75 10.82 

MIROC3.2-HIRES 5.81 16.10 6.69 41.47 -6.59 2.11 13.09 

MIROC3.2-MEDRES 7.49 16.60 7.66 47.53 -6.50 1.09 6.77 

MIUB-ECHO-G 3.58 9.11 7.28 45.16 -6.11 1.52 9.42 

MPI-ECHAM5 1.26 6.84 5.34 33.12 -5.13 3.11 19.29 

MRI-GCGM2.3.2A 0.77 8.19 4.45 27.59 -6.03 3.98 24.70 

NCAR-CCSM3.0 5.52 12.95 7.50 46.51 -6.75 1.30 8.06 

NCAR-PCM1 0.23 17.46 4.74 29.41 -12.81 6.19 38.40 

UKMO-HadCM3 -1.47 10.36 3.43 21.28 -10.26 5.75 35.68 

UKMO-HadGEM1 -0.05 11.28 4.21 26.11 -9.76 4.87 30.23 

1OSC: overall suitability change; SCPIA: suitability change in positively impacted areas; PIA: positively impacted areas; PPIA: percent of 

positively impacted areas; SCNIA: suitability change in negatively impacted areas; NIA: negatively impacted areas; PNIA: percent of negatively 

impacted areas. The sum of PPIA and PPNA does not account to 100% because there are areas where the crop is 100% suitable both presently 

and in the future. 

 

 

Cassava physiology, despite being complex, is well 

documented (Cock et al., 1979; El-Sharkawy and 

Cock, 1987; El-Sharkawy, 2004). Cassava grows 

optimally in the range 25-29°C (Ceballos et al., 2011; 

Edwards et al., 1990; El-Sharkawy, 2004; El-

Sharkawy et al., 1992), although it can stand 

temperatures of up to 38°C (Cock et al., 1979). Low 

temperatures inhibit plant growth and reduce leaf 

production rate, biomass and roots yield (<15°C and 

<17°C, respectively) but rarely kill the plant (Cock et 

al., 1979; El-Sharkawy, 2004; Fermont et al., 2009). 

Temperatures above the optimal (i.e. between 30-

40°C) have been reported to increase photosynthetic 

rates and faster branching (Cock et al., 1979; Edwards 

et al., 1990; El-Sharkawy, 2004). Moreover, 

decreases in root yield are very little or non-existent 

when the optimal range is exceeded even by 5-10°C 

(Cock et al., 1979; El-Sharkawy et al., 1984; Fermont 

et al., 2009).   Therefore, tolerance to high 

temperatures in cassava is well known and 

documented (Ceballos et al., 2011; Cock et al., 1979; 

El-Sharkawy, 2004; El-Sharkawy et al., 1992; 
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Fermont et al., 2009). The crop is also tolerant to 

within-season drought, although this depends on the 

timing, strength and duration. Prolonged periods of 

drought can cause root yield decreases of up 32-60% 

if these stress periods are prolonged enough (>2 

months) and occur at the root thickening initiation 

stage (Cock et al., 1979; Connor et al., 1981; El-

Sharkawy and Cock, 1987; El-Sharkawy et al., 1992). 

The effects of current drought periods in areas of the 

Sahelian belt are unlikely to be exacerbated by the 

yearly and seasonal rainfall predicted by 2030 (Figure 

1, 2). Cassava has no critical period in its growth 

cycle once it is established, which contrasts with 

crops such as maize with anthesis stress causing crop 

failure. Hence cassava is not only tolerant of drought 

but also of erratic or uncertain rainfall patterns.  It is 

therefore reasonable to expect that under a changing 

climate of increasing temperatures and likely more 

erratic and increased or decreased rainfall (depending 

upon the region), these favorable characteristics of the 

crop facilitate adaptation to future climates through 

favorable crop responses.  However, the combination 

of temperature increases, changes in rainfall, 

increased CO2, varying prevalence of pests and 

diseases needs to be analyzed holistically (Ceballos et 

al., 2011). Responses of the cassava plant to all 

stresses and CO2 fertilization effects together can 

interact and offset one each other and cause 

unexpected responses in cropping systems (Cock et 

al., 1979; El-Sharkawy, 2004; Fermont et al., 2009).  

 

Our conclusions are based on the effects of climatic 

niche displacement on the crop, rather than on the 

specific physiologically modeled responses to specific 

stresses and hence should be interpreted with caution 

(Ramirez-Villegas et al., 2011). There is, however, a 

relationship (not established in this study) between 

EcoCrop’s climatic suitability rating and yields 

(Ramirez-Villegas et al., 2011), although such a 

signal is difficult to isolate due to the influence of 

other factors on yields, the lack of consistently 

measured yield data and the lack of detail in EcoCrop 

(Ramirez-Villegas et al., 2011). Additionally, our 

results agree with other published estimates of the 

response of cassava to changes in climates (Lobell et 

al., 2008; Schlenker and Lobell, 2010) (not shown). 

 

 

 
Figure 3 Impacts of climate change on cassava suitability in 

sub-regions of Africa. (A) Average change in suitability, (B) 

ratio of positively to negatively impacted areas (values above 1 

indicate that positively impacted areas are larger than those 

negatively impacted. The distributions of boxplots are 

combinations of GCM-by-country predictions. Thick black 

vertical lines are the median, boxes show the first and third 

quartile and whiskers extend 5% and 95% of the distributions. 

Zone typology is provided in Figure S1. 

 



Published in Tropical Plant Biology 

DOI: 10.1007/s12042-012-9096-7 

14 
 

 

3.3. Impacts on other staple crops 

Whilst cassava growth and development may be 

favoured by climate change, we found varying 

patterns of response in the additional crops analyzed 

(maize, sorghum, millet, beans, potato, and banana) 

Figure 4 shows the projected changes in crop 

suitability for each region and the associated 

uncertainties. In WAF, large negative impacts were 

predicted for potato (-15%, high certainty), beans (-

20%, intermediate certainty), and banana (-13%, 

intermediate certainty), whereas millet, maize and 

cassava were predicted to remain the same. Sorghum 

showed positive impacts (10%, high certainty) in this 

region. In EAF, however, cassava showed the greatest 

potential compared to all other crops (10%), whereas 

beans and potatoes were the most affected. In SAH, 

responses were similar to those found in WAF, 

whereas responses in SAF were observed positive 

only for cassava, millet and banana (5% each). In 

CAF, there were very little increases (<1% for all 

crops except potato and beans, that were predicted 

with a substantial decrease). Uncertainties were 

highly significant for beans, potato and maize in SAF, 

all crops except sorghum in EAF, maize, beans and 

potato in NAF, and maize and cassava in SAH. 

 

Contrasting responses were found between cassava 

and sorghum; increases in sorghum suitability were 

often related with decreases in cassava regardless of 

the sub-region in Africa. Potato and beans presented 

fairly similar sensitivities, probably due to their 

climatic niche similarity in highland areas (Agtunong 

et al., 1992; Gutíerrez et al., 1994; Schafleitner et al., 

2011), although potato was found to be more 

sensitive. Generally, cassava reacted very well to the 

predicted future climate conditions compared to other 

crops, with some exceptions (i.e. sorghum in West 

Africa and the Sahel). The resilience of cassava 

compared to other crop plants was evidenced in the 

results of the modeling carried out here (Figure 5A) 

(Cock et al., 1979; El-Sharkawy and Cock, 1987; El-

Sharkawy et al., 1992; Kamukondiwa, 1996). Whilst 

most areas in Africa were predicted to experience 

decreases in overall suitability of the additional crops 

modeled (Figure 6), cassava always outperformed or 

(in the worst case) equaled the average and the worst 

of these crops (Figure 5B, 5D). Areas where cassava 

is outperformed can only be observed when the best 

of the other crops is compared with cassava (Figure 

5C) and even then cassava can still be grown without 

major restrictions (i.e. future suitability >80%).  

 

Table 6 Cassava harvested area, total cassava production and predicted impacts of climate change on climatic suitability of 

cassava and four major pests in Africa 

Country 

HA1 

(ha x 

106) 

TP1 

(ton x 

106) 

TC1 

(°C ±  

SD) 

PC1 

(mm ± 

SD) 

OSC1 

(% ±  

SD) 

Ratio1 

(± SD) 

B. tabaci BSV3 CMD3 P. manihoti 

OSC1 

(%) 

ES1 

ratio 

OSC1 

(%) 

ES1 

ratio 

OSC1 

(%) 

ES1 

ratio 

OSC1 

(%) 

ES1 

ratio 

Nigeria 3.13 36.80 1.3 (±1) 15.8 (±37.6) 0.2 (±3.2) 1.2 (±0.6) -5.8 0.1 -3.9 Inf 4 -12.3 0.1 -21.7 0.0 

DRC2 1.85 15.00 1.2 (±0.8) -2.1 (±71.3) -0.1 (±0.7) 0.7 (±0.8) -8.8 0.5 2.0 1.2 -8.2 0.3 11.5 4.1 

Tanzania 1.08 5.92 1.3 (±0.8) 48.2 (±55.3) 8.3 (±5.5) 5.1 (±1) -23.8 0.0 -27.4 0.0 -32.3 0.0 -9.2 0.1 

Mozambique 1.07 5.67 1.4 (±0.9) -13.4 (±45.3) -0.6 (±4) 0.9 (±0.8) -20.5 0.1 -19.7 0.1 -25.0 0.0 -5.9 0.2 

Angola 0.99 12.83 1.4 (±0.9) -20.7 (±55.9) 3.1 (±6.6) 1.8 (±0.9) -4.1 0.5 -2.1 1.0 -2.5 0.2 1.8 2.8 

Ghana 0.89 12.23 1.3 (±1) -6 (±43.3) -0.6 (±2.9) 0.1 (±0) -8.9 0.0 -9.4 0.4 -18.4 0.0 -20.2 0.0 

Uganda 0.41 5.18 1.3 (±0.9) 64.3 (±118.4) 4.7 (±3.2) 4.6 (±0.9) -14.2 0.0 3.4 0.9 -17.0 0.1 -0.4 0.1 

Madagascar 0.40 2.70 1.2 (±0.7) -3.7 (±52.8) 5.6 (±2.7) 3.5 (±0.9) -5.5 1.0 4.3 Inf -3.6 0.4 -0.1 0.8 

Ivory Coast 0.34 2.90 1.3 (±1) -14.6 (±64.9) -0.3 (±1.5) 0.1 (±0) -2.0 7.0 -6.5 Inf -15.5 1.7 -23.0 0.0 
1 HA: harvested area, TP: total production, TC: mean change and standard deviation (SD) in annual mean temperature, PC: mean 

change and standard deviation in total annual rainfall, OSC: overall suitability change, Ratio: ratio of amount of positively 

impacted areas to negatively impacted areas, ES: ratio of expansion to shrinkage of niche.  
2 Democratic Republic of Congo 
3 BSV: cassava brown streak virus; CMD: cassava mosaic disease 
4 “Inf” occurs when expansion is greater than zero and shrinkage is zero 
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Cassava appears as a highly resilient staple crop, 

contributing to a large amount of the dietary intake of 

African farmers and, on top of that, it seems to 

respond fairly well to the projected 2030 climate 

(Figure 2, 3, 4), in contrast to other staples of dietary 

importance to Africa.   

 

Incorporating these predictions in the food security 

debate entails an appropriate interpretation of them 

(Ramirez-Villegas et al., 2011). EcoCrop is a niche-

based approach (Sect. 2.4) and as such, it is difficult 

to relate its outcomes with actual agricultural yields; 

hence, predictions cannot be taken as direct impacts 

on production. This makes it complicated when trying 

to develop adaptation options, since there are many 

other factors other than climates that exert control on 

crop production, some of which have not been studied 

properly or are difficult to measure and monitor 

(Fermont et al., 2009; Wilby et al., 2009).  

 

The agreement of our impact predictions with those 

reported in other studies is high for all crops except 

maize. We found strong agreement for sorghum 

(Ramirez-Villegas et al., 2011), potato, cassava, 

millets and beans future impact predictions (Hijmans, 

2003; Lobell et al., 2008; Schlenker and Lobell, 

2010). Results for banana are not available in the 

literature making comparison impossible, but the 

model used here was expert-evaluated (D. Turner, 

pers. comm.). The maize parameterization was found 

to be excessively broad, likely to it being based on 

photosynthesis and phenology parameters of plot-

scale process-based models (Jones et al., 2003).  

 

Estimates of climate change impacts on maize are 

varied. Fischer et al. (2001) showed that maize yields 

do not have a strong response in West Africa (WAF) 

in relation to a decrease in rainfall, whereas Roudier 

et al. (2011), reported decreases between -2.5 and -

5% in yields by 2050 (SRES-A2). Much more severe 

estimates of impacts for this crop were predicted by 

Jones and Thornton (Jones and Thornton, 2003), who 

found that some 60% of the areas in East Africa are 

subjected to yield decreases between -5 and -20%, 

with severe impacts in other regions also predicted; 

Central Africa (-13%), Southern Africa (-16%), West 

Africa (-23%) (Liu et al., 2008; Thornton et al., 

2011). Lobell et al. (2008) and Schlenker and Lobell 

(2010) also report substantial decreases in maize crop 

yields throughout Africa, and particularly in Southern 

Africa (SAF), where our predictions show a highly 

uncertain response with median at zero change. 

 

Apart from the maize parameterization issue, 

EcoCrop also suffers from a lack of detail in 

representing certain processes (Sect. 2.4). Ramirez-

Villegas et al. (2011) thoroughly discussed the 

limitations of the model. In brief, pests, diseases, soil 

conditions, and extreme events are not considered by 

the model. These factors need to be taken into account 

in impact assessment, although future projections on 

these are scarce or too uncertain (Battisti and Naylor, 

2009; Garrett et al., 2009).  Hence, there is a trade-off 

between the level of detail and uncertainty 

propagation (Challinor and Wheeler, 2008a; Jarvis et 

al., 2011). Furthermore, there are processes that need 

to be taken into account. For instance, the well 

documented effect of increased CO2 concentrations 

on photosynthesis is not well represented in crop 

models (and not at all in EcoCrop) (Asseng et al., 

2004; Fuhrer, 2003): many crop models do not 

properly account to the offset of CO2 fertilization 

under heat stress, a combination very likely to happen 

with global warming (IPCC, 2007). This is 

particularly true for grain legumes (Boote et al., 2005; 

Fuhrer, 2003; Leakey et al., 2009; Prasad et al., 

2002). Ways of coupling regional models such as 

EcoCrop (Ramirez-Villegas et al., 2011) or large-area 

process-based models (Challinor et al., 2004; Tao et 

al., 2009) with detailed field-scale crop models need 

to be explored so that the representation of some 

processes can be improved. 
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(a)    (b) (c) 

 
(d)  (e)  (f) 

 
Figure 4 Impacts of climate change on other African staple crops as shown by the overall suitability change for each sub-region 

of Africa. The distributions of boxplots are combinations of GCM-by-country predictions. Thick black vertical lines are the 

median, boxes show the first and third quartile and whiskers extend 5% and 95% of the distributions. Zone typology is provided 

in Figure S1. 

 

 

3.4. Impacts on pests and diseases 

The impacts of climate change on the distribution of 

the four pests and diseases studied here are presented 

in Table 6 for the top 10 cassava producing countries, 

and are mapped out in Figure 6. Whitefly is the most 

widely distributed pest under current conditions, 

potentially covering 24 million km
2
, but its 

distribution is predicted to shrink in 2030 to 22.5 

million km
2
, with an overall suitability change of 

5.5%.  However, this includes an expansion of 

whitefly into 600 million km
2
 where the species is 

currently not present, accompanied by 2.1 million 

km
2
 of area where whitefly is likely to migrate out of.  

The countries with the greatest increases in potential 

whitefly distribution are Central African Republic 

(120,000 km
2
 new affected area), Ethiopia (97,000 

km
2
 new affected area) and Cameroon (45,000 km

2
 

new affected areas). 
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Figure 5 Changes in suitability of other staples as compared to cassava. (A) Average change in climatic suitability of the 6 other 

crops (i.e. among crops and GCMs), (B) discrimination of areas according to gains and losses using the mean change in 

suitability of all crops but cassava, (C) same as (B) but using the maximum change among the crops, and (D) same as (B) but 

using the minimum change among the crops. Area shading typology is C: cassava, O: other crops; G: increase in suitability, L: 
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decrease in suitability. For instance, “C:G, O:L” indicates that in that area cassava (C) increases in suitability (G), and all other 

crops in average (O) decrease suitability (L). 

 

For cassava brown streak disease, there are currently 

15.1 million km
2
 with suitable climate conditions for 

the pathogen across the continent, and this is 

predicted to decrease by 550,000 km
2
 by 2030, with 

250,000 km
2
 of newly affected regions, and 800,000 

km
2
 of area which will potentially become brown 

streak mosaic virus free.  The overall suitability for 

brown streak mosaic virus reduces by 1.5% across the 

continent, with notable increases in Democratic 

Republic of Congo (2%), Uganda (3.4%), Cameroon 

(11%), Central African Republic (16%) and Liberia 

(16.8%).  Countries set to gain most from the changes 

in distribution are Tanzania (340,000 km
2
 losing 

significant amount of climate suitability), 

Mozambique (180,000 km
2
), and Republic of Congo 

(130,000km
2
).   

 

For cassava mosaic disease, there are currently 20.5 

million km
2
 with suitable climate conditions (based 

on the ecological niche 95% training presence 

threshold) for the pathogen across the continent, and 

this is predicted to decrease by 1.3 million km
2
 by 

2030, with 420,000 km
2
 of newly affected regions, 

and 1.7 million km
2
 of area which will potentially 

become free of the pathogen (Figure 6c).  The overall 

suitability for cassava mosaic disease reduces by 

some 8% across the continent, with increases only in 

a handful of countries; Central African Republic 

(5.5%), Liberia (1.7%) and Equatorial Guinea 

(10.1%).  Countries set to gain most from the changes 

in distribution are Tanzania (397,000 km
2
 losing 

significant amount of climate suitability), Republic of 

Congo (380,000 km
2
) and Mozambique (350,000 

km
2
). 

 

Cassava mosaic disease represents one of the primary 

constraints to cassava production in Africa (Patil and 

Fauquet, 2009; Thresh et al., 1998).  The only 

alternative for its control is with host plant resistance, 

appropriate crop management, and through 

management of the vector (Bemisia tabaci).  Two 

particularly aggressive strains can produce mixed 

infestations in the crop, making its management 

highly complex (Mbanzibwa et al., 2011; Monger et 

al., 2010).  With climate change, and the predicted 

shift in geographic distributions this could bring into 

contact multiple strains which previously have not 

been in contact, causing more virulent strains and 

contributing to greater losses. 

 

For mealybug, there are currently 19.1 million km
2
 

with suitable climate conditions for the species across 

the continent, and this is predicted to decrease by 700 

million km
2
 by 2030, with 1 million km

2
 of newly 

affected regions, and 1.8 million km
2
 of area which 

will potentially become free of the insect pest.  The 

overall suitability for cassava mealy bug reduces by 

4.5% across the continent, with important increases in 

some major cassava producing countries; Democratic 

Republic of Congo (11.5%), Central African Republic 

(10.3%).  Countries set to gain most from the changes 

in distribution are Nigeria (250,000 km
2
 losing 

significant amount of climate suitability), Ivory Coast 

(220,000 km
2
), Zambia (210,000 km

2
) and Tanzania 

(195,000 km
2
).  Cassava mealybug has been managed 

successfully through biological control 

(Neuenschwander, 2001), and so it is important that 

the distribution of biological control agents are also 

incorporated into the models to better assess the 

impacts on the insect pest. 
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Figure 6 Predicted changes in suitability of major cassava pests and diseases. (A) Whitefly, (B) cassava brown streak virus, (C) 

cassava mosaic geminivirus, and (D) cassava mealybug. 
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Figure 7 Potential benefits (i.e. increases of highly suitable [>80% suitability] area) from new combinations of parameters reflecting the breeding 

scenarios of Table 4 for (A) cold and heat tolerance, and (B) drought and waterlogging tolerance in cassava cropped and non-cropped areas of 

Africa. 

 

 

Overall, the results indicate possible reductions in 

pest and disease distribution and prevalence across 

the continent, with notable hotspots where increases 

in prevalence are projected (Figure 6).  However, 

these results should be taken with caution. First, these 

are based only on environmental niche based 

approaches, which use the present distribution of the 

pest or disease to train a statistical model that 

describes the climate conditions likely to harbor the 

pest or disease.  The model is only as good as the data 

used to develop it, and hence biases in presence data 

may affect the result.  Furthermore, the geographic 

distribution of these pests and diseases may not be 

limited by climate, but rather host plants or other 

biological factors; hence any shift in the geographic 

distribution of cassava (assessed in Sect. 3.2) may 

broaden the geographic and environmental range of 

the pest or disease.  These analyses also assume zero 

adaptation of the pests and diseases themselves, but 

evidence based on the past century indicates that the 

rate of evolution of new pathogens is significant 

(Gregory et al., 2009; Patil and Fauquet, 2009; Winter 

et al., 2010). Hence those regions where the pest or 

disease is predicted to lose suitability may continue to 

suffer as the insect or virus evolves or adapts to the 

novel conditions.  An important next step for research 

would be to combine abiotic models with biotic 

models, which unfortunately is not possible with the 

currently available models. 

 

3.5. Abiotic breeding priorities 

Figure 7 shows the fractional area of cassava 

producing regions and other lands that would 

potentially benefit under a 2030 climate from crop 

improvement on abiotic tolerances to drought, 

waterlogging, heat and cold.  Regional specificities in 

these crop improvement priorities are shown in Figure 

8.  Many cassava growing regions (>80% of area) are 
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not abiotically constrained in 2030, meaning that they 

are unlikely to benefit from crop improvement for 

abiotic traits. For other regions where there is an 

abiotic constraint, the priorities for crop improvement 

across the continent lie in increased drought tolerance 

and in cold tolerance, although these priorities do 

change regionally.  Increased drought tolerance could 

bring benefits to nearly 30% of cassava producing 

regions in EAF, SAF and SAH.  Cold tolerance is 

also a surprising priority in 2030 despite the projected 

warmer climates.  This is largely because of 

constraints in high elevation regions of EAF (20% of 

cassava growing regions would benefit), or in low 

latitudinal regions in SAF (8% of area benefiting) 

where seasonal temperatures during winter pose a 

constraint for cassava development (Ceballos et al., 

2011; Cunha Alves, 2002; El-Sharkawy, 2004).  

Breeding for cold tolerance in cassava is reported as 

being a major challenge (El-Sharkawy, 2004; 

Fermont et al., 2009).  Low temperatures have 

impeded cassava expansion to temperate or 

Mediterranean climates, although cassava breeders 

have worked on it (Cunha Alves, 2002). Heat 

tolerance is found to only be a relevant constraint for 

WAF (5% of area) and SAH (2% of area). 

 

 
 

Figure 8 Predicted fractional area that would be positively impacted in each of the sub-regions of Africa (Figure S1) if the crop is 

improved towards (A) heat or cold tolerance, and (B) drought or waterlogging tolerance. 

 

This analysis looks at average climate conditions 

during the entire cassava growing season, and does 

not look at within season climatic constraints which 

may affect the cassava crops.  Nor does this look at 

climatic variability, such as changes in onset of rainy 

seasons due to alterations in Atlantic-Indian oceans 

sea surface temperature (SST) anomalies, the 

consequent change in monsoonal cycles and the El 

Nino Southern Oscillation (ENSO) (Douglass et al., 

2008; Hulme et al., 2001; Nicholson et al., 2000). 

Further research should exploit the potential of 

mechanistic models for examining growth on a daily 

time step, and also permit more sophisticated 

scenarios for crop improvement which exploits 

particular physiological traits.  Ex ante impact 

assessment of the benefits of biotic constraints is also 

a priority for further work. 

 

3.6. Towards a 2030 cassava crop 
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The combined effect of increased temperature and 

changing rainfall patterns (IPCC, 2007; Moss et al., 

2010) is expected to not only affect crop productivity 

through direct stresses during key periods of plant 

growth, but also through impacts on soil conditions, 

weeds, pests and/or diseases and associated 

agricultural biodiversity (Jarvis et al., 2008; Jarvis et 

al., 2010). These changes are expected in many food 

crops and to a lesser extent in cassava (Figure 1) 

(Ceballos et al., 2011; Liu et al., 2008; Schlenker and 

Lobell, 2010). On the contrary, increased CO2 

concentrations are expected to stimulate more rapid 

growth, increase photosynthetic rates, total biomass, 

the harvest index, and hence yields for grain legumes 

and other crops (Boote et al., 2005; Challinor and 

Wheeler, 2008b; Fuhrer, 2003). The interaction of 

these two is only documented for a few crops (Leakey 

et al., 2009). Here, high temperatures for future 

cassava growth were only found to be critical in WAF 

(6%) and SAH (15%), whereas cool temperatures 

were found to play a fundamental role in the future 

for all other areas. A future cassava plant to be 

growing in high- or mid- elevation regions and in 

areas with strong seasonal signals needs to 

incorporate cold tolerance so that growth is not 

slowed or stopped if temperatures go below 17°C 

(Cunha Alves, 2002; El-Sharkawy, 2004; El-

Sharkawy et al., 1984).  Tolerance and/or resistance 

to pests and diseases are currently and will continue 

to be highly desirable traits for cassava varieties in the 

future given the geographical shifts of prevalence 

expected (Sect. 3.4). 

 

Perhaps the most important abiotic factor for cassava 

(as shown by our analyses) was drought. Cassava is 

renowned for its resilience to drought, although 

prolonged periods during key phenological stages can 

decrease storage root yields (Connor et al., 1981; El-

Sharkawy and Cock, 1987; El-Sharkawy et al., 1992). 

If the best of the crops (including cassava) is used, it 

is very likely that adaptation to climate change is 

possible through varietal change, crop rotations and 

crop substitution (Figure 5C) (Brown and Funk, 2008; 

Ceballos et al., 2011; Challinor, 2009; Gregory et al., 

2005).  Cassava has been shown to be a potentially 

useful crop for substitution as climate change impacts 

on other staples become greater.  However, 

biophysical potential alone is not enough.  If cassava 

is to support communities to adapt, a number of 

social, economic, institutional and cultural boundaries 

must be overcome, and suitable policies be put in 

place to facilitate the adaptation process (Challinor, 

2009; Jarvis et al., 2011). Changing the staple food 

crop in a farming community, especially when 

subsistence agriculture is prevalent, has significant 

social and cultural implications, including gender 

dimensions (Barrios et al., 2008; Thornton et al., 

2011). Future research should strive to better 

understand the conditions required for crop 

substitution to occur, as well as identify what 

agricultural know-how, technology and seed systems 

are required to facilitate the adaptation process. Crop 

substitution also has important implications for 

market value chains, rural institutions and broader 

scale food security issues (Jarvis et al., 2011; 

Quiggin, 2008).  These complex system dynamics, 

although difficult to fully understand, should be 

evaluated more thoroughly. 

 

4. Conclusions 

This paper has aimed to update Kamukondiwa’s 

(Kamukondiwa, 1996) argument that cassava holds 

great merit in supporting (southern) Africa’s 

agricultural sector adapt to future climate change, 

based on the premise that the crop provides 

significant nutritional security to a massive 

population and that it is biologically resistant to 

stressful environments.  Through modeling and 

quantitative data analysis, we have evaluated the 

impacts of climate change on cassava production, 

showing projected changes of –3.7% to +17.5% 

across the continent.  This result is consistent with 

other studies (Liu et al., 2008; Lobell et al., 2008; 

Schlenker and Lobell, 2010).  Differential impacts of 

climate change have also been shown for major 

staples across the continent, indicating that cassava is 

the least sensitive crop to a changed 2030 climate.  

We particularly highlight the almost opposite crop-

climate responses observed between cassava and 

sorghum, indicating that cassava may be an important 

substitute crop for sorghum in areas where the latter 

suffers greatly. Whilst the strong abiotic resistance 
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characteristics of cassava make the crop capable of 

adapting to harsher future climates, our analysis and 

other studies do show that the principal weakness of 

cassava is in terms of pest and disease sensitivity 

(Herrera Campo et al. 2011). Cassava experiences 

significant crop losses today due to biotic constraints, 

and future projections developed in this paper indicate 

that pest and disease pressure is likely to continue in 

many regions of Africa, moving into some new 

regions, as well as reducing pressure in other regions. 

Key priorities for research in ensuring that cassava 

adapts to climate change lie in increasing resistance to 

these key pests and diseases, as well as further 

developing management practices to address greater 

pest or disease pressure (Herrera Campo et al. 2011).  

Our analyses also show that improvement of abiotic 

resistance in cassava should focus on traits that 

increase resistance to drought and cold tolerance. 

 

This paper provides a detailed quantification of 

climate change impacts on the cassava crop for 

Africa.  However, there remain a number of avenues 

for improvement of these estimations. More research 

is clearly needed to understand the climate impacts on 

pest and disease pressure and outbreaks at a more 

detailed time-step than yearly. Data presented 

provides a preliminary analysis of impacts for four 

major pests/diseases for cassava in Africa based on 

ecological niche modeling, but mechanistic pest and 

disease models may be needed to further understand 

the complex interactions between crop, weather and 

pest/disease vectors and pathogens (Garrett et al., 

2009), and also to assess possible adaptation 

responses such as those outlined by experts.  Further 

improvement of cassava models is also of high 

priority.  In this paper we relied on a fairly simple 

“niche” based model (EcoCrop), but improvement of 

mechanistic and process based models should be seen 

as a priority.  This would allow not only the improved 

quantification of impacts, but also the evaluation of 

benefits of specific adaptation options at the plot 

scale. 
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SUPPORTING INFORMATION 

 

Figure S1 Zone typology in the African continent as used in the study, designed to match with the study of Lobell et 

al. (Lobell et al., 2008) 

 

 


